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New Versions of Halanay’s Inequality With
Multiple Gain Terms

Frédéric Mazenc and Michael Malisoff , Senior Member, IEEE

Abstract—Halanay’s inequality in its standard form is a
widely used tool for the analysis of systems with delays
and uncertainties, but the assumptions needed to use
it are sometimes too restrictive to cover applications
of interest. This letter provides new generalizations of
Halanay’s inequality where, instead of the usual supre-
mum in the gain term in standard versions of Halanay’s
inequality, we use a weighted sum of suprema over different
intervals. This allows us to derive sufficient conditions for
asymptotic and input-to-state stability. We apply our results
to linear systems with switched delays and other examples
that illustrate how our results are less restrictive than those
of other contributions available in the literature.

Index Terms—Stability, delays, time-varying.

I. INTRODUCTION

D
ELAYED systems play an essential role in control the-
ory and control applications, owing to time delayed

information transmission (leading to sensor delays) and time
delays in control actuation (which can be represented by
input delays). Lyapunov-Krasovskii techniques are well suited
for systems with known constant delays, but usually are not
as easily applied to systems with time-varying or unknown
delays. By contrast, Halanay’s inequality technique (which
was initiated in [3]) is a useful stability analysis tool for the
stability analysis of systems with poorly known time-varying
delays. This inequality and variants of it, which complement
Razumikhin’s theorem (which was used in contributions such
as [4] and [16]), have been studied in several papers, such
as [2], [5], [8], [9], [11], [12], and [15], to extend the domain
of application of Halanay’s stability analysis strategy.

In particular, the paper [13] presents notable results for time-
varying Halanay inequalities of the type

v̇(t) ≤ −a(t)v(t)+ b(t) sup
ℓ∈[t−T,t]

v(ℓ) (1)
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where T ≥ 0 is a constant, v is nonnegative valued, and the
term containing b is called the gain term. In [13], sufficient
conditions for limt→+∞ v(t) = 0 to hold are given for cases
where (1) holds and where a(t) can take both positive and
negative values and where b(t) is larger than a(t) on some
arbitrarily large time intervals. This contrasts with the standard
Halanay’s inequality (e.g., [1, Lemma 4.2, p. 138]) having the
form (1) where a > 0 and b ∈ [0, a) are constants.

Motivated by the fact that inequalities of the type (1) can be
used to study time-varying systems with time-varying delays,
we revisit the main result of [13]. To obtain less restrictive
conditions and establish input-to-state stability (or ISS) like
inequalities, we consider generalized Halanay’s inequalities
with multiple gain terms of the type

v̇(t) ≤ −a(t)v(t)+

k
∑

i=1

bi(t) sup
ℓ∈[t−T2,i,t−T1,i]

v(ℓ)+ δ(t) (2)

where a, the bi’s, and δ (which can represent an uncer-
tainty) are nonnegative scalar valued piecewise continuous
functions; see [14] for a presentation of the ISS notion. The
bi’s are the coefficients in our multiple gain terms that are
summed in (2). Later in Section II, we will describe persis-
tence of excitation relations involving a and the bi’s that will
ensure ISS conditions. The key idea which guides us con-
sists of taking advantage of the knowledge of the constants
T1,i and T2,i ≥ T1,i, which can be derived from information
on the delays of a system with poorly known time-varying
delays. As in [13], our assumptions are satisfied by functions a
which take both positive and negative values (which contrasts
with our earlier results on generalized Halanay’s inequalities
from [8]–[11], which required a to be nonnegative valued) and
the largest value of bi can be arbitrarily large over arbitrarily
large intervals, provided that the values a(t) of the function a
are positive and large on sufficiently long time intervals. Also,
our Halanay inequality generalizations [8]–[11] did not use the
comparison function approach that we use here, and they use
only one gain term, instead of the multiple gain terms that we
use here.

By contrast with the main result of [13], we establish
ISS like inequalities. By the definition of ISS, this ensures
that limt+∞ v(t) = 0 when δ is the zero function. Our
examples in Section III below show that the results we
obtain are less restrictive than the latest existing results about
Halanay’s inequality, in several circumstances. For instance,
see Section III for an example where our use of multiple gain
terms is shown to be useful for obtaining less conservative
results than [8]–[10]. By contrast with [7], the technique we
propose does not use the strictification technique from [6].
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We use standard notation, which is simplified when no con-
fusion would arise. The dimensions of our Euclidean spaces
are arbitrary unless otherwise noted. The standard Euclidean
norm and induced matrix norm are denoted by |·|, |·|∞ is the
corresponding sup norm, and |·|S is the supremum over a set S.
We set Z≥0={0, 1, . . .}, N=Z≥0\{0}, R is the set of all real
numbers, [0,+∞) is the set of all nonnegative real numbers,
and I is the identity matrix.

II. GENERALIZED HALANAY’S INEQUALITIES

This section provides our main theorems, which we apply
to systems with switched delays and other cases in Section III.
Our first theorem covers cases of the form (2) with multiple
suprema, and is based on a novel comparison approach. Our
second theorem only allows one supremum term (i.e., k = 1
in (2)), but it provides very different sufficient conditions as
compared with our first theorem.

A. Halanay’s Result With Several Sup Terms

Consider any k ∈ N and constants T1,i and T2,i such that

0 ≤ T1,i ≤ T2,i for all i ∈ {1, . . . , k}

and T2,1 ≤ · · · ≤ T2,k−1 ≤ T2,k. (3)

Consider a piecewise C1 continuous function
v : [−T2,k,+∞) → [0,+∞), and locally bounded piecewise
continuous functions δ : [0,+∞) → [0,+∞), a : R → R,
and bi : [0,+∞) → [0,+∞) for i = 1, . . . , k such that (2)
holds for all t ≥ 0, where δ represents uncertainty.

To analyze the behavior of the function v, we fix constants
ǫ > 0 and t0 ≥ 0, we define the functions Si by

Si(t) = max

{

0, sup
ℓ∈[t−T2,i,t−T1,i]

∫ t−T1,i

ℓ

a(m)dm

}

(4)

for i = 1, . . . , k, and we introduce the comparison system






























ẏǫ(t) = −a(t)yǫ(t)+ δ(t)

+
k

∑

i=1

[bi(t)+ ǫ]eSi(t)yǫ(t − T1,i)

for all t ≥ t0
yǫ(t) = supℓ∈[t0−T2,k,t0]

v(ℓ)+ ǫ

for all t ∈ [t0 − T2,k, t0].

(5)

We prove the following result, whose conclusion ensures
that v satisfies an ISS estimate for all t ≥ t0 when yǫ satisfies
such an ISS estimate, and where we will provide sufficient
conditions for yǫ to satisfy the required ISS estimates in our
ISS corollary below, which also provides explicit ISS estimates
for the function v with (ǫ, δ) viewed as the perturbation and
which gives an ISS result with respect to δ as ǫ → 0.

Theorem 1: Consider the functions v and yǫ defined above.
Then the inequality

v(t) ≤ yǫ(t) (6)

holds for all t ≥ t0 − T2,k.
Proof: The second equality in (5) and the positiveness of

ǫ imply that v(t) < yǫ(t) for all t ∈ [t0 − T2,k, t0]. Next, we
proceed by contradiction. Bearing in mind that v and yǫ are
continuous, let us suppose that there were a t♯ > t0 such that
v(t♯) = yǫ(t♯) and v(t) < yǫ(t) for all t ∈ [t0 − T2,k, t♯), i.e.,

t♯ is the first time t when v(t) = yǫ(t). Then from (2) and (5),
it follows that the inequality

v̇(t♯)− ẏǫ(t♯) ≤

k
∑

i=1

bi(t♯) sup
ℓ∈[t♯−T2,i,t♯−T1,i]

v(ℓ)

−

k
∑

i=1

[bi(t♯)+ǫ]eSi(t♯)yǫ(t♯−T1,i) (7)

is satisfied. By the second equality in the comparison
system (5) and the positiveness of ǫ and the nonnegativity
of the v values, we have yǫ(t) > 0 for all t ∈ [t0 − T2,k, t0].
Hence, since δ and the bi’s are nonnegative valued, we can
collect terms on the right side of the first equality in (5) to
find a continuous function A such that ẏǫ(t) ≥ A(t)yǫ(t) for
all t ≥ t0 if each T1,i is zero, or such that ẏǫ(t) ≥ A(t)yǫ(t)
on [t0, t0 + mini∈N T1,i] where N ⊆ {1, . . . , k} is the index
set of all i values such that T1,i > 0 if not all of the T1,i’s are
0. In the first case, we can apply the method of variation of
parameters to the inequality ẏǫ(t) ≥ A(t)yǫ(t) on any interval

of the form [t0, T∗) to get yǫ(t) ≥ e
∫ t
t0

A(ℓ)dℓ
yǫ(t0) > 0 for all

t ≥ t0. In the second case, we can apply variation of parame-
ters to the same inequality in a similar way to get yǫ(t) > 0
for all t ∈ [t0, t0 + mini∈N T1,i]. Repeating this process in a
method of steps in the case where N 6= ∅ gives yǫ(t) > 0
for all t ∈ [t0 + ℓmini∈N T1,i, t0 + (ℓ+ 1)mini∈N T1,i] for all
ℓ ∈ Z0. By combining both cases, it now follows that yǫ(t) > 0
for all t ≥ t0 − T2,k. Hence, for all i ∈ {1, . . . , k}, we have
ǫeSi(t♯)yǫ(t♯ − T1,i) > 0, so

v̇(t♯)− ẏǫ(t♯) <
k

∑

i=1

bi(t♯)
[

supℓ∈[t♯−T2,i,t♯−T1,i]
v(ℓ)

− eSi(t♯)yǫ(t♯ − T1,i)
]

.

(8)

Since v is continuous, it follows that for each i ∈ {1, . . . , k},
there is an si⋆ ∈ [t♯ − T2,i, t♯ − T1,i] such that v(si⋆) =
supℓ∈[t♯−T2,i,t♯−T1,i]

v(ℓ). Then (8) implies that

v̇(t♯)−ẏǫ(t♯) <
k

∑

i=1

bi(t♯)
[

v(si⋆)−eSi(t♯)yǫ(t♯−T1,i)
]

. (9)

Next consider any i ∈ {1, . . . , k}, and three cases.
Case 1 (si⋆ > t0): Recalling the nonnegative valuedness of

yǫ and δ, it follows from (5) that we have

ẏǫ(t) ≥ −a(t)yǫ(t) (10)

for all t ≥ t0. By integrating (10), we obtain

yǫ(t♯ − T1,i) ≥ e−
∫ t♯−T1,i

si⋆
a(m)dmyǫ(si⋆). (11)

Since si⋆ ∈ (t0, t♯], we deduce from the definition of t♯ that
v(si⋆) ≤ yǫ(si⋆), which we can combine with (11) to obtain

yǫ(t♯ − T1,i) ≥ e−
∫ t♯−T1,i

si⋆
a(m)dmv(si⋆). (12)

It follows that yǫ(t♯ − T1,i) ≥ e−Si(t♯)v(si⋆).
Case 2 (si⋆ ≤ t0 ≤ t♯ − T1,i): Integrating (10) gives

yǫ(t♯ − T1,i) ≥ e
−

∫ t♯−T1,i
t0

a(m)dm
yǫ(t0)

= e
−

∫ t♯−T1,i
t0

a(m)dm

[

sup
ℓ∈[t0−T2,k,t0]

v(ℓ)+ ǫ

]

. (13)
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Since t0 − T2,i ≤ t♯ − T2,i ≤ si⋆ ≤ t0, it follows that v(si⋆) ≤
supℓ∈[t0−T2,k,t0]

v(ℓ). Also, (13) gives

yǫ(t♯ − T1,i) ≥ e
−

∫ t♯−T1,i
t0

a(m)dm
v(si⋆). (14)

Since t♯ − T2,k ≤ si∗ ≤ t0, we can use (14) to conclude that

yǫ(t♯ − T1,i) ≥ e−Si(t♯)v(si⋆) (15)

is satisfied.
Case 3 (si⋆ ≤ t♯−T1,i ≤ t0): Recalling that our formula (4)

for Si ensures that Si is nonnegative valued, we get

v(si∗)− eSi(t♯)yǫ(t♯−T1,i) ≤ v(si∗)− yǫ(t♯−T1,i)

= v(si∗)− sup
ℓ∈[t0−T2,k,t0]

v(ℓ)− ǫ ≤ −ǫ. (16)

Hence, in all three cases, we have eSi(t♯)yǫ(t♯−T1,i) ≥ v(si⋆)
for i = 1, . . . , k. By combining the preceding inequalities
with (9), it follows that v̇(t♯) − ẏǫ(t♯) < 0, so there is
t△ ∈ [t0 − T2,k, t♯) such that v(t△) − yǫ(t△) > 0, because
v(t♯) − yǫ(t♯) = 0. This contradicts the definition of t♯. This
concludes the proof.

Remark 1: Theorem 1 implies that if there is a constant
ǫ > 0 such that yǫ satisfies an ISS inequality, then v satisfies an
ISS inequality too that is valid for all t ≥ t0. Hence, Theorem 1
provides a way to conclude ISS properties from its generalized
Halanay’s inequalitites; see Corollary 1.

Remark 2: Theorem 1 has the following two crucial advan-
tages. First, when several poorly known delays are present
in a studied system, it improves on the stability conditions
for the results available in the literature by taking advantage
of the information on the delays; see our illustrations below.
Second, when the constants T2,i converge to T1,i, then the sta-
bility conditions we obtain converge to those of the case where
T2,i = T1,i for all i ∈ {1, . . . , k}. This is in sharp contrast with
the conditions of [13, Th. 1].

Remark 3: The preceding theorem is new, even in the spe-
cial case where the T1,i’s are all zero and when a and the bi’s
all have the same period P > 0 and δ = 0. In that special
case, yǫ will exponentially converge to zero provided

∫ P

0

g(ℓ)dℓ>0, where g(ℓ) = a(ℓ)−

k
∑

i=1

[bi(ℓ)+ǫ]eSi(ℓ). (17)

This follows by first noting that, in this case, g also has
period P. Hence, for any N ∈ N such that NP ≥ t0, con-
dition (17) gives yǫ((N + j)P) ≤ e−jI∗yǫ(NP) for all integers
j ≥ 0, where I∗ is the integral in (17); this follows by apply-
ing variation of parameters to the first equation in (5) on the
interval [NP, (N + j)P]. For t ≥ NP, this gives

yǫ(t)=e
−

∫ t
tf P g(ℓ)dℓ

yǫ(tf P)

≤ B∗e
−I∗(tf−N)yǫ(NP) → 0 as t →+∞, (18)

where tf = Floor(t/P) and

B∗ = sup
{

e−
∫ t

s g(ℓ)dℓ:s ≥ 0, 0 ≤ t − s ≤ P
}

, (19)

and Floor is the floor function, i.e., Floor(s) is the largest
integer j such that j ≤ s. Similar reasoning shows that (17)
implies that v satisfies an ISS estimate with disturbance (δ, ǫ).
We illustrate the use of the criteria (17) in Section III.

B. ISS Corollary

We next present a consequence of Theorem 1, which pro-
vides an ISS estimate with respect to (δ, ǫ) that converges to
an ISS estimate with respect to δ as ǫ → 0+. The linear ISS
Lyapunov-Krasovskii functional (24) in its proof motivated us
to propose its persistence of excitation condition (20) (but see
Remark 3 for alternative sufficient persistence of excitation
conditions that ensure the required stability property for (5)
under periodicity assumptions).

Corollary 1: Let the assumptions of Theorem 1 hold and
t0 ≥ 0 be given. Assume that a and the bi’s are bounded, and
that there is a constant c > 0 such that

a(t)−

k
∑

i=1

[bi(t + T1,i)+ ǫ]eSi(t+T1,i) ≥ c (20)

holds for all t ≥ t0. Then we can find constants ζi > 0 for
i = 1, 2 such that v(t) ≤ ζ1e−ζ2t|v|[t0−T2,k,t0]+ζ2(δ(t)+e−ζ2tǫ)
for all t ≥ t0.

Proof: Consider the functional

V1,ǫ(t, yǫ,t) = yǫ(t)

+

k
∑

i=1

∫ t

t−T1,i

[bi(ℓ+ T1,i)+ ǫ]eSi(ℓ+T1,i)yǫ(ℓ)dℓ. (21)

Its time derivative along all solutions of (5) satisfies

V̇1,ǫ(t) =

[

−a(t)+

k
∑

i=1

[bi(t+T1,i)+ǫ]eSi(t+T1,i)

]

yǫ(t)+ δ(t)

(22)

for all t ≥ t0. Then, along solutions of (5), V̇1,ǫ(t) ≤ −cyǫ(t)+
δ(t) for all t ≥ t0. Then let

V2,ǫ(t, yǫ,t) = V1,ǫ(t, yǫ,t)+
c

2µ

∫ t

t−µ

∫ t

m

yǫ(s)ds (23)

with µ = maxi∈{1,...,k}{T1,i}. Then, along solutions of (5),

V̇2,ǫ(t, yǫ,t) ≤ −
c

2
yǫ(t)−

c

2µ

∫ t

t−µ

yǫ(s)ds+ δ(t) (24)

for all t ≥ t0. Since the functions a and bi are bounded, there
is a constant ς > 0 such that

V̇2,ǫ(t, yǫ,t) ≤ −ςV2,ǫ(t, yǫ,t)+ δ(t) (25)

for all t ≥ t0. For instance, since

V2,ǫ(t, yǫ,t) ≤ yǫ(t)+ c̄

∫ t

t−µ

yǫ(s)ds (26)

holds for all t ≥ t0 with the choices c̄ = k(|b|∞ +
ǫ)e|S|∞ + c

2
and b = (b1, . . . , bk), we can choose ς =

c
2
min{1/µ, 1}/max{c̄, 1}. Then we can apply the method of

variation of parameters to (25) and recall the structure of V2,ǫ

to obtain the required ISS estimate for yǫ . In fact, Theorem 1
gives

v(t) ≤ yǫ(t) ≤ V2,ǫ(t, yǫ,t)

≤ e−ς t(1+ c̄µ)|yǫ |[t0−T2,k,t0] +
δ(t)

ς

= e−ς t(1+ c̄µ)|v|[t0−T2,k,t0] +
δ(t)

ς
+ e−ς t(1+ c̄µ)ǫ (27)

for all t ≥ t0, proving the corollary.
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C. Halanay’s Result With Only One Sup Term

Let T ≥ 0. Consider the inequality

v̇(t) ≤ −a(t)v(t)+ b(t) sup
ℓ∈[t−T,t]

v(ℓ)+ δ(t) (28)

where a : R → R, b : [0,+∞) → [0,+∞), and
δ : [0,+∞) → [0,+∞) are locally bounded and piecewise
continuous, and where v : [− T,+∞) → [0,+∞) is of class
C1. We use any constants ǫ > 0 and t0 ≥ 0, the function

Ŵ(t) = max

{

0, sup
ℓ∈[t−T,t]

∫ t

ℓ

[a(r)− b(r)]dr

}

, (29)

and the comparison system






ẏǫ(t) =
[

−a(t)+ (b(t)+ ǫ)eŴ(t)
]

yǫ(t)+ δ(t)

for all t ≥ t0
yǫ(t) = supℓ∈[t0−T,t0]

v(ℓ)+ǫ for all t ∈ [t0 − T, t0].
(30)

The system (30) differs from system (5), because (a) there is
only one (instead of k) overshoot terms in the yǫ dynamics in
(30), (b) the exponential term (4) in (5) having the integrand
a has been replaced by a new exponential term (29) with the
integrand a− b, and (c) the delays T1,i in (5) are not used in
(29)-(30). See Section III-C for an example where (29)-(30)
lead to less conservative conditions than Theorem 1.

We prove the following, which provides ISS properties for
v when yǫ satisfies ISS, and where the required stability prop-
erties for yǫ can be checked using classical methods like in
the preceding subsection, which can lead to explicit ISS like
estimates for v as in Corollary 1.

Theorem 2: Consider the v and yǫ defined above. Then

v(t) ≤ yǫ(t) (31)

holds for all t ≥ t0 − T .
Proof: First note that the second equality in (30) implies

that v(t) < yǫ(t) for all t ∈ [t0 − T, t0]. Now, we proceed by
contradiction. Bearing in mind that v and yǫ are continuous,
suppose that there is a t♯ > t0 such that v(t♯) = yǫ(t♯) and

v(t) < yǫ(t) (32)

for all t ∈ [t0−T, t♯) by choosing t♯ to be the first time t ≥ t0
when the inequality (32) is violated as before. Then

v̇(t♯)− ẏǫ(t♯) ≤ b(t♯) supℓ∈[t♯−T,t♯]
v(ℓ)

− (b(t♯)+ ǫ)eŴ(t♯)yǫ(t♯).
(33)

Since ǫeŴ(t♯)yǫ(t♯) > 0, we have

v̇(t♯)−ẏǫ(t♯)<b(t♯)

[

sup
ℓ∈[t♯−T,t♯]

v(ℓ)−eŴ(t♯)yǫ(t♯)

]

. (34)

Let s⋆ ∈ [t♯ − T, t♯] be such that v(s⋆) = supℓ∈[t♯−T,t♯]
v(ℓ),

which exists because v is continuous. Then

v̇(t♯)− ẏǫ(t♯) < b(t♯)
[

v(s⋆)− eŴ(t♯)yǫ(t♯)
]

. (35)

Next note that since yǫ(t) ≥ 0 for all t ≥ t0, we have

ẏǫ(t) ≥ [−a(t)+ b(t)]yǫ(t) (36)

for all t ≥ t0. Next, let us distinguish between 2 cases.
Case 1 (s⋆ > t0): Then integrating (36) gives

yǫ(t♯) ≥ e−
∫ t♯

s⋆ [a(r)−b(r)]dryǫ(s⋆). (37)

Since s⋆ ∈ [t♯ − T, t♯], it follows from (29) that

yǫ(t♯) ≥ e−
∫ t♯

s⋆ [a(r)−b(r)]drv(s⋆)

≥ e
− supℓ∈[t♯−T,t♯]

∫ t♯
ℓ [a(r)−b(r)]dr

v(s⋆)

≥ e−Ŵ(t♯)v(s⋆). (38)

Case 2 (s⋆ ≤ t0): Then integrating (36) gives

yǫ(t♯) ≥ e
−

∫ t♯
t0

[a(r)−b(r)]dr
yǫ(t0)

≥ e
−

∫ t♯
t0

[a(r)−b(r)]dr
sup

ℓ∈[t0−T,t0]

v(ℓ), (39)

by (30). Since s⋆ ∈ [t♯ − T, t0] and t♯ ≥ t0, we deduce that

yǫ(t♯) ≥ e
−

∫ t♯
t0

[a(r)−b(r)]dr
v(s⋆)

≥ e
− supℓ∈[t♯−T,t♯]

∫ t♯
ℓ [a(r)−b(r)]dr

v(s⋆)

≥ e−Ŵ(t♯)v(s⋆). (40)

In both cases, we get eŴ(t♯)yǫ(t♯) ≥ v(s⋆), which we can com-
bine with (35) to obtain v̇(t♯) − ẏǫ(t♯) < 0. Hence, there
is a t△ ∈ [t0, t♯) such that v(t△) − yǫ(t△) > 0, because
v(t♯) − yǫ(t♯) = 0. This contradicts the definition of t♯, so
no such t♯ can exist. This concludes the proof.

III. ILLUSTRATIONS

A. Systems With Switching Delays

Systems with switching delays commonly arise when con-
trols need to switch between different sensors or different
actuators that have different latencies, and so are of con-
siderable research interest in the control theory community.
Therefore, we first illustrate Theorem 1 using the class of
systems with switching delays from [8] and [10], using our
less restrictive new generalized Halanay’s conditions (2).

Let T > 0 and T̄ ≥ T be any constants, and consider any
sequence ti satisfying T ≤ ti+1 − ti ≤ T̄ for all i ≥ 0. As in
[8, Sec. 3.4], let τl and τs be any constants such that

T > 5(τl + τs) (41)

and τl > τs ≥ 0, and we consider the system

ẋ(t) = Mx(t)+ Nx(t − τ(t)) (42)

with x valued in R
n, where τ is a time-varying piecewise

continuous unknown delay such that

0 ≤ τ(t) ≤ τs if t /∈ E, and 0 ≤ τ(t) ≤ τl if t ∈ E,

where E = ∪i∈N[ti, ti + T) and T = τs + τl, (43)

and M ∈ R
n×n and N ∈ R

n×n are constant (which includes
cases where τ does not switch, e.g., with T = ti+1 − ti for all
i). Following [8, Sec. 3.4] and [10, Sec. 4.2], we also assume
the following, where M1 ≥ M2 for square matrices means that
M1 −M2 is nonnegative definite.

Assumption 1: There are a symmetric positive definite
matrix Q ∈ R

n×n and a constant q > 0 such that

Q(M + N)+ (M + N)⊤Q ≤ −qQ (44)

and I ≤ Q are satisfied.
In terms of the notation

L =
2|N⊤QN|(|M| + |N|)2

q
, (45)
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we also use the following lemma, whose proof consists of the
first part of the proof of [10, Proposition 1].

Lemma 1: With the preceding notation and under
Assumption 1, the time derivative of the function
U(x) = x⊤Qx along all solutions of (42) is such that

U̇(t) ≤ −
q

2
U(x(t))+ Lτ 2

s sup
m∈[t−τl−τs,t]

U(x(m)) (46)

for all t ∈ [0,+∞)\E and

U̇(t) ≤ −
q

2
U(x(t))+

8|N⊤QN|

q
sup

l∈[t−τl,t]

U(x(l)) (47)

for all t ∈ E.
In terms of the constant a∗ and the function b∗ in

a∗=e−q(τs+τl)/2 and b∗(ℓ)=
2(1− a∗)ℓ

q
e2(R−q/2)(τl+τs) (48)

where R = 8|N⊤QN|/q, the main result in [8] for (42) is:
Proposition 1: With the above notation, let Assumption 1

hold, and assume that

Lτ 2
s ≤

q

2
<

8|N⊤QN|

q

and
(

a∗ + b∗(Lτ 2
s )

)

(

a∗ + b∗

(

8|N⊤QN|

q

))

< 1. (49)

Then the origin of (42) is a globally exponentially stable
equilibrium point on R

n.
On the other hand, we can apply Theorem 1 from

Section II-A above in the preceding case, by choosing

v(t) = U(x(t)), a(t) =
q

2
, k = 2,

b1(t) =
8

q
|N⊤QN|χSa(t), b2(t) = Lτ 2

s χSb
(t),

T1,1 = T1,2 = 0, T2,1 = τl, and T2,2 = τl + τs (50)

under suitable conditions on the parameters, where χS is the
indicator (or characteristic) function for each set S ⊆ R, mean-
ing χS(ℓ) = 1 if ℓ ∈ S and χS(ℓ) = 0 if ℓ ∈ R\S, and where
Sa = E and Sb = R\E. For example, if we choose τs = 0,
τl = 0.01, ti = i for all i ≥ 0, the matrices

M =

[

1 2
−2 −1

]

, Q =

[

2.68767 0.789041
0.789041 1.70137

]

, (51)

and N = −2I, and q = 1.5, then the assumptions
of Proposition 1 would not hold, but the assumptions of
Theorem 1 would hold with ǫ = 0.001, where Q and q can be
found by solving the Lyapunov equation Qa(M + N)+ (M +
N)⊤Qa = −I for Qa, and then scaling Qa to obtain a Q that
satisfies the requirements of Assumption 1 for a small enough
constant q > 0. The fact that the requirements from Theorem 1
hold for any t0 ≥ 0 in this case follows from Remark 3 above
with P = 1.

In Fig. 1, we plot the solutions of (42) with the preceding
values and τ(t) = 0.01 for all t ∈ E for three sets of constant
initial functions (i.e., initial states), using Mathematica. They
show convergence to the desired equilibrium. This illustrates
how Theorem 1 can provide less restrictive conditions than
the conditions in [8] for systems with switched delays.

B. Example With Comparison With [13]

Consider the special case

v̇(t) ≤ −a(t)v(t)+ b1(t) sup
ℓ∈[t−T2,1,t−T1,1]

v(ℓ)

+ b2(t) sup
ℓ∈[t−T2,2,t−T1,2]

v(ℓ) (52)

Fig. 1. Simulations of (42) Showing x1(t) (Red) and x2(t) (Blue) for
Initial States (1, 1) (Solid), (−2, 2) (Dotted) and (3,−3) (Dashed-Dotted).

of (2) with k = 2 and δ = 0, and with the choices

T2,1 =
π

2
, T1,1 =

π

2
−

π

100
, a(t) =

1

4
+ 8 sin2(t),

b1(t) = 4e−
π
100 sin2

(

t −
49π

100

)

, T2,2 = 2π, and

b2(t) = 4e−
π
100 sin2

(

t−
199π

100

)

, and T1,2 = 2π−
π

100
. (53)

Then the sufficient condition (20) for limt→+∞ v(t) = 0 to
hold is that there is a constant c > 0 such that

1

4
+ 8 sin2(t)− [b1(t + T1,1)+ ǫ]eS1(t+T1,1)

−[b2(t + T1,2)+ ǫ]eS2(t+T1,2) ≥ c (54)

for all t ≥ 0. Let us check that this inequality is satisfied for
sufficiently small positive values ǫ and c.

To this end, notice that using the notation from Theorem 1,
it follows that for all t ≥ 0, we have

S1(t + T1,1) =

∫ t

t−T2,1+T1,1

a(m)dm ≤ 0.26 and

S2(t + T1,2) =

∫ t

t−T2,2+T1,2

a(m)dm ≤ 0.26 (55)

where the equalities in (55) follow because a is nonnegative

valued. Hence, the left side of (54) is bounded below by

1

4
+ 8 sin2(t)−

[

b1

(

t +
49π

100

)

+ b2

(

t +
199π

100

)

+ 2ǫ

]

e0.26 (56)

for all t ≥ 0. Since

b1

(

t +
49π

100

)

= b2

(

t +
199π

100

)

= 4e−
π
100 sin2(t) (57)

it follows that when ǫ > 0 is small enough, we have

1

4
+ 8 sin2(t)− [b1(t + T1,1)+ ǫ]eS1(t+T1,1)

− [b2(t + T1,2)+ ǫ]eS2(t+T1,2) ≥
1

8
(58)

which ensures that limt→+∞ v(t) = 0, by Corollary 1.
On the other hand, [13, Th. 1] would not apply to the

preceding example. To see why, first observe that (52) implies
that

v̇(t) ≤ −a(t)v(t)+ [b1(t)+ b2(t)] sup
ℓ∈[t−T2,2,t]

v(ℓ) (59)

for all t ≥ 0. Then, with the choice H(ℓ) = sin2(ℓ−0.49π)+
sin2(ℓ− 1.99π), the function

G(t)=

∫ t

0

[

−a(ℓ)+(b1(ℓ)+b2(ℓ))e

∫ ℓ
ℓ−T2,2

a(s)ds
]

dℓ (60)
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satisfies

G(t) = −
t

4
− 8

∫ t

0

sin2(ℓ)dℓ

+ 4e−
π
100

∫ t

0

H(ℓ)e
17π
2 dℓ

= −
t

4
− 8

∫ t

0

sin2(ℓ)dℓ

+ 4e
849π
100

∫ t− 49π
100

− 49π
100

sin2(ℓ)dℓ

+ 4e
849π
100

∫ t− 199π
100

− 199π
100

sin2(ℓ)dℓ

≥ −
17t

4
+ 2 sin(2t)+ 4(t − 2)e

849π
100 , (61)

which follows by using sin2(ℓ) = 1
2
(1− cos(2ℓ)) to evaluate

and then bound the integrals in (61). Since limt→+∞ G(t) =
+∞, it follows that [13, Th. 1] does not allow us to prove that
limt→+∞ v(t) = 0. By covering the preceding example which
is not covered by [13, Th. 1], it follows that Theorem 1 is less
restrictive than [13, Th. 1].

C. Illustration of Theorem 2

Using the notation from Theorem 2, and considering any
constant b0 ∈ (0, 1), consider the special case where a(t) =
sin2(t), b(t) = b0 sin

2(t), and T = 2π . Then
∫ t

ℓ

[a(r)− b(r)]dr =

∫ t

ℓ

[1− b0] sin
2(r)dr (62)

for all t ≥ 0. It follows that

sup
ℓ∈[t−2π,t]

∫ t

ℓ

[a(r)− b(r)]dr

=

∫ t

t−2π

[1− b0] sin
2(r)dr = π [1− b0]. (63)

To apply Theorem 2, we use the comparison system






ẏǫ(t) =
[

− sin2(t)+(b0 sin
2(t)+ǫ)eπ [1−b0]

]

yǫ(t)

+ δ(t) for all t ≥ t0
yǫ(t) = supℓ∈[t0−T,t0]

v(ℓ)+ ǫ if t ∈ [t0 − T, t0].
(64)

Bearing Theorem 2 and Remark 3 in mind, we obtain the
following sufficient condition for stability:

∫ t

t−2π

[

− sin2(m)+(b0 sin
2(m)+ǫ)eπ(1−b0)

]

dm < 0 (65)

for all t ≥ 0. Condition (65) holds if and only if b0eπ(1−b0)+
2ǫeπ(1−b0) < 1. By choosing ǫ > 0 small enough, we obtain
the condition

b0e−πb0 < e−π . (66)

For a comparison, we next apply Theorem 1, with k = 1,
T1,1 = 0, and T2,1 = 2π , using the comparison system







ẏǫ(t) = − sin2(t)yǫ(t)+ [b0 sin
2(t)+ ǫ]eπyǫ(t)

+ δ(t) if t ≥ t0
yǫ(t) = supℓ∈[t0−T2,k,t0]

v(ℓ)+ ǫ if t ∈ [t0 − T, t0].
(67)

Reasoning as in Remark 3, we obtain the stability condition

∫ 2π

0

[

− sin2(s)+ (b0 sin
2(s)+ ǫ)eπ

]

ds < 0 (68)

which is equivalent to −1 + b0eπ < −2ǫeπ . Since ǫ > 0 is
arbitrarily small, we obtain the stability condition

b0 < e−π . (69)

Note that e−π e−πe−π
< e−π , so if (69) holds, then so does

(66) (because xe−πx increases over x ∈ [0, e−π ]), and (66)
holds with b0 = e−π . Hence, (66) is less restrictive than (69).
This example shows how Theorem 2 is less restrictive than
Theorem 1, because it can cover the case b0 = e−π that was
not covered by Theorem 1.

IV. CONCLUSION

We proposed new stability analysis results for functions
that satisfy generalized time-varying inequalities of Halanay’s
type. We illustrated how our results can provide less restrictive
conditions than ones in the literature. Since earlier generaliza-
tions of Halanay’s inequality have been shown to be effective
for solving observer design problems that were beyond the
scope of the observers literature (e.g., in [10]), we aim to
apply our work to observer designs for continuous-discrete,
event-triggered, and switched systems.
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