
Multi-Agent Persistent Monitoring of Targets with Uncertain States
Samuel C. Pinto, Student Member, IEEE, Sean B. Andersson, Senior Member, IEEE, Julien M. Hendrickx,

Member, IEEE and Christos G. Cassandras, Fellow, IEEE

Abstract—We address the problem of persistent monitoring,
where a finite set of mobile agents has to persistently visit a
finite set of targets. Each of these targets has an internal state that
evolves with linear stochastic dynamics. The agents can observe
these states, and the observation quality is a function of the
distance between the agent and a given target. The goal is then to
minimize the mean squared estimation error of these target states.
We approach the problem from an infinite horizon perspective,
where we prove that, under some natural assumptions, the
covariance matrix of each target converges to a limit cycle. The
goal, therefore, becomes to minimize the steady state uncertainty.
Assuming that the trajectory is parameterized, we provide tools
for computing the steady state cost gradient. We show that, in
one-dimensional (1D) environments with bounded control and
non-overlapping targets, when an optimal control exists it can
be represented using a finite number of parameters. We also
propose an efficient parameterization of the agent trajectories
for multidimensional settings using Fourier curves. Simulation
results show the efficacy of the proposed technique in 1D, 2D
and 3D scenarios.

I. INTRODUCTION

We consider the problem of multi-agent persistent monitor-
ing. This problem consists of using a finite set of cooperative
agents to monitor a finite set of targets, more numerous than
agents, which have internal states that evolve over time with
dynamics subject to uncertainty. Therefore, as time goes to
infinity, in order to keep the uncertainty under control, the
targets need to be visited not only a finite number of times, but
persistently. The goal is to minimize the long-term uncertainty
by designing movement policies that produce the best estimate
possible of the target states. This paradigm finds applications
across a wide range of domains, such as trajectory planning
of underwater vehicles to measure ocean temperature [1]–
[3], surveillance in smart cities [4] and tracking of multiple
microparticles by an optical microscope [5].

This problem is closely related to the Multi Traveling
Salesman Problem (MTSP) [6] and Multi-Vehicle Routing
Problem (MVRP) [7], where, given a set of targets (possibly
constrained to a graph-based structure), the goal is to find a
cycle in which the agents efficiently visit all the targets in order
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to minimize the traveled distance or total travel time. These
problems are proved to be computationally intractable (NP-
hard) and most of the scalable solutions to these problems rely
either on local optimization or heuristics [6]–[8]. The major
differences between the MTSP and MVRP and the problem
we are dealing with in this paper are that the optimization goal
we consider is to minimize the uncertainty rather than distance
or time between two consecutive observations of a given target
and that in persistent monitoring, agents can also cooperate to
observe the same node. The present work is also closely related
to the sensor allocation problem [9], where a set of sensors can
observe a set of targets, but due to various constraints not all
the targets can be observed at the same time and, therefore,
some of the sensors have to switch among the targets they
observe. The sensor allocation problem, however, assumes that
the sensors are fixed and therefore does not incorporate the
effect of the agent movement (i.e. the mobile sensors) in the
formulation.

In the realm of persistent monitoring, significant previous
work has been done. Some of these works aim at planning
agent trajectories in order to maximize the chance of detecting
events happening randomly at specific locations in the mission
space [8], [10]. Our work, however, considers a version of
Persistent Monitoring which was introduced in [11], where the
goal was to sense and estimate a process evolving at a fixed
location in space rather than detecting events. Nonetheless,
[11] does not discuss efficient solutions to the problem it
proposed. [2], [12] introduced an optimal control approach
that relied on a solution of the two-point boundary value
problem resulting from a Hamiltonian analysis. The solution
of the two-point value problem is numerically challenging
and computationally expensive. In [13] the persistent moni-
toring problem is formulated using temporal logic to encode
target visiting constraints rather than solving an optimization
problem. Additionally, [1] introduces a variant of the Rapid-
Exploring Random Tree (RRT) algorithm designed for cyclic
Persistent Monitoring in discrete time. However, previous
work [14] has shown that this algorithm can fail to converge
within a reasonable time even in setups with few targets and a
single agent, especially when the process can only be sensed
from a finite range from the targets.

The present paper also builds up from significant previous
work by the authors [15]–[17], where the problem of persistent
monitoring was modelled using an uncertainty metric for each
of the targets that either grew linearly with time when the agent
was not observed or decreased linearly when an agent visited
it. A common feature among these previous works and the
present paper is the focus on scalable solutions with respect
to the number of agents, targets and time horizon. Therefore,
instead of looking for globally optimal visiting schedules, we



use a local optimization scheme (gradient descent) even though
the obtained solution is not guaranteed to be globally optimal.
One big challenge in order to use a gradient descent approach
is to efficiently compute the gradients of the cost with respect
to the parameters that define the trajectory.

The current work, unlike some previous work by the au-
thors, considers each target as having an internal state that
evolves with linear stochastic dynamics that can be observed
with a linear observation model, which is a much more natural
model for performing estimation. In this case, the uncertainty
metric does not need to be externally modeled, but rather arises
naturally from the estimation process. The signal to noise ratio
of the observation is a function of the distance between the
agent and the target. In this setting, the optimal estimator can
be proven to be a Kalman-Bucy filter and the mean estimation
error is directly related to the covariance matrix of this filter.
The main contribution of this paper is to provide tools to
efficiently represent and optimize the schedules for agents
visiting targets. If we consider finite horizon schedules, as
time grows to infinity, the number of parameters to represent
a trajectory also tends to grow infinitely large. We, however,
restrict ourselves to a periodic trajectory and approach the
problem from an infinite horizon perspective. We show that
under some very natural assumptions the estimation error
converges to a limit cycle and we provide tools for optimizing
one period of the limit cycle trajectory, which usually is
represented by only a small number of parameters. We note
that most of the previous work in the field [2], [11], [12]
focuses on transient versions of the problem, and algorithms
tend to scale with the time horizon. This present approach,
however, by explicitly considering the infinite-horizon problem
is able to efficiently optimize the long-term trajectory in a
computationally efficient manner. We highlight that, since the
goal is to monitor the process persistently, being able to
efficiently handle long time horizons is essential. To the best
of the authors knowledge, the only other work that addresses
the multi-agent infinite horizon version of the problem is [1],
but its unguided probabilistic exploration of the environment
algorithm makes it unreliable even in simple setups [14].

Although the analysis introduced in this paper is indepen-
dent of the particular parameterization chosen for the trajec-
tory, we discuss two parameterizations that are particularly
interesting. When the targets and agents are constrained to lie
in a one-dimensional environment, we show that, under some
assumptions, an optimal control can always be represented by
a trajectory in which the agent is either moving with full speed
or dwelling at a fixed position. This allows optimal trajectories
to be described as a finite sequence of movement times and
dwelling times, yielding a parameterization. On the other hand,
when the agents and targets operate in a higher dimensional
space (e.g. 2D and 3D), we cannot immediately extend such
properties of an optimal control. We then parameterize the
trajectories using Fourier curves, where the movement of an
agent in each of the coordinates is described by a truncated
Fourier series. Fourier curves are interesting because they are
able to describe very general smooth movement policies with
only a very small number of coefficients.

Recalling the goal of performing local optimization using a

gradient descent scheme, it is particularly important to provide
good initial solutions for the optimization. We thus connect
the persistent monitoring problem with the MTSP and use
a heuristic solution to the MTSP as a basis for the initial
trajectory of the agents in the optimization scheme. We benefit
from the fact that efficient heuristic solutions of the MTSP are
well studied in the scientific literature and that they always
provide an initial trajectory where all the targets are visited.
This is a very important feature for persistent monitoring,
since it prevents the uncertainty of each target from becoming
infinitely large.

Preliminary results of this work have appeared in previous
publications. In [18], the target internal state dynamics and
observation models, as well as the 1D transient analysis were
introduced. The computation of steady state gradients and
infinite horizon analysis was first introduced in [19]. The
extension to multi dimensional environments using Fourier
curves was initially presented in [20]. However, the approach
described in our previous works was heavily dependent on
the specific parameterization and in the present work we
formulate the problem in a general framework that does
not rely on the specific parameterization. Moreover, in Sec.
III we provide a proof that guarantees the convergence and
uniqueness of the steady state covariance matrices and also
we show the soundness of our method to compute the steady
state gradients. On top of that, we provide a stronger claim
than we did in [18] about an optimal parameterization of 1D
trajectories. Previously, we were only able to show that it can
be parameterized, but now we provide an explicit bound on
the number of parameters. Moreover, in Sec. V we include
simulation results that significantly add to the results of our
previous work [20].

The rest of this paper is organized as follows. Section II
describes the models used for the agents and the target internal
states, along with a formulation of the optimal joint control
and estimation problem. Section III presents results on the
convergence of the covariance matrix and the optimization
procedure is given for the periodic, infinite horizon case.
Section IV introduces the 1D parameterization, along with
its properties, optimization initialization and some simulation
results. In Sec. V, some features of the previous section are
extended to higher dimensions using Fourier curves and 1D,
2D and 3D results are presented. Finally Sec. VI gives a
conclusion and shares ideas for future works.

II. PROBLEM FORMULATION

Consider an environment with a set of M points of interest
(targets) at fixed positions xi ∈ RP , i = 1, ...,M . Each of
these targets has an internal state φi ∈ RLi that needs to be
monitored and that evolves according to linear time-invariant
stochastic dynamics:

φ̇i(t) = Aiφi(t) + wi(t), (1)

where wi(t) is a white noise process distributed according to
wi(t) ∼ N (0, Qi), i = 1, . . . ,M, and wi(t) and wj(t) are
statistically independent if i 6= j. This additive noise imposes
an increase over time of the uncertainty in the estimate of the
the state φi(t).



Suppose that there is a collection of N mobile agents at
positions si(t) ∈ RP that can freely move over the mission
space with the following kinematic model:

ṡj(t) = uj(t), uj(t) ∈ U , j = 1, ..., N, (2)

where uj is an input, and U is the set of admissible inputs.
Even though we assume, for the sake of simplicity, first order
dynamics and that only the speed may be bounded, the results
in this paper could be extended to more complex dynamics
and constraints. For example, [21] explored similar results
in a simplified version of the persistent monitoring problem,
considering double integrator agent dynamics with constraints
both on the speed and the acceleration.

Each of these agents is equipped with sensors that can
observe the targets, and thus reduce the estimator uncertainty.
The observations are given according to the following model:

zi,j(t) = γi,j (sj(t))Hiφi(t) + vi,j(t), (3)

where vi,j(t) is a white noise process distributed according to
vi,j(t) ∼ N (0, Ri) with vi,j(t) independent of vk,l if i 6= k
or j 6= l, and γi,j : RN 7→ R is a function that captures the
interdependence of measurement quality and agent position.
The intuition behind this function is that the instantaneous
signal to noise ratio (SNR) can be computed as:

E
[
‖zi,j(t)− vi,j(t)‖2

]
E[‖vi,j(t)‖2]

= γ2
i,j (sj(t))

E
[
φTi H

T
i Hiφi

]
tr(Ri)

,

(4)

where tr(·) is the trace of the matrix. Notice that the term
E
[
φTi H

T
i Hiφi

]
(tr(Ri))−1 is a deterministic scalar that does

not depend on the relative position between the target and the
agent. Therefore, the function γi,j captures entirely how the
agent positions affect the quality of the measurement. It is
worth noting that in most of the applications of mobile agents
to sensing there is a limited sensing range or the quality of the
measurement gets worse as the agent moves farther away from
the target. The general model of γi,j is capable of capturing
both the finite range and the dependence between measurement
quality and relative position of the target from the agent.

In this paper we approach the problem of persistent moni-
toring trajectory planning from a centralized perspective. How-
ever, we point out that state estimation can still be performed
distributively online using any distributed version of Kalman
filters (see e.g. [11], [22]), since this filter’s equations only
depend on the data acquired online and the agent position.

At a given instant, the combined observations from all the
agents of a single target can be grouped in a vector z̃(t) as:

z̃i(t) =
[
z′i,1 ... z′i,N

]′
= H̃i(s1, ..., sn)φi(t) + ṽi(t), (5)

where

H̃i =
[
γi,1(s1 − xi)H ′i · · · γi,N (sN − xi)H ′i

]′
, (6)

ṽi(t) =
[
v′i,1(t) ... v′i,N (t)

]′
, (7)

and, since vi,j(t) is independent of vi,k(t) if k 6= j,

E[ṽ′i(t)ṽi(t)] = R̃i =


Ri 0 . . . 0
0 Ri . . . 0
...

...
. . .

...
0 0 . . . Ri

 . (8)

The overall goal is to obtain estimators φ̂i(t, z(t)) and
open-loop control inputs uj(t) to minimize the following cost
function:

J =
1

tf

∫ tf

0

 M∑
i=1

E[e′i(ζ)ei(ζ)] + β
N∑
j=1

u′j(ζ)uj(ζ)

 dζ,

(9)
where ei(t) = φ̂i(t) − φi(t) and tf is the time horizon. This
cost function represents a weighted sum of the mean squared
estimation error and the control effort; thus, the weighting
factor β is responsible for balancing the importance of these
two optimization goals.

The models in (6) and (7) define a linear time-varying
stochastic system. Based on a similar statement from [2], we
have the following proposition:

Proposition 1. The optimal unbiased estimator φ̂i for the the
cost function (9), dynamics (1), and observation model (3), is
the Kalman-Bucy filter, given by:

˙̂
φi(t) = Aiφ̂i(t) + Ω(t)iH̃

′
i(t)R̃

−1
i

(
z̃i(t)− H̃i(t)φ̂i(t)

)
,

(10a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)H̃

′
iR̃
−1
i H̃iΩi(t),

(10b)

where Ωi(t) is the covariance matrix of the estimator.

Although our proof of this proposition is very similar to
the well known Kalman-Bucy derivation in [23], it is given
in Appendix A in order to highlight that the joint design of
trajectories and estimator does not affect the optimality of this
filter. Using (6) and (7), we can rewrite (10b) as:

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)GiΩi(t)

N∑
j=1

γ2
i,j(t),

(11)
where Gi = H ′iR

−1
i Hi and γi,j(t) = γi,j(sj(t) − xi). Using

the fact that

E [e′i(t)ei(t)] = tr(E [ei(t)e
′
i(t)]) = tr(Ωi(t)),

we can rewrite the cost function in (9) as

J =
1

tf

∫
tf

0

 M∑
i=1

tr(Ωi(ζ)) + β
N∑
j=1

u′j(ζ)uj(ζ)

 dζ.

(12)
The goal is then to minimize the cost (12) subject to the
dynamics in (11) and (2). In other words, we aim to design
a trajectory, with constrained controls uj ∈ U , and estimation
error linked to the trajectory through the dynamics of the
covariance matrix of the Kalman-Bucy Filter that minimizes
a weighted sum of the total control effort and the mean
estimation error.



III. OPTIMIZATION OF PARAMETERIZED TRAJECTORIES

A. Finite Horizon Trajectory Optimization

Even though we focus on the optimization of infinite
horizon trajectories, we briefly review the procedure for op-
timizing trajectories with a finite time horizon in order to
later extend to the infinite horizon setting. In this section,
we establish a general formulation, where we assume that
the agent trajectories can be fully defined by a finite set of
parameters. In the following sections we approach specific
settings that show that parameterizations tend to naturally
fit the persistent monitoring problem. Our overall goal is
to compute locally optimal solutions with respect to these
parameters using gradient descent. Therefore, we initially
discuss how to compute the gradients for the finite horizon
version of the problem. We define the set of parameters that
fully describe the trajectory for t ∈ [0, tf ] as Θ = {θ1, ..., θD}.

Recalling the expression for the cost (12), we can compute
the partial derivative with respect to one of the parameters of
the trajectory θd as:

∂J

∂θd
=

1

tf

∫
tf

0

 M∑
i=1

tr

(
∂Ωi
∂θd

(ζ)

)
+ β

N∑
j=1

∂ ‖uj‖2

∂θd
(ζ)

 dζ.

(13)
As a side note, we note that we can, under the Leibniz rule,

interchange the order of integration and differentiation in the
cost (12), leading to (13). The function Ωi(t) is continuous
with time, since it is the solution of an ODE. Moreover,
∂Ωi

∂θd
varies continuously with θd, as long as some regularity

conditions are verified (please see Appendix B for more
details).

Given the dynamics of the covariance matrix in (11), ∂Ωi

∂θd
is the solution of the following ODE:

d

dt

(
∂Ωi(t)

∂θd

)
= Ai

∂Ωi
∂θd

(t) +
∂Ωi(t)

∂θd
A′i +Qi

−
(
∂Ωi(t)

∂θd
GiΩi(t) + Ωi(t)Gi

∂Ωi(t)

∂θd

) N∑
j=1

γ2
i,j(t)

− Ωi(t)GiΩi(t)
N∑
j=1

∂γ2
i,j

∂θd
(t), (14)

with initial conditions ∂Ωi

∂θd
(0) = 0. Also, we know that

∂γ2
i,j(t)

∂θ
=

P∑
p=1

∂γ2
i,j(t)

∂s
ep
j

∂s
ep
j (t)

∂θd
, (15)

where ep, p = 1, ..., P is the p-th coordinate of the space

where the agents move in and
∂γ2

i,j(t)

∂s
ep
j

depends only on the

function γ2
i,j . The only terms that we have not yet given

a procedure to compute are
∂(u′juj)

∂θd
(t) and

∂s
ep
j

∂θd
(t). The

computation of both of these terms is related to the specific
parameterization chosen and details of their computation are
discussed in Secs. IV and V. Note that we use the partial
derivatives of the covariance matrices in (13) in order to
compute the gradient of the cost J . The complete procedure
to compute the transient problem gradients is given in Alg. 1.

Algorithm 1 Transient Gradient Computation

1: procedure COMPUTETRANSIENTGRADIENT
2: Input: Θ
3: Compute s1(t), ..., sN (t) from the parameterization
4: for every θ in Θ do
5: Compute ∂

∂θ

∫ tf
0

∑N
j=1 u

′
j(ζ)uj(ζ)dζ according to

the parameterization
6: Compute ∂sj(t)

∂θ according to the parameterization
7: for i ranging from 1 to M do
8: Compute ∂Ωi(t)

∂θ by solving ODE (14)

9: Compute ∂J
∂θ using (13).

10: Output: ∇J

B. Steady State Persistent Monitoring

For a persistent monitoring task to be successful, it is
necessary that targets are visited infinitely often as time goes
to infinity, because otherwise their uncertainty can become
unbounded. Periodicity naturally fits into the persistent mon-
itoring paradigm, since targets need to be visited infinitely
often and, although a periodic structure of the solution is not
necessarily optimal, earlier work [24] shows that, in a similar
setting, periodic policies can approximate arbitrarily well the
optimal cost. Moreover, our own simulation results in the
transient case show that the trajectories tend to converge to
oscillatory behavior [18]. On top of that, periodicity provides
an upper bound to the inter-visit time. Moreover, if periodicity
is assumed, the infinite horizon trajectory is fully defined by
the trajectory of a single period. This often leads to needing
only a very small number of parameters to describe the infinite
horizon trajectory and, as a consequence, only a small number
of parameters have to be optimized in order to generate
efficient trajectories. With that in mind, in this section we
explore the properties of periodic solutions to the persistent
monitoring problem when the system fulfills the following
very natural assumptions.

Assumption 1. The pair (Ai, Hi) is detectable, for every i ∈
{1, ...,M}.

Assumption 2. Qi and the initial covariance matrix Ωi(0)
are positive definite, for every i ∈ {1, ...,M}.

The intuition behind the first assumption is that it ensures
that sensing can guarantee that the uncertainty of each target
can be bounded even for long horizons, if targets are observed
often enough. The second one ensures that the covariance
matrix will always be positive definite, a fact that will be
used to prove Prop. 3. The results in this paper would likely
still hold if Assumption 2 was relaxed, even though the
proof of Prop. 3 could become more complex. Under these
assumptions, first we explore conditions under which the
convergence of the covariance matrix is achieved. For the sake
of notational conciseness, we define

ηi(t) =
N∑
j=1

γ2
i,j(t), (16)



which represents the instantaneous power level of the sensed
signal, combining all the agents’ observations of the same
target i under a centralized communication scheme. Using a
procedure similar to the one used in the proof of Lemma 9 in
[9], we establish the following proposition:

Proposition 2. If ηi(t) is T -periodic and ηi(t) > 0 for some
non-degenerate interval [a, b] ∈ [0, T ], then, under Assumption
1, there exists a unique non-negative stabilizing T -periodic
solution to (11).

Proof. According to [25, p. 130], a pair (Ai, ηi(t)Hi) of a
periodic system is detectable if and only if for every eigenpair
(x, λ) with x 6= 0,

Aix = λx =⇒ ∃ [a, b] ∈ [0, T ] s.t. ηi(t)e
λtHix 6= 0, (17)

∀t ∈ [a, b] and [a, b] is non-degenerate. Notice that, due to
Assumption 1, for any eigenvector x of Ai, Hix 6= 0. There-
fore, when ηi(t) > 0 (i.e. any t ∈ [a, b]), ηi(t)eλtHix 6= 0,
which implies that (Ai, ηi(t)Hi) is detectable. Therefore, the
collorary to Theorem 3 in [26, p. 95] shows that there exists
a non negative T -periodic solution to (11), Ω̄i(t), and

lim
t→∞

(Ωi(t)− Ω̄i(t)) = 0

for any solution Ωi(t) and initial condition Ωi(0) � 0.

Prop. 2 implies that, if ηi(t) is periodic, given any initial
covariance matrix Ωi(0), the estimation covariance for target
i converges to a T -periodic matrix Ω̄i(t), as long as target i
is visited for some non-zero amount of time in the periodic
trajectory. Therefore,

∀δ > 0, ∃ t0 s.t. |Ω̃i(t)− Ωi(t)| ≤ δ, ∀t ≥ t0,

which implies that

lim
t→∞

1

t

∫ t

0

|tr(Ω̃i(t′)− Ωi(t
′))| dt′ ≤ δ. (18)

This discussion entails that, if we run a periodic trajectory
for long enough, the mean estimation error will become
arbitrarily close to the mean steady state estimation error.
Therefore, if we plan only (one period of) the steady state
trajectory, the actual estimation error will be arbitrarily close
to that of the planned trajectory as time goes to infinity.
Even though Prop. 2 states that the solution of the periodic
Riccati equation is globally attractive, it does not provide any
convergence rate for its numerical computation. However, the
problem of computing numerical solutions to this equation has
been studied in other works and we refer the reader to [27]
for a good review and discussion of these methods.

Similarly as in the transient case, we intend to optimize the
trajectory of the agents using gradient descent. However, the
computation of the steady state gradients of the covariance
matrix is more challenging than the transient case discussed
in Subsec. III-A. In the sequel, we provide the procedure to
compute these gradients when they exist.

C. Steady State Gradients

Assuming that the trajectory is periodic and all the targets
are visited, we introduce the change of variable q = t/T ,
where T is the period of the trajectory. The steady state cost
J̄ can be rewritten as:

J̄ =

∫
1

0

 M∑
i=1

tr(Ω̄i(q)) + β
N∑
j=1

ū′j(q)ūj(q)

 dq, (19)

where ū(q) = u(qT ). Similar to (13), we know that, given
some parameter θd ∈ Θ:

∂J̄

∂θd
=

∫
1

0

 M∑
i=1

tr

(
∂Ω̄i(q)

∂θ

)
+ β

N∑
j=1

∂(ū′j ūj)(q)

∂θd

 dq.

(20)
Ω̄i(q), when it exists, is defined by the following dynamics

˙̄Ωi(q) =
dΩ̄i(q)

dq
= T (AΩ̄i(q) + Ω̄i(q)A

′ +Q

− ηi(q)Ω̄i(q)GiΩ̄i(q)), (21)

along with the periodicity condition Ω̄i(0) = Ω̄i(1). As a side
note, we highlight that in this section we abuse the notation
and use the dot over a function to indicate the derivative
with respect to the normalized time q (and not with respect
to t, as we did in the previous sections). Now, suppose that
the gradient of Ω̄i(q) with respect to a parameter θd exists.
Then, this gradient is the solution of the following differential
equation (note that the period may be a function of the
parameters or a parameter itself):

Σ̇(q)− T
(
AΣ(q) + Σ(q)A′ − ηi(q)Ω̄i(q)GiΣ(q)

−ηi(q)Σ(q)GiΩ̄i(q)

)
= T

∂ηi(q)

∂θd
Ω̄i(q)GiΩ̄i(q)−

∂T

∂θd

˙̄Ωi
T
,

(22)

with periodicity conditions Σ(0) = Σ(1). Note that (22) is a
periodic Lyapunov equation [28]. In order to computation of
Σ(q), we define the following auxiliary problems:

Σ̇H − T
(
A− ηiΩ̄iG

)
ΣH = 0, ΣH(0) = I, (23)

Σ̇ZI − T
(
A− ηiΩ̄iGi

)
ΣZI − TΣ′ZI

(
A− ηiΩ̄iGi

)′
= T

∂ηi
∂θ

Ω̄iGiΩ̄i −
∂T

∂θd

Ω̇i
T
, ΣZI(0) = 0, (24)

where the time dependence of ηi(q), Ωi(q),ΣZI(q) and
ΣH(q) was omited for conciseness. Then, in the following
Proposition we exploit these auxiliary problems for comput-
ing Σ(q) and explores the relationship between Σ(q) and
∂Ω̄i(q)/∂θd.

Proposition 3. Suppose ΣH is a solution of (23), ΣZI is a
solution of (24), Assumptions 1 and 2 hold, and that target i
is observed at least once in the period T . Then, the equation

Λ = ΣH(1)ΛΣ′H(1) + ΣZI(1) (25)



has a unique solution Λ. Additionally, when ∂Ω̄i(q)
∂θd

exists,

∂Ω̄i(q)

∂θd
= Σ(q) = Σ′H(q)ΛΣH(q) + ΣZI(q). (26)

Proof. Suppose Λ and Λ̃ are solutions of (23), then

Λ− Λ̃ = ΣH(1)
(

Λ− Λ̃
)

Σ′H(1) (27)

which is equivalent to

vec
(

Λ− Λ̃
)

= (ΣH(1)⊗ ΣH(1)) vec
(

Λ− Λ̃
)
, (28)

where vec(·) is the operator the performs the matrix vec-
torization and ⊗ represents the matrix Kronecker product.
Notice that Λ = Λ̃ is a solution of (28). This solution is
the unique solution if and only if 1 is not an eigenvalue
of ΣH(1) ⊗ ΣH(1). On the other hand, the eigenvalues of
ΣH(1) ⊗ ΣH(1) are all in the form µ1µ2, where µ1 and µ2

are distinct eigenvalues of ΣH(1) [29].
In the following we show that all the eigenvalues of ΣH(1)

have absolute value lower than one. For that, first notice that
since Q is positive definite, Ω̄i is also positive definite and
hence, invertible. Define

W = Ω̄−1
i ,

and, since Ẇ = −Ω̄−1
i

˙̄ΩiΩ̄
−1
i = −W ˙̄ΩiW , using (11) and

(16), the dynamics of W can be expressed as:

Ẇ = −T (WA+A′W +WQW − ηiG). (29)

Therefore, if we define the Lyapunov Function V =
Σ′HWΣH , we have that:

d

dq
(Σ′HWΣH) = Σ′H

(
TWA+ TA′W + TηiG+ Ẇ

)
ΣH

= −TΣ′HWQWΣH .
(30)

By integrating the previous relation, we have

Σ′H(1)W(1)ΣH(1)− ΣH(0)W(0)ΣH(0) =

− T
∫ 1

0

Φ(q, 0)′WQWΦ(q, 0) dq, (31)

where Φ(q1, q2) is the transition matrix of the system (23)
betwen times q1 and q2. Moreover, since Ω̄i(q) is periodic
with period one and ΣH(0) = I , we have that

Σ′H(1)W(0)ΣH(1)−W(0)

= −T
∫ 1

0

Φ(q, 0)′WQWΦ(q, 0) dq. (32)

Note that WΦ(q, 0) is full rank on a nontrivial set, since W
is positive definite and Φ(q, 0) is full rank for at least a non-
degenerate interval due to Assumption 1 and the fact that target
i is observed at least once in an period. This, along with the
fact that Q is positive definite, implies that the integral in (32)
will be a positive definite matrix. Therefore,

Σ′H(1)W(0)ΣH(1)−W(0) ≺ 0. (33)

Consequently, one can see that

(ΣH(1)x)′W(0)(ΣH(1)x)

x′W(0)x
< 1, (34)

for every nonzero x. Since W(0) is positive definite, (34)
shows that the norm of the matrix ΣH(1) induced by W(0)
(i.e., ‖ΣH(1)‖W (0)) is less than 1, therefore its spectral
radius is smaller than 1. This implies that the absolute value
of all the eigenvalues of ΣH(1) are smaller than 1. Hence,
ΣH(1)⊗ΣH(1) is stable, and Λ = Λ̃. Moreover, (25) has one
solution given by

Λ =
∞∑
j=1

(ΣH(1))
j

ΣZI(1) (ΣH(1)′)
j
. (35)

We point out that the sum in (35) converges, since the absolute
value of the eigenvalues of ΣH(1) are all lower than 1.

Now, note that (22) is a first order linear matrix differential
equation and its general solution is given by

Σ(q) = Σ′H(q)Σ(0)ΣH(q) + ΣZI(q). (36)

Since there is a unique solution to (36), and when ∂Ω̄i(q)/∂θd
exists it must satisfy (36), we know that Σ(q) = ∂Ω̄i(q)/∂θd.

Remark 1. While the algebraic conditions for existence of
solutions to generic Lyapunov equations are already well
studied, the novelty in Prop. 3 consists in conditioning the
existence of the solutions on physical characteristics of the
persistent monitoring problem, namely Assumptions 1 and 2.
Additionally, this proposition makes the connection between
Σ(q) and ∂Ω̄i(q)/∂θd and the existence of these partial
derivatives is discussed in Appendix B.

The Lyapunov equation in (23) can be efficiently solved
for low-dimensional systems using the algorithm proposed
in [30]. Additionally, in order to compute the gradient, the
partial derivatives of the steady state covariance matrices must
be computed using the procedure in Prop. 3. Then, these
partial derivatives are used along with (20) to compute the
partial derivatives of the cost, which compose the gradient
∇J . Algorithm 2 summarizes this procedure.

Algorithm 2 Steady State Gradient Computation

1: procedure COMPUTESTEADYSTATEGRADIENT
2: Input: Θ
3: Compute s1(q), ..., sN (q) from the parameterization
4: for i ranging from 1 to M do
5: Compute the steady state covariance Ω̄i(q)

6: Compute ∂
∂θ

∫ tf
0

∑N
j=1 u

′
j(ζ)uj(ζ)dζ according to the

parameterization
7: Compute ∂sj(t)

∂θ and ∂T
∂θ according to the parameteri-

zation
8: for every θ in Θ do
9: for i ranging from 1 to M do

10: Compute ∂Ωi(q)
∂θ as indicated in Prop. 3.

11: Compute ∂J̄
∂θ using (20)

12: Output: ∇J



In order to locally optimize the trajectories, the gradient
computation needs to be used along with some gradient
descent scheme. We describe the optimization procedure we
used in Alg. 3, where κl is a scalar positive gain, and the
proj operator projects the parameters into the set of feasible
parameters (uj(t) ∈ U ). As a side note, this projection might
be difficult to compute in general and, therefore when choosing
a parameterization it is important to make sure that there are
efficient ways to compute this projection numerically.

Algorithm 3 Gradient Descent

1: procedure GRADIENT DESCENT
2: Input: Θ0,
3: ||∇J || ← ∞
4: l← 0
5: while ||∇J || > ε do
6: ∇J ←ComputeGradient(Θl)
7: Θl+1 ← proj(Θl − κl∇J)
8: l← l + 1

9: Output: Θl

IV. PARAMETERIZATION OF AN OPTIMAL TRAJECTORY IN
1-D WITH SPEED BOUNDS

When the agents and targets are constrained to a line, a
particularly interesting case is the one where the absolute
value of controls is bounded (U = {u ∈ R | |u| < umax})
and there is no penalty for control effort in the optimization
cost J (i.e. β = 0). In this case we can represent optimized
controls using a simple parameterization that could even
lead to global optimality. It is worth noticing that in many
real-world applications of persistent monitoring agents are
constrained to (possibly multiple) uni-dimensional mobility
paths, such as powerline inspection agents, cars on streets,
and autonomous vehicles in rivers.

Assuming proper rescaling, we can consider −1 ≤ uj ≤ 1,
i.e., U = [−1, 1]. In the remainder of this section, we derive
properties of the optimal control, establish a parameterization
that is able to represent an optimal control, and then compute
the gradients necessary in order to optimize the trajectories.

A. Properties of an Optimal Control

In order to derive the properties of an optimal control, we
first introduce the following lemma. The intuition behind it is
that if a target is observed for a longer time (or with better
quality), its uncertainty will be lower. We note that, although
this lemma is introduced in this Section, it is not restricted to
the 1D setting with bounded input.

Lemma 1. Given Ω1(t) and Ω2(t), two bounded covariance
matrices under the dynamics in (11) with A = A1 = A2,
G = G1 = G2, Q = Q1 = Q2, then if Ω1(0) − Ω2(0) is
negative semi-definite and η1(t) ≥ η2(t) ∀t, then Ω1(t)−Ω2(t)
is a negative semi definite matrix for all t ≥ 0.

Proof. Define β = Ω1(t) − Ω2(t). The dynamics of β is
described by the following equation.

β̇(t) = Aβ(t) + βA′ − η1(t)Ω1(t)GΩ1(t)

+ η2(t)Ω2(t)GΩ2(t). (37)

Adding and subtracting the terms η1(t)Ω2(t)GΩ2(t) and
η1(t)Ω1(t)GΩ2(t) to the equation, we can rewrite (37) as:

β̇(t) = Aβ(t) + βA′ − η1(t) [Ω1(t)Gβ(t) + β(t)GΩ2(t)]

+ [η2(t)− η1(t)] Ω2(t)GΩ2(t). (38)

From Thm. 1.e in [31], since β(t) is a C1 matrix, its
eigenvalues can be C1 time parameterized. Let µn denote the
nth eigenvalue of β(t) and xn(t) the corresponding unit norm
eigenvector. Then, from Thm. 5 in [32] we have that

µ̇n = x′nβ̇xn.

Also, notice that by using (38) and the fact that
λmin

(
D+D′

2

)
≤ x′Dx

‖x‖ ≤ λmax

(
D+D′

2

)
= ‖D‖, for any

square matrix D,

µ̇n ≤ ‖A‖µn − η1βµn + [η2 − η1]x′nΩ2GΩ2xn

≤ ‖A‖µn − η1βµn,

where β = λmin ((Ω1 + Ω2)G+G(Ω1 + Ω2)). Using Gron-
wall’s inequality [33] and the fact that the solution of a first
order linear homogeneous ODE does not change sign, we
conclude that µn(t) ≤ 0, ∀ t ∈ [0, T ] and, therefore, β(t)
is negative semidefinite.

In Lemma 1, Ω1 and Ω2 can also be understood as covari-
ance matrices for the same target but under different agent
trajectories.

Before proceeding to the proposition about the structure of
an optimal control, we first make the following assumption:

Assumption 3. The function γi,j(sj) is unimodal and has a
finite support equal to ri,j .

And we define an isolated target i as a target such that

min
k 6=i
|xi − xk| > 2rmax, rmax = max

i,j
{ri,j}.

Therefore, an isolated target is a target for which an agent
cannot see another target when visiting it. Referring to the
regions in space where an agent can sense a target as “visible
areas”, the minimum distance between visible areas dmin is
defined as:

dmin = min
i,k
|xi − xk| − 2rmax > 0,

and the finite time cost is defined as

J(u1, ..., uN , t) =
1

t

∫ t

0

(
M∑
i=1

tr (Ωi(β))

)
dβ. (39)

We can then claim the following proposition.

Proposition 4. In an environment where all the targets are
isolated, given any policy uj(β), j = 1, ..., N , then there
is a policy ũj(β) with ũj(β) ∈ {−1, 0, 1} ∀β ∈ [0, t]
and with the number of control switches for each agent (i.e.



discontinuities in ũj(β)) upper bounded by 2 t
dmin

+ 4 such
that J(u1, ..., uN , t) ≥ J(ũ1, ..., ũN , t).

Proof. We prove this result by construction: given a policy
uj(t

′) with ηi(t′) associated to it (as defined by (16)), we will
construct an alternative policy ũj(t

′) associated with η̃i(t
′)

such that η̃i(t′) ≥ ηi(t
′) ∀t′ ∈ [0, t] and i = 1, ...,M , and

then use Prop. 1, along with the definition of the cost (39), to
show that the alternative policy has lower or equal cost than
the original one.

Initially, we focus on the policy uj(t′). We say that an agent
j “visits” a target i if at some time t′, |sj(t′)−xi(t′)| < rj . For
every agent in the policy uj(t′), there is an ordered collection
of targets it visits in [0, t]. Therefore, there must exist a set of
indices of all the targets visited by agent j: {yj0, ..., y

j
Kj
} ∈

{1, ...,M}, such that yjp 6= yjp−1 and agent j visited no other
target in the time between visiting targets yjp and yjp−1. This is
the sequence of all the targets that agent j visited over [0, t],
not considering consecutive visits to the same target. In other
words, the same target can be present more than once in the
sequence {yj0, ..., y

j
Kj
} but, if that is the case, it will not be in

consecutive positions.
For each of these visits, we can define the initial visiting

time tjp for p = 1, ...,Kj as

tjp = inf{t′|t′ > tjp−1 and agent j visits target yjp at time t′},

and tj0 = 0 and tjKj+1 = t. Also note that while t′ ∈ [tjp−1, t
j
p),

agent j only influences the value of ηi(j) of the target it is
currently visiting. We propose the following alternative policy,
where ũj(t′) for t′ ∈ [tjp−1, t

j
p) is such that:

ũj(t
′) =



sj(tjp)−sj(t′)

|sj(tjp)−sj(t′)|
, if

|sj(tjp)−sj(t′)|
tjp−t′

≤ 1,

x
y
j
p
−sj(t′)

|x
y
j
p
−sj(t′)| , if

|sj(tjp)−sj(t′)|
tjp−t′

> 1 and

sj(t
′) 6= xyjp .

0, otherwise.

Notice that this construction provides a feasible trajectory,
since the original trajectory is assumed feasible. Also, in the
alternative policy ũj(t

′) ∈ {−1, 0, 1} ∀t′ ∈ [0, t], since the
speed is either zero or a scalar divided by its absolute value.

The intuition behind the proposed alternative policy is that
at the beginning of each visit, the agent moves with maximum
speed towards the target yjp and if it reaches the target, it dwells
on top of it. However, it must move in a way such that it begins
the next visit at the same time as in the original policy, i.e., the
positions of agent j associated to the alternative policy s̃j(t′)
is such that s̃j(tjp) = sj(t

j
p).

Also, for time t′ ∈ [tjp, t
j
p+1] both the original and the

alternative policies only influence the value of ηi for i = yjp,
since in the alternative policy the agent is closer (or at least
as close) to the currently visited target. Thus, from (16) we
have that

η̃i(t
′) ≥ ηi(t′), ∀t′ ∈ [0, t], i ∈ {1, ...,M}.

Therefore, using Lemma 1 and the cost definition (39), we get
that

J(ũ1, ..., ũN , t)− J(u1, ..., uN , t) =

1

t

∫ t

0

M∑
i=1

tr
(

Ω̃i(t
′)− Ωi(t

′)
)
≤ 0.

which shows that the alternative policy has a lower or equal
cost compared to the original one. Note that, due to velocity
constraints, in both the original and the alternative policy there
is a maximum of t

dmin
+1 visits to targets per agent. Moreover,

in the alternative policy, an agent has at most 2 velocity
switches at each target visit. Therefore, at most 2 t

dmin
+ 4

velocity switches can happen due to target visits, plus one
switch to match the initial position of the original policy and
another to match the terminal position of the original policy.
This implies that the maximum number of velocity switches
in the alternative policy is 2 t

dmin
+ 4.

One way to interpret this proposition is that if one looks
ahead at the next T units of time (where T is the period of
a periodic solution or the prediction horizon, in the transient
case), any trajectory can be improved (or at least, maintain
same cost) by adequately selecting its controls uj(t) in the set
{−1, 0, 1}. Also, notice that even though we were not able so
far to prove that the same result holds when the targets are
not necessarily isolated, the same structure can still be used
but without the guarantee of optimality.

B. Parameterization of an Optimal 1D Trajectory

The result in Prop. 4 implies that when the targets are
isolated, there is no loss of performance if we restrict ourselves
to controls of the form uj(t) ∈ {−1, 0, 1} ∀t > 0, with a
bounded number of control switches. This property allows the
optimal trajectory to be described by a finite set of parameters,
similar to optimal control results in previous work by the
authors [15], [18]. Here, in particular, we are looking into
periodic trajectories and, hence, this property implies that the
movement in each period of agent j consists of a sequence
of dwelling at the same position for some duration of time
followed by moving at maximum speed to another location.
Therefore, one period of the trajectory of an agent j can fully
be described by the following set of parameters:

1) T , the period of the trajectory.
2) sj(0), the initial position.
3) ωj,p, p = 1, ..., Pj , the normalized dwelling times for

agent j, i.e., the agent dwells for ωj,pT units of time
before it moves with maximum speed for the p-th time
in the cycle.

4) τj,p, p = 1, ..., Pj , the normalized movement times for
agent j, i.e., the agent j moves for τj,pT units of time
to the right (if p is odd) or to the left (if p is even) after
dwelling for ωj,pT units of time in the same position.

To enforce consistency of the trajectory, we add the follow-
ing constraints:

τj,m ≥ 0, ωj,m ≥ 0, T ≥ 0. (40)



Notice that this description does not exclude transitions of uj
of the kind ±1 → ∓1 and ±1 → 0 → ±1, since it allows
ωj,m = 0 and τj,m = 0. In addition to the constraints in
(40), in order to ensure periodicity, we need to make sure that
the sum of the movement times and dwelling times does not
exceed one period and that the total time spent moving to the
left is equal to the total time spent moving to the right over one
period (i.e. the agent returns to its initial position at the end
of the period). Therefore, we have the additional constraints:

Pj∑
m=1

(τj,m + ωj,m) ≤ 1,

Pj∑
m=1

(−1)mτj,m = 0. (41)

This parameterization defines a hybrid system in which the
dynamics of the agents remain unchanged between events and
abruptly switch when an event occurs. Events are given by a
change in control value at completion of movement and dwell
times. These may occur simultaneously, for instance, if the
dwell time is zero (representing a switch of control from ±1
to ∓1). This parameterization also applies to the aperiodic
transient case, with minor modifications. Although we do not
explore all the details for the sake of readability, we refer the
interested reader to [18].

C. Position Gradients

Given this parameterization, we use the procedure given in
Sec. III to optimize the cost. However, one item missing in Sec.
III for computing the gradient of the covariance matrix was the
gradient of the agent position with respect to the parameters
defining the trajectory.

The movement and dwelling time parameterization defines,
along with the uncertainty metric, a hybrid system. For such
systems, Infinitesimal Perturbation Analysis (IPA) can be used
to compute an event-driven online estimate of the stochastic
gradient of the system. An important feature of IPA is that the
unbiased gradient estimate can be computed online using only
the data observed along the trajectory. Even though we do not
discuss in this paper the details of the IPA interpretation of
the equations in this subsection, we refer the reader to [15],
[34] for more information about IPA.

One can see that the position of agent j at normalized time
q, after the k-th event and before the k + 1-th is

sj(q)−sj(0) =


T

(
(−1)k/2+1

(
q −

∑k/2−1
p=1 (τj,p + ωj,p)

+ ωj, k2

)
+
∑k/2
p=1(−1)p+1τp

)
, k even,

T
∑ k−1

2
p=1 (−1)p+1τj,p, k odd.

Therefore, we can compute the following gradients,

∂sj
∂τj,m

=


(

(−1)
k
2 + (−1)m+1

)
T, m < k

2 , k even,

(−1)m+1T, m ≤ k−1
2 , k odd,

0, otherwise,

∂sj
∂ωj,m

=

{
T, m ≤ k

2 , k even,
0 , otherwise,

∂sj(q)

∂T
=
sj(q)− sj(0)

T
,

∂sj
∂sj(0)

= 1.

D. Initial Trajectory for the Optimization

While we use a gradient descent approach in Alg. 3 to
locally minimize the cost function, it is necessary to find
an initial parameter configuration. Therefore, we propose a
method to efficiently compute a starting point for the opti-
mization.

Proposition 2 states that if every target is visited at least once
in a periodic trajectory, then the steady-state covariance matrix
exists. However, if in a periodic trajectory one of the targets is
never visited and its internal state dynamics is unstable, then
the estimation error will grow without bound as time goes
to infinity. Also, when a target is not visited in the initial
trajectory, the gradient descent optimization may converge to
undesired solutions, a problem known as the “lack of event
excitation” and discussed in depth in [35]. Therefore, this kind
of initial trajectory will not be considered in this work.

In this section, we discuss a method for finding these
initial trajectories that will always lead to a feasible initial
configuration. Due to the local nature of our optimization pro-
cedure, different initial conditions can lead to different local
optima. We, therefore, leverage intuition about the problem
to provide reasonable initial solutions with the hope that they
will converge to good local optima.

The idea of finding a schedule where all the targets are
visited fits naturally into a graph search paradigm, where the
targets are modelled as nodes and the edge weights between
nodes are the distances between the targets. The problem
of finding a feasible schedule can be translated to one of
finding N sequences (that represent the schedule of each
agent) of nodes where each target belongs to at least one
of these sequences. One can add to that a cost function that
guides the way in which these sequences are created. A goal
that intuitively will lead to reasonable initial solutions is to
minimize the distance of the agent that has the longest travel
path. This is the well known MTSP (see [6] for a good
overview of this problem and approaches to solve it). It is
worth mentioning that the MTSP is in general NP-hard, thus
computationally intractable. However, in 1D environments, it
can be efficiently solved using the algorithm described in [8].

The MTSP problem finds a minimal length cycle and
therefore can be immediately converted to parameters that
represent one period of the steady state solution. We choose
the dwelling times to be initially zero.



Remark 2. Although we use MTSP in the generation of
the initial trajectory, this is not an integral part of our
approach and any initialization technique could be integrated
to our optimization scheme, as long as it guarantees that
each target is visited. Alternative initialization procedures
include variations of MTSP where the optimization goal goes
beyond travel distance minimization (see e.g. [36]). However,
to the authors’ best knowledge, none of the MTSP variations
available in the literature can directly minimize the estimation
uncertainty, therefore using these different MTSP variations
into our framework is not trivial and we intend to pursue this
in future work.

E. 1D Simulation Results

In the simulations, we have chosen to highlight interesting
aspects of the solution, rather than simply give an example
of the techniques discussed in this paper. We have analyzed a
steady state problem with 2 agents and 5 targets. We used the
following matrices in the state evolution model

Ai =

[
−1 −0.1
−0.1 0.01

]
, Qi = diag(1, 1),

and the following parameters for the observation model

Hi = diag(1, 1), Ri = diag(1, 1).

Moreover, we considered the following expression for γi,j :

γi,j(α) =

{
0, ‖α‖ > ri,j ,√

1− ‖α‖ri,j
, ‖α‖ ≤ ri,j .

(43)

with ri,j = 0.9. The intuition behind this specific form
is that the best measurement quality is achieved when the
agent’s location coincides with that of the target, with the SNR
decaying linearly as the agent moves away. When the agent
is at a distance larger or equal to its sensing radius ri,j , only
noise is observed.

Instead of using the initialization method proposed in Sub-
sec. IV-D, we used the following set of parameters:

s0
1(0) = 2.7, s2(0) = 6.8, T 0 = 6,

τ0
1 = τ0

2 = 0.1[1, 0.1, 1, 1, 0.1, 1, 0.1, 1, 1, 0.1, 1],

ω0
1 = ω0

2 = 0.0125[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

The goal of using these initialization parameters was to
have both agents share one target in the first iteration of the
optimization process and then explore whether or not they
would remain sharing the target after the local optimization
procedure. The gradient descent step size was set to be
constant, κ0 = κl = 0.02.

Figure 1 shows the results of the optimization in this
scenario. Although both agents and all the targets have the
same dynamic models, the solution at the last iteration of
the optimization was such that one of the agents visits three
of the targets and the other two of them. Note that on the
trajectories in Fig. 1b, in the period between times 6 and
8, agent 1 moves with a small amplitude around target 1.

The effects of this oscillatory movement are hard to notice
in the trace of the covariance of target 1 in Fig. 1c, since the
difference in performance is negligible. Therefore, even though
it is intuitively clear that staying still rather than moving with
this oscillatory behavior will lead to a lower cost solution,
the difference in terms of cost is minor. Also, the solution
has not yet fully converged, as can be seen in Fig. 1a and
further iterations would remove this small oscillatory behavior.
Finally, we point out that while the maximum number of
switches in a direction allowed to each agent was set to 11,
the final solution appears to have fewer because some of the
movement and dwelling times in the final solution are zero.

V. FOURIER CURVES FOR MULTI-DIMENSIONAL
PERSISTENT MONITORING WITH UNBOUNDED SPEED

For the 1D case we derived a parameterization with a finite
number of parameters of the optimal solution. Unfortunately,
the same result does not extend to multi-dimensional persistent
monitoring problems. Therefore, instead of looking for an
exact representation of the optimal trajectory, we focus on
a family of parameterized curves that can approximate very
general curves. We pick as an illustration the case where speed
is not bounded, in part because the projection operation in line
7 of Alg. 3 becomes trivial. Note that whenever the constant
that weights the control effort penalization is not zero, i.e.
β 6= 0 as defined in (19), the fact that the control effort is
considered in the total cost will not allow the control to be
unbounded. An appropriate choice of β can provide adequate
speed bounds for any given dynamics of the system. As a side
note, we highlight that bounded speeds can also be handled in
this framework, however the projection operator in the gradient
descent optimization becomes more complex.

Since periodicity is an essential feature of the steady-state
analysis discussed in this work, a natural choice is to use
a truncated Fourier series to represent the movement of the
agents in each of the coordinates ep, p = 1, ..., P , i.e.

s
ep
j (q) = s

ep
j,0 +

K∑
k=1

a
ep
j,k sin(2πfkq) + b

ep
j,k(cos(2πfkq)− 1),

where fk are integer frequencies and, therefore, s
ep
j (q)

is periodic with period 1. The set of parameters that
fully characterize all the agents trajectories is Θ =
{{aepj,k}, {b

ep
j,k}, {s

ep
j,0}, T}, j = 1, .., N , p = 1, ..., P , k =

1, ...,K . As in the 1D case, in order to compute the derivative
of the covariance matrix, we need to give a procedure to
compute ∂sk

∂θ . For any parameter θ ∈ Θ,

∂s
ep
j

∂aerm,k
=

{
sin(2πfkq), if j = m and p = r,

0, otherwise,
(44a)

∂s
ep
j

∂berm,k
=

{
cos(2πfkq)− 1, if j = m and p = r,

0, otherwise,
(44b)

∂s
ep
j

∂serm,0
=

{
1, if j = m and p = r,

0, otherwise,
(44c)

∂s
ep
j

∂T
= 0. (44d)
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Fig. 1: Results of a simulation with two agents and five targets. (a) Evolution of the overall cost as a function of iteration
number on the gradient descent. (b) Trajectories of the agents at the final iteration. The dashed lines indicate the positions of
the targets and the grey shaded area the visibility region of the agent. (c) Evolution of the trace of the estimation covariance
matrices of the five targets.

The derivatives in (44) give enough information to compute
the partial derivatives of the steady state covariance matrix as
indicated in Prop. 3. In order to compute the gradient of the
cost function, the following expression can be used:

∂J

∂θ
=

∫ 1

0

N∑
i=1

tr

(
∂Ωi
∂θ

)
dq+β

∂

∂θ

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq. (45)

Note that
dsj
dq

= T
dsj
dt
. (46)

Using (V), we can compute

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =

N∑
j=1

P∑
p=1

K∑
k=1

(2πfk)2

2T 2

((
a
ep
j,k

)2

+
(
b
ep
j,k

)2
)
, (47)

and, therefore,

∂

∂a
ep
j,k

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =
(2πfk)2

2T 2
a
ep
j,k, (48a)

∂

∂b
ep
j,k

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =
(2πfk)2

2T 2
b
ep
j,k, (48b)

∂

∂s
ep
j,0

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq = 0, (48c)

∂

∂T

N∑
j=1

∫ 1

0

∥∥∥∥dsjdt
∥∥∥∥2

dq =

N∑
j=1

P∑
p=1

K∑
k=1

−(2πfk)2

T 3

((
a
ep
j,k

)2

+
(
b
ep
j,k

)2
)
. (48d)

A. Optimization Initialization

In the multi-dimensinal optimization, we still use the sub-
optimal solution of the MTSP problem as a starting point.

However, unlike the 1-D scenario with the movement and
dwelling time parameterization, the heuristic solution of the
MTSP problem cannot be directly converted to a Fourier Curve
trajectory. The solution of the MTSP problem gives, for each
agent j, a cyclic schedule of targets Sj = {y1

j , ..., y
Yj

j , y
1
j }

and, therefore, it is still necessary to obtain the parameters
Θ = {{aepj,k}, {b

ep
j,k}, {s

ep
j,0}, T} from this schedule. We define

dmj as the cumulative distance that the agent has traveled when
it reaches the m-th target in the schedule Sj , and Dj as the
total distance traveled by an agent in one cycle. We then look
for a feasible truncated Fourier series trajectory such that at
the normalized time q = dmj /(DjT ), the agent is at a distance
lower or equal to the sensing radius (multiplied by a factor
1−δ, 0 < δ < 1, in order to give some distance margin) from
the target. The position of the agent at the beginning of the
cycle is set to be the position of the first target in the schedule
Sj .The period T can be set to any positive number. For each
of the agents, the following optimization problem gives a set
of feasible {aepj,k}, {b

ep
j,k}.

min
a
ep
j,k, b

ep
j,k

P∑
p=1

K∑
k=1

fk|a
ep
j,k|+ fk|b

ep
j,k|

s.t.

∥∥∥∥sj (dmjDj

)
− xymj

∥∥∥∥
2

≤ (1− δ)rj , m = 1, .., Yj

(49)
If we substitute the definition (V) into the constraint (49),

this optimization can be formulated as a Quadratically Con-
strained Program, which is a convex optimization problem that
can be solved efficiently. From our experience, minimizing
a weighted sum of absolute values in the objective function
of (49) has led to smooth initial trajectories. However, other
optimization objectives could be used.

It is worth observing that for each of the agents, the
trajectory generated by the heuristic solution of the MTSP
problem consists of segments of straight lines that visit each
of the targets in the schedule Sj . Note that this trajectory, as
a function of time, composed by sequence of straight lines
can be projected in each of the axis ep and the projection in



that axis will still be a sequence of segments of straight lines.
Since piecewise linear functions can be represented by Fourier
series, there always exist a K large enough such that there is
a solution to (49) because for that K there is a representation
of the trajectory that would be close enough to the original
MTSP solution such that it is able to satisfy the constraint in
(49). Therefore, we can always find feasible solutions to (49)
if we have a MTSP solution.

In addition, we highlight that although in 1D the TSP
can be efficiently solved, this is not the case for higher
dimensional environments. However, there are meta-heuristic
approaches that can provide feasible, though not necessarily
optimal, solutions. In this work, we use the genetic algorithm
described in [37] to find heuristic solutions. This approach
finds a feasible solution in the first iteration and refines it as
the number of iterations increases. Therefore, one can decide
how much computation time to spend, leveraging the tradeoff
between optimality and computation effort.

B. 2D Simulation Results

In this section, we demonstrate the results of the algorithm
in two simulated 2D scenarios, one with one agent and three
targets and the other one with three agents and 15 targets. All
the internal states of the targets have the same state dynamics,
evolving according to (1) with

Ai =

[
−1 −0.1
−0.1 0.01

]
, Qi = diag(1, 1),

and the agent observation models are given by (3) and the
expression of γi,j is given in (43) with

Hi = Ri = diag(1, 1), ri,j = 0.5.

and objective weighting, as given in (12), η = 10−3. For each
of the agents, their trajectories had the first five harmonics in
each axis, i.e., fk = k, k = 1, ..., 5, ∀ j. In the initial step
of the optimization, the period T was set to 1. The initial co-
efficients aepj,k, b

ep
j,k were obtained by solving the optimization

problem in (49). The MTSP solution was obtained after 3000
iterations of the genetic algorithm proposed in [37] for solving
the associated MTSP. The initial position of each agent was set
to coincide with the position of the first target in the solution
of the MTSP. A constant descent stepsize κl = 10−4 was used
in the gradient descent.

In the first scenario (with one agent and three targets),
targets were located at positions x1 = (0, 0.5), x2 = (0.5, 0)
and x3 = (−0.5, 0). Figures 2-4 show the results we obtained.
Figure 2a highlights how the trajectory changed from the
initial one (an ellipse) to one with an almost triangular shape.
Note, however, that not only the geometry of the trajectory
is being optimized, but also the speed of the agent along the
trajectory. From Fig. 2b we can see that the agent moves with
higher speed when it is not visiting any target and at reduced
speed (and the speed even completely vanishes) when it is
close to the targets. Also, we can note that the trajectory in
the last step of the optimization had a period lower than 1,
which was the period on the initial optimization step. The
mean estimation error over time for each of the targets is

displayed in Fig. 3 and the cost along the optimization process
is shown in Fig. 4.

In the second scenario, the positions of the targets were
generated randomly from independent uniform distributions
ranging from −5 to 5 in both axes. Fig. 5 compares the
trajectories of the agents in the first and last step of the gradient
descent optimization, while Fig. 6 shows the evolution of the
cost as a function of the gradient descent step. The results of
the optimization show that the solution of (49) led to smoother
trajectories that still visited all the targets. The gradient descent
changed the geometry of the trajectories but did not change
the visiting order. As can be observed in Fig. 6, the cost
has an abrupt reduction in the beginning of the optimization
and then the convergence speed reduces significantly. The
optimization process leads to very significant reductions of
the cost, reducing it to less than one third of its initial value.

C. 3D Simulations Results

In order to illustrate the extension of techniques proposed in
this paper to higher dimensions, we present a result in a 3D en-
vironment, with 2 agents and 10 targets. The Ai, Qi, Hi, Ri
matrices and rj are the same as in the 2D simulations. A
constant gradient descent stepsize κl = 10−2 was used. The
target locations were drawn from a uniform distribution in the
cube with coordinates ranging from [−5, 5] in each axis. The
trajectories after 4000 gradient descent iterations are shown in
Fig. 7 and the evolution of the cost is diplayed in Fig. 8.

The 3D results follow a very similar trend of the 2D ones.
The trajectories provided by the initialization procedure tend
to be smoother, while the shape of the optimized ones are
stiffer.

VI. CONCLUSION AND FUTURE WORK

We have addressed the problem of persistent monitoring
from an infinite horizon perspective. We used a model that
captures internal states of the targets evolving with linear
stochastic dynamics and an observation model where the
observation quality varies with distance. We derived necessary
conditions for the convergence of the covariance matrix to
a limit cycle as time goes to infinity. We also provided an
algorithm for computing the cost gradient with respect to the
parameters that define the trajectory. For a 1D environment,
we showed that under some assumptions it is possible to fully
characterize an optimal control by a finite set of parameters
and used this as a basis for constructing an efficient param-
eterization. In higher dimensions, we proposed the use of
Fourier curves for representing the trajectory. Our simulations
illustrated the application of the proposed techniques in 1D,
2D and 3D scenarios, considering finite and infinite horizons
for the cost.

Some challenges still remain for the framework presented
in this paper. In ongoing research, we are studying how
to efficiently select the gradient descent stepsize and also
the feasibility and efficiency of local optimization methods
other than gradient descent. We intend to study initialization
methods that directly use uncertainty (instead of distance)
as a criterion for generating initial schedules. We also plan
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Fig. 2: Simulation results with one agent and three targets. (a) Comparison of the 2-D trajectory of the agents in the initial
(red) and final (blue) trajectories. The targets are marked in black and the gray area is the region where an agent can sense
that target. (b) Agent trajectories at the final iteration in the x (blue) and y (red) directions. (c) Agent velocities at the final
iteration in the x (blue) and y (red) directions and the resulting agent speed (yellow).

0 0.2 0.4 0.6 0.8

Time

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

T
ra

c
e
 o

f 
C

o
v
a
ri
a
n
c
e
 M

a
tr

ix

Target 1

Target 2

Target 3

Fig. 3: Trace of the covariance for each target at the final step
of the optimization in the scenario with one agent and three
targets.

500 1000 1500 2000 2500 3000 3500 4000

Iteration

5

6

7

8

9

10

11

12

13

14

C
o

s
t

Fig. 4: Evolution of the cost function in the gradient descent
optimization in the scenario with 3 targets and 1 agent.

to extend this paradigm to discrete time formulations and
to investigate the feasiblity of distributed solutions. Lastly,
we plan to study this problem when targets can also move,
including movement models that are not fully deterministic.
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APPENDIX A
PROOF OF OPTIMALITY OF KALMAN BUCY FILTER ON THE

PERSISTENT MONITORING PROBLEM WITH UNCERTAIN
STATES

The set of all unbiased estimators φ̂i(t) of φi(t), as dis-
cussed in Sec. IV of [23], is:

˙̂
φi(t) =

(
Ai −Gi(t)H̃i(t)

)
φ̂i(t) +Gi(t)z̃i(t), (50)

with E[φ̂i](0) = E[φi(0)] and G(t) a gain function that should
be considered an input for the sake of optimality analysis. If
Ωi(t) = E[ei(t)e

′
i(t)], where ei = φ̂i(t)− φi(t), then

Ω̇i(t) =
(
Ai −Gi(t)H̃i(t)

)
Ωi(t) +Gi(t)R̃iG

′
i(t)

+Qi + Ωi(t)
(
A′i − H̃i(t)

′G′i(t)
) (51)

and Ωi(0) = Ωi,0. Defining the following cost:

J =

∫ tf

0

(
M∑
i=1

tr (Ωi(t
′)) + βu′(t′)u(t′)

)
dt′ (52)

The Hamiltonian is then

H =
M∑
i=1

tr (Ωi(t)) + βu′(t)u(t)

+
M∑
i=1

tr
(

Γi(t)Ω̇i(t)
)

+
N∑
j=1

αj(r)sj(t), (53)

where Γi is the costate of Ωi. Using Pontryagin’s minimum
principle, at an optimal trajectory, since Gi is unconstrained,
we have

∂H?

∂Gi
= 0. (54)

Substituting the dynamics of the covariance matrix (51) on
(54), we get

−ΓiΩiH̃
′
i − Γ′iΩiH̃

′
i + Γ′iGiR̃i + ΓiGiR̃i = 0. (55)

Now, again from the minimum principle,

Γ̇i = − ∂H
∂Ωi
− (Ai−GiH̃i)

′Γi−Γi(Ai−GiH̃i)− I. (56)

Since Γi(tf ) = 0 due to the boundary conditions of Pontrya-
gin’s minimum principle, the symmetric nature of this ODE
allow us to see that Γi will be symmetric for t ∈ [0, tf ].
Moreover, note that the ODE is linear and the single non-
homogeneous term is -I. Since Γi(tf ) = 0,

Γi(t) =−
∫ t

tf

Φ′(t, tf )Φ(t, tf )dt,

Φ(a, b) = exp

(∫ b

a

(Ai −G(β)H̃i(β))dβ

)
.

(57)

This implies that Γi(t) � 0 for t ∈ [0, tf ). Therefore, since
Γi(t) is invertible and symmetric, Eq. (55) can be reduced to

ΩiH̃
′
i + Ω′iH̃

′
i = 2GiR̃i. (58)

Since the covariance matrix Ωi is also symmetric,

Gi(t) = Ωi(t)H̃i(t)R̃
−1
i (t) (59)

Plugging in this expression on (51) and (50), we get the usual
Kalman-Bucy filter equations, which along with the initial
conditions Ωi(0) = Ωi,0 and φ̂i(0) = E[φi(0)], have unique
solutions.

APPENDIX B
EXISTENCE OF STEADY STATE COVARIANCE DERIVATIVES

In this appendix, we discuss the existence of the gradients
of the steady state covariance matrix. Note that, if in a periodic
trajectory ηi(q) = 0 ∀q ∈ [0, 1] (i.e., target i is never visited),
the existence of the steady state covariance matrix is not
guaranteed by Prop. 2. Obviously, if the steady state covariance
does not exist, its derivative will also not exist. This illustrates
the fact that the existence ∂Ω̄i

∂θ is not guaranteed. What we
show in this appendix is that, under very natural assumptions,
the derivative ∂Ω̄i

∂θ exists for the parameters that belong to the
interior of the set of parameters that will lead to convergence
of the steady state covariance, except for a set of zero measure.

Since here we analyze the behavior of the steady state
covariance with respect to parameter variations, we will use a
notation that explicitly shows the dependence of the variables
with the parameters. For example, Ω̄i is a function of q and of
the parameters Θ and, hence, it will be denoted as Ω̄i(q; Θ).

We define the set of parameters for which the steady state
covariance is guaranteed to exist as:

ϑ = {Θ | ηi(q, Θ̃) > 0

for some non-degenerate interval q ∈ [a, b]}, (60)

and Ψ as the interior of the set ϑ.
Our goal is to show that, for any Θ ∈ Ψ, the partial

derivatives ∂Ω̄i(q;Θ)
∂θd

exist locally. From Prop. 3, we know that,
when this partial derivative exists, it is equal to Σ(q; Θ). We
also know that Σ(q; Θ) is well defined for any θ ∈ Ψ. We now
make the following assumption about the regularity of Σ:

Assumption 4. Σ(q; Θ) is locally Riemann integrable for Θ ∈
Ψ.

In light of Prop. 3, Assumption 3 means that the parameter-
izations that we consider do not allow for an infinite number
of discontinuities of Σh(q; Θ) and ΣZI(q; θ). Note that, due
to the linear nature of their underlying differential equations,
Σh(q; Θ) and ΣZI(q; θ) are bounded for any Θ ∈ Ψ. There-
fore, Σ(q; Θ) is also bounded.

Proposition 5. Under Assumptions 1, 2 and 3, the partial
derivative ∂Ω̄i(q;Θ)

∂θd
, q ∈ [0, 1] and Θ ∈ Ψ, exists almost

everywhere in [0, 1]×Ψ.

Proof. By construction, we pick two parameter sets Θ1 and
Θ2, such that any convex combination of Θ1 and Θ2 belongs
to Ψ. Additionally, since our goal is to compute the partial
derivative with respect to θd, we pick Θ2 such that it differs
from Θ1 only in its d-th coordinate. Since the set Ψ is open,
if we pick any Θ1 ∈ Ψ, we can always find a Θ2 that fullfills
the aforementioned properties.



We define the function Υ(q; Θ2) (which later we will show
Υ(q; Θ2) = Ω̄i(q; Θ2)) as:

Υ(q; Θ2) = Ω̄i(q; Θ1) +

∫ 1

0

Σ(q; Θ1 + ξ(Θ2−Θ1))dξ. (61)

Note that, if Υ(q; Θ2) = Ω̄i(q; Θ2) for generic Θ1,Θ2, then
Σ(q; Θ) = ∂Ω̄i(q;Θ)

∂θd
almost everywhere, since Σ(q; Θ) plays

the role of a partial derivative in Eq. (61).
Ω̄i(q; Θ2) is uniquely defined by satisfying the differential

equation (21) and being periodic with period one. We then
show that Υ(q,Θ2) also satisfies both of these properties,
which imply that indeed Υ(q,Θ2) = Ω̄i(q; Θ2).

First, notice that Υ(0; Θ2) = Υ(1; Θ2) since Ω̄i(0; Θ1) =
Ω̄i(1; Θ1) and Σ(0,Θ) = Σ(1,Θ), for any Θ ∈ Ψ. Also, since
Σ(q; Θ) is a solution of (22),∫ 1

0

Σ̇(q; Θ1 + ξ(Θ2 −Θ1))dξ = ˙̄Ωi(q,Θ2)− ˙̄Ωi(q,Θ1).

(62)

Therefore, taking the derivative of (61) with respect to q and
substituting (62), we get

Υ̇(q,Θ2) = ˙̄Ωi(q,Θ2). (63)

Hence we conclude that Υ(q,Θ2) = Ω̄i(q; Θ2), and, as a
consequence, ∂Ω̄i(q;Θ)

∂θd
exists almost everywhere in Ψ. Ad-

ditionally, as already stated in Prop. 3, ∂Ω̄i(q;Θ)
∂θd

= Σ(q,Θ)
wherever it exists.
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