

1 **A model intercomparison analysis for controls on C accumulation in North American
2 peatlands**

3 **Bailu Zhao¹, Qianlai Zhuang^{1,2}, Claire Treat³, Steve Frolking⁴**

4 1Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN
5 47907, USA

6 2Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA

7 3 Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Telegrafenberg A45, 14473
8 Potsdam, Germany

9 4 Institute for the Study of Earth, Oceans, and Space; University of New Hampshire, Durham NH USA

10 Correspondence to: qzhuang@purdue.edu

11 Key points:

12 • Peatlands tend to be C sources or weaker C sinks when insufficient precipitation suppresses
13 net N mineralization and NPP.

14 • Peatlands tend to be C sources or weaker C sinks when drier climate leads to increasing
15 water table depth.

16 • Both C-N feedback and water table change are important factors influencing peatland C
17 balance.

18 **Abstract**

19 Peatland biogeochemical processes have not been adequately represented in existing
20 earth system models, which might have biased the quantification of Arctic carbon-climate
21 feedbacks. We revise the Peatland Terrestrial Ecosystem Model (PTEM) by incorporating
22 additional peatland biogeochemical processes. The revised PTEM is evaluated by comparing
23 with Holocene Peatland Model (HPM) in simulating peat physical and biogeochemical dynamics
24 in three North American peatlands: a permafrost-free fen site, a permafrost-free bog site and a
25 permafrost bog site. Peatland carbon dynamics are simulated from peat initiation to 1990 and
26 then to year 2300. Model responses to the changes in temperature and precipitation are analyzed
27 to identify key processes affecting peatland carbon accumulation rates. We find that the net C
28 balance is sensitive to water table depth and nutrient availability. Future simulations to year 2300
29 are conducted with both models under RCP 2.6, RCP 4.5, and RCP 8.5. PTEM predicts these
30 peatlands to be C sources or weaker C sinks when insufficient precipitation suppresses soil
31 moisture and thereby net N mineralization and NPP, while HPM predicts the same when drier
32 climate leads to increasing water table depth. Our results highlight the importance of water
33 balance and C-N feedback on peatland C dynamics. With a warmer climate, these peatlands
34 could become a weaker C sink or a source under drier conditions, otherwise a larger C sink if
35 wetter. Improved understanding to peatland processes can help future quantification of peatland
36 C dynamics in the boreal and Arctic regions.

37 **1. Introduction**

38 Northern high latitude permafrost region contains 472-496 Pg C in the top 1m soil layer
39 (Hugelius et al., 2014; Köchy et al., 2015), and northern peatlands contain 415 ± 150 Pg C

40 (Nichols & Peteet, 2019; Turunen et al., 2002). Peatlands initiate when ecosystem productivity
41 persistently exceeds decomposition under wet conditions (Jones & Yu, 2010). After the Last
42 Glacial Maximum (LGM, 21 ka BP – 18 ka BP), the warming climate led to ice sheet and glacier
43 retreat and exposed land that had been covered by ice (MacDonald et al., 2006), allowing
44 peatland formation in large expanses of low-lying areas such as the West Siberian Lowlands and
45 the Hudson Bay Lowlands. Many studies suggest a majority (90%) of existing peatlands initiated
46 during 12 – 8 ka BP or 13 – 8 ka BP, when climate was warmer and more land was free from ice
47 (Gorham et al., 2007).

48 Although undisturbed peatlands are generally C sinks, anthropogenic disturbance and
49 climate change may switch peatlands into C sources (Frolking et al., 2011). For example,
50 northern permafrost non-growing season CO₂ emissions (respiration) will increase under warmer
51 climate (Natali et al., 2019), and peatland growing-season CO₂ emission will enhance under
52 water-table drawdown (Huang et al., 2021). Deepening water table is partially caused by warmer
53 climate (Huang et al., 2021), and anthropogenic drainage can also contribute to this process.
54 Drainage not only enhances CO₂ emission from peatlands, but also increases the C loss from
55 wildfires (Qiu et al., 2021; Turetsky et al., 2011). In addition to CO₂ emission impacts, CH₄
56 emissions can also increase by different ratios as permafrost thaw exposes previously frozen soil
57 to anaerobic or aerobic decomposition (O'Donnell et al., 2012; Turetsky et al., 2002). In
58 particular, the southern part of the northern hemisphere permafrost region (discontinuous and
59 sporadic permafrost) is most vulnerable to permafrost thaw, which could contribute significant
60 amount of C loss (Hugelius et al., 2020; Treat, Jones, Alder, et al., 2021). Although productivity
61 also can increase with warmer climate and longer growing seasons under favorable moisture and
62 nutrient conditions, decomposition is expected to increase more and global peatlands are
63 projected to be a weaker C sink by the end of 21st century (Gallego-Sala et al., 2018) and
64 possibly a C source by 2300 (Loisel et al., 2021).

65 To quantify peatland C stock at site to regional level and predict the possible response to
66 climate change, a few process-based models which couple the effect of temperature, precipitation,
67 vegetation shift, permafrost, and other factors have been developed. For example, LPJ-GUESS
68 (Lund-Potsdam-Jena General Ecosystem Simulator) has been used to simulate the C
69 accumulation rate until 2100 (Chaudhary et al., 2017). LPJ-GUESS simulated dynamical water
70 table position (WTP) and assumed plant functional type (PFT) shifts according to WTP. The
71 Holocene Peatland Model (HPM) has been used to simulate the development of peatland and the
72 response of peatland permafrost to climate change (Frolking et al., 2014; Treat, Jones, Alder, et
73 al., 2021).

74 Recently, a peatland version of the Terrestrial Ecosystem Model was developed to
75 simulate tropical and North American peatland C accumulation during Holocene at both site and
76 regional levels (Wang, Zhuang, & Yu, 2016). However, PTEM has several limitations on
77 describing peatland processes. First, different from LPJ and HPM, there are single aggregate
78 pools for soil C and N and for vegetation C and N in PTEM (Figure 1). Therefore, the C and N
79 distribution among different PFTs, and differences in the way each PFT responds to
80 environmental conditions cannot be simulated. However, since different PFTs differ in terms of

81 their productivity, nitrogen requirements and litter decomposition rates, PFT dynamics could be
82 an important factor influencing peatland C balance (Kuhry & Vitt, 1996; Oberbauer & Oechel,
83 1989; Williams & Flanagan, 1996). Second, PTEM does not simulate peat thickness or physical
84 properties such as bulk density, or soil organic C content across the peat profile. When
85 simulating peat decomposition processes, the amount of soil C that takes part in soil aerobic and
86 anaerobic decomposition is unknown. To address this issue, PTEM assumes the fractions of total
87 soil C undergoing soil aerobic and anoxic decomposition are constant (Wang, Zhuang, Yu, et al.,
88 2016). Third, PTEM cannot simulate a shift in peatland type, i.e. the switch between fen and bog.
89 However, since many peatlands make this transition (Charman, 2002), and since fens usually
90 have higher productivity and decomposition rates than bogs, ignoring this process could cause
91 uncertainties in long-term C balance simulations. Finally, the soil thermal module (STM) in
92 PTEM reads a constant initial soil profile as input every month, which makes the simulated soil
93 temperature below around 1m depth very insensitive with surface temperature. As a result,
94 PTEM tends to fail to capture active layer depth (ALD) dynamics in long-term simulations in
95 northern peatlands.

96 To improve PTEM representation of peatlands ecosystems, here we further develop
97 PTEM by 1) dividing the aggregated vegetation C and N pool into three plant functional type
98 pools representing moss, herb and shrub; 2) adding peat thickness as a dynamic variable, in
99 addition to peat C and N stocks; 3) adding functionality for a fen to bog transition process during
100 peatland development; and 4) improving the calculation of the soil thermal profile. PTEM's PFT
101 classes, algorithms for calculating peat thickness, and implementation of fen-bog transitions
102 were partially derived from HPM (Frolking et al., 2010; Treat, Jones, Alder, et al., 2021). To
103 evaluate the new PTEM, we use observational data of peat physics including their thermal and
104 hydrological as well as carbon dynamics and conduct PTEM and HPM simulations at three sites
105 including both fen and bog, permafrost and non-permafrost, to analyze model differences. We
106 test the capability of the revised PTEM to describe peatland dynamics and compare PTEM
107 simulations with HPM results through: 1) simulating the site-level dynamics of three different
108 types of peatlands from peat initiation to 1990 with PTEM and HPM; 2) testing the sensitivity of
109 PTEM to temperature and precipitation and key parameters; 3) finding key variables controlling
110 NPP and decomposition in both models, which are the two drivers controlling net peat
111 accumulation and therefore net C exchange; 4) simulating peatland dynamics with both models
112 at the three sites under multiple RCPs until 2300, and analyzing the mechanisms that cause
113 differences in future projections.

114 2. Methods

115 2.1. Overview

116 In the methods section, we first introduce the study sites and observational data that are
117 used for the site-level simulation. Second, a brief introduction to HPM is provided. Third, we
118 describe the PTEM revisions in terms of plant functional types, peat accumulation and
119 decomposition, fen to bog transition and soil thermal dynamics. Fourth, we introduce the model
120 input data. Finally, we introduce the methods used to evaluate PTEM at the site level in terms of
121 climate inputs and key parameter sensitivity, key controls of C balance and future simulation.

122 2.2. Study sites and observational data

123 Three sites with different peatland types, continuous core profiles and sufficient C data
124 were chosen for evaluation of PTEM and comparison with HPM: Mariana Fen, about 300 km
125 north of Edmonton, Alberta, Canada; Bear Bog near Cordova, AK USA; and Innoko Bog, about
126 150 km south of Koyukuk, AK, USA (Table 1). Mariana Fen vegetation is currently dominated
127 by *Sphagnum angustifolium*, *Andromeda polifolia*, and *Scheuchzeria palustris* (Yu et al., 2014),
128 and Innoko Bog vegetation is currently dominated by black spruce (*Picea mariana*) with the
129 understory dominated by *Sphagnum fuscum* (Jones et al., 2017). Little vegetation information is
130 available for the un-published Bear Bog site, but core data is available in the dataset compiled by
131 Loisel et al. (2014), which suggests *Sphagnum* presence. The long-term mean temperature of
132 Innoko Bog (-4.7°C) is lower than the other two sites (-0.2°C, -0.9°C), which results in
133 permafrost at Innoko (Table 1). Permafrost was not found when peat cores were collected at
134 Mariana Fen and Bear Bog. Bear Bog has 3-4 times more precipitation than the other two sites
135 (Table 1). The reconstructed coarse-resolution TraCE 21ka dataset, which simulates monthly
136 climate data from the Last Glacial Maximum to present using CCSM3 (He, 2011), shows that
137 temperature and precipitation at the three sites have been stable since peat initiated (Appendix
138 Figure 3).

139 2.3. The HPM model

140 HPM was designed specifically to simulate the interacting effects of peat profiles of
141 temperature, moisture, anoxia, and litter quality on peat accumulation dynamics (Frolking et al.,
142 2010). In HPM, peat profiles are tracked as annual cohorts, with each layer representing litter
143 deposition in a year. In contrast to PTEM, HPM includes run-on/run-off processes based on total
144 peat height, but does not simulate nitrogen dynamics. In each month, the NPP of each PFT is
145 calculated independently and added up as the total NPP of the ecosystem. Each year the above
146 ground annual NPP is converted into the uppermost peat deposition layer while below ground
147 (root) NPP is deposited into shallow peat layers depending on rooting depth, and when
148 permafrost exists, also depending on the depth of the top soil layer that thaws in summer and
149 freezes in fall, i.e., active layer depth (ALD). HPM tracks mass loss of litter/peat, but does not
150 disaggregate this into CO₂, CH₄, and DOC decomposition products. We use here the HPM-
151 Arctic version of Treat, Jones, Alder, et al. (2021), which has a monthly time step, includes
152 peat/soil freeze-thaw dynamics, active layer simulation, and limits vegetation to three PFTs –
153 sedge, shrub, and moss.

154 2.4. PTEM revisions

155 This study revised PTEM to have a better representation of PFT dynamics, peat
156 accumulation and decomposition, fen-bog transition and soil thermal dynamics (Figure 1). The
157 major improvements include: a) the vegetation C and N pool is divided into three PFT C and N
158 pools for moss, herb and shrub. The productivity of each PFT is a fraction of the ecosystem total
159 productivity while the decomposition rate of the litter depends on the fraction of litter origin
160 from each PFT; b) peat thickness is simulated, and the decomposition process depends on the
161 position of the peat layer relative to the water table or frozen depth; c) a fen to bog transition is

162 considered for peatlands when peat thickness exceeds a specified threshold, and PFT
 163 productivity and decomposition parameters change after a fen-bog transition; d) the soil thermal
 164 profile is initialized based on the long-term air temperature, and is updated in every month.
 165 Below we describe each of these improvements.

166 2.4.1. Plant Function Type dynamics

167 In PTEM, there are three peatland PFTs: mosses, herbaceous plants and shrubs. We
 168 assume that variation in each PFT's relative productivity is primarily influenced by water table
 169 depth (WTD):

$$170 \quad GPP_{wtd-hb} = \frac{c_{max-hb}}{1+\exp(-hb_a \times (wtd-wtd_{hbmin}))} - \frac{c_{max-hb}}{1+\exp(-hb_b \times (wtd-wtd_{hbmax}))} \quad (1)$$

$$171 \quad GPP_{wtd-srb} = \frac{c_{max-srb}}{1+\exp(-srb_a \times (wtd-wtd_{srbmin}))} - \frac{c_{max-srb}}{1+\exp(-srb_b \times (wtd-wtd_{srbmax}))} \quad (2)$$

172 where GPP_{wtd-hb} and $GPP_{wtd-srb}$ are the gross primary production (GPP) of herbaceous plants
 173 and shrub if only influenced by WTD. c_{max-hb} and $c_{max-srb}$ are the maximum C assimilated by
 174 herb and shrub ($\text{g C} \cdot \text{m}^{-2} \cdot \text{mon}^{-1}$). hb_a , hb_b , srb_a , srb_b are the fitting parameters describing the
 175 increase and decrease of GPP with WTD of herbaceous plants and shrub, respectively. wtd_{hbmin}
 176 and wtd_{srbmin} are the minimum WTD that allows herb and shrub to grow, while wtd_{hbmax} and
 177 wtd_{srbmax} are the maximum WTD that allows herb and shrub to grow. Different from herb and
 178 shrub, the dominance of moss is affected by both WTD and the abundance of vascular plants (i.e.,
 179 shading).

$$180 \quad GPP_{wtd-moss} = \frac{c'_{max-moss}}{1+\exp(-moss_a \times (wtd-wtd_{mossmin}))} - \frac{c'_{max-moss}}{1+\exp(-moss_b \times (wtd-wtd_{mossmax}))} \quad (3)$$

$$181 \quad c'_{max-moss} = c_{max-moss} \times (1 + vas_effect \times vas_cover) \quad (4)$$

$$182 \quad vas_cover = \frac{GPP_{wtd-hb} + GPP_{wtd-srb}}{c_{max-hb} + c_{max-srb}} \quad (5)$$

183 where $GPP_{wtd-moss}$ is the GPP of moss if only influenced by WTD and the presence of vascular
 184 plants. $c'_{max-moss}$ is the maximum C assimilated by moss under the effect of vascular plants (g
 185 $\text{C} \cdot \text{m}^{-2} \cdot \text{mon}^{-1}$). $moss_a$ and $moss_b$, are the fitting parameters describing the increase and decrease
 186 of moss GPP with WTD. $wtd_{mossmin}$ and $wtd_{mossmax}$ are the minimum and maximum WTD
 187 that allows herb and moss to grow. $c_{max-moss}$ is the maximum C assimilated by moss if not
 188 affected by vascular plants ($\text{g C} \cdot \text{m}^{-2} \cdot \text{mon}^{-1}$), vas_effect is the effect of vascular plants on moss
 189 productivity, and vas_cover is the dominance of vascular plants.

190 As described in Raich et al. (1991), McGuire et al. (1992) and Zhuang et al. (2002), in
 191 PTEM, total gross primary production (GPP_{total}) is defined as:

$$192 \quad GPP_{total} = c_{max} f(PAR) f(Phenology) f(Foliage) f(T) f(C_a, G_v) f(N) \quad (6)$$

193 where c_{max} is the maximum C assimilation rate of the entire ecosystem ($\text{g C} \cdot \text{m}^{-2} \cdot \text{mon}^{-1}$),
 194 $f(PAR)$ is the effect of photosynthesis active radiation, $f(Phenology)$ is the effect of monthly
 195 leaf area, $f(Foliage)$ is the effect of lead biomass, $f(T)$ is the effect of temperature,

196 $f(C_a, G_v)$ is the effect of CO₂ concentration and relative canopy conductance, and $f(N)$ is the
 197 effect of nitrogen availability. However, the GPP calculated in equation (6) does not describe the
 198 effect of water table on the dominance of PFTs. Therefore, GPP_{total} is distributed into each PFT
 199 by their theoretical GPP if only influenced by water table (i.e., the GPP calculated by equation
 200 (1-3)):

$$201 \quad GPP_{pft} = \frac{GPP_{wtd-pft}}{GPP_{wtd-moss} + GPP_{wtd-hb} + GPP_{wtd-srb}} \times GPP_{total} \quad (7)$$

202 In the original version, PTEM calculates the litter fall C, maintenance respiration, growth
 203 respiration and net primary production (NPP) of the entire ecosystem. After adding PFTs, the
 204 vegetation C pool is divided into moss C pool, herb C pool and shrub C pool and the monthly
 205 growth in partitioned into each pool (Figure 1). The C fluxes into each pool are calculated
 206 separately for each PFT, but the algorithms remain the same as described in Raich et al. (1991).
 207 Similarly, the vegetation N pool is also further divided into moss, herb and shrub N pools, and
 208 the fluxes into and out of each pool (e.g. litter fall N, vegetation N uptake, N mobilization by
 209 vegetation and N resorption by vegetation) are calculated separately. These algorithms are well
 210 documented by McGuire et al. (1992) and Raich et al. (1991) remain the same in this study.

211 2.4.2. Peat accumulation and peat decomposition

212 The peat accumulation process in PTEM is now similar to HPM, with peat being
 213 vertically divided into multiple layers. In each month, the litter input is added to the top layer
 214 while decomposition is calculated for all the layers. When total peat thickness is less than 5cm,
 215 each layer is the peat deposition in one month. When the total peat thickness first exceeds 5cm,
 216 the monthly layers are aggregated into 1cm layers except for the top layer. Thereafter, for
 217 computational efficiency, peat thickness dynamics will be based on these 1cm layers, instead of
 218 monthly layers. In each month, litter is added to the top layer while the other layers become
 219 thinner as peat decomposes. Since the thickness of the layers are no longer 1cm, the peat profile
 220 will be re-interpolated into 1cm layers each month. The total thickness of peat is calculated by:

$$221 \quad TotThick_i = \sum_0^i Thick_i \quad (8)$$

222 where i represents the number of layers, and $Thick_i$ is the thickness of layer i (cm). For each
 223 layer, $Thick_i$ is given by:

$$224 \quad Thick_i = \frac{soilC_i}{densC_i \times 10000} \quad (9)$$

225 where $soilC_i$ is the soil organic C in layer i (g C·m⁻²), $densC_i$ is the C density in layer i (g C·cm⁻³), and 10000 is a unit-correction scalar. $densC_i$ is calculated by:

$$227 \quad densC_i = dens_i \times C_{con} \quad (10)$$

228 where $dens_i$ is the bulk density of layer i (g·cm⁻³) and C_{con} is the carbon content of the peat (0-
 229 1). $soilC_i$ is given by:

$$230 \quad soilC_i = soilC'_i - R_{Hi} - CH_{4i} \quad (11)$$

231 where $soilC'_i$ is the soil organic C in the last month in layer i ($\text{g C}\cdot\text{m}^{-2}$), R_{Hi} is the aerobic
 232 heterotrophic respiration (R_H) of layer i ($\text{g C}\cdot\text{m}^{-2}$), and CH_{4i} is the anoxic decomposition
 233 (presented as methane production) of layer i ($\text{g C}\cdot\text{m}^{-2}$). In PTEM, CH₄ production is a function of
 234 NPP, soil temperate, pH and redox potential effects on methanogenesis; the details of these
 235 algorithms are provided by Zhuang et al. (2004). We assume that methane production only
 236 happens in the layers below the water table and above the frozen depth if permafrost is present or
 237 the bottom of the peat if there is no permafrost. However, we assume R_H happens in both
 238 unsaturated and saturated layers, but not in frozen layers:

$$239 \quad R_{Hi} = k_{di} soilC_i f(M_V) Q_{10i} m_i \quad (12)$$

240 where k_{di} is the R_H at 0°C for layer i ($\text{g C}\cdot\text{m}^{-2}$), $f(M_V)$ is the impact of soil moisture (M_V) on R_H ,
 241 Q_{10i} is the soil temperature effect on R_H , and m_i is the fraction of remaining litter in layer i .
 242 $f(M_V)$ is described as:

$$243 \quad f(M_V)_{unsat} = \begin{cases} \frac{1}{1+\exp(moista \times M_V + moistb)} & (M_V \leq 0.6) \\ \exp(moistc \times M_V + moistd) + moist_{min} & (M_V > 0.6) \end{cases} \quad (13)$$

$$244 \quad f(M_V)_{sat} = moist_{min-sat} + (f(M_V)_{unsat} - moist_{min-sat}) \times \exp\left(-\frac{dbw_i}{moiste}\right) \quad (14)$$

$$245 \quad M_V = \frac{VSM_{unsat}}{VSM_{sat}} \quad (15)$$

246 $f(M_V)_{unsat}$ is applied for peat layers above the water table. We use the same value for all
 247 the unsaturated layers. $moista$, $moistb$, $moistc$, $moistd$ are fitting parameters, while $moist_{min}$
 248 is the effect of soil moisture on R_H under minimum moisture condition. VSM_{unsat} is the
 249 volumetric soil moisture of the unsaturated layer (m^3/m^3) and VSM_{sat} is the volumetric soil
 250 moisture of the saturated layer (m^3/m^3). $f(M_V)_{sat}$ is applied to the layers below the water table.
 251 We assume that below the water table, R_H still happens at a quite slow rate, which decreases with
 252 depth the layer below the water table. $moist_{min-sat}$ is the minimum impact of soil moisture on
 253 R_H , dbw_i is the distance of layer i below the water table and $moiste$ is the fitting parameter.

$$254 \quad Q_{10i} = RHQ10^{tempi/10} \quad (16)$$

255 where Q_{10i} is the effect of temperature on R_H in layer i , $RHQ10$ is the change in R_H due to 10°C
 256 temperature change and $tempi$ is the soil temperature of layer i (°C).

257 Peat bulk density increases with degree of decomposition, and is calculated as a function
 258 of fraction of remaining litter (m_i):

$$259 \quad dens_i = dens_{min} + \frac{dens_{delta}}{1+\exp(densa \times m_i + densb)} \quad (17)$$

260 where $dens_{min}$ is the minimum bulk density ($\text{g}\cdot\text{cm}^{-3}$), $dens_{delta}$ is the difference between the
 261 minimum and maximum bulk density ($\text{g}\cdot\text{cm}^{-3}$), $densa$ and $densb$ are fitting parameter. m_i is
 262 calculated by:

263 $m_i = \frac{soilC_i}{litterC_i}$ (18)

264 where $litterC_i$ is the original litter input ($\text{g C}\cdot\text{m}^{-2}$) of layer i . In each month, the litter C is a
265 fraction of vegetation C of each PFT and the season of the year.

266 $mon_litterC_{pft} = \begin{cases} vegC_{pft} \times cfall_{pft} & \text{first to second last month of the growing season} \\ vegC_{pft} \times cfall_{fin-pft} & \text{last month of the growing season} \\ 0 & \text{non-growing season} \end{cases}$ (19)

267 $mon_litterC_{total} = \sum_{pft=1}^3 mon_litterC_{pft}$ (20)

268 where $mon_litterC_{pft}$ is the monthly litter C falling from individual PFT ($\text{g C}\cdot\text{m}^{-2} \text{mon}^{-1}$),
269 $vegC_{pft}$ is the vegetation C of each PFT ($\text{g C}\cdot\text{m}^{-2}$), $cfall_{pft}$ is the fraction of vegetation C that
270 falls as litter for each PFT (0-1) during the first to the second last month of the growing season,
271 $cfall_{pft-fin}$ is the fraction of vegetation C fall as litter for individual PFT (0-1) in the last month
272 of the growing season, $mon_litterC_{total}$ is the total monthly litter C of three PFTs ($\text{g C}\cdot\text{m}^{-2}$
273 mon^{-1}), and is the monthly C input to the peat. The growing season is defined as the months
274 when the soil is not totally frozen. In case of no permafrost, litter fall happens in December.

275 2.4.3. Fen-bog transition

276 The PTEM simulated fen-bog transition can occur when the peat thickness exceeds a site-
277 specific threshold (Frolking et al., 2010), which is usually estimated from the core profiles. If a
278 peatland shifts from fen to bog, both its productivity and the decomposition rate of new litter
279 decrease. This is at least in part, because in fens, nutrients come from both ground water and
280 precipitation, while in bogs, nutrients only come from precipitation. Therefore, the change of
281 water inflow could be an important factor of fen-bog transition. However, since PTEM does not
282 include a run-on process, and a field record of run-on is not available for any of the study sites,
283 the decline of productivity as fen switches to bog is simplified in PTEM to multiplying the
284 maximum productivity by a scalar:

285 $c_{max-bog} = c_{max-fen} \times scalar_{cmax}$ (21)

286 where $c_{max-bog}$ is the maximum C assimilation rate of bogs ($\text{g C}\cdot\text{m}^{-2}\cdot\text{mon}^{-1}$), $c_{max-fen}$ is the
287 maximum C assimilation rate of fens ($\text{g C}\cdot\text{m}^{-2}\cdot\text{mon}^{-1}$), and $scalar_{cmax}$ is a multiplier on 0-1
288 scale. Notably, the $c_{max-bog}$ and $c_{max-fen}$ are used to calculate GPP_{total} . The maximum C
289 assimilation rate of individual PFTs (i.e. $c_{max-moss}$, c_{max-hb} and $c_{max-srb}$) are primarily used
290 to describe the productivity of PFTs in response to WTD and are not changed during fen-bog
291 transition. However, the rate of decomposition for each PFT's litter decreases after transitioning
292 into a bog:

293 $k_{dbog-pft} = k_{dfen-pft} \times scalar_{kd-pft}$ (22)

294 where $k_{dbog-pft}$ is the R_H at 0°C for litter from an individual PFT in a bog ($\text{g C}\cdot\text{m}^{-2} \text{mon}^{-1}$),
295 $k_{dfen-pft}$ is the R_H at 0°C for litter origin from individual PFT in a fen ($\text{g C}\cdot\text{m}^{-2} \text{mon}^{-1}$), and
296 $scalar_{kd-pft}$ is the multiplier specified for each PFT (0-1).

297 In addition to these changes, the pH value is also adjusted to a lower value (Appendix
 298 Table 2) after a fen transition into a bog, which influences the rate of CH₄ production (Zhuang et
 299 al., 2004). In a case of no fen-bog transition, the scalars in equation (21-22) would be 1.

300 2.4.4. Peat thermal dynamics

301 The soil thermal module (STM) in PTEM is derived from a one-dimensional heat flow
 302 model (Goodrich, 1978). However, this module requires an initial soil thermal profile input,
 303 which used to be a set of fixed parameters (Zhuang et al., 2001). In this study, we initialize the
 304 soil profile according to the local climate. If the long-term average surface temperature exceeds
 305 0 °C, we initialize the thermal profile by assuming no permafrost existence, otherwise we assume
 306 permafrost exists. In addition, we assume the initial temperature at 10m depth is the same as
 307 long-term surface average temperature.

308 When initializing without permafrost:

$$309 T_j = T_{ave} + (D_j - 10) \times G \quad (23)$$

310 where T_j is the initial temperature of layer j (°C), T_{ave} is the long-term average surface
 311 temperature (°C), D_j is the depth of layer j (m) and G is the geothermal gradient (°C·m⁻¹).
 312 Notably, the layers in STM are not the layers in peat accumulation and decomposition
 313 calculation. In the current PTEM, the soil initial profile includes 25 layers, thin near the surface
 314 and getting thicker with depth, with the deepest 43.5m below surface. When initializing with
 315 permafrost:

$$316 T_j = \begin{cases} T_{j-1}/1.5 & D_j < ALD_{max} \\ -T_{j-1}/1.5 & D_j > ALD_{max} \text{ and } D_{j-1} < ALD_{max} \\ D_j \times tempa + tempb & D_j > ALD_{max} \text{ and } D_{j-1} > ALD_{max} \\ T_{ave} + (D_j - 10) \times G & D_j \geq 10 \end{cases} \quad (24)$$

$$317 tempa = \frac{T_{ave}}{10 - ALD_{max}} \quad (25)$$

$$318 tempb = -\frac{ALD_{max} \times T_{ave}}{10 - ALD_{max}} \quad (26)$$

319 where T_{j-1} is the temperature of the upper layer $j-1$ (°C), ALD_{max} is the maximum active layer
 320 depth (ALD, in cm) of the current site, D_{j-1} is the depth of the upper layer $j-1$ (m), $tempa$ is the
 321 thermal gradient between the maximum active layer depth and 10m (°C·m⁻¹), and $tempb$ is the
 322 intercept that makes sure the temperature at ALD_{max} is 0°C while the temperature at 10m is T_{ave}
 323 (°C). ALD_{max} is calculated by Stefan Model (Romanovsky & Osterkamp, 1997):

$$324 ALD_{max} = coef \times \sqrt{STI_{day}} \quad (27)$$

325 where $coef$ is the multiplier $coef$ estimated from calibration against field data collected from
 326 Zackenberg fen in Greenland (López-Blanco et al., 2017)(Appendix). STI_{day} is the surface thaw
 327 index, defined as the accumulative daily surface temperature that exceeds 0°C (°C·day). Since
 328 PTEM uses monthly temperature rather than daily temperature, in order to estimate the time

329 when the monthly temperature exceeds 0°C, we approximate the annual temperature as a
 330 trigonometric function of maximum monthly temperature, minimum monthly temperature and
 331 annual average temperature:

$$332 \quad T(\text{mon}) = -\cos\left(\frac{\text{mon} \times 30}{180} \times \pi\right) \times \frac{T_{\max} - T_{\min}}{2} + T_{\text{an-ave}} \quad (28)$$

333 where $T(\text{mon})$ is the monthly temperature, mon is the month of the year, T_{\max} is the maximum
 334 monthly temperature, T_{\min} is the minimum monthly temperature and $T_{\text{an-ave}}$ is the annual
 335 average temperature (all temperature in °C). This approximation depicts the dynamics of
 336 monthly temperature in Zackenberg fen with a R^2 of 0.861 (Appendix). According to this
 337 approximation, the month that the temperature first rises to 0°C (mon_1) and first drops to 0°C
 338 (mon_2) are:

$$339 \quad \text{mon}_1 = \frac{6}{\pi} \times \arccos\left(\frac{2 \times T_{\text{an-ave}}}{T_{\max} - T_{\min}}\right) \quad (29)$$

$$340 \quad \text{mon}_2 = 4 \times \pi - \text{mon}_1 \quad (30)$$

341 Therefore, the accumulative monthly surface temperature that exceeds 0°C (STI_{mon}) is:

$$342 \quad STI_{\text{mon}} = \sum_{\text{mon}_1}^{\text{mon}_2} T(\text{mon}) \quad (31)$$

343 If we assume there are 31 days in a month, then:

$$344 \quad STI_{\text{day}} = 31 \times STI_{\text{mon}} \quad (32)$$

345 In the original PTEM, in every month, the soil thermal profile is reset to the initial
 346 condition written in a parameter file. Although the surface soil temperature responses to the
 347 surface air temperature promptly, the deep soil temperature is primarily affected by being reset to
 348 this initial input every month, and hardly changes. This makes the simulated frozen depth quite
 349 similar every year, with little sensitivity to the surface temperature. This causes uncertainty in the
 350 ALD simulation and influences the peat C balance (Treat & Jones, 2018). To address this issue,
 351 we update the soil thermal profile every month and use it as the initial profile of the next month.
 352 The STM is then calibrated by the observation record of Zackenberg, Greenland fen ALD
 353 (López-Blanco et al., 2020)(Appendix Figure 2).

354 2.5. Model input data

355 PTEM requires monthly temperature, precipitation, cloudiness and vapor pressure as
 356 climate inputs while HPM requires monthly temperature and precipitation. These climate data
 357 are derived from the TraCE 21ka dataset (He, 2011). In this study, only the data between 15ka
 358 BP-1990 are used. The coarse-grid TraCE data are interpolated to $0.5^\circ \times 0.5^\circ$ grids with bilinear
 359 interpolation to match the resolution of PTEM. Since the TraCE dataset does not include vapor
 360 pressure, the vapor pressure used in PTEM is calculated by:

$$361 \quad vp = rh \times 6.107 \times 10^{\frac{7.5 \times T}{237.7 + T}} \quad (33)$$

362 where vp is the vapor pressure (hPa), rh is the relative humidity in the TraCE dataset (0-1), T is
363 the air temperature ($^{\circ}\text{C}$). Thereafter, the monthly TraCE data are bias-corrected with CRU v4.03
364 data (Harris et al., 2014) for the overlapping time period of these two datasets (1900-1990). In
365 particular, we calculate the January-December monthly average temperature, precipitation,
366 cloudiness and vapor pressure of the two datasets, and use the difference of temperature, and the
367 ratios of precipitation, cloudiness and vapor pressure as the bias. Then the TraCE monthly data
368 are corrected by monthly biases.

369 In this study, in addition to paleo-simulations, a future simulation is also conducted for
370 each site until 2300. From the many CMIP5-based future climate data products, in this study we
371 selected the IPSL-CM5A-LR model results because: a) it provides the climate data for both
372 historical (1850-2005) and future periods (2006-2300); b) it covers the future scenarios of
373 RCP2.6, RCP4.5 and RCP8.5; and c) among 24 CMIP5 models, it has one of the highest
374 agreements with CRU data in terms of annual and seasonal average temperature, as well as the
375 warming trend during 1901-2005 in Eurasia (Miao et al., 2014). Among 17 CMIP5 models, it
376 has one of the lowest biases in terms of North America summer temperature and precipitation
377 during 1979-2005 (Sheffield et al., 2013). Similar to the TraCE dataset, the bias correction
378 procedure is conducted for the future dataset to match the CRU scale. Therefore, the climate
379 inputs for future simulations are composed of CRU-bias-corrected data from three datasets:
380 TraCE dataset (15 ka BP-1990), IPSL-CM5A-LR historical dataset (1990-2005) and IPSL-
381 CM5A-LR future dataset (2006-2300).

382 In addition to the climate inputs, PTEM also requires annual atmospheric CO_2 level as an
383 input. The CO_2 concentration (ppm) during 15 ka BP-1990 is provided by TraCE dataset (He,
384 2011), and the CO_2 concentration for three future scenarios during 1990-2300 is provided by
385 Meinshausen et al. (2011). Spatially-explicit data of soil texture (percentage of silt, clay and sand;
386 FAO-Unesco (1974)) and elevation (Zhuang et al., 2002) were also used for PTEM.

387 2.6. Site-level comparisons

388 2.6.1 Model calibration

389 PTEM parameters related to model improvements presented above are provided in
390 Appendix Table 2 (parameters that apply to all three sites), and Appendix Table 3 (parameters
391 calibrated for each site). The calibration was conducted with PEST (v17.2 for Linux), and the
392 maximum C assimilated by the ecosystem (C_{\max}), R_H at 0°C for different PFTs (k_d), and the
393 scalars of C_{\max} and k_d when fens transition to bogs were calibrated by age-peat thickness profiles
394 derived from the core data. In particular, in Bear Bog and Innoko Bog, the fens transitioned to
395 bogs when the net C accumulation rate showed an obvious decrease. For each site, the simulation
396 started in 15ka BP, but peat accumulation did not start until the site-specific basal date.

397 For HPM, the adjusted parameters include maximum annual NPP, exponential decay rate
398 of litter, exponential decline with depth in catotelm decomposition, the scalar of maximum
399 annual NPP at fen-bog transition, run-on and run-off (Appendix Table 4). Similar to PTEM,
400 these HPM parameters were adjusted to best approach the calibration result of PTEM, and also

401 based on the age-peat thickness profiles. For each site, the simulation started at the basal date and
402 peat accumulation was computed.

403 2.6.2 Sensitivity analysis to parametrization

404 It's likely that the coarse temporal and spatial resolution of the TraCE 21ka dataset
405 doesn't capture the climate at these sites, and TraCE 21 ka dateset shows discrepancies with
406 other climate model simulations at the regional level (Zhu et al., 2019). In order to address the
407 uncertainty of historical climate input in PTEM, a sensitivity test on temperature and
408 precipitation was conducted for the three sites. In particular, we created five sets of long-term
409 (15 ka BP - 1990) temperature inputs: original, $\pm 0.5^{\circ}\text{C}$ and $\pm 1^{\circ}\text{C}$, and five sets of long-term
410 precipitation inputs: original, $\pm 10\%$ and $\pm 20\%$. These generated 25 different combinations of
411 temperature and precipitation inputs. The response of NPP, decomposition, total C accumulation
412 to temperature and precipitation changes were analyzed.

413 In addition to climate sensitivity, the sensitivity to the key parameters of PTEM was also
414 examined. These parameters include the maximum productivity ($C_{\text{max-fen}}$) and the decomposition
415 rate ($k_{\text{d-fen-pft}}$). The maximum productivity parameters are adjusted by $\pm 2.5\%$ and $\pm 5\%$ while the
416 decomposition rate parameters are adjusted by $\pm 5\%$ and $\pm 10\%$. These adjustments were large
417 enough to have an impact on the results, but not so large that peat failed to accumulate.

418 Correlations between productivity and decomposition and other key variables were
419 calculated using the 5 by 5 matrices generated by 25 climate sensitivity scenarios to check the
420 key controls on NPP, decomposition and peat C accumulation in both models. In PTEM,
421 correlations were calculated between WTD, ALD, net N mineralization and NPP and between
422 WTD, ALD, NPP and decomposition. In HPM, correlations were calculated between WTD,
423 ALD and NPP, decomposition.

424 2.6.3 Future scenarios

425 Finally, we also run HPM and PTEM simulations for the three future scenarios until 2300
426 and compare their C balance in response to projected climate change. Mechanisms behind the C
427 balance dynamics are considered in terms of the key variables found in the last step. The
428 different performances of the two models are analyzed and compared.

429 **3. Results**

430 3.1. Comparison of model output to peat core observations

431 The peat thickness and soil organic C have similar profiles with time as the peat core data
432 (Figure 2), and simulated contemporary peat thickness and soil organic C agree with the
433 observations (Table 2). The two models simulate similar rates of NPP and decomposition (Figure
434 2). The NPP and decomposition of both bogs drop when fen transitions to bog. As a perennial
435 fen site, long-term NPP and decomposition of Mariana Fen are higher than Bear Bog and Innoko
436 Bog, while the two bogs are similar.

437 The WTD simulated by HPM shows higher variability and is shallower than simulated
438 by PTEM. Although the precipitation of Bear Bog is much higher than the other two sites (Table

439 1, Appendix Figure 3), its WTD is not shallower than the other two sites. For HPM, run-off
440 balances out the precipitation. On the contrary, Mariana Fen is assumed to be very low net run-
441 off as a fen site, and Innoko Bog is not thick enough to have high run-off (Appendix Figure 4).
442 In PTEM, since the run-off related to peat thickness is not considered, the reason for the deep
443 WTD of Bear site is the high AET balancing out the precipitation.

444 Although permafrost did not exist when the cores were collected from Mariana Fen and
445 Bear Bog, both models indicate permafrost existence in the history of these two sites (Appendix
446 Figure 5). HPM simulates fewer years with frozen soil existence than PTEM for Mariana Fen
447 (HPM: 3451 years vs. PTEM: 7045 years), while, the average ALD for the years with permafrost
448 shallower in HPM than in PTEM (HPM: 102 cm vs. PTEM: 184 cm). HPM also simulates fewer
449 years with frozen soil existence than PTEM for Bear Bog (HPM: 35 years vs. PTEM: 1556
450 years), and shallower average ALD when permafrost exists (HPM: 83 cm vs. PTEM: 164 cm).
451 However, for Innoko, the coldest site, HPM and PTEM do not have much difference in terms of
452 years of frozen soil existence and average thaw depth (HPM: 6151 years vs. PTEM: 6137 years;
453 HPM: 79 cm vs. PTEM: 76 cm) (Appendix Figure 5). Notably, at the year of core collection,
454 both HPM and PTEM simulate no permafrost in Mariana Fen and Bear Bog, and both simulate
455 permafrost existence in Innoko Bog (Appendix Figure 6), which agrees with the field record
456 (Table 1).

457 3.2. Model uncertainty due to uncertain past climate

458 PTEM NPP and decomposition increase with temperature regardless of precipitation
459 change (Figure 3). In particular, when temperature increases by 1°C and precipitation does not
460 change, NPP increases by 6 g C m⁻² yr⁻¹ (4%), 10 g C m⁻² yr⁻¹ (16%) and 5 g C m⁻² yr⁻¹ (7%) for
461 Mariana fen, Bear bog and Innoko bog, respectively (Figure 3 ((1-3)a)). For precipitation, NPP
462 decreases with precipitation increase only in Bear Bog while the opposite trend is found for
463 Mariana Fen and Innoko Bog. However, when the precipitation increases by 20% and temperature
464 does not change, the changes of NPP in Mariana Fen and Innoko Bog are small (increases by 1 g
465 C m⁻² yr⁻¹ and 0 g C m⁻² yr⁻¹, 1% and 0% respectively), indicating NPP is not very sensitive to
466 precipitation in these two sites. For the much wetter Bear Bog, NPP decreases by 7 g C m⁻² yr⁻¹
467 (11%) corresponding to 20% precipitation increases (Figure 3 (1-3)a).

468 Decomposition also increases with temperature at all three sites, regardless of
469 precipitation change. In particular, when precipitation does not change and temperature increases
470 by 1°C, decomposition increases by 10 g C m⁻² yr⁻¹ (9%), 8 g C m⁻² yr⁻¹ (17%) and 4 g C m⁻² yr⁻¹
471 (7%) respectively (Figure 3 ((1-3)b)). For Bear Bog and Innoko Bog, decomposition generally
472 decreases with higher precipitation. When the precipitation increases by 20% and temperature
473 does not change, decomposition decreases by 3 g C m⁻² yr⁻¹ (7%) and 1 g C m⁻² yr⁻¹ (1%, Figure 3
474 (2b) & (3b)). On the contrary, for Mariana Fen, decomposition generally increases with
475 precipitation (Figure 3 (1b)). Notably, in PTEM, although decomposition responded to
476 precipitation differently in three sites, it is essentially not sensitive to precipitation in Mariana Fen
477 and Innoko Bog, with only minor difference observed along the precipitation axis (Figure 3 (1b)).

478 As the balance between NPP and decomposition, the soil C decreases in Mariana Fen as
479 climate becomes warmer and drier, with the largest decrease of 53 kg C m^{-2} (17%) as temperature
480 increases by 1°C and precipitation decreases by 20% (Figure 3 (1c)). On the contrary, the C
481 accumulation at Bear Bog is higher under warmer and drier conditions, with 88 kg C m^{-2} (47%)
482 more soil C under the $+1^\circ\text{C}$ and -20% precipitation combination (Figure 3 (2c)). Innoko Bog has
483 the highest C accumulation rate under the warmer and wetter climate, with the largest decrease of
484 11 kg C m^{-2} (10%) as temperature increases by 1°C and precipitation increases by 20% (Figure 3
485 (3c)).

486 3.3. Model sensitivity to key PTEM parameters: Productivity and decomposition

487 3.3.1. Effects of Productivity and decomposition on Soil C stocks

488 The model sensitivity of PETM to the maximum productivity and rate of decomposition
489 (C_{\max} and $k_{d\text{-pft}}$) parameters, was tested for the three sites. Relative changes in peat soil organic C
490 stock are used to represent relative changes in the long-term C balance (Table 3). For all three
491 sites, the total soil organic C is more sensitive to the maximum productivity (3.7% - 5.2% in
492 response to 1% parameter change) while less sensitive to the decomposition rates (-0.6% - -0.4%
493 in response to 1% parameter change). Notably, when changes of organic soil C stock
494 corresponding with 1% parameter changes are averaged, the standard deviations are relatively
495 small. This indicates that although influenced by other parameters and site conditions, PTEM is
496 almost linearly correlated with the maximum productivity and the decomposition rates in all
497 three sites (Table 3).

498 3.3.2 Key controls on NPP

499 In PTEM, for all three sites, NPP significantly correlates with net N mineralization
500 ($P < 0.001$, Table 4). In Mariana Fen and Innoko Bog, NPP significantly correlates with WTD
501 ($P < 0.01$), but this correlation is not found in Bear Bog (Table 4). In all three sites, higher NPP
502 significantly correlates with deeper ALD during years with permafrost present ($P < 0.05$). The
503 reason for this correlation is because temperature influences NPP, net N mineralization and ALD.
504 Net N mineralization influences NPP such that higher mineralization rates correspond to higher
505 nutrient availability and higher NPP. Although WTD significantly correlates with NPP, it is not a
506 key control over NPP in these simulations because WTD varies within $\pm 0.5 \text{ cm}$ with all climate
507 inputs in all three sites (Appendix Figure 7 2(a-c)). Furthermore, in Mariana Fen, WTD has a very
508 weak correlation with net N mineralization (Table 4).

509 In HPM, NPP is significantly correlated with WTD in three sites ($P < 0.001$), while
510 significantly correlated with ALD only in Bear Bog (positively, $P < 0.001$) and Innoko Bog
511 (negatively, $P < 0.05$). The correlation between NPP and WTD arises from HPM's simulation of
512 NPP as a nonlinear function of WTD, with each PFT having a different optimum. In addition,
513 NPP is also a function of ALD when permafrost is present, which results in the correlation
514 between NPP and ALD in Innoko Bog. For Bear Bog where permafrost does not always exist, the
515 correlation between NPP and ALD is more likely a result of the coupled correlation between NPP
516 and temperature and between temperature and ALD.

517 3.3.3 Key Decomposition controls

518 Decomposition in PTEM is composed of soil aerobic respiration (R_H) and anaerobic
519 decomposition (CH_4). In all three sites, R_H and CH_4 significantly correlate with ALD ($P<0.001$,
520 Table 4). R_H correlates with ALD negatively because they are both influenced by soil
521 temperature (R_H increases with warming and ALD becomes deeper or more negative). However,
522 for CH_4 , the correlation with ALD occurs because 1) temperature is influential to both ALD and
523 CH_4 ; and 2) ALD determines the lower boundary of CH_4 production (Table 4). For Mariana Fen
524 and Bear Bog, the patterns of decomposition variation are consistent with the patterns of NPP
525 variation because the decomposition of these two sites relies more on anaerobic pathways (e.g.
526 CH_4 production), which is a function of NPP. This is supported by the highly significant
527 correlation between CH_4 production and NPP in all three sites ($P<0.001$, Table 4). For Innoko
528 Bog, CH_4 production is much lower and the total decomposition is mainly due to R_H .

529 For HPM, a significant correlation is found between decomposition and WTD in all three
530 sites. The correlation is based on two conditions of HPM: 1) both WTD and decomposition are
531 functions of water filled pore space (WFPS); and 2) WTD determines the boundary of aerobic and
532 anaerobic decomposition. The aerobic decomposition rate is higher than the anaerobic rate, so as
533 WTD increases, decomposition tends to increase. Decomposition in Mariana Fen and Innoko Bog
534 also significantly correlates with ALD, because 1) both decomposition and ALD are the functions
535 of soil thermal profile; and 2) when ALD becomes deeper, more organic matter will be
536 decomposing and decomposition rates will tend to increase (Table 4).

537 3.4. Future simulations

538 3.4.1. Changes in water table

539 In PTEM, since water run-on and run-off are not considered, the WTD is mainly
540 determined by the balance between AET and precipitation (Table 4), while AET tends to
541 increase with precipitation (Appendix Figure 7 1(a-c)). From RCP 2.6 to RCP 8.5, for Mariana
542 Fen and Innoko Bog, precipitation only increases by $3-12 \text{ mm yr}^{-1}$, and AET shows almost no
543 change (Table 5). With minor changes in both AET and precipitation, the changes in WTD are
544 also minor (Table 5). On the contrast, for Bear Bog, from RCP 2.6 to RCP 8.5, precipitation
545 increases by $13-77 \text{ mm yr}^{-1}$ and AET increases by $5-30 \text{ mm yr}^{-1}$ (Table 5). Since the increases in
546 AET do not exceed the increases in precipitation, the WTD becomes shallower and the site
547 wetter.

548 In HPM, in addition to AET and precipitation, run-on and run-off also influence the water
549 balance (Table 5). For Mariana Fen and Innoko Bog, changes in run-on, run-off and precipitation
550 are not as large as the increases in AET and their WTD becomes deeper. However, for Bear Bog,
551 the total of run-off and AET increase is large enough to offset the increase in precipitation and
552 the WTD change is small ($<4\text{cm}$) (Table 5).

553 3.4.2. Changes in net N mineralization

554 In PTEM, net N mineralization is partially influenced by decomposition rate and soil
555 water content, which can be reflected by WTD (Table 4). For all three sites, with shallower

556 WTDs (i.e., higher soil moisture content) and higher decomposition rates, net N mineralization
557 during 1990-2300 tends to be higher than that during 1950-1990 (Table 5). However, N
558 mineralization only become substantially higher under RCP 8.5 at Bear Bog (increasing by 326
559 mg N m⁻² yr⁻¹). For Mariana Fen and Innoko Bog, although climate warms and decomposition
560 rate increases, with the slight change in soil moisture/WTD, net N mineralization does not
561 always increase with temperature (Table 5).

562 3.4.3. Effects of permafrost degradation

563 At Mariana Fen and Innoko Bog, permafrost thaw is simulated by both models
564 (Appendix Figure 10). In Mariana Fen, permafrost is essentially gone after the early 21 century
565 under all RCP scenarios (Appendix Figure 10 (1-6)a) and the correlations between NPP,
566 decomposition (includes R_H and CH₄ for PTEM) and ALD are generally not significant (P>0.05,
567 Appendix Table 5).

568 For Innoko Bog, in PTEM, compared with RCP 2.6, ALD deepens under RCP 4.5 and
569 RCP 8.5. In particular, from RCP 2.6 to RCP 4.5, an additional 12.7 cm of peat is thawed; from
570 RCP 4.5 to RCP 8.5, permafrost totally degrades. In HPM, although the ALD under RCP 8.5 is
571 45 cm deeper than under RCP 4.5, ALD approaches the peat bottom under RCP 4.5 and only 2.1
572 cm of peat thaws on average (Appendix Figure 10 (2c) and (3c)). Given the thin peat layer that
573 thaws during climate warming, the amount C released from permafrost peat is quite small, and
574 has minor effect on the peat decomposition. Therefore, despite more C thaw in PTEM under
575 RCP 4.5 and RCP 8.5 than under RCP 2.6, the peat is still a C sink, indicating the C losses from
576 permafrost thaw do not override the positive effect of temperature on peat C accumulation.

577 3.4.4. Future C balance

578 Whether a site becomes a C sink or C source depends on the balance between NPP and
579 decomposition. Warmer climate stimulates both processes, but the other factors may offset this
580 effect. For all three sites, with little influence of permafrost thaw on decomposition, the C
581 balance in PTEM is mainly driven by net N mineralization on NPP and in HPM driven by WTD
582 on decomposition. For example, in PTEM, as climate becomes warmer, net N mineralization
583 decreases and limits NPP in Mariana Fen, but the opposite trend is found in Bear Bog. Therefore,
584 although Mariana Fen and Bear Bog are both C sinks under RCP 2.6 by 6 kg C m⁻² and 22 kg C
585 m⁻², Mariana Fen becomes a weak C source under RCP 4.5, and stronger C source of 43 kg C m⁻²
586 under RCP 8.5, while Bear Bog becomes a stronger C sink by 34 kg C m⁻² and 64 kg C m⁻² under
587 RCP 4.5 and RCP 8.5 (Table 5). Innoko Bog, on the other hand, shows little variation in net N
588 mineralization compared with Mariana Fen and Bear Bog. From RCP 4.5 to RCP 8.5, the
589 temperature rises as much as Bear Bog, and WTD is almost unchanged, while the C sink only
590 increases by 2 kg C m⁻². Compared with the C sink increase of 30 kg C m⁻² at Bear Bog, it's
591 reasonable to speculate the decrease in net N mineralization suppresses the C sink capability of
592 Innoko Bog.

593 For HPM, all three sites are weak C sinks under RCP 2.6 (Mariana Fen: 7 kg C m⁻², Bear
594 Bog ad Innoko Bog: 5 kg C m⁻², Table 5). For Mariana Fen and Innoko Bog, with the warmer
595 climate and deepening WTD, more C is exposed to aerobic decomposition and the sites switch to

596 C sources under RCP 8.5 (Mariana Fen: 82 kg C m⁻², Innoko Bog: 6 kg C m⁻²). On the contrary,
597 for Bear Bog, with sufficient precipitation to stabilize WTD, the increases in NPP overrides the
598 increase in decomposition and the site becomes stronger C sink under RCP 4.5 and RCP 8.5 by 8
599 kg C m⁻² and 52 kg C m⁻² respectively.

600 4. Discussion

601 4.1. Overview

602 In this section, we first compare our model simulation with literature to evaluate the
603 efficacy of both models in capturing peatland C fluxes and stocks. Second, we discuss the major
604 drivers of future C balance under current model framework, and emphasize the importance of
605 precipitation. Third, we analyze the effect of model structure difference on future C projection
606 and argue that run-on and run-off and C-N feedback are important processes in peatland models.
607 Finally, we discuss the risk of permafrost degradation and analyze the reason that it does not
608 have much impact on Innoko Bog. Notably, the ALD simulated in the discontinuous permafrost
609 region by both models should be treated carefully.

610 4.2. Model performance in past simulations

611 Both models simulate the C fluxes and stocks of the three sites. As to stocks, the average
612 C accumulation rate of three sites is 25.8 g C m⁻² y⁻¹ in PTEM and 24.9 g C m⁻² y⁻¹ in HPM.
613 These values are ~10% larger than the northern peatland Holocene average of 22.9±2.0 g C m⁻²
614 y⁻¹ reported by Loisel et al. (2014) and ~20% larger than the Canadian peatland Holocene
615 average of 20.3 g C m⁻² y⁻¹ reported by Yu et al. (2009). However, they are close to 26.1 g C m⁻²
616 y⁻¹ reported by Turunen et al. (2002). As to fluxes, no direct observations are available at these
617 sites. Flux tower measurements in N-rich Zackenberg Fen in Greenland (74°28' N, 20°34' W)
618 shows that NPP is 42-105 g C m⁻² y⁻¹ (López-Blanco et al., 2020; López-Blanco et al., 2017). Mariana Fen is
619 warmer, and the simulation results with higher NPP (147-152 g C m⁻² y⁻¹) seem reasonable. The
620 bog simulations have lower NPP (64-65 g C m⁻² y⁻¹) than the Mariana Fen simulations but still
621 fall within the observation range at Zackenberg. In this study, the PTEM average CH₄ emissions
622 in bogs are 12.1 g C m⁻² y⁻¹ and in poor fen is 21.3 g C m⁻² y⁻¹, which are higher or approach the
623 upper 95% confidence interval of bog (9.3 g C m⁻² y⁻¹) and poor fen (21.7 g C m⁻² y⁻¹) CH₄
624 emissions reported in Treat, Jones, Brosius, et al. (2021). Overall, both models simulate C fluxes
625 and stocks with relatively high reliability.

626 4.3. Drivers of future C balance

627 The climate projection data used in this study is derived from IPSL-CMIP5-LR; its
628 features are analyzed in Dufresne et al. (2013). IPSL-CMIP5-LR model predicts a global
629 temperature change of 1.9K for RCP 2.6 and 12.7K for RCP 8.5, and the temperature change in
630 North America is around 1.5 times the global average. This predicted temperature increase is
631 higher than many other CMIP5 models (Palmer et al., 2018). Such rapid climate change could
632 lead to unpredictable disruptions to ecosystems, including vegetation dynamics and disturbance
633 not considered in the models.

634 Another feature of IPSL-CMIP5-LR model is that as temperature rises, part of northern
635 North America shows precipitation increase and the rest almost no change. The sites studied had
636 similar temperature increases, but the projected precipitation increase at Bear Bog is much higher
637 than Mariana Fen and Innoko Bog (Table 5). A remote sensing-based study on cold and dry
638 condition suggests that when water is limiting, the correlation between temperature and AET is
639 negative (Sun et al., 2016). This trend is found in the PTEM simulation for Mariana Fen and
640 Innoko Bog, which indicates that these two sites are water-limited (Appendix Figure 8 (2a) &
641 (2c)). With water limit suppression of net N mineralization, Mariana Fen and Innoko Bog don't
642 show as much NPP increase as Bear Bog (Figure 4).

643 For all three sites, for PTEM, decomposition increases as climate warms in both models
644 (Figure 4). As the balance between NPP and decomposition, PTEM suggests Bear Bog to be a
645 larger sink under warmer and wetter conditions, where sufficient precipitation and higher
646 temperature increase NPP more than decomposition. The simulations for Mariana Fen and
647 Innoko Bog project them to be a weaker sink or source under warmer and drier conditions, where
648 the positive effect of temperature on NPP is offset by N deficiency (Appendix Figure 7 4(a-c),
649 Figure 3 (1-3)a). In agreement with this study, a regional study on northern peatlands indicates
650 that during 2100-2300, a drier climate will likely lead to lower soil C stock (Loisel et al., 2021).
651 Similarly, another study indicates that drying peatlands will result in net emission increases of
652 0.86 Gt CO₂-eq yr⁻¹ by the end of 21st century (Huang et al., 2021). Therefore, the magnitude of
653 precipitation increase will have a significant influence on the future C balance under warming
654 climate.

655 4.4. The absence of run-on and run-off in PTEM

656 Given that the effects of precipitation, water availability, and water table are major
657 controls on peatland C balance at these sites, it is important to consider model controls on water
658 table position. One major difference between HPM and PTEM is that PTEM does not consider
659 run-on from the peatlands surrounding watershed (significant for fens), nor base run-off.
660 However, the future simulation of HPM indicates that run-on and run-off have a significant
661 influence on the water balance, causing HPM to project quite different WTD compared with
662 PTEM (Appendix Figure 9). If run-on and run-off were included in PTEM, the C balance in the
663 future could be quite different for three reasons. First, run-on and run-off control peatland WTD
664 significantly by the charging and discharging the peat (Glaser et al., 2016). For a fen site,
665 although the net run-off could be low, run-on, whether from surface water inputs or groundwater
666 recharge, plays an important role in maintaining the WTD, while for a bog site, run-on is
667 generally negligible, but run-off can be more important than in fen sites (Weiss et al., 2006). For
668 example, extensive drainage of peatlands enhances run-off but not run-on, thereby leading to
669 deeper WTD, altering the plant and microbial community and influencing CH₄ emissions
670 (Minkkinen et al., 2007). Second, run-on and run-off also influence nutrient availability in a
671 peatland by delivering or removing nutrients (Limpens et al., 2006). Third, with different soil
672 moisture levels, the net N mineralization rates are likely to be different and thereby influence
673 NPP. In support of this idea, studies have shown that net N mineralization is significantly
674 affected by soil moisture (Gao et al., 2016; Wang et al., 2006). Therefore, run-on and run-off are

675 potential important variables to be added to PTEM, especially if peatland drainage or peatland
676 fen-bog transition processes are to be modeled.

677 4.5. The influence of N availability

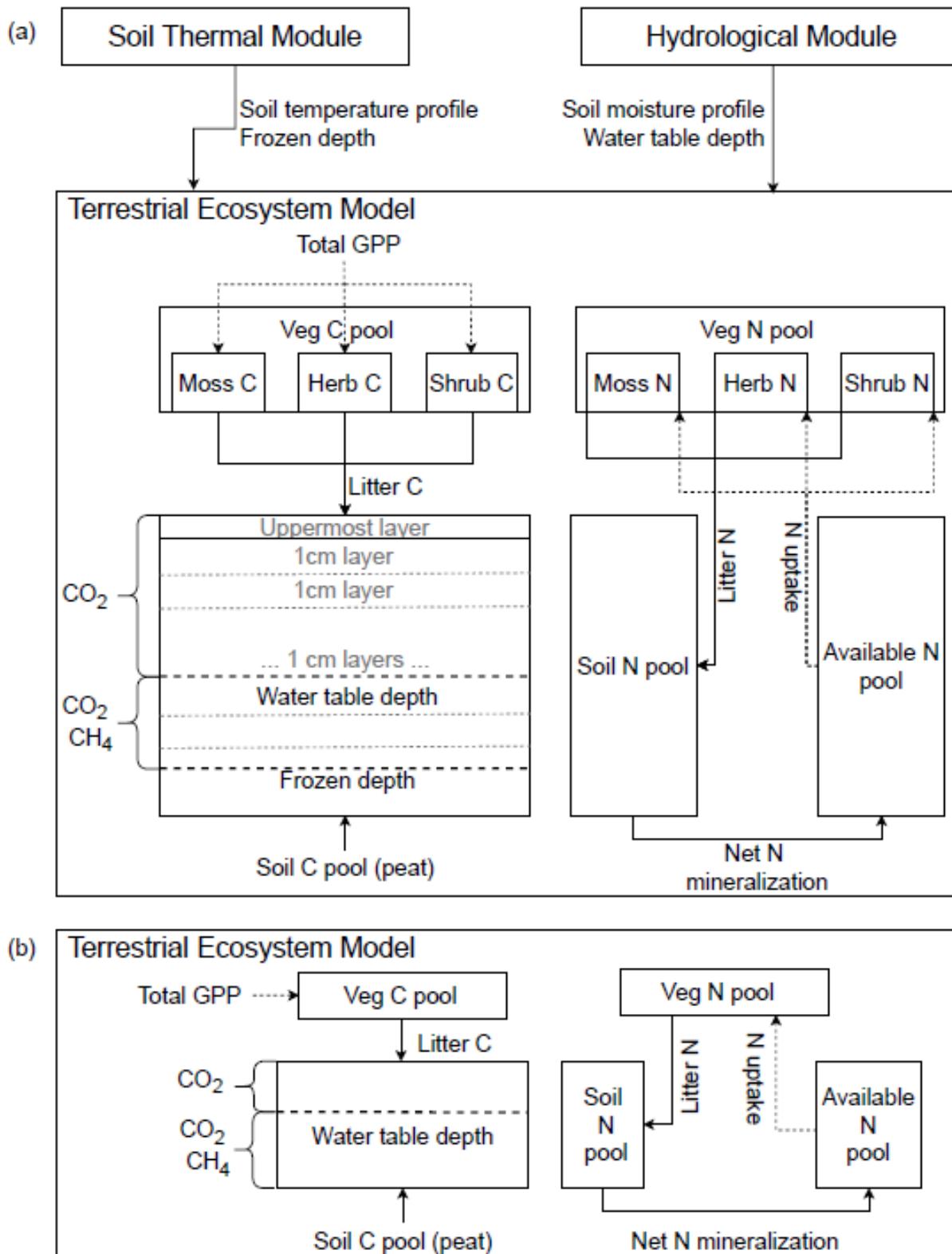
678 In addition to run-on and run-off, another major difference between HPM and PTEM is
679 that PTEM explicitly considers the influence of N availability on productivity and decomposition.
680 In PTEM, the available N for plants comes from N mineralization. Since NPP is sometimes
681 suppressed by limited N mineralization in the future simulation (1990-2300, Appendix Figure 8),
682 N is a limiting factor of productivity in all three sites. As N-limited ecosystems (Gunnarsson &
683 Rydin, 2000), peatland productivity responds positively to N availability and nitrogen
684 fertilization (Ojanen et al., 2019). Similarly, both this study and Bayley et al. (2005) find higher
685 net N mineralization rates in fens than bogs (Appendix Figure 8), which partly explains the
686 higher NPP at Mariana Fen during past simulations (Table 2). Therefore, it's important to
687 consider N-NPP feedback processes in peatland models, and a different future C balance can be
688 expected from HPM if these processes were added. In addition, field experiments in Canada and
689 Western Europe and a modelling study all indicate that bogs and *Sphagnum* productivity are not
690 very sensitive to, or could be depressed by, higher N availability, thereby increasing vascular
691 plant coverage (Berendse et al., 2001; Granath et al., 2014; Gunnarsson & Rydin, 2000; Moore et
692 al., 2019; Turunen et al., 2004). The feedback between N availability and vascular plant
693 coverage is not included in PTEM, and may cause some uncertainties in the future C balance of
694 the N-sufficient site (i.e. Bear Bog). While HPM is able to simulate vegetation shifts, the change
695 is not triggered by N cycling but rather WTD and ALD.

696 As to decomposition, studies found that enhanced N availability promotes litter and peat
697 decomposition (Bragazza et al., 2006; Ojanen et al., 2019; Song et al., 2018). For example, a
698 study in Northeast China suggests that with increased N availability, some litter (e.g., litter from
699 *E. vaginatum* and *V. uliginosum*) shows enhanced decomposition (Song et al., 2018). Similarly,
700 in an experiment in Finland, decomposition increased by 45% in fens under higher nutrient
701 availability (Ojanen et al., 2019). An experiment in North America found strong correlation
702 between CH₄ flux and N availability in both a patterned sedge fen and a raised Sphagnum bog
703 (Updegraff et al., 2001). In agreement with these studies, PTEM aerobic decomposition rates are
704 influenced by the C-N ratio of the input litter. However, this N-decomposition feedback is absent
705 in HPM, except through litter quality differences between plant functional types. Missing N
706 cycle may bias the future C balance estimate with HPM and any other peatland models that is
707 lack of C and N feedbacks.

708 4.6. The influence of permafrost in future simulation

709 Many studies argue that permafrost thaw influences C balances at site and regional levels
710 (Hugelius et al., 2020; O'Donnell et al., 2012; Schaefer et al., 2011). For example, a study in
711 Alaskan arctic tundra (Plaza et al., 2019) measured 5.4% soil C loss per year as a result of
712 permafrost degradation and lateral water outflow, while permafrost degradation account for less
713 than half of the soil C loss. At the regional-scale, a modelling work indicates that as the ALD
714 deepens, the northern permafrost region will switch from a C sink to a C source after 2100

715 (McGuire et al., 2018). Similarly, Hugelius et al. (2020) suggests the northern peatlands will
716 become a C source as 0.8 to 1.9 million km² of permafrost thaws. However, in the simulations
717 reported above, the effects of permafrost thaw on the site C balance are more varied. In particular,
718 although both models simulate future permafrost degradation in Innoko Bog under RCP 4.5 and
719 RCP 8.5 (Appendix Figure 10), the site does not become a C source in PTEM, and becomes a C
720 source in HPM only under a very warm RCP 8.5 scenario (Figure 4) mainly because the WTD
721 gets deeper, rather than permafrost degradation (Appendix Figure 9). In contrast to this study, a
722 previous analysis of cores from Innoko bog shows that permafrost degradation caused the
723 peatland to switch to a C source for about a century, then switch back to a C sink (Jones et al.,
724 2017). A possible reason for this contradiction is that the cores used in Jones et al. (2017) are
725 thicker and has more frozen peat C than the core used in this study. Since the simulated peat
726 thickness in this study is close to the simulated ALD, the amount of peat C frozen in permafrost
727 is relatively low. When permafrost thaws, the newly-thawed peat C remained saturated and cold
728 and did not increase decomposition substantially (Elberling et al., 2013; Treat & Frolking, 2013).
729 Anaerobic incubations of Innoko bog peat (Treat et al., 2014) suggest a CH₄ production rate is as
730 low as 0.22 g C m⁻² y⁻¹ at -0.5°C, indicating that permafrost thaw does not increase anaerobic
731 decomposition much for the newly-thawed, cold peat.

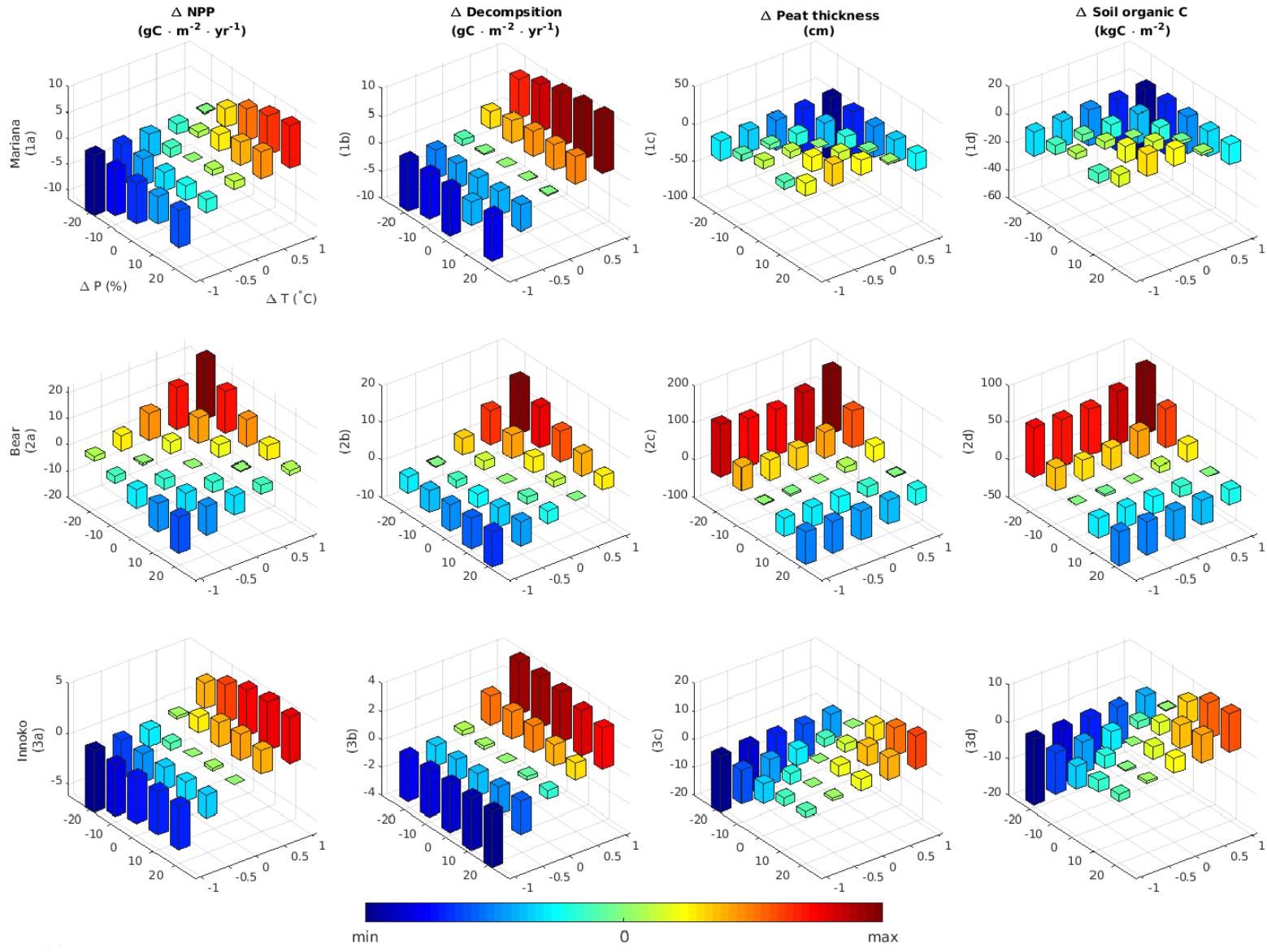

732 Notably, one common issue of both HPM and PTEM is that the simulated ALD of two
733 adjacent years could differ significantly in the discontinuous permafrost region. For Mariana Fen,
734 the ALD could differ by several meters in two adjacent years (Appendix Figure 6 & 10), which
735 is too swift for permafrost (Lawrence et al., 2012). In the models, this is likely an artifact of the
736 freeze-thaw algorithm, using an apparent heat capacity with a narrow temperature range
737 (Marchenko et al. 2008), such that small temperature variations (~0.1°C) can switch the model
738 designation between permafrost and active layer, while they may have little impact on carbon
739 dynamics. However, for the warmer Bear Bog where permafrost rarely exists and the colder
740 Innoko site where permafrost usually exists, this issue does not arise (Appendix Figure 6 & 10).
741 Similar to this study, ALD estimation for sporadic permafrost zones tends to have the largest
742 uncertainties (Beer et al., 2013; Dankers et al., 2011). Therefore, the simulated permafrost
743 dynamics in this region should be interpreted with extra caution.

744 5. Conclusions

745 This study evaluates the revised PTEM with observations and HPM simulations at three
746 northern peatland sites that are underlain with permafrost or permafrost free for the period 1990-
747 2300. We find that main drivers to future C balance of these peatlands are different between two
748 models. In particular, as climate becomes warmer, PTEM simulates the sites to be a C sink when
749 precipitation is sufficient and net N mineralization is high enough to support productivity
750 increases to override increased decomposition. HPM predicts that WTD dynamics are the major
751 drivers to future C balance at these sites. Specifically, PTEM simulates that, with sufficient
752 precipitation in Bear Bog, N remains sufficient and NPP overrides decomposition, making Bear
753 Bog a stronger C sink from RCP 2.6 to RCP 8.5. On the contrary, Mariana Fen and Innoko Bog
754 become warmer and drier, insufficient N availability suppresses NPP and thereby both sites
755 switch to a weaker C sink (compared with Bear Bog) or a C source from RCP 2.6 to RCP 8.5.

756 We find the water run-on and run-off and C-N feedback are important processes to carbon
757 dynamics in these peatlands, while both models are deficient in that because neither one includes
758 both of these processes. Overall, the effect of permafrost on C dynamics is not significant at all
759 three sites. We conclude that the future effort shall be directed to improving peatland thermal
760 dynamics and peatland water run-on and run-off dynamics modeling and incorporating more
761 adequate C-N feedbacks into current peatlands biogeochemistry models.

762



763

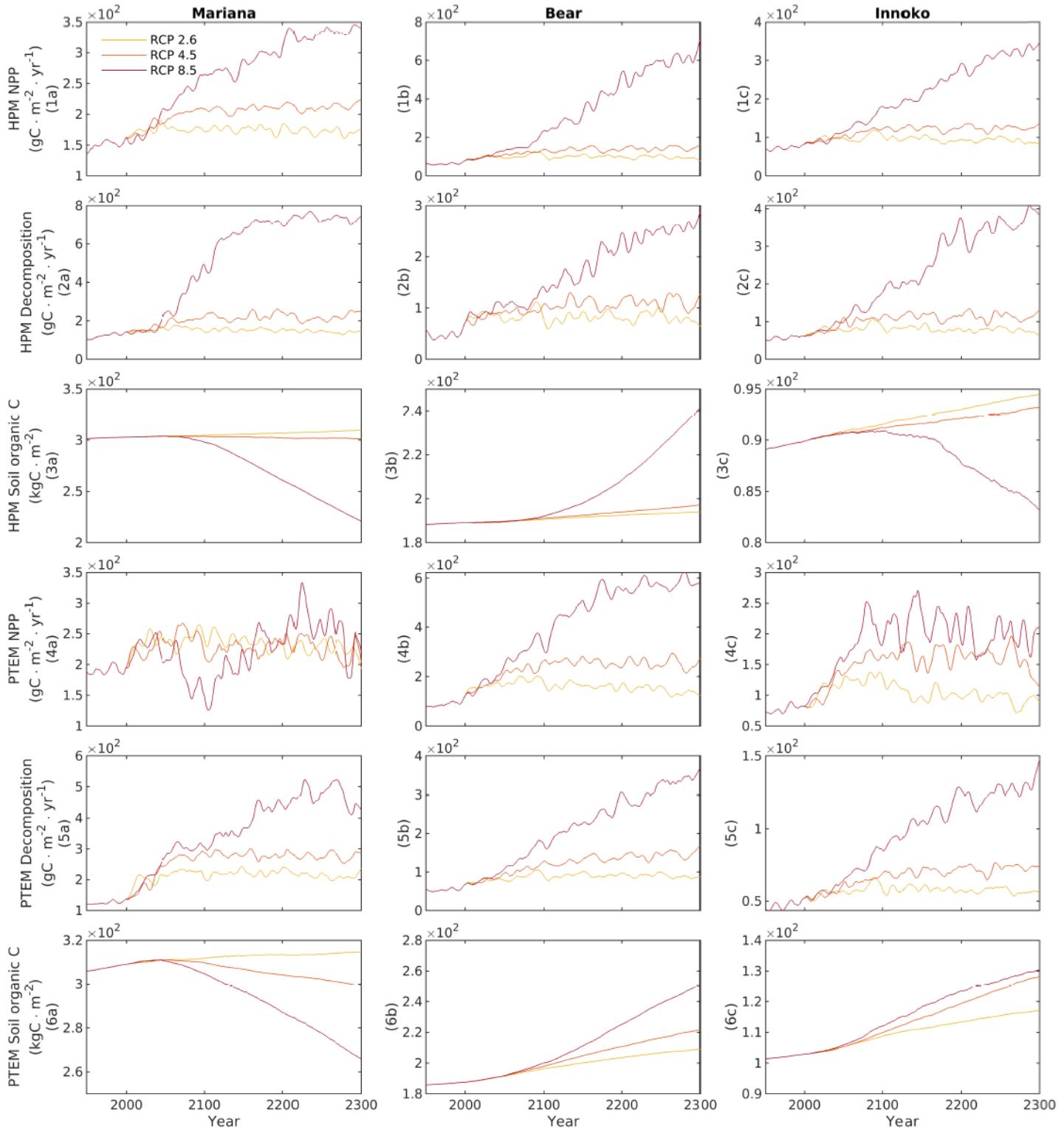

764 **Figure 1.** The structure of (a) the revised PTEM; and (b) the original Terrestrial Ecosystem
765 Model.

Figure 2. Simulated peat thickness, soil organic C, NPP and decomposition of HPM (light gray) and PTEM (dark gray) for three sites. The vertical line in Bear bog and Innoko bog panels show the time of fen to bog transition. The lines for NPP and decomposition are smoothed with the Matlab lowess function.

Figure 3. The sensitivity of long-term average annual NPP, decomposition, final peat thickness and total soil organic C in PTEM to changes in temperature and precipitation compared to the original forcing simulation. This factorial sensitivity analysis tested the response of C-related variables to temperature and precipitation change. Yellow-orange-red columns are >0 , teal-blue columns are <0 , green columns are ~ 0 .

Figure 4. Under RCP 2.6, RCP 4.5 and RCP 8.5, the trends of NPP, decomposition and soil organic C at the three sites during 1950-2300 for both HPM (top three rows) and PTEM (bottom three rows). The lines of NPP and decomposition are smoothed with Matlab's Loess function.

Table 1. Site information

Site name	Core ID	Latitude, longitude	Basal age (BP)	Peatland type	Permafrost existence in coring year	Average annual temperature* (°C)	Average annual precipitation* (mm yr ⁻¹)	Coring year	Source
Mariana	Mariana_core	55.9°N, 112.9°W	7222	Poor fen	N	-0.9	470	2003	Yu et al. (2014)
Bear	Bear_core1	60.5°N, 145.5°W	10357	Raised bog	N	-0.2	1560	2010	Unpublished [§]
Innoko	ODO-INN-UD1	63.6°N, 157.7°W	6100	Raised bog	Y	-4.7	360	2009	Jones et al. (2017)

781 * Average annual temperature and precipitation are calculated by the model forcing data for the
 782 period between basal age and 1990.

783 [§] The core for Bear bog was collected by Jonathan Nichols, and compiled in the database of
 784 Loisel et al. (2014).

785

Table 2. Simulated C-related variables of HPM and PTEM

Site name	Model	Final peat thickness (cm)	Total soil organic C (kg C m ⁻²)	NPP (g C m ⁻² yr ⁻¹)	Decomposition (g C m ⁻² yr ⁻¹)
Mariana	Observed	471	300	--	--
	PTEM	466	309	152	110
	HPM	458	303	147	105
Bear	Observed	352	183	--	--
	PTEM	347	187	65	47
	HPM	340	189	65	47
Innoko	Observed	104	92	--	--
	PTEM	106	103	64	47
	HPM	104	90	64	50

786 * NPP and decomposition are averaged over basal date to 1990.

787

Table 3. Changes of PTEM organic soil C stock by 1990 resulting from parameter changes (%)

Parameter	Percentage change	Mariana	Bear	Innoko
Maximum productivity (g C m ⁻² mon ⁻¹)	-5.00	-18.0	-23.40	-17.51
	-2.50	-9.28	-12.60	-9.21
	2.50	9.37	13.02	10.66
	5.00	19.13	28.88	22.32
Relative change when parameter changes by 1%		3.72±0.09	5.18±0.46	3.98±0.46
Decomposition rate (g C m ⁻² mon ⁻¹)	-10.00	6.45	6.53	3.90
	-5.00	3.15	2.92	2.07
	5.00	-3.05	-3.05	-1.92
	10.00	-5.97	-5.89	-4.19
Relative change when parameter changes by 1%		-0.61±0.02	-0.61±0.03	-0.40±0.02

790
791**Table 4.** Correlation coefficients and significance of correlation between the changes of variables in PTEM and HPM

	Mariana		Bear		Innoko	
	r	P	r	P	r	P
PTEM						
NPP-WTD	0.789	<0.001	-0.156	0.455	-0.598	0.002
NPP-ALD	-0.784	<0.001	-0.441	0.027	-0.962	<0.001
NPP-NETNMIN	0.752	<0.001	0.770	<0.001	0.852	<0.001
NETNMIN-WTD	0.222	0.287	0.457	0.022	-0.849	<0.001
NETNMIN-ALD	-0.852	<0.001	-0.798	<0.001	-0.932	<0.001
RH-WTD	0.048	0.818	0.114	0.588	-0.896	<0.001
RH-ALD	-0.828	<0.001	-0.642	<0.001	-0.975	<0.001
CH4-WTD	0.763	<0.001	0.187	0.371	-0.458	0.021
CH4-ALD	-0.762	<0.001	-0.635	<0.001	-0.909	<0.001
CH4-NPP	0.973	<0.001	0.935	<0.001	0.978	<0.001
WTD-AET	0.907	<0.001	0.991	<0.001	0.573	0.003
HPM						
NPP-WTD	-0.958	<0.001	-0.971	<0.001	-0.901	<0.001
NPP-ALD	0.094	0.654	0.754	<0.001	-0.487	0.014
Decomposition-WTD	-0.707	<0.001	-0.632	<0.001	-0.952	<0.001
Decomposition-ALD	-0.648	<0.001	0.171	0.415	-0.677	<0.001

792

Table 5. Differences between the values of key variables in HPM and PTEM

Site Scenario	Mariana			Bear			Innoko		
	RCP 2.6	RCP 4.5	RCP 8.5	RCP 2.6	RCP 4.5	RCP 8.5	RCP 2.6	RCP 4.5	RCP 8.5
Climate									
ΔTemperature (°C)	2	4	11	3	5	10	3	5	10
ΔPrecipitation (mm yr ⁻¹)	3	3	3	13	24	77	3	5	12
Average value differences during 1990-2300 and 1950-1990									
PTEM									
<i>Water balance</i>									
ΔAET (cm yr ⁻¹)	1	-4	-5	5	10	30	3	4	4
ΔWTD (cm)	0	0	2	1	1	4	-1	-1	1
<i>C balance</i>									
ΔNPP (g C m ⁻² yr ⁻¹)	40	37	31	70	144	333	28	72	110
ΔDecomposition (g C m ⁻² yr ⁻¹)	88	133	235	34	67	160	11	20	51
ΔR _H (g C m ⁻² yr ⁻¹)	11	19	74	8	14	34	8	13	31
ΔCH ₄ (g C m ⁻² yr ⁻¹)	77	114	161	26	53	126	3	7	19
ΔNet N mineralization (mg N m ⁻² yr ⁻¹)	763	509	140	136	305	326	18	162	-25
ΔALD (cm)	1	-4	-5	-	-	-	-22	-42	-36
HPM									
ΔAET (cm yr ⁻¹)	6	12	22	7	13	40	6	10	20
ΔWTD (cm)	-1	-6	-19	-4	-4	-1	-3	-5	-8
ΔRun on (cm yr ⁻¹)	1	6	11	0	0	0	2	4	5
ΔRun off (cm yr ⁻¹)	-1	-3	-6	11	19	58	0	0	0
ΔNPP (g C m ⁻² yr ⁻¹)	22	50	117	37	66	279	23	44	139
ΔDecomposition (g C m ⁻² yr ⁻¹)	28	83	409	37	55	127	23	48	176
ΔALD (cm)	-33	-46	-25	-	-	-	-38	-276	-320
Total value differences between 2300 and 1990									
PTEM									
ΔPeat thickness (cm)	8	-22	-81	63	103	201	21	43	43
ΔSoil organic C (kg C m ⁻²)	6	-9	-43	22	34	64	15	26	28
HPM									
ΔPeat thickness (cm)	5	-14	-141	7	14	137	5	3	-8
ΔSoil organic C (kg C m ⁻²)	7	-1	-82	5	8	52	5	3	-6

* ~~ΔR_H~~ values are used only when the soil is not totally thawed (when permafrost is present). Therefore, for Bear Bog, where permafrost does not occur during 1950-2300, there are no values.

797 **References**

798 Bayley, S. E., Thormann, M. N., & Szumigalski, A. R. (2005). Nitrogen mineralization and decomposition
799 in western boreal bog and fen peat. *Écoscience*, 12(4), 455-465. Retrieved from
800 <https://doi.org/10.2980/i1195-6860-12-4-455.1> doi:10.2980/i1195-6860-12-4-455.1

801 Beer, C., Fedorov, A., & Torgovkin, Y. (2013). Permafrost temperature and active-layer thickness of
802 yaktutia with 0.5-degree spatial resolution for model evaluation. *Earth System Science Data*, 5.
803 doi:10.5194/essd-5-305-2013

804 Berendse, F., Van Breemen, N., Rydin, H., Buttler, A., Heijmans, M., Hoosbeek, M. R., et al. (2001). Raised
805 atmospheric co₂ levels and increased n deposition cause shifts in plant species composition and
806 production in sphagnum bogs. *Global Change Biology*, 7(5), 591-598. Retrieved from
807 <https://doi.org/10.1046/j.1365-2486.2001.00433.x> doi:<https://doi.org/10.1046/j.1365-2486.2001.00433.x>

808 Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., et al. (2006). Atmospheric nitrogen
809 deposition promotes carbon loss from peat bogs. *Proceedings of the National Academy of
810 Sciences*, 103(51), 19386. Retrieved from <http://www.pnas.org/content/103/51/19386.abstract>.
811 doi:10.1073/pnas.0606629104

812 Charman, D. (2002). *Peatlands and environmental change*. Chichester: John Wiley & Sons Ltd.

813 Chaudhary, N., Miller, P. A., & Smith, B. (2017). Modelling past, present and future peatland carbon
814 accumulation across the pan-arctic region. *Biogeosciences*, 14(18), 4023-4044. Retrieved from
815 <https://www.biogeosciences.net/14/4023/2017/> doi:10.5194/bg-14-4023-2017

816 Dankers, R., Burke, E., & Price, J. (2011). Simulation of permafrost and seasonal thaw depth in the jules
817 land surface scheme. *The Cryosphere Discussions*, 5, 1263-1309. doi:10.5194/tcd-5-1263-2011

818 Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., et al. (2013). Climate change
819 projections using the ipsl-cm5 earth system model: From cmip3 to cmip5. *Climate Dynamics*,
820 40(9), 2123-2165. Retrieved from <https://doi.org/10.1007/s00382-012-1636-1>.
821 doi:10.1007/s00382-012-1636-1

822 Elberling, B., Michelsen, A., Schädel, C., Schuur, E. A. G., Christiansen, H. H., Berg, L., et al. (2013). Long-
823 term co₂ production following permafrost thaw. *Nature Climate Change*, 3(10), 890-894.
824 Retrieved from <https://doi.org/10.1038/nclimate1955> doi:10.1038/nclimate1955

825 FAO-Unesco. (1974). *Soil map of the world*. . Paris: Food and Agriculture Organization of the United
826 Nations and the United Nations Educational, Scientific and Cultural Organization

827 Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H. (2010). A new
828 model of holocene peatland net primary production, decomposition, water balance, and peat
829 accumulation. *Earth Syst. Dynam.*, 1(1), 1-21. Retrieved from <https://www.earth-syst-dynam.net/1/1/2010/> doi:10.5194/esd-1-1-2010

830 Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E.-S., & Roulet, N. (2011).
831 Peatlands in the earth's 21st century climate system. *Environmental Reviews*, 19(NA), 371-396.
832 Retrieved from <https://doi.org/10.1139/a11-014> doi:10.1139/a11-014

833 Frolking, S., Talbot, J., & Subin, Z. M. (2014). Exploring the relationship between peatland net carbon
834 balance and apparent carbon accumulation rate at century to millennial time scales. *The
835 Holocene*, 24(9), 1167-1173. Retrieved from <https://doi.org/10.1177/0959683614538078>.
836 doi:10.1177/0959683614538078

837 Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, P., et al. (2018).
838 Latitudinal limits to the predicted increase of the peatland carbon sink with warming. *Nature
839 Climate Change*, 8(10), 907-913. Retrieved from <https://doi.org/10.1038/s41558-018-0271-1>.
840 doi:10.1038/s41558-018-0271-1

841

842

843 Gao, J., Feng, J., Zhang, X., Yu, F.-H., Xu, X., & Kuzyakov, Y. (2016). Drying-rewetting cycles alter carbon
844 and nitrogen mineralization in litter-amended alpine wetland soil. *CATENA*, 145, 285-290.
845 Retrieved from <https://www.sciencedirect.com/science/article/pii/S0341816216302314>.
846 doi:<https://doi.org/10.1016/j.catena.2016.06.026>

847 Glaser, P. H., Siegel, D. I., Chanton, J. P., Reeve, A. S., Rosenberry, D. O., Corbett, J. E., et al. (2016).
848 Climatic drivers for multidecadal shifts in solute transport and methane production zones within
849 a large peat basin. *Global Biogeochemical Cycles*, 30(11), 1578-1598. Retrieved from
850 <http://pubs.er.usgs.gov/publication/70179639>. doi:10.1002/2016GB005397

851 Goodrich, L. E. (1978). Efficient numerical technique for one-dimensional thermal problems with phase
852 change. *International Journal of Heat and Mass Transfer*, 21(5), 615-621. Retrieved from
853 <https://www.sciencedirect.com/science/article/pii/0017931078900583>.
854 doi:[https://doi.org/10.1016/0017-9310\(78\)90058-3](https://doi.org/10.1016/0017-9310(78)90058-3)

855 Gorham, E., Lehman, C., Dyke, A., Janssens, J., & Dyke, L. (2007). Temporal and spatial aspects of
856 peatland initiation following deglaciation in north america. *Quaternary Science Reviews*, 26(3),
857 300-311. Retrieved from
858 <http://www.sciencedirect.com/science/article/pii/S0277379106002666>.
859 doi:<https://doi.org/10.1016/j.quascirev.2006.08.008>

860 Granath, G., Limpens, J., Posch, M., Mücher, S., & de Vries, W. (2014). Spatio-temporal trends of
861 nitrogen deposition and climate effects on sphagnum productivity in european peatlands.
862 *Environmental Pollution*, 187, 73-80. Retrieved from
863 <https://www.sciencedirect.com/science/article/pii/S0269749113006568>.
864 doi:<https://doi.org/10.1016/j.envpol.2013.12.023>

865 Gunnarsson, U., & Rydin, H. (2000). Nitrogen fertilization reduces sphagnum production in bog
866 communities. *New Phytologist*, 147(3), 527-537. Retrieved from <https://doi.org/10.1046/j.1469-8137.2000.00717.x>. doi:<https://doi.org/10.1046/j.1469-8137.2000.00717.x>

868 Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly
869 climatic observations – the cru ts3.10 dataset. *International Journal of Climatology*, 34(3), 623-
870 642. Retrieved from <https://doi.org/10.1002/joc.3711>. doi:<https://doi.org/10.1002/joc.3711>

871 He, F. (2011). *Simulating transient climate evolution of the last deglaciation with CCSM3*. (Doctor of
872 Philosophy), UNIVERSITY OF WISCONSIN-MADISON, Madison, Wisconsin.

873 Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., et al. (2021). Tradeoff of co2 and ch4 emissions
874 from global peatlands under water-table drawdown. *Nature Climate Change*, 11(7), 618-622.
875 Retrieved from <https://doi.org/10.1038/s41558-021-01059-w>. doi:10.1038/s41558-021-01059-
876 w

877 Hugelius, G., Loisel, J., Chadbourn, S., Jackson, R. B., Jones, M., MacDonald, G., et al. (2020). Large stocks
878 of peatland carbon and nitrogen are vulnerable to permafrost thaw. *Proceedings of the National
879 Academy of Sciences*, 117(34), 20438. Retrieved from
880 <http://www.pnas.org/content/117/34/20438.abstract>. doi:10.1073/pnas.1916387117

881 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C. L., et al. (2014). Estimated
882 stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data
883 gaps. *Biogeosciences*, 11(23), 6573-6593. Retrieved from
884 <https://bg.copernicus.org/articles/11/6573/2014/>. doi:10.5194/bg-11-6573-2014

885 Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C., & Ewing, S. (2017). Rapid
886 carbon loss and slow recovery following permafrost thaw in boreal peatlands. *Global Change
887 Biology*, 23(3), 1109-1127. Retrieved from <https://doi.org/10.1111/gcb.13403>.
888 doi:<https://doi.org/10.1111/gcb.13403>

889 Jones, M. C., & Yu, Z. (2010). Rapid deglacial and early holocene expansion of peatlands in alaska.
890 *Proceedings of the National Academy of Sciences*, 107(16), 7347. Retrieved from
891 <http://www.pnas.org/content/107/16/7347.abstract>. doi:10.1073/pnas.0911387107

892 Köchy, M., Hiederer, R., & Freibauer, A. (2015). Global distribution of soil organic carbon – part 1:
893 Masses and frequency distributions of soc stocks for the tropics, permafrost regions, wetlands,
894 and the world. *SOIL*, 1(1), 351-365. Retrieved from
895 <https://soil.copernicus.org/articles/1/351/2015/>. doi:10.5194/soil-1-351-2015

896 Kuhry, P., & Vitt, D. H. (1996). Fossil carbon/nitrogen ratios as a measure of peat decomposition. *Ecology*,
897 77(1), 271-275. Retrieved from <https://doi.org/10.2307/2265676>.
898 doi:<https://doi.org/10.2307/2265676>

899 Lawrence, D. M., Slater, A. G., & Swenson, S. C. (2012). Simulation of present-day and future permafrost
900 and seasonally frozen ground conditions in ccsm4. *Journal of Climate*, 25(7), 2207-2225.
901 Retrieved from <https://journals.ametsoc.org/view/journals/clim/25/7/jcli-d-11-00334.1.xml>.
902 doi:10.1175/JCLI-D-11-00334.1

903 Limpens, J., Heijmans, M. M. P. D., & Berendse, F. (2006). The nitrogen cycle in boreal peatlands. In R. K.
904 Wieder & D. H. Vitt (Eds.), *Boreal peatland ecosystems* (pp. 195-230). Berlin, Heidelberg:
905 Springer Berlin Heidelberg.

906 Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., et al. (2021).
907 Expert assessment of future vulnerability of the global peatland carbon sink. *Nature Climate
908 Change*, 11(1), 70-77. Retrieved from <https://doi.org/10.1038/s41558-020-00944-0>.
909 doi:10.1038/s41558-020-00944-0

910 Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., et al. (2014). A database and
911 synthesis of northern peatland soil properties and holocene carbon and nitrogen accumulation.
912 *The Holocene*, 24(9), 1028-1042. Retrieved from <https://doi.org/10.1177/0959683614538073>.
913 doi:10.1177/0959683614538073

914 López-Blanco, E., Jackowicz-Korzynski, M., Mastepanov, M., Skov, K., Westergaard-Nielsen, A., Williams,
915 M., & Christensen, T. R. (2020). Multi-year data-model evaluation reveals the importance of
916 nutrient availability over climate in arctic ecosystem c dynamics. *Environmental Research Letters*,
917 15(9), 094007. Retrieved from <http://dx.doi.org/10.1088/1748-9326/ab865b>. doi:10.1088/1748-
918 9326/ab865b

919 López-Blanco, E., Lund, M., Williams, M., Tamstorf, M. P., Westergaard-Nielsen, A., Exbrayat, J. F., et al.
920 (2017). Exchange of co2 in arctic tundra: Impacts of meteorological variations and biological
921 disturbance. *Biogeosciences*, 14(19), 4467-4483. Retrieved from
922 <https://bg.copernicus.org/articles/14/4467/2017/>. doi:10.5194/bg-14-4467-2017

923 MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C., & Velichko, A. A. (2006).
924 Rapid early development of circumarctic peatlands and atmospheric ch₄ and co₂ variations. *Science*, 314(5797), 285. Retrieved from
925 <http://science.scienmag.org/content/314/5797/285.abstract>. doi:10.1126/science.1131722

926 McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., et al. (2018). Dependence of
927 the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate
928 change. *Proceedings of the National Academy of Sciences*, 115(15), 3882. Retrieved from
929 <http://www.pnas.org/content/115/15/3882.abstract>. doi:10.1073/pnas.1719903115

930 McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moore lii, B., & Vorosmarty, C. J.
931 (1992). Interactions between carbon and nitrogen dynamics in estimating net primary
932 productivity for potential vegetation in north america. *Global Biogeochemical Cycles*, 6(2), 101-
933 124. Retrieved from <https://doi.org/10.1029/92GB00219>.
934 doi:<https://doi.org/10.1029/92GB00219>

936 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., et al. (2011). The
937 rcp greenhouse gas concentrations and their extensions from 1765 to 2300. *Climatic Change*,
938 109(1), 213. Retrieved from <https://doi.org/10.1007/s10584-011-0156-z>. doi:10.1007/s10584-011-0156-z

939 Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T., et al. (2014). Assessment of cmip5 climate
940 models and projected temperature changes over northern eurasia. *Environmental Research
941 Letters*, 9(5), 055007. Retrieved from <http://dx.doi.org/10.1088/1748-9326/9/5/055007>.
942 doi:10.1088/1748-9326/9/5/055007

943 Minkkinen, K., Penttilä, T., & Laine, J. (2007). Tree stand volume as a scalar for methane fluxes in
944 forestry-drained peatlands in finland. *Boreal Environment Research*, 12, 127-132.

945 Moore, T. R., Knorr, K.-H., Thompson, L., Roy, C., & Bubier, J. L. (2019). The effect of long-term
946 fertilization on peat in an ombrotrophic bog. *Geoderma*, 343, 176-186. Retrieved from
947 <https://www.sciencedirect.com/science/article/pii/S0016706118322547>.
948 doi:<https://doi.org/10.1016/j.geoderma.2019.02.034>

949 Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann, A.-K., et al. (2019). Large
950 loss of co2 in winter observed across the northern permafrost region. *Nature Climate Change*,
951 9(11), 852-857. Retrieved from <https://doi.org/10.1038/s41558-019-0592-8>.
952 doi:10.1038/s41558-019-0592-8

953 Nichols, J. E., & Peteet, D. M. (2019). Rapid expansion of northern peatlands and doubled estimate of
954 carbon storage. *Nature Geoscience*, 12(11), 917-921. Retrieved from
955 <https://doi.org/10.1038/s41561-019-0454-z>. doi:10.1038/s41561-019-0454-z

956 O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z., & Wickland, K. P.
957 (2012). The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an
958 alaskan peatland. *Ecosystems*, 15(2), 213-229. Retrieved from <https://doi.org/10.1007/s10021-011-9504-0>. doi:10.1007/s10021-011-9504-0

959 Oberbauer, S. F., & Oechel, W. C. (1989). Maximum co₂-assimilation rates of vascular plants on an
960 alaskan arctic tundra slope. *Holarctic Ecology*, 12(3), 312-316. Retrieved from
961 <http://www.jstor.org/stable/3682739>.

962 Ojanen, P., Penttilä, T., Tolvanen, A., Hotanen, J.-P., Saarimaa, M., Nousiainen, H., & Minkkinen, K.
963 (2019). Long-term effect of fertilization on the greenhouse gas exchange of low-productive
964 peatland forests. *Forest Ecology and Management*, 432, 786-798. Retrieved from
965 <https://www.sciencedirect.com/science/article/pii/S0378112718311733>.
966 doi:<https://doi.org/10.1016/j.foreco.2018.10.015>

967 Palmer, M. D., Harris, G. R., & Gregory, J. M. (2018). Extending cmip5 projections of global mean
968 temperature change and sea level rise due to thermal expansion using a physically-based
969 emulator. *Environmental Research Letters*, 13(8), 084003. Retrieved from
970 <http://dx.doi.org/10.1088/1748-9326/aad2e4>. doi:10.1088/1748-9326/aad2e4

971 Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings, J. A., et al. (2019). Direct
972 observation of permafrost degradation and rapid soil carbon loss in tundra. *Nature Geoscience*,
973 12(8), 627-631. Retrieved from <https://doi.org/10.1038/s41561-019-0387-6>.
974 doi:10.1038/s41561-019-0387-6

975 Qiu, C., Ciais, P., Zhu, D., Guenet, B., Peng, S., Petrescu, A. M. R., et al. (2021). Large historical carbon
976 emissions from cultivated northern peatlands. *Science Advances*, 7(23), eabf1332. Retrieved
977 from <https://www.science.org/doi/abs/10.1126/sciadv.abf1332>.
978 doi:doi:10.1126/sciadv.abf1332

979 Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J., et al. (1991).
980 Potential net primary productivity in south america: Application of a global model. *Ecol Appl*,
981 1(4), 399-429. doi:10.2307/1941899

982
983

984 Romanovsky, V. E., & Osterkamp, T. E. (1997). Thawing of the active layer on the coastal plain of the
985 alaskan arctic. *Permafrost and Periglacial Processes*, 8(1), 1-22. Retrieved from
986 [https://doi.org/10.1002/\(SICI\)1099-1530\(199701\)8:1<1::AID-PPP243>3.0.CO;2-U](https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<1::AID-PPP243>3.0.CO;2-U)
987 doi:[https://doi.org/10.1002/\(SICI\)1099-1530\(199701\)8:1<1::AID-PPP243>3.0.CO;2-U](https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<1::AID-PPP243>3.0.CO;2-U)

988 Schaefer, K., Zhang, T., Bruhwiler, L., & Barrett, A. (2011). Amount and timing of permafrost carbon
989 release in response to climate warming. *Tellus B*, 63, 165-180. doi:10.1111/j.1600-
990 0889.2011.00527.x

991 Sheffield, J., Barrett, A., Colle, B., Fernando, D., Fu, R., Geil, K., et al. (2013). North american climate in
992 cmip5 experiments. Part i: Evaluation of historical simulations of continental and regional
993 climatology*. *Journal of Climate*, 26, 9209-9245. doi:10.1175/JCLI-D-12-00592.1

994 Song, Y., Song, C., Ren, J., Tan, W., Jin, S., & Jiang, L. (2018). Influence of nitrogen additions on litter
995 decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in
996 northeast china. *Science of The Total Environment*, 625, 640-646. Retrieved from
997 <https://www.sciencedirect.com/science/article/pii/S0048969717337440>.
998 doi:<https://doi.org/10.1016/j.scitotenv.2017.12.311>

999 Sun, Z., Wang, Q., Batkhishig, O., & Ouyang, Z. (2016). Relationship between evapotranspiration and
1000 land surface temperature under energy- and water-limited conditions in dry and cold climates.
1001 *Advances in Meteorology*, 2016, 1835487. Retrieved from
1002 <https://doi.org/10.1155/2016/1835487>. doi:10.1155/2016/1835487

1003 Treat, C. C., & Frolking, S. (2013). A permafrost carbon bomb? *Nature Climate Change*, 3(10), 865-867.
1004 Retrieved from <https://doi.org/10.1038/nclimate2010>. doi:10.1038/nclimate2010

1005 Treat, C. C., & Jones, M. C. (2018). Near-surface permafrost aggradation in northern hemisphere
1006 peatlands shows regional and global trends during the past 6000 years. *The Holocene*, 28(6),
1007 998-1010. Retrieved from <https://doi.org/10.1177/0959683617752858>.
1008 doi:10.1177/0959683617752858

1009 Treat, C. C., Jones, M. C., Alder, J., Sannel, A. B. K., Camill, P., & Frolking, S. (2021). Predicted vulnerability
1010 of carbon in permafrost peatlands with future climate change and permafrost thaw in western
1011 canada. *Journal of Geophysical Research: Biogeosciences*, n/a(n/a), e2020JG005872. Retrieved
1012 from <https://doi.org/10.1029/2020JG005872>. doi:<https://doi.org/10.1029/2020JG005872>

1013 Treat, C. C., Jones, M. C., Brosius, L., Grosse, G., Walter Anthony, K., & Frolking, S. (2021). The role of
1014 wetland expansion and successional processes in methane emissions from northern wetlands
1015 during the holocene. *Quaternary Science Reviews*, 257, 106864. Retrieved from
1016 <https://www.sciencedirect.com/science/article/pii/S0277379121000718>.
1017 doi:<https://doi.org/10.1016/j.quascirev.2021.106864>

1018 Treat, C. C., Wollheim, W. M., Varner, R. K., Grandy, A. S., Talbot, J., & Frolking, S. (2014). Temperature
1019 and peat type control co2 and ch4 production in alaskan permafrost peats. *Global Change
1020 Biology*, 20(8), 2674-2686. Retrieved from <https://doi.org/10.1111/gcb.12572>.
1021 doi:<https://doi.org/10.1111/gcb.12572>

1022 Turetsky, M. R., Donahue, W. F., & Benscoter, B. W. (2011). Experimental drying intensifies burning and
1023 carbon losses in a northern peatland. *Nature Communications*, 2(1), 514. Retrieved from
1024 <https://doi.org/10.1038/ncomms1523>. doi:10.1038/ncomms1523

1025 Turetsky, M. R., Wieder, R. K., & Vitt, D. H. (2002). Boreal peatland c fluxes under varying permafrost
1026 regimes. *Soil Biology and Biochemistry*, 34(7), 907-912. Retrieved from
1027 <http://www.sciencedirect.com/science/article/pii/S0038071702000226>.
1028 doi:[https://doi.org/10.1016/S0038-0717\(02\)00022-6](https://doi.org/10.1016/S0038-0717(02)00022-6)

1029 Turunen, J., Roulet, N. T., Moore, T. R., & Richard, P. J. H. (2004). Nitrogen deposition and increased
1030 carbon accumulation in ombrotrophic peatlands in eastern canada. *Global Biogeochemical*

1031 *Cycles*, 18(3). Retrieved from <https://doi.org/10.1029/2003GB002154>.
1032 doi:<https://doi.org/10.1029/2003GB002154>

1033 Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. (2002). Estimating carbon accumulation rates of
1034 undrained mires in finland—application to boreal and subarctic regions. *The Holocene*, 12(1), 69-
1035 80. Retrieved from <https://doi.org/10.1191/0959683602hl522rp>.
1036 doi:10.1191/0959683602hl522rp

1037 Updegraff, K., Bridgman, S. D., Pastor, J., Weishampel, P., & Harth, C. (2001). Response of
1038 co₂ and ch₄ emissions from peatlands to warming and water table
1039 manipulation. *Ecological Applications*, 11(2), 311-326. Retrieved from
1040 <http://www.jstor.org/stable/3060891>. doi:10.2307/3060891

1041 Wang, C., Wan, S., Xing, X., Zhang, L., & Han, X. (2006). Temperature and soil moisture interactively
1042 affected soil net n mineralization in temperate grassland in northern china. *Soil Biology and*
1043 *Biochemistry*, 38(5), 1101-1110. Retrieved from
1044 <https://www.sciencedirect.com/science/article/pii/S0038071705003251>.
1045 doi:<https://doi.org/10.1016/j.soilbio.2005.09.009>

1046 Wang, S., Zhuang, Q., & Yu, Z. (2016). Quantifying soil carbon accumulation in alaskan terrestrial
1047 ecosystems during the last 15 000 years. *Biogeosciences*, 13(22), 6305-6319. Retrieved from
1048 <https://bg.copernicus.org/articles/13/6305/2016/>. doi:10.5194/bg-13-6305-2016

1049 Wang, S., Zhuang, Q., Yu, Z., Bridgman, S., & Keller, J. K. (2016). Quantifying peat carbon accumulation in
1050 alaska using a process-based biogeochemistry model. *Journal of Geophysical Research: Biogeosciences*, 121(8), 2172-2185. Retrieved from <https://doi.org/10.1002/2016JG003452>.
1052 doi:<https://doi.org/10.1002/2016JG003452>

1053 Weiss, R., Shurpali, N., Sallantaus, T., Laiho, R., Laine, J., & Alm, J. (2006). Simulation of water table level
1054 and peat temperatures in boreal peatlands. *ECOLOGICAL MODELLING*, 192, 441-456.
1055 doi:10.1016/j.ecolmodel.2005.07.016

1056 Williams, T. G., & Flanagan, L. B. (1996). Effect of changes in water content on photosynthesis,
1057 transpiration and discrimination against 13co₂ and c18o16o in pleurozium and sphagnum.
1058 *Oecologia*, 108(1), 38-46. Retrieved from <https://doi.org/10.1007/BF00333212>.
1059 doi:10.1007/BF00333212

1060 Yu, Z., Beilman, D., & Jones, M. (2009). Sensitivity of northern peatland carbon dynamics to holocene
1061 climate change. *Washington DC American Geophysical Union Geophysical Monograph Series*,
1062 184, 55-69. doi:10.1029/2008GM000822

1063 Yu, Z., Vitt, D. H., & Wieder, R. K. (2014). Continental fens in western canada as effective carbon sinks
1064 during the holocene. *The Holocene*, 24(9), 1090-1104. Retrieved from
1065 <https://doi.org/10.1177/0959683614538075>. doi:10.1177/0959683614538075

1066 Zhu, F., Emile-Geay, J., McKay, N., Hakim, G., Khider, D., Ault, T., et al. (2019). Climate models can
1067 correctly simulate the continuum of global-average temperature variability. *Proceedings of the*
1068 *National Academy of Sciences*. doi:10.1073/pnas.1809959116

1069 Zhuang, Q., McGuire, A. D., O'Neill, K. P., Harden, J. W., Romanovsky, V. E., & Yarie, J. (2002). Modeling
1070 soil thermal and carbon dynamics of a fire chronosequence in interior alaska. *Journal of*
1071 *Geophysical Research: Atmospheres*, 107(D1), FFR 3-1-FFR 3-26. Retrieved from
1072 <https://doi.org/10.1029/2001JD001244>. doi:<https://doi.org/10.1029/2001JD001244>

1073 Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., et al. (2004).
1074 Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes
1075 during the past century: A retrospective analysis with a process-based biogeochemistry model.
1076 *Global Biogeochemical Cycles*, 18(3). Retrieved from <https://doi.org/10.1029/2004GB002239>.
1077 doi:<https://doi.org/10.1029/2004GB002239>

1078 Zhuang, Q., Romanovsky, V., & McGuire, A. (2001). Incorporation of a large-
1079 scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil
1080 thermal dynamics. *Journal of Geophysical Research*, 106, 33649-33670.
1081 doi:10.1029/2001JD900151

1082