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Abstract— For nonlinear continuous-time systems with con-
tinuous measurements of the output, we provide new reduced
order observers that converge in finite time. The convergence
time is independent of the initial state. For cases where the
measurements are discrete, we provide asymptotically converg-
ing observers, whose rate of convergence is proportional to the
negative of the logarithm of the size of the sampling interval.
Our observers are based on the observability Gramian.

I. INTRODUCTION

As explained in [12], finite time observers offer con-
siderable promise for an ever-growing range of practical
applications, because of their ability to compute exact values
of states in a finite time, and many contributions are devoted
to the design of observers of this type. Some observers use
delays, dynamic extensions, homogenous functions, sliding
mode, or unbounded gains; see for instance, [2], [3], [5], [8],
[15], and [18]. The works [12] and [16] are different because
they use observers with impulses and no delay.

In this paper, we continue our work on the design of
fixed time observers. Fixed time convergence means that the
convergence time is independent of the initial state. This
differs from semi-global works such as [19] whose finite
convergence time depends on the initial state. As in [12],
we provide new reduced order observers for continuous-time
nonlinear systems, first when there are continuous output
measurements and next in the case where there are only dis-
crete output measurements. When continuous measurements
are available, we provide observers that converge in finite
time. When only discrete measurements are available, we
provide observers that do not converge in finite time, but
which do converge asymptotically with a rate of convergence
that is proportional to the negative of the logarithm of the
size of the sampling interval. This ensures arbitrarily fast
convergence, by picking the sampling interval small enough.

The fundamental difference between [12] and the present
paper is that the observer we introduce is not based on the
one proposed in [16]. Instead, the novel observer design that
we propose here uses discrete variables and the observability
Gramian and the solutions of the observer are continuous.
It is also very different from those of [1], [4], [10], [13],
and [17], which include observers with delays. By not using
the delays that occur in earlier observer designs, we obtain
simpler reduced order controllers that still enjoy the required
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fixed time or arbitrarily fast convergence of the observation
error to zero. Our convergence proof for our second observer
uses the trajectory based approach that was introduced in [11]
and developed in several papers such as [14]. See, e.g., [7],
for more motivation for observer design.

Our observer result under continuous measurements is
stated and proven in Section II, and Section III provides
our analog where only discrete measurements are available.
We illustrate our approach in Section IV. We summarize our
results and our suggestions for further research in Section V.

Notation. We use standard notation, which we simplify
when no confusion would arise. The dimensions of our
Euclidean spaces are arbitrary, unless we indicate otherwise.
The standard Euclidean 2-norm, and its induced matrix norm,
are denoted by | · |, | · |S denotes the essential supremum over
any set S, N = {1, 2, . . .}, and Z≥0 = {0} ∪ N. We let I
denote the identity matrix of any dimension.

II. OBSERVERS FOR CONTINUOUS MEASUREMENTS

A. Statement of Result

We consider the system{
ξ̇(t) = Aξ(t) + F(Cξ(t), u(t)) + κ(t)
Y (t) = Cξ(t) + ε(t)

(1)

where ξ is valued in Rn, the piecewise continuous locally
bounded function u is valued in Rp, the output Y is valued
in Rq , C has full rank, κ and ε are locally bounded and
piecewise continuous and represent disturbances, and F is a
locally Lipschitz function such that (1) is forward complete.
Assume:

Assumption 1: The pair (A, C) is observable. �
Then (e.g. from [9, pp. 304-306]) with an appropriate

decomposition of the state vector ξ, we obtain ξ̇1(t) = A1ξ1(t) + F1(ξ2(t), u(t)) + κ1(t)

ξ̇2(t) = A2ξ1(t) + F2(ξ2(t), u(t)) + κ2(t)
Y (t) = ξ2(t) + ε(t)

(2)

where F1 and F2 are locally Lipschitz functions, and where
the pair (A1, A2) is observable. By a change of coordinates,
we can assume that A1 ∈ R(n−q)×(n−q) is an invertible
matrix. (If A1 were not invertible, then we could replace
it by a new one A1 + LA2 where L is such that A1 + LA2

is Hurwitz, by applying the change of coordinates ξ3(t) =
ξ1(t) + Lξ2(t), using the fact that if (A1, A2) is observable
then so is (A1 + LA2, A2), by using the new coordinates
(ξ3, ξ2).) Observability of (A1, A2) and the invertibility of
A1 imply that for any constant ν > 0 and with the choice

H = A2A
−1
1 ∈ Rq×(n−q), (3)
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the (n− q)× (n− q) inverse matrix

W =
(∫ ν

0

(
eA
>
1 ` − I

)
H>H

(
eA1` − I

)
d`
)−1

(4)

exists. This follows because if there were a nonzero vector
V such that H

(
eA1` − I

)
V = 0 for all ` ∈ [0, ν] then all of

the derivatives of H
(
eA1` − I

)
V with respect to ` are zero,

which implies that HA1V = 0, HA2
1V = 0, ..., HAn1V = 0,

which yields a contradiction with the fact that (A1, A2) is
observable. We fix a constant ν > 0 in what follows.

Let α : R→ R(n−q)×q be defined by

α(`) = W
(
eA
>
1 ` − I

)
H>. (5)

Let ti = iν for all i ∈ Z≥0 and σ be the function defined by
σ(t) = ti when t ∈ [ti, ti+1). We define ζ : R→ Rn−q by

ζ(t) =
∫ t
σ(t)

eA1(t−s)κ]1(s)ds

−eA1(t−σ(t))
∫ t
σ(t)

α(s− σ(t))
[∫ s
σ(t)

κ]2(`)d`

+A2

∫ s
σ(t)

∫m
σ(t)

eA1(m−`)κ]1(`)d`dm
]

ds

−eA1(t−σ(t))
∫ t
σ(t)

α(s− σ(t))(ε(s)− ε(σ(t)))ds

(6)

where for i = 1 and 2,

κ]i = κi + ∆i and
∆i(t) = Fi(ξ2(t), u(t))− Fi(Y (t), u(t)),

(7)

and the κi’s are from (2). We propose a candidate observer:

ξ̇?,1(t) = A1ξ?,1(t) + F1(Y (t), u(t))

ξ̇?,2(t) = A2ξ?,1(t) + F2(Y (t), u(t))
˙̂x1(t) = A1x̂1(t) + eA1(t−ti)α(t− ti) [Y (t)

−ξ?,2(t)− Y (ti) + ξ?,2(ti)
−H

(
eA1(t−ti) − I

)
x̂1(ti)

]
,

for all t ∈ [ti, ti+1) and i ∈ Z≥0,

(8)

whose first two equations are solved for all t ≥ 0, and whose
last equation is solved successively on the intervals [ti, ti+1)
for all i ∈ Z≥0 with the initial state x̂1(t0) = 0 at time
t0 = 0 and the initial states for x̂1 at the times ti for i ≥ 1
given by the left limits x̂1(t−i ) for i ≥ 1 (which we write
more concisely as x̂1(ti) in our observer formula).

We are ready to state and prove the following result:
Theorem 1: Let Assumption 1 hold. Then for all initial

states of (2), the solutions of (2) and (8) are such that

ξ1(t) = x̂1(t) + ξ?,1(t) + ζ(t) (9)

for all t ≥ ν, where ζ is defined by (6). �
Remark 1: In order to describe precisely how x̂1(t) +

ξ?,1(t) estimates ξ1(t), let us define the constant

ᾱ = |α|[0,ν] (10)

and observe that

|ζ(t)| ≤ νe|A1|να
[∫ t
σ(t)
|κ]2(`)|d`

+ν|A2|eν|A1|
∫ t
σ(t)
|κ]1(`)|d`

]
+eν|A1|

∫ t
σ(t)
|κ]1(`)|d`

+eν|A1|ᾱ
∫ t
σ(t)
|ε(s)− ε(σ(t))|ds

(11)

for all t ≥ 0. Consequently, if there are constants Ki ≥ 0
that satisfy the requirements from Assumption 2 below, then

|ζ(t)| ≤ ζ1
∫ t
σ(t)

(|κ1(`)|+|κ2(`)|)d`+ ζ2
∫ t
σ(t)
|ε(`)|d`

+eν|A1|ᾱ
∫ t
σ(t)
|ε(s)− ε(σ(t))|ds

(12)

for all t ≥ 0, where

ζ1 = max
{
ν2α|A2|e2ν|A1| + eν|A1|, νe|A1|να

}
and (13)

ζ2 =max
{(
ν2α|A2|e2ν|A1|+eν|A1|

)
K1, νe

|A1|ναK2

}
. (14)

Thus,

|ξ1(t)− x̂1(t)− ξ?,1(t)| ≤ νζ2 sup`∈[σ(t),t] |ε(`)|
+νζ1 sup`∈[σ(t),t](|κ1(`)|+ |κ2(`)|)
+νeν|A1|ᾱ sup`∈[σ(t),t] |ε(`)− ε(σ(t))|

(15)

for all t ≥ ν.

B. Proof of Theorem 1

We introduce the variables

x1(t) = ξ1(t)− ξ?,1(t), x2(t) = ξ2(t)− ξ?,2(t),

x̃1(t) = x1(t)− x̂1(t), H](t, s) = H
(
eA1(t−s)−I

)
,

and ε](t, s) = −eA1(t−s)α(t− s)[ε(t)− ε(s)].
(16)

We observe that
˙̂x1(t) = A1x̂1(t) + eA1(t−ti)α(t− ti) [y(t)− y(ti)

−H
(
eA1(t−ti) − I

)
x̂1(ti)

] (17)

with y(t) = x2(t) + ε(t) and
ẋ1(t) = A1x1(t) + κ]1(t)

ẋ2(t) = A2x1(t) + κ]2(t)
˙̃x1(t) = A1x̃1(t) + ε](t, ti)

− eA1(t−ti)α(t− ti) [x2(t)− x2(ti)

−H
(
eA1(t−ti) − I

)
x̂1(ti)

]
+ κ]1(t).

(18)

By applying variation of parameters to the x1-subsystem in
(18), then integrating the result for each i ≥ 0, we obtain

x2(t) = x2(ti) +H
(
eA1(t−ti) − I

)
x1(ti)

+
∫ t
ti
κ]2(`)d`+A2

∫ t
ti

∫m
ti
eA1(m−`)κ]1(`)d`dm

(19)

for all t ∈ [ti, ti+1). By combining (18)-(19), we get

˙̃x1(t) = A1x̃1(t)− eA1(t−ti)α(t−ti)
[
H](t, ti)x1(ti)

−H](t, ti)x̂1(ti)
]

+ ε](t, ti)

−eA1(t−ti)α(t− ti)
[∫ t
ti
κ]2(`)d`

+A2

∫ t
ti

∫m
ti
eA1(m−`)κ]1(`)d`dm

]
+ κ]1(t)

= A1x̃1(t)− eA1(t−ti)α(t− ti)H](t, ti)x̃1(ti)

+ε](t, ti)− eA1(t−ti)α(t− ti)
[∫ t
ti
κ]2(`)d`

+A2

∫ t
ti

∫m
ti
eA1(m−`)κ]1(`)d`dm

]
+ κ]1(t).

(20)

By integrating this equation over [ti, t), we obtain

x̃1(t) = eA1(t−ti)x̃1(ti) + ζ(t)

−
∫ t
ti
eA1(t−m)eA1(m−ti)α(m−ti)H](m, ti)dmx̃1(ti)

(21)
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with ζ defined in (6). Thus

x̃1(t) = ζ(t)

+ eA1(t−ti)
[
I −

∫ t
ti
α(m− ti)H](m, ti)dm

]
x̃1(ti)

(22)

and so also

x̃1(t) = ζ(t)

+eA1(t−ti)
[
I−
∫ t
ti
W ](m, ti)H

>H](m, ti)dm
]
x̃1(ti)

(23)

for all t ∈ [ti, ti+1) and i ≥ 0, where

W ](m, ti) = W (eA
>
1 (m−ti) − I), (24)

and where the last equality in (23) is a consequence of the
definition in (5) of α. Thus in particular, since

ζ(ti+1) = 0, (25)

we can specialize (23) to the case where t = ti+1 to get

x̃1(ti+1) =

= eA1ν
[
I −W

∫ ν
0

(H](m, 0))>H](m, 0)dm
]
x̃1(ti)

(26)

for all i ∈ Z≥0. The definition (4) of W ensures that

x̃1(ti+1) = 0. (27)

From this equality and (23), we deduce that, for all t ≥ ν,

x̃1(t) = ζ(t). (28)

Since x̃1 = ξ1 − ξ?,1 − x̂1, this allows us to conclude.

III. OBSERVERS FOR DISCRETE MEASUREMENTS

A. Statement of Result

In this part, we consider the case where instead of having
continuous measurements of the output, the measurements
are only available at discrete instants. For simplicity, we
assume that the additive uncertainty ε on the measurements is
zero, but this section can be generalized to cases where this
uncertainty is nonzero. We introduce the sequence sk = kς
for all k ∈ Z≥0 with a constant ς > 0. Consider the system

ξ̇1(t) = A1ξ1(t) + F1(ξ2(t), u(t)) + κ1(t)

ξ̇2(t) = A2ξ1(t) + F2(ξ2(t), u(t)) + κ2(t)

Y (t) = ξ2(sk) for all t ∈ [sk, sk+1)

and k ∈ Z≥0

(29)

with ξ1 valued in Rn−q , ξ2 valued in Rq , and u, κ1, and
κ2 being piecewise continuous and locally bounded. As
in Section II, we let (A1, A2) be observable and A1 be
invertible. We assume:

Assumption 2: The functions F1 and F2 are locally Lips-
chitz and there are two constants K1 ≥ 0 and K2 ≥ 0 such
that

|F1(a, u)− F1(b, u)| ≤ K1|a− b| and

|F2(a, u)− F2(b, u)| ≤ K2|a− b|
(30)

hold for all a ∈ Rq, b ∈ Rq and u ∈ Rp. �
Assumption 2 (which is also used in [14]) ensures that

(29) is forward complete. However, the main reason why we

impose Assumption 2 is that it will be needed in the proof
of Theorem 2. We introduce the candidate observer:

ξ̇?,1(t) = A1ξ?,1(t) + F1(ω(t), u(t))

ξ̇?,2(t) = A2ξ?,1(t) + F2(ω(t), u(t))
˙̂x1(t) = A1x̂1(t)

+eA1(t−ti)α(t− ti) [ω(t)− ξ?,2(t)
−ω(ti) + ξ?,2(ti)
−H

(
eA1(t−ti) − I

)
x̂1(ti)

]
for all t ∈ [ti, ti+1) and i ∈ Z≥0

ω̇(t) = A2[x̂1(t) + ξ?,1(t)] + F2(ω(t), u(t))
for all t ∈ [sk, sk+1) and k ∈ Z≥0

ω(sk) = ξ2(sk) for all k ∈ Z≥0

(31)

with α defined in (5) and H = A2A
−1
1 as before, and where

the solutions of (5) are defined analogously to those of (8)
with ω(0) = 0. This observer is inspired by the one used in
[6]. We also use the constant α from (10), and W from (4).
Let us introduce the function β : R→ R(n−q)×(n−q) defined
by

β(`) = eA1`
[
I −W

∫ `
0

(H](m, 0))>H](m, 0)dm
]

(32)

with H](t, s) = H
(
eA1(t−s)−I

)
as before, and the constant

β = |β|[0,ν]. (33)

In terms of our sample rates ν and ς for the ti’s and sk
respectively, the constant α from (10), and the constants

c1 = |A2|max{β, 1}e|A1|νc5(ς + 2ν) +K2, (34)

c2 = 2 max{β, 1}c5e|A1|ν+ ln(ςc1)
3ν+ς (−6ν−2ς), (35)

c3 = 2 max{β, 1}e|A1|νc5ς
ν|A2|c4+1

1−ςc1 + c4, (36)

c4 = e|A1|ν max
{
να, να|H|(e|A1|ν − 1) + 1

}
, (37)

and

c5 = e|A1|ναν
[
|H|K1

(
e|A1|ν − 1

)
+K2

]
+K1 + 2e|A1|να,

(38)

our main result of this section is:
Theorem 2: Let (29) satisfy Assumption 2 and let

ςc1 < 1 (39)

hold. Then all solutions of (29) and (31) are such that

|ξ1(t)− x̂1(t)− ξ?,1(t)|
≤ νc2 sup

m∈[0,3ν+ς]
|ω(m)− ξ2(m)|e

ln(ςc1)
3ν+ς t

+ νc3 sup
m∈[0,t]

(|κ1(m)|+ |κ2(m)|)
(40)

holds for all t ≥ ς + 6ν.
Remark 2: Condition (40) gives an exponential conver-

gence rate of − ln(ςc1)/(3ν + ς), which converges to +∞
as the sample rate ς for the sequence {sk} converges to 0.
Hence, we can ensure arbitrarily fast convergence. Condition
(39) imposes a constraint on the size of the sampling interval
length ς , and ν can be chosen by the designer of the observer.
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B. Proof of Theorem 2

The proof has three parts. In the first part, we perform
changes of variables that produce an error dynamics asso-
ciated with the observation error. In the second step, we
perform a stability analysis for the error variables. In the
final step, we use the trajectory based approach from [11]
and the contractivity condition from (39) to obtain the final
error estimation from our theorem.

First Step. We use the new error variables

x1(t) = ξ1(t)− ξ?,1(t), x2(t) = ξ2(t)− ξ?,2(t),

x̃1(t) = x1(t)− x̂1(t), and r(t) = ω(t)− ξ2(t).
(41)

and the function H](t, s) = H(eAi(t−s) − I) as before.
Simple calculations give

ẋ1(t) = A1x1(t) + F1(ξ2(t), u(t))

−F1(ω(t), u(t)) + κ1(t)

ẋ2(t) = A2x1(t) + F2(ξ2(t), u(t))

−F2(ω(t), u(t)) + κ2(t)

ṙ(t) = A2x̂1(t)+A2ξ?,1(t)−A2ξ1(t)−κ2(t)

+F2(ω(t), u(t))− F2(ξ2(t), u(t))

for all t ∈ [sk, sk+1) and k ∈ Z≥0
r(sk) = 0 for all k ∈ Z≥0.

(42)

Also, x2 + r = ω − ξ?,2. Hence

˙̂x1(t) = A1x̂1(t)

+eA1(t−ti)α(t− ti) [r(t)− r(ti)
+x2(t)− x2(ti)

−H
(
eA1(t−ti) − I

)
x̂1(ti)

]
for all t ∈ [ti, ti+1) and i ∈ Z≥0

ṙ(t) = A2(x̂1(t)− x1(t)) + F2(ω(t), u(t))

−F2(ξ2(t), u(t))− κ2(t)

for all t ∈ [sk, sk+1) and k ∈ Z≥0
r(sk) = 0 for all k ∈ Z≥0.

(43)

We deduce that
˙̃x1(t) = A1x̃1(t)− eA1(t−ti)α(t− ti) [x2(t)

−x2(ti)−H
(
eA1(t−ti) − I

)
x̂1(ti)

]
−eA1(t−ti)α(t− ti)[r(t)− r(ti)] + κ1(t)

+F1(ξ2(t), u(t))− F1(ω(t), u(t)).

(44)

By applying variation of parameters to the x1-subsystem of
(42), we obtain

x2(t) = x2(ti) +H
(
eA1(t−ti) − I

)
x1(ti) + ψ1(t)

+
∫ t
ti

[
κ2(`) +H

(
eA1(t−`) − I

)
κ1(`)

]
d`

(45)

for all t ∈ [ti, ti+1) and i ≥ 0, where

ψ1(t) = H
∫ t
ti

(
eA1(t−`) − I

)
[F1(ξ2(`), u(`))

−F1(ω(`), u(`))] d`+
∫ t
ti

[F2(ξ2(`), u(`))

−F2(ω(`), u(`))] d`.

(46)

By using (45) to obtain a formula for x2(t)−x2(ti) and then
replacing the x2(t)−x2(ti) in (44) by this formula, and then

collecting terms, we immediately obtain

˙̃x1(t) = A1x̃1(t)− eA1(t−ti)α(t−ti)H](t, ti)x1(ti)

−eA1(t−ti)α(t− ti)
[
ψ1(t) +

∫ t
ti

[κ2(`)

+H](t, `)κ1(`)
]

d`−H](t, ti)x̂1(ti)
]

−eA1(t−ti)α(t− ti)[r(t)− r(ti)]
+F1(ξ2(t), u(t))− F1(ω(t), u(t)) + κ1(t)

= A1x̃1(t)− eA1(t−ti)α(t−ti)H](t, ti)x̃1(ti)
+ψ2(t) + κ1(t)

−eA1(t−ti)α(t− ti)
∫ t
ti
κ3(t, `)d`

(47)

where κ3(t, `) = κ2(`) +H](t, `)κ1(`) and

ψ2(t) = −eA1(t−σ(t))α(t− σ(t))ψ1(t)
− eA1(t−σ(t))α(t− σ(t))[r(t)− r(σ(t))]
−F1(ω(t), u(t)) + F1(ξ2(t), u(t)).

(48)

By applying the variation of parameter to the last equality
in (47) over [ti, t) with t ∈ [ti, ti+1], we obtain

x̃1(t) = eA1(t−ti)x̃1(ti)

−
∫ t
ti
eA1(t−`)eA1(`−ti)α(`−ti)H](`, ti)x̃1(ti)d`

+
∫ t
ti
eA1(t−`)ψ2(`)d`+ κ?(t)

= eA1(t−ti)
[
I −

∫ t
ti
α(`− ti)H](`, ti)d`

]
x̃1(ti)

+
∫ t
ti
eA1(t−`)ψ2(`)d`+ κ?(t),

where

κ?(t) =
∫ t
σ(t)

eA1(t−`)κ1(`)d`

−eA1(t−σ(t))
∫ t
σ(t)

α(m− σ(t))
∫m
σ(t)

κ3(t, `)d`dm.
(49)

From the definition of α in (5), we get

x̃1(t) =
∫ t
ti
eA1(t−`)ψ2(`)d`+ κ?(t)

+eA1(t−ti)
[
I −

∫ t
ti
W (H](`, ti))

>H](`, ti)d`
]
x̃1(ti)

(50)

for all t ∈ [ti, ti+1) and all i ≥ 0.
Thus, we deduce from the definition (4) of W that

x̃1(ti+1) =
∫ ti+1

ti
eA1(ti+1−`)ψ2(`)d`+ κ?(ti+1)

=
∫ ti+1

ti
eA1(ti+1−`)ψ2(`)d`

(51)

for all i ≥ 0. Combining (51) and (50), we deduce that

x̃1(t) =
∫ t
ti
eA1(t−`)ψ2(`)d`+ κ?(t)

+eA1(t−ti)
[
I − W̃ (t− ti)

] ∫ ti
ti−1

eA1(ti−`)ψ2(`)d`
(52)

for all t ≥ ν, where

W̃ (s) = W
∫ s
0

(H](`, 0))>H](`, 0)d` (53)

This gives

x̃1(t) = β(t− σ(t))
∫ σ(t)
σ(t)−ν e

A1(σ(t)−`)ψ2(`)d`

+
∫ t
σ(t)

eA1(t−`)ψ2(`)d`+ κ?(t)

ṙ(t) = −A2x̃1(t) + F2(ω(t), u(t))

−F2(ξ2(t), u(t))− κ2(t)

for all t ∈ [sk, sk+1) and k ∈ Z≥0
r(sk) = 0 for all k ∈ Z≥0

(54)
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with β defined in (32) for all t ≥ ν.
Second Step. Now, we perform a stability analysis of the

system (54). Integrating the second equality in (54) over
[sk, t) with t ∈ [sk, sk+1), we obtain

r(t) = −A2

∫ t
sk
x̃1(m)dm−

∫ t
sk
κ2(m)dm

+
∫ t
sk

[F2(ω(m), u(m))

−F2(ξ2(m), u(m))]dm

(55)

for all k ∈ Z≥0. Consequently,

|r(t)| ≤ |A2|
∫ t
sk
|x̃1(m)|dm+K2

∫ t
sk
|r(m)|dm∫ t

sk
|κ2(m)|dm

(56)

for all t ∈ [sk, sk+1). On the other hand, (54) gives

|x̃1(t)| ≤ β
∫ σ(t)
σ(t)−ν e

|A1|ν |ψ2(`)|d`

+
∫ t
σ(t)

e|A1|ν |ψ2(`)|d`+ |κ?(t)|

≤ max
{
β, 1
}
e|A1|ν

∫ t
σ(t)−ν |ψ2(`)|d`+|κ?(t)|.

(57)

for all t ≥ 0. The last inequality and (56) give

|r(t)| ≤
|A2|max{β, 1}e|A1|ν

∫ t
sk

∫m
σ(m)−ν |ψ2(`)|d`dm

+|A2|
∫ t
sk
|κ?(m)|dm+

∫ t
sk

(K2|r(m)|+|κ2(m)|)dm.
(58)

As an immediate consequence,

|r(t)| ≤ ς|A2|max{β, 1}e|A1|ν
∫ t
t−ς−2ν |ψ2(`)|d`

+
∫ t
t−ς(K2|r(m)|+ |A2||κ?(m)|+ |κ2(m)|)dm

(59)

for all t ≥ ς + 2ν. Also, Assumption 2 implies that

|ψ1(t)| ≤ |H|K1

∫ t
σ(t)

∣∣eA1(t−`) − I
∣∣ |r(`)|d`

+K2

∫ t
σ(t)
|r(`)|d` and

|ψ2(t)| ≤ e|A1|να|ψ1(t)|+ e|A1|να|r(t)− r(ti)|
+K1|r(t)|.

(60)

Thus, with the choice

K](s) = K1|H|
∣∣eA1s − I

∣∣+K2, (61)

we get

|ψ2(t)| ≤ e|A1|να|H|K1

∫ t
σ(t)

∣∣eA1(t−`) − I
∣∣ |r(`)|d`

+ e|A1|ναK2

∫ t
σ(t)
|r(`)|d`

+ e|A1|να|r(t)− r(σ(t))|+K1|r(t)|
≤ e|A1|να

∫ t
σ(t)

K](t− `)|r(`)|d`
+ e|A1|να|r(σ(t))|+

(
K1 + e|A1|να

)
|r(t)|

≤ c5|r|[t−ν,t]

(62)

for all t ≥ ν with c5 defined in (38). Combining (62) with
(59), we obtain

|r(t)| ≤
∫ t
t−ς(|A2||κ?(m)|+ |κ2(m)|)dm

+ς|A2|max{β, 1}e|A1|ν
∫ t
t−ς−2ν c5|r|[`−ν,`]d`

+K2

∫ t
t−ς |r(m)|dm

(63)

for all t ≥ ς + 3ν. Hence, with c1 as defined in (39), we
have

|r(t)| ≤ ς|A2|max{β, 1}e|A1|νc5(ς + 2ν)|r|[t−ς−3ν,t]
+K2ς|r|[t−ς−3ν,t]
+
∫ t
t−ς(|A2||κ?(m)|+ |κ2(m)|)dm

≤ ς
[
|A2|max{β, 1}e|A1|νc5(ς + 2ν)

+K2] |r|[t−ς−3ν,t]
+
∫ t
t−ς(|A2||κ?(m)|+ |κ2(m)|)dm

≤ ςc1|r|[t−ς−3ν,t]
+
∫ t
t−ς(|A2||κ?(m)|+ |κ2(m)|)dm.

(64)

From the definition of κ? in (49), we deduce that

|κ?(t)| ≤ αe|A1|ν
∫ t
σ(t)

[∫ s
σ(t)
|κ2(`)|d`

+ |H|
∫ s
σ(t)

∣∣eA1(t−`)−I
∣∣ |κ1(`)|d`

]
ds

+ e|A1|ν
∫ t
σ(t)
|κ1(`)|d`

≤ ναe|A1|ν
[∫ t
σ(t)
|κ2(`)|d`

+ |H|
∫ s
σ(t)

(
e|A1|(t−`)−1

)
|κ1(`)|d`

]
+e|A1|ν

∫ t
σ(t)
|κ1(`)|d`

≤ ναe|A1|ν
∫ t
σ(t)

(|κ2(`)|
+|H|

(
e|A1|ν − 1

)
|κ1(`)|

)
d`

+e|A1|ν
∫ t
σ(t)
|κ1(`)|d`

=
∫ t
σ(t)

[
ναe|A1|ν |κ2(`)|+ e|A1|νν]|κ1(`)|

]
d`

≤ c4
∫ t
σ(t)

[κ1(`)|+ |κ2(`)|] d`

(65)

where ν] = να|H|e|A1|ν − να|H| + 1 and c4 is from (37).
Thus, with the choice κ̃(`) = |κ1(`)|+ |κ2(`)|, we have

|r(t)| ≤ ςc1|r|[t−ς−3ν,t]
+
∫ t
t−ς

(
|A2|c4

∫m
σ(m)

κ̃(`)d`+|κ2(m)|
)

dm

≤ ςc1|r|[t−ς−3ν,t] + ςν|A2|c4|κ̃|[t−ν−ς,t]
+ς|κ2|[t−ν−ς,t]

= ςc1|r|[t−ς−3ν,t] + ς(ν|A2|c4 + 1)|κ̃|[t−ν−ς,t]

(66)

for all t ≥ ς + 3ν.
Third Step. We now apply the trajectory based contrac-

tivity method from [14, Lemma 1] to the function w(t) =
|r(t+ ς + 3ν)|. This gives

|r(t)| ≤ sup
m∈[0,ς+3ν]

|r(m)|e
ln(ςc1)
3ν+ς (t−3ν−2ς)

+ς ν|A2|c4+1
1−ςc1 sup

m∈[0,t]
κ̃(m)

(67)

for all t ≥ ς + 3ν. We deduce from (54) and (62) that

|x̃1(t)| ≤ β
∫ σ(t)
σ(t)−ν e

|A1|ν |ψ2(`)|d`
+
∫ t
σ(t)

e|A1|ν |ψ2(`)|d`+ |κ?(t)|
≤ max

{
β, 1
}
e|A1|ν

∫ t
t−2ν |ψ2(`)|d`+|κ?(t)|

≤ max
{
β, 1
}
e|A1|ν

∫ t
t−2ν c5|r|[`−ν,`]d`

+|κ?(t)|
≤ c6ν|r|[t−3ν,t] + |κ?(t)|

(68)
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for all t ≥ ς + 3ν, where c6 = 2 max{β, 1}e|A1|νc5.
Combining this inequality with (67) and (65), we obtain

|x̃1(t)| ≤ c4
∫ t
σ(t)

[κ1(`)|+ |κ2(`)|] d`

+c6ν sup
`∈[t−3ν,t]

[
sup

m∈[0,2ς+3ν]

|r(m)|e
ln(ςc1)
3ν+2ς (`−3ν−2ς)

+ς ν|A2|c4+1
1−ςc1 sup

m∈[0,t]
(|κ1(m)|+ |κ2(m)|)

] (69)

for all t ≥ ς + 6ν. It follows that

|x̃1(t)| ≤
2 max{β, 1}e|A1|νc5ν|r|[0,ς+3ν]e

ln(ςc1)
3ν+ς (t−6ν−2ς)

+ν
[
2 max{β, 1}e|A1|νc5ς

ν|A2|c4+1
1−ςc1 +c4

]
|κ̃|[0,t].

(70)

This allows us to conclude the proof.

IV. ILLUSTRATIONS

As in [12], we study a pendulum model{
ȧ1(t) = a2(t), ȧ2(t) = − sin(a1(t))
z(t) = a1(sj) if t ∈ [sj , sj+1)

(71)

with the ai’s valued in R.
The change of coordinates given by ξ1(t) = a1(t) +a2(t)

and ξ2(t) = a1(t) transforms the system (71) into ξ̇1(t) = ξ1(t)− ξ2(t)− sin(ξ2(t))

ξ̇2(t) = ξ1(t)− ξ2(t)
y(t) = ξ2(sj) if t ∈ [sj , sj+1)

(72)

which is covered by Theorem 2.
Then, with the notation of the previous section, we take

A1 = A2 = 1, F1(ξ2, u) = −ξ2 − sin(ξ2) and F2(ξ2, u) =
−ξ2, K1 = 2, and K2 = 1. Simple calculations show that in
this case, the function α that we defined in (5) is

α(m) =
em − 1

e2ν−1
2 − 2(eν − 1) + ν

(73)

so we get the observer

ξ̇?,1(t) = ξ?,1(t)− ω(t)− sin(ω(t))

ξ̇?,2(t) = ξ?,1(t)− ω(t)
˙̂x1(t) = x̂1(t)

+
2et−ti(et−ti−1)

e2ν−1−4(eν−1)+2ν [ω(t)− ω(ti)

−ξ?,2(t) + ξ?,2(ti)

−
(
e(t−ti) − I

)
x̂1(ti)

]
for all t ∈ [ti, ti+1) and i ∈ Z≥0

ω̇(t) = x̂1(t) + ξ?,1(t)− ω(t)

for all t ∈ [sk, sk+1) and k ∈ Z≥0
ω(sk) = ξ2(sk) for all k ∈ Z≥0

(74)

which differs from the observers in [12] which have delays.
We can also apply Theorem 1 to design observers for the

single link robotic manipulator dynamics in [12], to achieve
a similar advantage of having observers that are free of
delay terms while providing a fixed convergence time (which
is a stronger result than the finite time convergence result
in [19]), but without requiring the use of delayed output
measurements that were required in [12].

V. CONCLUSION

We provided a new class of fixed time observers, when
continuous measurements are available. By not requiring
delayed output values in the observer, and providing a
reduced order observer structure, our methods may offer
computational advantages as compared with earlier methods.
Our methods are based on the observability Gramian. We
adapted this observer to cases where only discrete time
measurements are available, where one instead obtains arbi-
trarily fast convergence. Extensions including new robustness
results can be proved and time-varying version are expected.

REFERENCES

[1] S. Ahmed, M. Malisoff, and F. Mazenc. Finite time estimation for
time-varying systems with delay in the measurements. Systems and
Control Letters, 133:104551, 2019.

[2] F. Cacace, A. Germani, and C. Manes. An observer for a class of
nonlinear systems with time varying observation delay. Systems and
Control Letters, 59:305–312, 2010.

[3] F. Cacace, A. Germani, and C. Manes. A new approach to design
interval observers for linear systems. IEEE Transactions on Automatic
Control, 60(6):1665–1670, 2015.

[4] R. Engel and G. Kreisselmeier. A continuous time observer which
converges in finite time. IEEE Transactions on Automatic Control,
47(7):1202–1204, 2002.

[5] J. Holloway and M. Krstic. Prescribed-time observers for linear
systems in observer canonical form. IEEE Transactions on Automatic
Control, 64(9):3905–3912, 2019.

[6] I. Karafyllis and C. Kravaris. From continuous-time design to sampled-
data design of observers. IEEE Transactions on Automatic Control,
54(9):2169–2174, 2009.

[7] R. Katz, E. Fridman, and A. Selivanov. Boundary delayed observer-
controller design for reaction–diffusion systems. IEEE Transactions
on Automatic Control, 66(1):275–282, 2021.

[8] Y. Li and R. Sanfelice. A finite-time convergent observer with
robustness to piecewise-constant measurement noise. Automatica,
57:222–230, 2015.

[9] D. Luenberger. Introduction to Dynamic Systems. John Wiley and
Sons, New York, 1979.

[10] F. Mazenc, E. Fridman, and W. Djema. Estimation of solutions of
observable nonlinear systems with disturbances. Systems and Control
Letters, 79:47–58, 2015.

[11] F. Mazenc and M. Malisoff. Trajectory based approach for the stability
analysis of nonlinear systems with time delays. IEEE Transactions on
Automatic Control, 60(6):1716–1721, 2015.

[12] F. Mazenc, M. Malisoff, and Z.P. Jiang. Reduced order fast converging
observer for systems with discrete measurements and sensor noise.
Systems and Control Letters, 150(104892), 2021.

[13] F. Mazenc, M. Malisoff, and S. Niculescu. Sampled-data estimator for
nonlinear systems with arbitrarily fast rate of convergence. In Proc.
American Control Conference, pages 1685–1689, Denver, CO, 2020.

[14] F. Mazenc, M. Malisoff, and S-I. Niculescu. Stability and control
design for time-varying systems with time-varying delays using a
trajectory-based approach. SIAM Journal on Control and Optimization,
55(1):533–556, 2017.

[15] T. Menard, E. Moulay, and W. Perruquetti. A global high-gain finite
time observer. IEEE Transactions on Automatic Control, 55(6):1500–
1506, 2010.

[16] T. Raff and F. Allgower. An observer that converges in finite time
due to measurement-based state updates. IFAC Proceedings Volumes,
41(2):2693–2695, 2008.

[17] F. Sauvage, M. Guay, and D. Dochain. Design of a nonlinear finite
time converging observer for a class of nonlinear systems. Journal of
Control Science and Engineering, 2007(36954):9pp., 2007.

[18] H. Silm, R. Ushirobira, D. Efimov, J. Richard, and W. Michiels. A note
on distributed finite-time observers. IEEE Transactions on Automatic
Control, 64(2):759–766, 2019.

[19] Z-L. Zhao and Z.P. Jiang. Semi-global finite-time output-feedback
stabilization with an application to robotics. IEEE Transactions on
Industrial Electronics, 66(4):3148–3156, 2019.

5451


