
Context-driven Policies Enforcement for Edge-based
IoT Data Sharing-as-a-Service

Abstract—Sharing real-time data originating from connected
devices is crucial to real-world Internet of Things (IoT) appli-
cations, especially using artificial intelligence/machine learning
(AI/ML). Such IoT data are typically shared with multiple
parties for different purposes based on data contracts. However,
supporting these contracts under the dynamic change of IoT data
variety and velocity faces many challenges when such parties
(aka tenants) want to obtain data based on the data value to
their specific contextual purposes.

This work proposes a novel dynamic context-based policy
enforcement framework to support IoT data sharing based on
dynamic contracts. Our enforcement framework allows IoT Data
Hub owners to define extensible rules and metrics to govern the
tenants in accessing the shared data on the Edge based on policies
defined in static and dynamic contexts. For example, given the
change of situations, we can define and enforce a policy that al-
lows pushing data to some tenants via a third-party means, while
typically, these tenants must obtain and process the data based
on a pre-defined means. We have developed a proof-of-concept
prototype for sharing sensitive data such as surveillance camera
videos to illustrate our proposed framework. Our experimental
results demonstrated that our framework could soundly and
timely enforce context-based policies at runtime with moderate
overhead. Moreover, the context and policy changes are correctly
reflected in the system in nearly real-time.

Index Terms—Context-driven, Data sharing-as-a-service, pol-
icy enforcement, IoT

I. INTRODUCTION

One of the significant aspects of the Internet of Things (IoT)

is to provide data sharing to connect organizations, customers,

suppliers, or other stakeholders, bringing greater values for

different stakeholders in the IoT’s ecosystems [1], especially

with AI/ML applications. Supporting stakeholders to securely

and efficiently share the live stream and/or real-time or near

real-time IoT data based on data context is becoming important

because each stakeholder in different sectors is able to use the

data for their context-specific business and applications, e.g.,

in smart cities scenarios [2].

A. Background

Typically, IoT data is shared among multiple parties based

on data contracts, implicitly or explicitly documented with-

/without machine-readable policies. For many of today’s sce-

narios, data sharing must happen at the Edge [3], [4] to

facilitate edge analytics and to avoid complex issues of data

security and privacy. The edge-computing level will allow

tenant applications, especially cross-sector IoT AI services,

to effectively operate and enable trustful on-demand data

acquisition. A well-known challenge in this data sharing at

the edge is real-time, context-sensitive data access control

for different stakeholders. Each stakeholder has a different

contract, and the contract may be based on the context of

the data that is dynamically changed at runtime. Moreover,

the operations in these services are normally automated at

real-time, therefore, the access control must be also adapted

dynamically in real-time. Existing approaches for IoT data

marketplaces, such as [5], [6] provide mechanisms to share

data; however, they have not addressed the challenges men-

tioned above for access control based on dynamic IoT context.

Indeed, IoT context sharing platforms have been surveyed

in detail in [7]. However, no existing approaches provide

edge-based enforcement solutions for controlling data sharing

driven by dynamic contexts. To the best of our knowledge, no

previous access control framework supports dynamic context

IoT data sharing for cross-sector IoT smart services.

B. Our work and contributions

In this work, we propose a framework that allows dynamic

context-driven IoT data sharing at the Edge based on contract

agreements changed at runtime. We design and develop a set

of Edge-based dynamic context policies that represent real-

world data sharing scenarios with access control changes at

runtime. Furthermore, these dynamic policies can be enforced

and updated in (near) real-time based on the context of the

data. With this policy enforcement framework, we enable

Edge-based IoT Data Hubs, which allow real-time data to be

collected from various sources regardless of the protocols and

data formats, to share data based on context-specific contracts.

Our main contributions for contract-based dynamic context

IoT data sharing on the Edge are:

• Based on data contracts between the Hub provider and

tenants, initialized and centrally stored on the Cloud,

tenant-specific access control policies will be enforced

on the edge level;

• The access control policies are context-driven to support

data sharing in flexible ways according to application-

level IoT contexts, which are dynamically updated by

context-sensing services on the Edge;

• Our Edge-based framework can enforce tenant-specific

access control policies to the data being shared dynami-

cally according to IoT context changes in the Edge and

contract changes in the Cloud.

In the remainder of this paper: We provide a motivating

example in Section II. Section III presents our approach, which

is evaluated in Section IV. We discuss related work in Section

V. Finally, we give our conclusions in Section VI.

II. A MOTIVATING EXAMPLE

Let us take the position of the IoT Data Hubs service

provider X , which owns Edge-based IoT Data Hubs (edge

servers) deployments distributed in a smart city. Note that

Edge servers can be powerful1, although, in the Edge, we

cannot have elastic resources as much as we want. Each Hub

deployment is close to IoT devices, the primary data sources

considered in this work, and other data systems that are not

necessarily owned by X , but instead owned by different data

providers. Each data provider P has its own fleet of IoT

devices and systems but offers part or all of its data to the IoT

Data Hubs. Here, we assume that X has made agreements with

any P that wants to sell their IoT data via the X’s system and

“onboard” P ’s IoT data streams to X’s Data Hubs. P trusts

X to find the best way to sell data value through monetary

means and social incentives (e.g., support emergencies and

health safety enforcement). Then, many IoT data consumers

want to use P ’s IoT data for their businesses. Each consumer

C subscribes to the data they want using e-contracts in the

Cloud-based system of X where all the IoT data streams from

different Hubs are listed for the subscription. Such a hub can

be an essential part of the ecosystem of sensing as a service

[2] and data marketplaces [8]. Currently, how X , P , and

potential consumers establish their market relationships have

been discussed in the literature in terms of marketplaces [1].

However, the issues of dynamic access control are still open

and challenging.

Now, we take video camera data as an example. Let us

assume that camera systems from a street have been “on-

boarded” to make live video data available to the Hub in that

street. Such camera systems can be owned by shopping malls,

parking houses, city administration, or other stakeholders.

Consumers can sign contracts with X and any P to subscribe

to their data but not necessarily get video images because of

different constraints in the contracts. The city administration

can subscribe to the X’s system to receive the number of

people gathering in a specific location, which is of value during

the COVID lock-down period. The local police will be alerted

if more than a certain number of people gather during the

COVID lock-down period. For example, if more than twenty

people were gathering simultaneously in one place, the local

police might get access to the live video images on the Hub. If

less than twenty people, only the number of people gathering,

not live video images, is available to them. This means the

context here is the number of people gathering that is changing

dynamically. The privacy rule of the city only allows the police

to watch live camera images on the Hub if the COVID lock-

down enforcement (no more than twenty people can gather in

one place) can override privacy rights. Note that the camera

video images are not transferred outside of the Hub. The police

department may also want to automatically access the camera

system to recognize wanted criminals using AI. X supports

1e.g., see https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=servers-
preparing-install-edge-computing

such cases by allowing some tenant (AI) applications to be

deployed in X’s Hub to get close access to data.

The camera system is only one specific example of IoT data

that can be shared. We can also name other IoT data resources

from different sectors that can also be shared. This means

that direct sharing one-to-many is not suitable for realizing

the vision of cross-sector smart services where different data

sources may even be combined for new services models.

There are also security and privacy challenges that must be

addressed. Data and data processing must stay as close to the

data source as possible for privacy and performance. For an

example of the camera system, each geographical area needs

a local Edge server to receive all data from the cameras in

that specific area and control how camera data can be shared

for different stakeholders directly from the Edge.

Intelligent Data Hubs can infer the context of data and

can even provide AI data filtering and pre-processing before

sending data to the end-users. This means that multiple data

sources can be merged to become new, high-quality data

sources.

III. EDGE-BASED DYNAMIC CONTEXT POLICIES

The key challenge we address in this work is how to

define and enforce data sharing policies based on dynamic

contexts. To this end, we first present our proposed service

model and its architecture in this section. We then introduce

our data-sharing contract specification and its corresponding

enforcement policies. Based on the policy specification, we

will demonstrate how system and application-level contexts

can be used for dynamic policy enforcement.

A. Edge-based Data Sharing as a Service Model

In our main service model, the Hub owner has made

agreements and integration in advance with data providers so

that the Hubs have capabilities to extract and sense certain

characteristics of the data from providers. We note that such

a hub-based model exists and is common in practice [9], [10]

Moreover, the Hub already pre-calculated the max load that

it supports for IoT data providers. This means that IoT data

providers, once on-boarded to the IoT Hub, must have already

signed a contract with technical detail agreement with the Hub,

e.g., the range of data, frequency being sent. On the other hand,

the Hub has the ability to monitor and detect the violations of

data sent by IoT providers in a way that malicious attackers

cannot cause the Hub any harm.

Based on these assumptions, our service model mainly

focuses on how the Hub can control data sharing as a service

for different data consumers (called tenants) based on dynamic

contexts. Context-based policies define contracts between the

Hub and tenants. Edge-based IoT data sharing as-a-service

carries out the enforcement of such policies. The conditions

within contracts, and the contract itself, can be changed based

on contexts. The Hub can sense data in the Hub to extract

relevant generic context and application-specific context based

on the predefined metadata and data from monitoring/sampling

techniques for each data source. This is based on two reasons.

First, modern IoT Data Hubs can leverage AI/ML techniques

to inference certain data-specific contexts for different ap-

plications through plugins and sampling techniques. Second,

intelligent IoT data sources can share metadata about provided

data to the Hub. The key business model is to allow tenants

from cross-sectors to get data (driven by IoT contexts) from

various data sources managed by the Hub.

1{ "tenant":"tenant-1",
2 "contracts":[
3 {"Name":"Allow streaming camera based on people

count threshold OR violence detected",
4 "Action":["subscribe"],
5 "Effect":"Allow",
6 "Resource":["/smartcity/camera/stream/country_x

/city_y/store_z/city_surveillance"],
7 "Conditions": {
8 "AnyOf":[
9 {"object":"people_count","location":"

store_z",
10 "max_5mins": {"gt": 30}},
11 {"object":"violence_detection","

location":"store_z",
12 "violence_last_1mins": {"gt": 0}}
13],
14 "All":[
15 {"object":"data_amount","protocol":"mqtt

",
16 "lasthour_mb":{"lt": 3000}},
17]...
18}

Listing 1. Tenant1’s contract example

B. System Architecture
Fig. 1 depicts the architectural design for an Edge-based

IoT Data Hub. A single Edge IoT Data Hub has Data Service
that allows data providers to publish their data and enables

tenants to subscribe to the provided data. A tenant should use

a portal or an API to subscribe to available data and agree to

a set of conditions, establishing data contracts to access the

data. In this work, to simplify the process, we assume that

the contract has been predefined using a template described in

§III-C, which includes dynamic parameters based on context

information from the IoT data source. A set of such policy

templates is stored in a Contract DB. Once a contract is in

place, our framework will transform it into a low-level tenant-

specific policy format and send the low-level policy to the

Policy Decision Point (PDP) in the Edge. The Policy Decision

Point will trigger the policy enforcement process to monitor

the tenant’s access to the subscribed data. Our framework

contains the following vital components:

• Data Service gets data from multiple data sources and

provides data access for tenants based on the authoriza-

tion from the PDP.

• PDP receives tenant’s request from the Data Service and

returns the corresponding permission based on tenant-

policy policies and runtime contexts.

• Context Sensing: monitors the real-time data to extract

the context value based on metadata from a data source.

The sensed context data from a hub is synchronized with

our central messaging system, deployed on the Cloud, to

update the policy in real-time.

• Messaging System: synchronizes IoT context data and

policies updates between the Edge-Data Hubs and the

Cloud-based contracts management system. This is a scal-

able messaging system that serves many synchronization

tasks between multiple Hubs and the Cloud.

• Context Interpreter: receives context data from Edge and

looks up the tenant contracts (from Contract DB) that

depend upon the context data to generate the tenant-
specific context data. Note that the tenant-specific con-
text data is calculated on the context data from Edge

(even sent from multiple Hubs) according to the tenant

contract(s). For each tenant having contract(s) affected

by the received context data, tenant-specific context data
and the low-level tenant-specific policy (in Rego for-

mat [11]) generated by the policy generation component

are synchronized back to the corresponding PDP(s) for

authorization decisions.

• Tenant-specific Policy Generation: transforms high-level

policies defined as contracts in the Contract DB to the

low-level policy format (we use the Rego policy format)

for the enforcement.

• Edge Synchronizer: receives the low-level policy and the

tenant-specific context data from the messaging service

and synchronizes the updated values to the PDP for the

enforcement.

C. Data Contracts and Enforcement Policies

1) Contracts: There are many models for data contracts of

IoT services in the literature. In our work, we leverage and

extend the common Identify and Access Management (IAM)

concept [12] to define the contract model with the following

aspects.

• Principal/Id: represents the identification of the tenant.

• Name: describes overview of the contract.

• Effect: specifies the permission of a given resource such

as Allow and Deny.

• Resource: indicates the list of the IoT resource ID that

the contract affects.

• Actions: specifies the tenant requests such as publish and

subscribe.

• Conditions: specifies constraints based on some attributes

that are dependent on runtime inputs such as system-wide

or application-level contexts. We support two types of

conditions: AnyOf and All that can be combined to in-

clude multiple specific conditions based on the attributes.

We use JSON to define the contract model. Listing 1

illustrates a shorten example of a tenant-specific contract

(Tenant 1’s contract) in which city surveillance video data only

visible to Tenant 1’s users if more than 30 people showing up

at the same time, or any violent behaviors detected in the

last minute [13]. For another tenant (Tenant 2, e.g., a fire

department), the contract for viewing city surveillance video

data is defined for rescue missions only when the fire alarm

A triggered (Listing 2).
2) Tenant-specific enforcement policy: Once the Hub owner

establishes a contract with a tenant, a specific instance of the

Fig. 1. Our proposed framework with an Edge IoT Data Hub.

1{ "tenant":"tenant-2",
2 "contracts":[
3 {"Name":"Allow streaming camera when fire alarm

triggered",
4 "Action":["subscribe"],
5 "Effect":"Allow",
6 "Resource":["/smartcity/camera/stream/country_x

/city_y/store_z/city_surveillance"],
7 "Conditions": {
8 "AnyOf":[{"object":"fire_alarmA","location

":"store_z",
9 "alarm_last_5mins": {"gt": 0}}

10],
11 "All":[
12 {"object":"data_amount","protocol":"mqtt

",
13 "lasthour_mb":{"lt": 2000}},
14]...
15}

Listing 2. Tenant2’s contract example

contract for the tenant is generated and stored in our Contract

DB. The contracts in JSON format will be transformed into a

low-level policy format that can be used for the PDP in the

Hub to make decision per data access request. There are two

main approaches of the logic code for checking the permission

and making the decision at a PDP. The first approach is to have

an all-in-one code to evaluate the permission based on the

contracts of all tenants. However, this approach might require

a complex implementation that can cover all cases that can

happen in the contracts. The second approach is to generate

logic code for each tenant from the contract information,

making the code has smaller footprints. We have chosen

the second approach because of the benefits of lightweight

decision points, such as the easiness to change the logic code

and the speed when evaluating the permission.

To demonstrate the second approach, we use OPA [11] for

policy enforcement with runtime parameters and leverage its

Rego policy language to define the policy. In OPA, the Rego

policy is employed to evaluate the runtime context. While the

runtime data changes frequently, the Rego policy is created

during the initialized process and only re-created/updated

when the contract is updated. Listing 3 shows the Rego policy

example used in our framework. This Rego policy is trans-

1package app.iot
2
3default allow = false
4default whitelist = false
5allow{ whitelist }
6
7whitelist {
8 #Validate-Action
9 some i

10 actions := ["subscribe"]
11 actions[i] == input.action
12
13 #Validate Resource
14 some j
15 resources := ["/smartcity/camera/stream/country_x/city_y/

store_z/city_surveillance"]
16 regex.match(resources[j], input.topic)
17
18 #Validate Condition AnyOf
19 var_any_c_0 := data["context_data"]["people_count"]["

store_z"]["max_5mins"] > 30
20
21 var_any_c_1 := data["context_data"]["violence_detection"]

["store_z"]["violence_last_1mins"] > 0
22
23 conditions_anyof := [var_any_c_0,var_any_c_1]
24 some k
25 conditions_anyof[k] == true
26
27 #Validate Condition AllOf
28 var_all_c_0 := data["context_data"]["data_amount"]["mqtt"

]["lasthour_mb"] < 3000
29 conditions_allof := [var_all_c_0]
30 conditions_allof_negative := {value | value =

conditions_allof[_]; value == false}
31 count(conditions_allof_negative) == 0
32}

Listing 3. A tenant-specific policy example in Rego language transformed
from the contract in Listing 1.

formed from and corresponding with the contract described in

Listing 1.

The Rego policy must be updated to the PDP, e.g., im-

plemented using OPA in the Hub when a tenant contract

is established or changed. Therefore, we need an automated

process to synchronize a tenant contract to the PDP as a

Rego policy. To this end, we have developed a method to

transform the contract defined in the management side (in

JSON presented previously) on the Cloud to the logic code

in the decision points (Rego file) on the Hubs. The generation

process is triggered independently per tenant at the first

deployment time or when the tenant’s contract changes at any

point in time. We describe this transformation process below.

3) Generation and synchronization of tenant-specific en-
forcement policy: The process involves four components in

both Cloud and the Hub (Fig. 1), including the Policy Gener-
ator that contains the primary logic to transform the low-level

policy to the Rego policy, the Messaging System transmitting

the generated Rego policy from the Cloud to the Edge Hub,

the Edge Synchronizer listening to the corresponding event

from the Messaging System to update the Rego policy to the

PDP, i.e., the OPA component.

The Policy Generator component is the most important

and challenging in this flow. Typically, a tenant has multiple

contracts that define their permissions to various IoT data

sources in different context-based conditions. We implement

a set of rules as a template engine that supports converting

the meta-model and the context structure into a Rego policy.

The template engine in the Policy Generator component is

extensible with new conditions and context information; thus,

our system can handle a new type of contract without changing

the entire framework. The Policy Generator transforms each

tenant contract separately in a final Rego file (tenant-specific
policy) using the white-listing and black-listing approach. This

approach requires an operation, i.e., a resource access request

must meet the action, the resource, and the conditions specified

in the policy before checking the decision among allow, deny,

neutral. Beyond that, the final decision is made after going

through all policies. Resource access from a tenant is only

authorized if at least one allowed policy matches while no

one is detected.

Because there are many Hubs connected to the Cloud

system, we need a scalable mechanism to synchronize data

contexts and enforcement policies between the Cloud and

the Edge. As a demonstration, we use the Apache Kafka

framework [14] to implement the Messaging System for syn-

chronization. We note that the Kafka framework might not

sufficient in a large-scale edges, however, we assume that the

Hub with context sensing is a part of the network where

a Kafka consumer/producer will be executed. Thus, it can

reduce the technical challenges due to network configuration

and consensus protocols between Edge and Cloud. The Policy
Generator component will send the generated tenant-specific

policy to the Messaging System as a Kafka topic with the

payload of the Rego policy and the tenant’s identification.

The Messaging System will send the message topic to the

corresponding Edge Synchronizer in the Edge for updating

the Rego policies in the PDP for that specific tenant.

D. Context Sensing

Context sensing is a component that generates context data

based on metadata and real-time data of IoT data sources.

Our framework supports two main categories of IoT contexts:

system contexts and application-level contexts.

1) System-wide contexts: This context category is about

common, well-understood attributes of data usage such as

data amount, times, and duration. These contexts are real-time

1 "All":
2 [{"object":"data_amount","protocol":"mqtt","lasthour_mb":{

"lt": 3000}},
3 {"object":"data_amount","protocol":"mqtt","last24hour_mb":

{"lt": 30000}}]

Listing 4. Volume-based policy configuration.

but independent of the data values. For example, the daily

volume limit to access camera data is a system-wide context.

We define these system-wide contexts in the high-level policy

specification for tenant contracts. Listing 4 is an example of

a system-wide context policy with volume-based context that

limits hourly data access to 3, 000MB and daily access to

30, 000MB. The context sensing component will update the

context data based on relevant system events to synchronize

with the OPA enforcement component.
2) Application-level contexts: There are different types of

real-time data from a data source that can generate contexts

for the policies. These include raw data from sensors such as

temperature or data generated by AI services from IoT devices

such as the number of people or an accident captured in a

camera. Similar to the system-wide contexts, we also leverage

these application-specific contexts for our policy specification.

Listing 5 illustrates such an application-specific context policy

that involves a threshold policy with the number of people.

1"AnyOf":
2[{"object":"people_count","location":"store_z","max_5mins":

{"gt": 35}},
3{"object":"fire_alarm","location":"store_z","alarms_last_5

mins":{"gt": 0}}],

Listing 5. An example of application-specific context: people count.

There are two main approaches to implementing context

sensing. The first approach is to allow both raw and context

data to go through a proxy or gatekeeper as a context sensing

before forwarding it to end-users. The second approach is to

fan out two data flows, one used for context-sensing, the other

data flow going to be forwarded to the end-users via a Virtual

Hub if the PDP approves it. In this work, we employ the

second approach by developing a plug-in API for each type

of context data. By doing so, we can add new plug-ins to

generate new context data when a new context type from a

new data source is added.

A common principle of a context-sensing plug-in in the

Context Sensing component is to listen to the fan-out data flow

in the Data Gateway to capture the selective IoT data used as

context data. Depending on the context, either system-wide or

application-level context, the plug-in can use an aggregation

method (e.g., average, sum, max, min), or employ an AI

component (e.g., for people count) to generate runtime context

data as a context-based variable described above. The Context
Sensing component will send these runtime generated values

to Messaging System on the Cloud as Kafka topics. Upon

receiving a context data message, the Messaging System will

trigger Context-based Integration Worker component to gen-

erate the tenant-specific context data based on tenant contracts

of relevance. The tenant-specific context data are synchronized

back to the Edge for enforcing the corresponding context-

based policies.

E. Tenant-specific Context Data Generation& Synchronization

Fig. 2 depicts the entire data flow and process of using

context data from a data source to generate and update the

corresponding tenant-specific context data for runtime policy

enforcement.

At the first step, the Context Sensing component listens to

the Data Service to capture the selective IoT data that is going

to be used as context data. We develop aggregation methods

(i.e., average, sum, max, min) for some given windows such

as 5 minutes, 15 minutes, last hour, last 24 hours to create

context-based variables described in Section III-D. These vari-

ables are transmitted to a communication channel via a Kafka

topic for delivering the context data from the Edge Hubs to

the Cloud. Table I shows the samples of the existing window-

specific variables that are selected to be used as the tenant-

specific context variables later on. This list can be extended

when we introduce new contexts. In the current prototype, we

implement the method manually; however, it can be replaced

or integrated with a standard other solution such as Apache

Flink.

The vital component in this process is the Context-based
Interpretation Worker that listens for context data from the

Messaging System to generate tenant-specific context data

based on tenant contracts. The Context-based Interpretation
Worker listens on the corresponding Kafka topic to create

a global context database. Based on each tenant contract of

relevance, only selected context variables are used to generate

an updated version of the tenant-specific context data, as

described in the pseudo-code in Algorithm 1.

Data: Context data, Contracts

Result: Tenant-specific context data are selected for all

tenants

forall tenant’s contracts in Contracts do
read current contract;

initialize tenant context;

forall policy rows in current contract do
read current contract policy row;

forall context variables in the policy row do
read current context variable;

if context variable does not exist in
tenant context then

extract context variable value from

Context data;

append the read current context variable

and it’s value to tenant context;

end
end

end
end

Algorithm 1: Illustration of the Context-based Interpreta-

tion Worker component.

Finally, each generated tenant-specific context data together

with tenant identification will be wrapped in a payload as a

Kafka topic to be sent back to the Data Hub via the Edge
Synchronizer component in the Hub. Similar to the policy syn-

chronization process presented previously, this synchronizer

also captures related Kafka topics for tenant-specific context

data and updates them to the PDP for tenant-specific policy

enforcement. Our demonstrated PDP implementation using

OPA needs both Rego policy (static) and inputs from this

context data (runtime) for each tenant to decide the access

permission, e.g., allow or deny of a given access request.

IV. EVALUATION

In this section, we present our proof of concept implementa-

tion and the experimental results to demonstrate the soundness

and effectiveness of our proposed framework.

A. Prototype Implementation

In the previous section, we have partly shown the implemen-

tation choices for our framework in Fig. 1. For the Data Ser-

vice at the Hub, we support and implement the MQTT, RTMP,

and HTTP Live Streaming protocols. We use MongoDB to

store our contracts. We use Node.js to implement the Tenant-
specific Policy Generation and Context-based Interpretation
Worker components. In addition, we employ PugJS [15] as a

template engine that uses static predefined template files to

generate the final Rego files within this component. The static

template files contain static strings and variables, including

many functions, using their own defined markup language.

The prototype is available on GitHub2.

B. Experiment Settings

We use a real-world IoT sharing scenario mentioned in the

motivating example in §II to evaluate the effectiveness of our

proposed enforcement framework. In particular, we validate

the following significant factors in our system: i) tenant

contracts are correctly transformed to enforcement policy; ii)

tenant-specific context data is captured and updated in the

enforcement system at runtime; iii) dynamic policies with

runtime contexts are soundly enforced for each tenant.

To this end, we consider a store with a surveillance camera

illustrated in Fig. 3. In this system, the store camera video can

only be viewed by the surveillance team within that store. The

store will be a data provider in our system with the data source

of the video publishing to the Hub using RTMP protocol.

This scenario has three tenants, including an AI company, a

local police department, and a local health department. These

tenants connect to the Data Hub to subscribe the data from

the store data provider. Each tenant establishes a different

contract with specific runtime contexts. For example, the AI

company (tenant-1) can only use video data to perform AI

analysis during office hours. The health department (tenant-2)

can only view the camera stream from the Data Hub if the

number of people in the video is, e.g., more than or equals 30

at a time. Finally, the police department (tenant-3) can only

2The full link is removed for double-blind review

Fig. 2. Sequence diagram of tenant-specific context data generation

TABLE I
DATA HUB CONTEXTS VARIABLES

Attribute Primary Index Context variables Description

data amount
rtmp lasthour mb , last24hour mb The data throughtput
mqtt lasthour mb , last24hour mb accumulated.

people count store z
max 5mins , min 5mins, The aggregated
avg 5mins ,max 15mins people count.
min 15mins, avg 15mins

fire alarm store z
alarm last 5mins Alarms in the last

alarm last 10mins X minutes
alarm last 15mins

violence detection store z
violence last 1min Violences in the last
violence last 5mins X minutes

violence last 15mins

Fig. 3. Evaluation scenario of a camera system in a store department

view the camera stream from the Data Hub if the number of

people in the video is, e.g., more than or equals 15 in the last

5 minutes. In this example, tenant-1 has a dynamic contract

with a system-wide context, i.e., office hours; tenant-2 has a

dynamic contract with an application-level context, i.e., the

number of people; and the contract of tenant-3 consists of

both application-level context (people count) and system-wide

context (last 5 minutes).

We have set up the Cloud and the Hub infrastructure on

Amazon AWS with m5.xlarge instances using Docker. All

cloud-related services such as the Kafka cluster and database

(MongoDB) cluster are deployed in an EC2 instance to simu-

late the Cloud infrastructure. On the other hand, we leverage

four m5.large instances to set up the MQTT clusters, and

hub-related services.

C. Experiments and Validation
To perform our experiments, we simulate the scenario

described in §II by developing corresponding applications

representing the data providers and tenants in the system. In

addition to the key components developed and described in

§III, we have developed context sensing plugins, including

an AI-based plugin extracting people count (application-level

context) from video and an aggregation service generating sys-

tem contexts such as average, sum, max, and min. We deploy

the applications and service components to an m5.xlarge
instance on Amazon using Docker compose. In the Cloud, we

use a Docker-compose cluster to deploy the Messaging System
(Kafka), and another Docker-compose cluster for Context-
based Interpretation Worker and Tenant-specific Policy Gen-
eration.

We performed the experiments on two Raspberry PIs with

an attached camera validate runtime performance and func-

tionalities. To validate runtime contexts such as people count,

we need real data, therefore, we use a video as a data source

in our system. We have validated the following features of our

framework.

1) Dynamic policy enforcement with runtime context data:
We have tested our system in two levels of data amount: 1) a

recorded video as a data source and 2) a simulation of 20,000

sensors that produce one message per second. We observed

that runtime context data from our context sensing component

is generated correctly and synchronized in realtime with the

PDP through our cloud-based services so that the dynamic

policies can be enforced properly.

In particular, in our experiments, the health department can

watch the video through the Data Hub only when the number

of people detected in the video is 30 or greater. The video

permission is denied/revoked if the threshold does not reach.

Similarly, according to the contract, the police department

(tenant-3) can only access the video if the number of people

in the video in the last 5 minutes is equal to or greater than 15.

Our experiment showed that the runtime context data of people

count within the last 5 minutes are adequately generated and

updated; as a result, this tenant has access permission when

the context variables reach the threshold.

2) Performance and Overhead: To evaluate the perfor-

mance and overhead of our framework, we set up two 4-

instance MQTT clusters. The first cluster has only the au-

thentication mechanism, and the second one integrates with

our policy enforcement mechanism and the OPA module

for authorization per on events of publishing a message,

subscribing a topic, forwarding a message to a subscriber.

We also set up an instance for benchmarking two clusters

using an MQTT stress testing tool. To compare the overhead

in two clusters, we use the tool to publish to both clusters with

the frequency of 20,000 messages per second by simulating

20,000 MQTT clients publishes once message per second in a

minute. On the other hand, 20,000 MQTT clients subscribes

to fetch all messages. It’s noticeable that the publishing rate

is static, and both clusters can handle that rate. We measure

the overhead by evaluating the receiving rate. The median

receiving rate times without and with our policy enforcement

are 82,969 messages per second and 70,801 messages per

second respectively, resulted in 17.2% in overhead of the

enforcement mechanism, as described in Table III. We also

notice that there are some outliers in the result produced by the

cluster with OPA integrated. In our observation, the overhead

is acceptable for the cost of authorizing the tenants on every

single requests.

We also performed experiments to evaluate the response

times of our system when a policy or a context value is

changed at runtime. For the policy change, we measured the

times for the policy is updated to the database, and when it

is propagated to the OPA module. We also performed the test

for 10 times to get the average numbers. For the rendering

the Rego policies update in the database, it responds almost

immediately without delay. However, the average time to

deliver the policies over the network to update to the OPA

takes around 18.5 ms.

In the third experiment, we evaluate how the system scale

with a larger number of tenants when a context is changed. We

tested with 100 tenants in propagating the context value from

the data source to the OPA policy module. In this context-

change scenario, we set a timer starting when the context

changes until it is evaluated and published to the OPA. Since

a context change may affect many tenants, we measured the

propagated time of the first and the last tenants among 100 of

them. Table II describes the times we measured. On average

over 100 tenants, it takes about 1.64 ms to process and update

the new context to an OPA instance.

D. Discussions on Edge-based services and policies evolution

1) Policies evolution: Our proposed framework can support

the evolution of edge-based services and policies enforcement.

Whenever a new IoT data provider is partnering with the IoT

Hub, their data schema and protocols are in synchronization

with the IoT Hub system. In other words, the on-boarding

process for new IoT data providers is done in the background

in which the IoT data provider can work closely with the IoT

Hub provider to make sure their data are properly available

to the Data Hub. Our focus is on the process of new tenants

subscribing to new data sources and can access to new data

according to tenant-specific dynamic contexts. Let us consider

an updated scenario when Tenant 1 is updating its contract

for its system can access to surveillance cameras’ data in case

of fire. For this existing tenant, the additional context is the

status of fire alarm triggered. This means that there will be

an updated policy in the contract database that extends the

existing policy with the newly added context based on the fire

alarm status (Line 4, Listing 6).

1"AnyOf":
2[{"object":"people_count","location":"store_z","max_5mins":

{"gt": 30}},
3{"object":"violence_detection","location":"store_z","

violence_last_1mins": {"gt": 0}}
4{"object":"fire_alarmA","location":"store_z","alarms_last_5

mins":{"gt": 0}}],

Listing 6. An example of an updated policy.

The rest of the enforcement is propagated from the new

contract in the Cloud for generating the updated Rego policy,

which is then synchronized into the OPA engine in the Edge.

TABLE II
CONTEXT CHANGE PROPAGATION TIME (IN MS)

Earliest Receiving Time Last Receiving Time Extra propagation time for a new tenant
Maximum 103 275 2.3
Minimum 36 155 1.05
Average 46 210 1.64

TABLE III
MEDIAN RECEIVING RATE (MPS) REPORT IN TWO MQTT SYSTEMS

Test cases With OPA Test cases Without OPA
64514 77923
93113 79480
89211 82766
88202 85230
71152 85353
92630 78365
67992 84292
63998 86298
73503 84390
36504 78594
63881 88390
44916 84552

Average: 70801 Average: 82969

2) Advanced contexts and trustable data sharing: Nowa-

days, there are many advanced and dynamic contexts available

in practice that can be deployed and integrated into our

proposed framework. For example, in emergency situations,

we can have many dynamic contexts such as fire alarms,

flood, traffic accidents. These contexts can also be imported

from/provided by machine learning applications (in today

deployment, such applications can be executed within the IoT

devices, e.g., smart cameras and drones).

Especially, our framework can lay a foundation towards end-

to-end dynamic industrial data sharing with traceability, trust,

and security. In advanced scenarios where supply chain stake-

holders call for an innovative way of trustable data sharing

across companies, the dynamic contexts of data sharing (used

in OPA for authorization) together with other key (business

critical) transaction data can be stored in a traceability layer.

Distributed ledger/blockchain and smart contract technolo-

gies will be used to ensure traceability and integrity of the

data, enabling trustworthy and secure data exchanges. Our

framework can be extended with such a traceability layer by

implementing a secure proxy/connector integrated with the

data service to allow all stakeholders to contribute to the same

ledger/blockchain of the supply chain/ecosystem.

Our framework uses OPA for policy decision, which is very

popular in the industry, including OPA for the Cloud, and

network. Therefore, our proposed framework is compatible

and can be integrated into existing industrial ecosystems.

V. RELATED WORK

The sensing as a service model presented in [2] shows

the vision of utilizing (cross-sector) multi-parties IoT (data)

resources to accommodate large numbers of consumers, which

is making more sense in smart cities nowadays. However, it

is still a long way to fulfill the vision, with few work that

have barely made it any further. Our work on context-specific

policy access controls can contribute to such sensing-as-a-

service scenarios.

In [16], the authors present a context-aware security (con-

ceptual) framework with the context management that makes

use of context information and access control policies (e.g.,

XACML [17]) for secure data sharing decisions. They propose

a secure data sharing mechanism for groups of smart objects

according to contextual data. Their framework however does

not address edge-based enforcement solutions for controlling

cross-sector data sharing driven by dynamic contexts. In

the same direction, the authors of [18] propose an edge-

centred context sharing architecture. This study described an

architecture that makes security decisions based on shared

context information from multiple domains. However, this

architecture is only a conceptual model because [18] is without

any concrete enforcement solutions.

D. Preuveneers et al. [19] make use of the UMA OAuth

2.0 extension which extends OAuth 2.0 from only authorizing

applications to access on a subject’s behalf (person-to-self),

to allowing person-to-party (person-to-person and person-to-

organization) authorization by delegating access to third par-

ties such as other individuals or organizations [20]. To define

and enforce access policies in [19], the policy execution engine

Open Policy Agent (OPA) [11] is used. OPA uses a JSON

based policy language named Rego that is efficient in terms

of parsing and policy size [19]. Even though the approach

in [19] follows the same direction with our work, and also

using OPA for the policy enforcement engine, it does not

yet show the support for utilizing (cross-sector) multi-parties

IoT (data) resources to accommodate large numbers of con-

sumers. Nguyen et al. [4] uses the gatekeeper design pattern

that deploys a policy enforcement instance for each tenant

application in the Edge. The gatekeeper works as a gateway

by intercepting all incoming requests, decouples access control

logic from the application’s business logic, and enables real-

time policy updates by redeploying the gatekeeper. However,

no dynamic IoT context is supported in their approach.

There are quite some IoT Data Marketplace approaches such

as [6], [21], [22] that focus on using blockchain technology

and/or smart contracts to enable IoT data sharing. The main

point in [6], [21] is about the application of blockchain/smart

contracts to IoT data sharing for no trusted parties. However,

these approaches do not touch upon IoT data sharing for

trusted parties where data being shared are based on contracts

via an intermediary and with dynamic contexts that can bring

great values to the involved parties. The approach in [21] also

employs an efficient proxy re-encryption mechanism, ensuring

that the data is only visible to the data owner and the person

present in the contract. In a similar direction, by employing

the blockchain as an auditable and distributed access control

layer to the data layer, the authors of [22] enable secure data

sharing and resilient access control management.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a framework that allows

dynamic context IoT data sharing on the Edge based on con-

tract agreements for multiple parties. This is a significant step

forward to realize the vision of utilizing (cross-sector) multi-

parties IoT (data) resources to accommodate large numbers

of consumers. We have tackled one of the most challenging

problems in this direction by proposing an Edge-based security

enforcement framework that enables multi-parties IoT (data)

resources to be shared based on contracts, and especially

with dynamic IoT contexts. Our proof-of-concept prototype

has shown how the proposed framework can be implemented

and properly enforced dynamic context-based policies for

accessing IoT data on the Edge for different tenants.

Future work includes doing more experiments with the

scalability of our framework implementation for possible

refinement. The framework can be developed further to even

allow the deployment of tenant applications to be executed

inside the Hubs. This means that the Hub controls not only

IoT data being shared with tenants (externally) but also tenant

applications being deployed and executed right in the Edge

for better real-time data usage. Our proposed framework can

also be combined with Data Marketplace approaches using

blockchain and/or smart contracts technology to record the

provenance of context-based IoT data sharing transactions.

This way can fortify the trustworthiness of the framework

for all the involved parties because the key data of every

transaction, such as application-level contexts, system-level

contexts, data quality, can be recorded securely by design.

REFERENCES

[1] S. Jernigan, D. Kiron, and S. Ransbotham, “Data sharing and analytics
are driving success with IoT,” MIT Sloan Management Review, vol. 58,
no. 1, 2016.

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 1, pp. 81–93, 2014.

[3] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[4] P. H. Nguyen, P. H. Phung, and H.-L. Truong, “A security policy
enforcement framework for controlling iot tenant applications in the
edge,” in Proceedings of the 8th International Conference on the Internet
of Things, ser. IOT ’18. New York, NY, USA: Association for
Computing Machinery, 2018.

[5] K. Mišura and M. Žagar, “Data marketplace for Internet of Things,”
in 2016 International Conference on Smart Systems and Technologies
(SST), 2016, pp. 255–260.

[6] K. R. Özyilmaz, M. Doğan, and A. Yurdakul, “IDMoB: IoT Data
Marketplace on Blockchain,” in 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT), 2018, pp. 11–19.

[7] E. de Matos, R. T. Tiburski, C. R. Moratelli, S. Johann Filho,
L. A. Amaral, G. Ramachandran, B. Krishnamachari, and F. Hessel,
“Context information sharing for the internet of things: A survey,”
Computer Networks, vol. 166, p. 106988, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128619310400

[8] T.-D. Cao, T.-V. Pham, Q.-H. Vu, H.-L. Truong, D.-H. Le, and
S. Dustdar, “Marsa: A marketplace for realtime human sensing data,”
ACM Trans. Internet Technol., vol. 16, no. 3, may 2016. [Online].
Available: https://doi.org/10.1145/2883611

[9] M. Blackstock and R. Lea, “Iot interoperability: A hub-based approach,”
in 2014 international conference on the internet of things (IOT). IEEE,
2014, pp. 79–84.

[10] M. Bajer, “Building an iot data hub with elasticsearch, logstash and
kibana,” in 2017 5th International Conference on Future Internet of
Things and Cloud Workshops (FiCloudW). IEEE, 2017, pp. 63–68.

[11] “Open policy agent,” https://www.openpolicyagent.org/.
[12] I. Security, “Designing a modern IAM program for your business,”

https://www.ibm.com/downloads/cas/9YBEK41O, 2020, whitepaper.
[13] M. Ramzan, A. Abid, H. U. Khan, S. M. Awan, A. Ismail, M. Ahmed,

M. Ilyas, and A. Mahmood, “A review on state-of-the-art violence
detection techniques,” IEEE Access, vol. 7, pp. 107 560–107 575, 2019.

[14] “Apache Kafka,” https://kafka.apache.org/, (Accessed on 08/21/2021).
[15] “PugJS,” https://pugjs.org/api/getting-started.html, (Accessed on

03/27/2021).
[16] J. L. Hernandez Ramos, J. B. Bernabe, and A. F. Skarmeta, “Managing

context information for adaptive security in iot environments,” in 2015
IEEE 29th International Conference on Advanced Information Network-
ing and Applications Workshops, 2015, pp. 676–681.

[17] O. Standard, “extensible access control markup language (xacml)
version 3.0,” A:(22 January 2013). URl: http://docs. oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en. html, 2013.

[18] E. de Matos, R. T. Tiburski, L. A. Amaral, and F. Hessel, “Providing
context-aware security for iot environments through context sharing
feature,” in 2018 17th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/ 12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), 2018, pp. 1711–1715.

[19] D. Preuveneers and W. Joosen, “Towards multi-party policy-based access
control in federations of cloud and edge microservices,” in 2019 IEEE
European Symposium on Security and Privacy Workshops (EuroS PW),
2019, pp. 29–38.

[20] “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization,”
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html.

[21] A. Manzoor, M. Liyanage, A. Braeke, S. S. Kanhere, and M. Ylianttila,
“Blockchain based proxy re-encryption scheme for secure iot data
sharing,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019, pp. 99–103.

[22] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy,
“Towards blockchain-based auditable storage and sharing of iot
data,” in Proceedings of the 2017 on Cloud Computing Security
Workshop, ser. CCSW ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 45–50. [Online]. Available:
https://doi.org/10.1145/3140649.3140656

