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New Versions of Halanay’s Inequality With
Multiple Gain Terms

Frédéric Mazenc and Michael

Halanay’s inequality in its standard form is a
widely used tool for the analysis of systems with delays
and uncertainties, but the assumptions needed to use
it are sometimes too restrictive to cover applications
of interest. This letter provides new generalizations of
Halanay’s inequality where, instead of the usual supre-
mum in the gain term in standard versions of Halanay’s
inequality, we use a weighted sum of suprema over different
intervals. This allows us to derive sufficient conditions for
asymptotic and input-to-state stability. We apply our results
to linear systems with switched delays and other examples
that illustrate how our results are less restrictive than those
of other contributions available in the literature.

Stability, delays, time-varying.

[. INTRODUCTION

ELAYED systems play an essential role in control the-
ory and control applications, owing to time delayed
information transmission (leading to sensor delays) and time
delays in control actuation (which can be represented by
input delays). Lyapunov-Krasovskii techniques are well suited
for systems with known constant delays, but usually are not
as easily applied to systems with time-varying or unknown
delays. By contrast, Halanay’s inequality technique (which
was initiated in [3]) is a useful stability analysis tool for the
stability analysis of systems with poorly known time-varying
delays. This inequality and variants of it, which complement
Razumikhin’s theorem (which was used in contributions such
as [4] and [16]), have been studied in several papers, such
as [2], [5], [8], [9], [11], [12], and [15], to extend the domain
of application of Halanay’s stability analysis strategy.
In particular, the paper [13] presents notable results for time-
varying Halanay inequalities of the type

V(1) < —a(®v() +b() sup v() (1)

Le[t—T,1)
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where T > 0 is a constant, v is nonnegative valued, and the
term containing b is called the gain term. In [13], sufficient
conditions for lim,_, { o, v(f) = 0 to hold are given for cases
where (1) holds and where a(¢) can take both positive and
negative values and where b(¢) is larger than a(f) on some
arbitrarily large time intervals. This contrasts with the standard
Halanay’s inequality (e.g., [1, Lemma 4.2, p. 138]) having the
form (1) where a > 0 and b € [0, @) are constants.

Motivated by the fact that inequalities of the type (1) can be
used to study time-varying systems with time-varying delays,
we revisit the main result of [13]. To obtain less restrictive
conditions and establish input-to-state stability (or ISS) like
inequalities, we consider generalized Halanay’s inequalities
with multiple gain terms of the type

k
() < —a@v(D) + Y bi(0)

i=1

(@)

sup
Le[t—=T ;,t=T ]

v(€) +48(2)

where a, the b;’s, and 6 (which can represent an uncer-
tainty) are nonnegative scalar valued piecewise continuous
functions; see [14] for a presentation of the ISS notion. The
b;’s are the coefficients in our multiple gain terms that are
summed in (2). Later in Section II, we will describe persis-
tence of excitation relations involving a and the b;’s that will
ensure ISS conditions. The key idea which guides us con-
sists of taking advantage of the knowledge of the constants
T1; and Tp; > T1,;, which can be derived from information
on the delays of a system with poorly known time-varying
delays. As in [13], our assumptions are satisfied by functions a
which take both positive and negative values (which contrasts
with our earlier results on generalized Halanay’s inequalities
from [8]-[11], which required a to be nonnegative valued) and
the largest value of b; can be arbitrarily large over arbitrarily
large intervals, provided that the values a(#) of the function a
are positive and large on sufficiently long time intervals. Also,
our Halanay inequality generalizations [8]-[11] did not use the
comparison function approach that we use here, and they use
only one gain term, instead of the multiple gain terms that we
use here.

By contrast with the main result of [13], we establish
ISS like inequalities. By the definition of ISS, this ensures
that limy4 o0 v(¥) 0 when § is the zero function. Our
examples in Section III below show that the results we
obtain are less restrictive than the latest existing results about
Halanay’s inequality, in several circumstances. For instance,
see Section III for an example where our use of multiple gain
terms is shown to be useful for obtaining less conservative
results than [8]-[10]. By contrast with [7], the technique we
propose does not use the strictification technique from [6].
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We use standard notation, which is simplified when no con-
fusion would arise. The dimensions of our Euclidean spaces
are arbitrary unless otherwise noted. The standard Euclidean
norm and induced matrix norm are denoted by ||, |-|co 1S the
corresponding sup norm, and ||s is the supremum over a set S.
We set Z>0=1{0, 1, ...}, N=Z>0\{0}, R is the set of all real
numbers, [0, +00) is the set of all nonnegative real numbers,
and [ is the identity matrix.

[l. GENERALIZED HALANAY’S INEQUALITIES

This section provides our main theorems, which we apply
to systems with switched delays and other cases in Section III.
Our first theorem covers cases of the form (2) with multiple
suprema, and is based on a novel comparison approach. Our
second theorem only allows one supremum term (i.e., k = 1
in (2)), but it provides very different sufficient conditions as
compared with our first theorem.

Consider any k € N and constants 77 ; and 7> ; such that

0<Ti;<Tforallie(l,... .k}
and To 1 <--- <To—1 < Ty 3

Consider ~a  piecewise  C! continuous  function
v i [=T2k, +00) — [0, +00), and locally bounded piecewise
continuous functions § : [0, +00) — [0, +00), a : R — R,
and b; : [0, 400) — [0, +00) for i = 1, ...,k such that (2)
holds for all # > 0, where § represents uncertainty.

To analyze the behavior of the function v, we fix constants
€ > 0 and 7y > 0, we define the functions S; by

sup

t—TU
S; () = max {O, / a(m)dm} 4)
ZG[I—TzY,‘,t—T“‘] l

fori=1,...,k, and we introduce the comparison system
Ye(®) = —a@®)ye(t) + 8(1)
k

+ Y [bi() + €1eS Dy (t — T )
=i 5)
for all t > 1y
Ye(t) = SUP¢e[ty—Ts 4, 10] v(f) +-¢€
for all ¢ € [tg — T2k, tol.

We prove the following result, whose conclusion ensures
that v satisfies an ISS estimate for all 1 > 7y when y. satisfies
such an ISS estimate, and where we will provide sufficient
conditions for y. to satisfy the required ISS estimates in our
ISS corollary below, which also provides explicit ISS estimates
for the function v with (e, §) viewed as the perturbation and
which gives an ISS result with respect to § as € — 0.

Theorem 1: Consider the functions v and y. defined above.
Then the inequality

V(1) < ye(?) (6)

holds for all t > tg — T2 .

Proof: The second equality in (5) and the positiveness of
€ imply that v(¢) < yc(¢) for all ¢ € [ty — T2k, to]. Next, we
proceed by contradiction. Bearing in mind that v and y. are
continuous, let us suppose that there were a #; > fy such that
V(ty) = Ye(tz) and v(1) < ye (1) for all t € [t9g — Tox, 1), i€,
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t; is the first time ¢ when v(#) = y<(¢). Then from (2) and (5),
it follows that the inequality

sup
Lelty—Ty,i,t5—T 4]

k
P(ty) = Yelts) <D bilty) v(e)
i=1

k

= > Ibilt) +€1e¥ Wy (i =Ty (D)
i=1

is satisfied. By the second equality in the comparison
system (5) and the positiveness of ¢ and the nonnegativity
of the v values, we have y.(¢#) > O for all # € [tp — Tox, to].
Hence, since § and the b;’s are nonnegative valued, we can
collect terms on the right side of the first equality in (5) to
find a continuous function A such that y(r) > A(t)ye(t) for
all # > 1y if each T7; is zero, or such that y. () > A(?)y(?)
on [tg, tp + minjepr Ty ;] where N' C {1,...,k} is the index
set of all 7 values such that 7 ; > O if not all of the T ;’s are
0. In the first case, we can apply the method of variation of
parameters to the inequality y. () > A(#)ye(f) on any interval

of the form [#y, %) to get y.(f) > ef’to A(Odeyg (to) > 0 for all
t > to. In the second case, we can apply variation of parame-
ters to the same inequality in a similar way to get y.(f) > 0
for all ¢ € [y, to + min;car T1,;]. Repeating this process in a
method of steps in the case where N # @ gives y () > 0
for all ¢ € [to + € minepr 71,4, to + (£ + 1) minjeps T ;] for all
¢ € Zy. By combining both cases, it now follows that y.(¢) > 0
for all + > fy — T» k. Hence, for all i € {1, ..., k}, we have
€’y (ty — Ty ;) > 0, so

k
(1) = Fe(ty) < 3 bilts)[sUPrersy—r, 11y 1 V(O)
i=i | (8)
— Sy (1, — T1.0)].
Since v is continuous, it follows that for each i € {1, ..., k},

there is an si € [tz — T2,z — T1,;] such that v(sy) =
SUPge(r,—Ty 1.1~ 1y, V(E)- Then (8) implies that

k
(1) —Ve(ts) < Y bi(t)[v(si) =5 Wy (t:—T1)].  (9)
i=1
Next consider any i € {1, ..., k}, and three cases.
Case 1 (six > tg): Recalling the nonnegative valuedness of
ve and 4§, it follows from (5) that we have

Ye() = —a(®)ye (1) (10)
for all # > fy. By integrating (10), we obtain
=T,
Yelty = Ty ) > = he T almdmy, (g ), (1)

Since s; € (to, tz], we deduce from the definition of #; that
V(Six) < Ye(six), which we can combine with (11) to obtain

—f‘tn_rl'i a(m)dm
Ye(tg = T14) = e loin V(Six)- (12)

It follows that ye(t; — T1.;) = e~ S y(s;,).
Case 2 (six < tgp <tz — T1;): Integrating (10) gives
13=T1,i
Yelty — Ty j) > ¢ o atmam

t: =T
= e_ ft(;

Ve (t0)

1,i
amdmlqup  v(0) +e|. (13)
Lelto—T2 k,10]
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Since tg — T2,; <ty — T2,i < six < to, it follows that v(s;,) <
SUPge(ry—Ts 4101 V(E)- Also, (13) gives

te

=T,
Yelts — Ty j) > e ho 7 amdmy oy, (14)

Since ty — Tox < six < to, we can use (14) to conclude that

Ye(ty —T11) = E_Si(tu)V(Si*) (15)

is satisfied.
Case 3 (six <ty — T, ; < t9): Recalling that our formula (4)
for S; ensures that S; is nonnegative valued, we get

Visix) — €Sy (1, =T1 1) < V(sie) — Ye(tz—T1.2)

= v(six) — sup v(l) —e < —e.
Lelto—T2 k0]

(16)

Hence, in all three cases, we have es"(’:)y6 (te—T1,;) = v(six)
for i = 1,...,k. By combining the preceding inequalities
with (9), it follows that v(fy) — ye(#s) < O, so there is
tn € [to — Tok, ty) such that v(ta) — ye(ta) > 0, because
v(tz) — ye(ty) = 0. This contradicts the definition of #;. This
concludes the proof. |

Remark 1: Theorem 1 implies that if there is a constant
€ > 0 such that y, satisfies an ISS inequality, then v satisfies an
ISS inequality too that is valid for all ¢ > fy. Hence, Theorem 1
provides a way to conclude ISS properties from its generalized
Halanay’s inequalitites; see Corollary 1.

Remark 2: Theorem 1 has the following two crucial advan-
tages. First, when several poorly known delays are present
in a studied system, it improves on the stability conditions
for the results available in the literature by taking advantage
of the information on the delays; see our illustrations below.
Second, when the constants 7> ; converge to 77 ;, then the sta-
bility conditions we obtain converge to those of the case where
T,;=T;;forallie{l,...,k} Thisisin sharp contrast with
the conditions of [13, Th. 1].

Remark 3: The preceding theorem is new, even in the spe-
cial case where the 77 ;’s are all zero and when a and the b;’s
all have the same period P > 0 and § = 0. In that special
case, y. will exponentially converge to zero provided

P k
f 2(0)de >0, where g(£) = a(@)—Z[b,-(z)Jre]eSi“). (17)
0

i=1

This follows by first noting that, in this case, g also has
period P. Hence, for any N € N such that NP > ¢y, con-
dition (17) gives y.((N + j)P) < ey (NP) for all integers
Jj > 0, where I, is the integral in (17); this follows by apply-
ing variation of parameters to the first equation in (5) on the
interval [NP, (N + j)P]. For t > NP, this gives

— [} pg(0)de
ve(=e 18 O% (1.p)

< Be =Ny (NP) — 0ast— +oo, (18)
where t; = Floor(z/P) and
B, = sup{e*fs’g“)“:s >0,0<i—s5< P}, (19)

and Floor is the floor function, i.e., Floor(s) is the largest
integer j such that j < s. Similar reasoning shows that (17)
implies that v satisfies an ISS estimate with disturbance (6, €).
We illustrate the use of the criteria (17) in Section III.

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

We next present a consequence of Theorem 1, which pro-
vides an ISS estimate with respect to (8, €) that converges to
an ISS estimate with respect to 8 as € — 0T. The linear ISS
Lyapunov-Krasovskii functional (24) in its proof motivated us
to propose its persistence of excitation condition (20) (but see
Remark 3 for alternative sufficient persistence of excitation
conditions that ensure the required stability property for (5)
under periodicity assumptions).

Corollary 1: Let the assumptions of Theorem 1 hold and
to > 0 be given. Assume that a and the b;’s are bounded, and
that there is a constant ¢ > 0 such that

k
a(t) = Y [bi(t+ T) + €]e5 D > ¢
i=1

(20)

holds for all ¢+ > 7. Then we can find constants ¢{; > 0 for
i = 1,2 such that v(r) < §1e_flt|v|[,o,rzyk,,0]+§2(8(t)+e_§2’6)
for all ¢ > ¢.

Proof: Consider the functional

Vl,e(h ye,t) = Ye (Z)
k t
2

i=1 71"

Its time derivative along all solutions of (5) satisfies

[bi€ + T1.i) + el 0y (0)de.
Ty

1)

k
Vie(t) = [—a(t) +> [bi(r+n,,~>+e1e$[<’+T1~f>}ye(r> +38(1)

i=1

(22)

for all ¢ > ty. Then, along solutions of (5), Vlge(t) < —cye(H)+
8(t) for all ¢t > ty. Then let

¢ t t
Vo,e(t, ye,r) = Vi,e(t, ye,r) + 2_ f / Ye($)ds  (23)
M Jt—pu JIm

with ¢t = maxe(1,... x){71,;}. Then, along solutions of (5),

.....

t
Vo3 < = 53e) = 5o / Ye@)ds+8(0  (24)
t

2u Ji—p

for all ¢ > fg. Since the functions a and b; are bounded, there
is a constant ¢ > 0 such that

Vae(t,ver) < —6Vae(t,yer) +8(t) (25)
for all ¢ > #y. For instance, since
t
Vaelt, ye) < vet) +¢ f ye(s)ds (26)
[
holds for all ¢+ > ¢ with the choices ¢ = k(|bloo +

os)e"'g‘oo + % and b = (by,...,br), we can choose ¢ =
5min{1/u, 1}/ max{c, 1}. Then we can apply the method of
variation of parameters to (25) and recall the structure of V¢
to obtain the required ISS estimate for y.. In fact, Theorem 1
gives
v(t) < ye() < Voe(t, Yer)
g _ 5(1)
<e s (1 + CM)'ys'[to—Tzvk,t()] + ?

_ _ 5 | _ ;
=e §t(1 + C/J’)l‘}'[tosz’k,to] + T +e gt(l + CM)G (27)

for all ¢ > 1y, proving the corollary. |
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Let T > 0. Consider the inequality

V() < —a@®v(®) +b(#) sup v(£) +8(@) (28)
2e[t—T,1
where a : R — R, b : [0,4+00) — [0,+00), and

8 : [0, +00) — [0, 400) are locally bounded and piecewise
continuous, and where v : [ — T, 4+00) — [0, +00) is of class
C'. We use any constants € > 0 and ty > 0, the function

sup

I'(t) = max{0,
Le[t—T,t

t
/ [a(r)—b(r)]dr}, 29)
1Je

and the comparison system

Ye(t) = [—a(t) + (b(t) + )" D]y () + 8(1)
for all 1 > ¢g
Ve(t) = SUPgefsy—T. 1] v(€)+e€ for all t € [tg — T, tp].

(30)

The system (30) differs from system (5), because (a) there is
only one (instead of k) overshoot terms in the y. dynamics in
(30), (b) the exponential term (4) in (5) having the integrand
a has been replaced by a new exponential term (29) with the
integrand a — b, and (c) the delays T ; in (5) are not used in
(29)-(30). See Section III-C for an example where (29)-(30)
lead to less conservative conditions than Theorem 1.

We prove the following, which provides ISS properties for
v when y, satisfies ISS, and where the required stability prop-
erties for y. can be checked using classical methods like in
the preceding subsection, which can lead to explicit ISS like
estimates for v as in Corollary 1.

Theorem 2: Consider the v and y. defined above. Then

v(t) < ye(®) €1y

holds for all r >ty — T.

Proof: First note that the second equality in (30) implies
that v(f) < ye(¢) for all t € [ro — T, tp]. Now, we proceed by
contradiction. Bearing in mind that v and y. are continuous,
suppose that there is a #; > fy such that v(#;) = ye(t;) and

V(1) < ye(?) (32)

for all r € [fo — T, tz) by choosing #; to be the first time ¢ > 1y
when the inequality (32) is violated as before. Then

v(tg) — Ve (t) < b(ty) SUPgelry—T.1,] v(£)
— (b(ty) + €)@y (1),

(33)

Since eel )y, (t;) > 0, we have

sup
Le[ty—T,t4]

(1) — e (t1) <b(tj>[ v(e)—e @y, (rw]. (34)

Let s, € [ty — T,13] be such that v(s.) = supycps, 7.1 v(£),
which exists because v is continuous. Then

i(ty) — 3elty) < blap)|vis) — " Dye)]. 39)
Next note that since y.(f) > 0 for all ¢ > 7y, we have
Ye(t) = [—a(r) + b(1)]ye (1) (36)
for all ¢ > fy. Next, let us distinguish between 2 cases.
Case 1 (s, > tp): Then integrating (36) gives
yelty) = e Ban=POMry, (g, (37)

1793
Since s, € [tz — T, t¢], it follows from (29) that
,lﬁ
yeltz) 2 e IelaO=b My
> ¢ Pt T Y a=b Ol 6,
> e_r(’:)v(s,,). (38)
Case 2 (s, < t9): Then integrating (36) gives
— ¥ a(r) —b(r1dr
Ye(ty) = e 710 Ve (to)
1
> B lOTPON Gy ), (39)
Lelto—T,t0]

by (30). Since s, € [ty — T, ty] and #; > ty, we deduce that

) —
Ve(ts) > e Jig La(n) b(r)]drv(s*)

1
> e* Sllp[g[tn—T,tﬁ] flu [a(r)ib(r)]drv(s*)

> e Ty (s,). (40)

In both cases, we get er("i)ye (tz) > v(s,), which we can com-
bine with (35) to obtain v(#4) — y(#z) < 0. Hence, there
is a tpo € [fo,ts) such that v(ta) — ye(ta) > 0, because
v(t:) — ye(ty) = 0. This contradicts the definition of #;, so
no such #; can exist. This concludes the proof. u

[1l. ILLUSTRATIONS

Systems with switching delays commonly arise when con-
trols need to switch between different sensors or different
actuators that have different latencies, and so are of con-
siderable research interest in the control theory community.
Therefore, we first illustrate Theorem 1 using the class of
systems with switching delays from [8] and [10], using our
less restrictive new generalized Halanay’s conditions (2).

Let T > 0 and T > T be any constants, and consider any
sequence f; satisfying 7 < t;41 —t; < T for all i > 0. As in
[8, Sec. 3.4], let 7; and 74 be any constants such that

T > 5(1 + 15) 41
and 7; > 73, > 0, and we consider the system
Xx(t) = Mx(t) + Nx(t — ©(1)) (42)

with x valued in R”, where 7t is a time-varying piecewise
continuous unknown delay such that

0<t(®) <t ift¢E, and0 <t(r) <t ift€E,
where E = Ujenlti, t; +T) and T = 7, + 17, 43)

and M € R™" and N € R™" are constant (which includes
cases where t does not switch, e.g., with T = 1;;.1 — ¢; for all
i). Following [8, Sec. 3.4] and [10, Sec. 4.2], we also assume
the following, where M| > M for square matrices means that
M — M> is nonnegative definite.

Assumption 1: There are a symmetric positive definite
matrix Q € R™" and a constant g > 0 such that

QM +N)+M+N)"Q < —40 (44)
and I < Q are satisfied.
In terms of the notation
2INTON|(|M| + |N|)?
L 2INTONIGM] + N )

q
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we also use the following lemma, whose proof consists of the
first part of the proof of [10, Proposition 1].

Lemma 1: With the preceding notation and under
Assumption 1, the time derivative of the function
U(x) = x' Qx along all solutions of (42) is such that

U < —gU(x(t)) YL2 sup UG(m)  (46)
met—1—71,t]
for all ¢ € [0, +00)\E and
: q 8INTON|
U@ < —EU(X(l)) + Yy sup Ux()  47)

le[t—1y,1]
for all t € E.
In terms of the constant a, and the function b, in

a4, = e IEHD2 g 0y = 20 T B p-giimn) (44
q

where R = 8|NTQON|/q, the main result in [8] for (42) is:
Proposition 1: With the above notation, let Assumption 1
hold, and assume that
8INTON
2 q

.
and (a* " b*(er)) <a* + m(@)) < 1. (49)

Then the origin of (42) is a globally exponentially stable
equilibrium point on R”.

On the other hand, we can apply Theorem 1 from
Section II-A above in the preceding case, by choosing

() = UG®). a(t) = g k=2,

8
by (1) = ;]|NTQN|XS,Z (), ba(t) = Lt xs, (D),

T'W=T12=0 Try=17,and T =7+7 (50)

under suitable conditions on the parameters, where ys is the
indicator (or characteristic) function for each set § C R, mean-
ing xs(¢) = 1if £ € S and xs(¢) = 0 if £ € R\S, and where
S, = E and S, = R\E. For example, if we choose 7, = 0,
71 = 0.01, t; =i for all i > 0, the matrices

1 2 2.68767

M= [—2 1 } Q= [0.789041 1.70137 ] oD
and N = —-2I, and ¢ = 1.5, then the assumptions
of Proposition 1 would not hold, but the assumptions of
Theorem 1 would hold with € = 0.001, where Q and g can be
found by solving the Lyapunov equation Q,(M + N) + (M +
N)TQ, = —I for Q,, and then scaling Q, to obtain a Q that
satisfies the requirements of Assumption 1 for a small enough
constant ¢ > 0. The fact that the requirements from Theorem 1
hold for any 7y > 0 in this case follows from Remark 3 above
with P = 1.

In , we plot the solutions of (42) with the preceding
values and t(¢) = 0.01 for all t € E for three sets of constant
initial functions (i.e., initial states), using Mathematica. They
show convergence to the desired equilibrium. This illustrates
how Theorem 1 can provide less restrictive conditions than
the conditions in [8] for systems with switched delays.

0.789041

Consider the special case

v(t) < —a()v(r) + by (1) sup v(£)
Le(t=T1,t—T1 1]
+ by(1) sup v(l) (52)

Lelt=Tr0,1=T 2]

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

15T 2.0 25

Simulations of (42) Showing x1(t) (Red) and xo(f) (Blue) for
Initial States (1, 1) (Solid), (—2, 2) (Dotted) and (3, —3) (Dashed-Dotted).

of (2) with k =2 and § = 0, and with the choices

T T
ny=—=-,T,1=+

i
— — . a(t) = — + 8sin%(p),
2 2 " 100" 40 = g T8sT0)

by (t) = 4e~ 10 sin?( 1 497 T 27, and
=4e -, = Zim,
! 100" °**
P 1997 b4
by(f) = 4~ W sin’(t——— ), and T » = 27 ——. (53
2 (1) e sm( 100) and 172 3 100 (53)

Then the sufficient condition (20) for lim;— 400 v(¥) = 0 to
hold is that there is a constant ¢ > O such that

1
I + 8sin®(r) — [b1(t + Ti1) + 6]eSI(t+T1,1)

—[ba(t + T12) + €]eRHT12) > ¢ (54)

for all r > 0. Let us check that this inequality is satisfied for
sufficiently small positive values € and c.

To this end, notice that using the notation from Theorem 1,
it follows that for all # > 0, we have

t
Si(t+Ti) = /
=T 1+T1 1
t

a(m)dm < 0.26 and

Sy(t+T12) =/

t=T2+T1 2
where the equalities in (55) follow because a is nonnegative
valued. Hence, the left side of (54) is bounded below by

i + SSinz(l’) — |:bl <t+ 49i> + by (t + 199”) 4 26]60‘26 (56)

a(m)dm < 0.26 (55)

100 100
for all r > 0. Since

497 1997 o,
bilt+ 25 = byt 4 28 ) = de~ 100 sin2(r) (57
1(+100) 2(+ 100) ¢ T sin’() - (57)

it follows that when € > 0 is small enough, we have
1
1 + SSinz(l‘) — [+ T11)+ 6]e3|(t+T1,1)

1
= [ba(r + Tip) + €]e™ 12 > o (58)
which ensures that lim,_, 4o, v(f) = 0, by Corollary 1.
On the other hand, [13, Th. 1] would not apply to the
preceding example. To see why, first observe that (52) implies
that

v(t) < —a()v(t) + [b1 (1) + ba(r)]  sup 59)

telt—=Ty .11

for all # > 0. Then, with the choice H.(£) = sin?(£ —0.497) +
sinz(é — 1.997), the function

! fe a(s)ds
G(t)= / [—a(z)+(b1(z)+bz(z))e T2z ]dz (60)
0

v(£)
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satisfies

G()

t t
- - 8/ sin(£)d¢
4 0

t
+ 4eﬂ’5ﬁ/ H(e)e > de
0

t t
- - 8/ sin?(£)de
4 0

_ 497

saor (1700,
+ 4e'100 f sin“(£)de

4o [TTUI00 | o
+ 4100 00 sin“(£)d¢
—T00°

17t . 8491
T + 2sin(2f) + 4(t — 2)e 100,

v

(61)

which follows by using sin2(€) = %(1 — cos(2¢)) to evaluate
and then bound the integrals in (61). Since lim;_, yoo G(f) =
400, it follows that [13, Th. 1] does not allow us to prove that
lim;—, 4 o0 v(#) = 0. By covering the preceding example which
is not covered by [13, Th. 1], it follows that Theorem 1 is less
restrictive than [13, Th. 1].

Using the notation from Theorem 2, and considering any
constant by € (0, 1), consider the special case where a(f) =
sin?(7), b(t) = by sin®(7), and T = 2. Then

t t
/ [a(r) — b(r)]dr = / [1 — bo] sin®(r)dr (62)
¢ ¢
for all ¢+ > 0. It follows that
t
sup / [a(r) — b(r)]dr
Le[t—2m,1] J ¢
t
= / [1 — bo]sin®(r)dr = w[1 — by]. (63)
t—2m
To apply Theorem 2, we use the comparison system
Je() = [ sin® (1) + (bo sin® (1) +€)e™ =0 ]y (1)
+ 6(¢) for all t > 1y (64)

Ve(t) = SUPyety—T 1] v(l) +eiftetg—T,10].

Bearing Theorem 2 and Remark 3 in mind, we obtain the
following sufficient condition for stability:

'
/ [— sin”(m) + (b sinz(m)—i—e)e”(l_b())]dm <0 (635
t—2m

for all > 0. Condition (65) holds if and only if bge™ (1 =P0) 4+
2ee™17P0) < 1. By choosing € > 0 small enough, we obtain
the condition

boe ™0 < 7T, (66)
For a comparison, we next apply Theorem 1, with k = 1,

T1,1 =0, and T = 27, using the comparison system

Je(t) = —sin®(£)ye (1) + [bo sin® () + €]e™ ye (t)
+68@) ift >ty
Ve(t) = SUPpelry—Ts 1. 10] v(l) +eiftetg—T,1o].

(67)

Reasoning as in Remark 3, we obtain the stability condition

2
/ [— sin?(s) + (bo sin(s) + e)e”]ds <0 (68)
0

1795

which is equivalent to —1 + bpe”™ < —2¢€e™. Since € > 0 is
arbitrarily small, we obtain the stability condition

byg <e T (69)

Note that e 7e™7¢ " < e ™, so if (69) holds, then so does
(66) (because xe ™ increases over x € [0,e "]), and (66)
holds with by = ¢~ . Hence, (66) is less restrictive than (69).
This example shows how Theorem 2 is less restrictive than
Theorem 1, because it can cover the case by = ¢~ " that was
not covered by Theorem 1.

IV. CONCLUSION

We proposed new stability analysis results for functions
that satisfy generalized time-varying inequalities of Halanay’s
type. We illustrated how our results can provide less restrictive
conditions than ones in the literature. Since earlier generaliza-
tions of Halanay’s inequality have been shown to be effective
for solving observer design problems that were beyond the
scope of the observers literature (e.g., in [10]), we aim to
apply our work to observer designs for continuous-discrete,
event-triggered, and switched systems.
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