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Abstract— One of the applications of Extremum Seeking
(ES) is to localize the source of a scalar field by using a
mobile agent that can measure this field at its current location.
While the scientific literature has presented many approaches
to this problem, a formal analysis of the behavior of ES
controllers for source seeking in the presence of disturbances
is still lacking. This paper aims to fill this gap by analyzing a
specific version of an ES control algorithm in the presence of
source movement and measurement disturbances. We define an
approximate version of this controller that captures the main
features but allows for a simplified analysis and then formally
characterize the convergence properties of this approximation.
Through simulations and physical experiments, we compare the
theoretically-predicted regions of attraction of the simplified
system with the behavior of the full system and show that the
simplified version is a good predictor of the behavior of the
initial ES controller.

I. INTRODUCTION

In this paper we consider the problem of tracking a moving

source using a mobile agent. We consider that the agent

senses this moving source using scalar measurements, and

that these measurements are stronger the closer the agent is

to the source. This paradigm can be used to model a wide

variety of practical engineering scenarios, such as particle

tracking using a confocal microscope [1], [2], localizing

acoustic sources using drones [3] and tracking moving targets

using WiFi-based radars [4]. A common approach to these

types of problems is that of Extremum Seeking (ES) (see [5]

for a review of the field). More recently, approaches such as

optimization based schemes for ES [6] and heuristic-based

circular motions with proven stability [7], [8] have been of

particular interest for source seeking.

In previous works from our group [1], [2], we built upon

the results in [8] to create a source-seeking ES controller.

In this formulation, the controller seeks to converge to a

circular movement around the source with a radius defined

as a controller parameter. Note that in applications where

the goal is to estimate the position of a (fixed) source in a

two-dimensional setting, the optimal policy in terms of the

corresponding Cramer-Rao lower bound on the estimate of

the position is to move in a circle around the source with a

radius that depends on the observation model parameters [1].

This approach is appealing because a circular motion with
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constant linear velocity tends to be easy to implement in real

world systems, particularly for systems with non-holonomic

kinematics. The control law is also computationally simple

and is based only on the local measurement, independent of

any global knowledge, making it useful for systems with fast

dynamics and limited computational power.

The global convergence of this ES controller was proven

for a static source in [8]. However, simulations [1] and

physical experiments [9] have shown that this convergence is

not global in practical scenarios. In this paper, our main goal

is to explain this discrepancy between the existing theory and

the practical application, as well as to provide a formal and

systematic way to design the system parameters, with pre-

dictable and well-characterized regions of attraction. In order

to achieve this goal, instead of using the exact ES formulation

in [8], we consider an approximate version with a simpler

algebraic formulation that still captures the salient features of

the original controller. By using this approximate version, we

show that in the presence of disturbances in the measurement

and the movement, the controller is guaranteed to steer the

agent towards an approximately circular orbit around the

source if its initial location is within a certain distance from

the source. Then, we use simulations to demonstrate that

the behavior of the simplified controller is indeed similar to

the original one and that the predictions on the convergence

region based on the simplified controller are a good predictor

of the behavior of the initial ES controller. We note that this

simplified version of the controller is intended only as a tool

for analysis, not as a practical controller.

II. EXTREMUM SEEKING CONTROLLER

In the source seeking problem, we consider an agent trying

to find a source in a two dimensional environment. This

source is able to move, though its movement model is un-

known to the agent. In order to simplify future calculations,

we assume that the reference frame is always centered on

the source, and thus its location is
[
0 0

]T
. The dynamics

of the position of the agent, s(·), is given by

ṡ(t) = u(t)− w(t), (1)

where u(t)is the control input and w(t) is an unknown

disturbance that accounts for the source movement. We

assume that w(t) is bounded, with ||w(t)|| < Mw where

|| · || is the usual L2 norm.



For many real-world scalar signals of interest (such as the

fluorescence intensity of a single fluorescent particle in a

confocal microscope, or the measured power of an electro-

magnetic wave), the signal decays smoothly as a function

of distance, reaching zero only when that distance tends

to infinity. Of course, in practice, any such measurement is

corrupted by measurement noise. To capture this, we assume

the agent can continuously acquire a signal y(·) of the scalar

field f(·) according to the measurement model

y(t) = f(||s(t)||) + v(t), (2)

where v(t) is a bounded disturbance, with ||v(t)|| < Mv

and f : R+ → R
+. We assume the function f(·) satisfies

the following technical assumptions to ensure smoothness:

1) f(·) is differentiable and its derivative is bounded;

2) f(·) is strictly decreasing;

3) f(ξ) > 0 for all ξ ∈ R
+;

4) limξ→∞ f(ξ) = 0;

Note that these are generally satisfied by most real-world

signals of interest and are thus not particularly restrictive.

To move towards the source location, we use the ES

controller introduced in [8] and refer to it as the Original

ES Controller (OESC). The OESC is given by

u(t) =

[
−ωR sin(θ(t))
ωR cos(θ(t))

]

, (3a)

θ̇(t) = ω − kp
d

dt
(y(s(t), v(t))) , (3b)

where R, ω and kp are positive constants chosen by the

designer and can be understood as a radius, angular velocity

and proportional controller gain, respectively.

In order to give some intuition on the behavior of this

controller, we highlight that in the absence of sensing dis-

turbance or source movement (i.e. w = v = 0), the OESC

steers the system to a limit cycle given by a circular orbit

with radius R around the source. Note that the control law

only adjusts the angular velocity θ̇ to steer the system to

this orbit. Global convergence to this limit cycle (in the

absence of disturbances) was shown in [8]. This controller

has many interesting practical features, such as the fact that

its linear velocity is constant and that it is inherently able

to handle non-holonomic kinematics. Moreover, simulations

and experiments with real hardware, as will be discussed

later in this paper, show that the trajectories generated using

this controller are smooth and easily followed by physical

systems such as mobile robots.

Simplified Extremum Seeking Controller: The main

goal of this paper is to study the behavior of the OESC in

the presence of source movement and disturbances in the

measurements. To achieve this, we now develop a simplified

version of the OESC, denoted the Simplified ES Controller

(SESC), that captures the main features of the behavior but

is more amenable to analysis.

To this end, consider first the OESC with w = v = 0. We

define the instantaneous center of the motion, c(t), as

c(t) = s(t)−R

[
cos(θ(t))
sin(θ(t))

]

, (4)

where R = v/ω. The time derivative of ||c(t)|| is

d

dt
||c(t)|| =

cT (t)ċ(t)

||c(t)||
. (5)

Using (3) in this expression yields

d

dt
||c(t)|| = −kpωR

dy(t)

dt

cT (t)

||c(t)||

[
− sin(θ(t))
cos(θ(t))

]

. (6)

Note that c(t)/||c(t)|| is a unit vector that gives the direction

to the instantaneous center from the origin (that is, from the

source location). We denote this unit vector as

c(t)/||c(t)|| =
[
cos(α(t)) sin(α(t))

]T
. (7)

From this we can rewrite (6)

d

dt
||c(t)|| = kpωR

dy(t)

dt
sin (θ(t)− α(t)) . (8)

This shows that the behavior of the OESC is to drive the

agent along a circular path of radius R around the center

c(t) while simultaneously continuously moving that center

towards the origin according to (8).

The difficulty in analyzing the OESC is at least in part

due to the continuous motion of the center of the rotation.

Therefore, in the SESC, our goal is to maintain the same

average feedback of the OESC, but to make the center of

rotation fixed for a full rotation before updating. Then, the

dynamics of the agent are as in (3), but with the angle

dynamics θ̇(s) replaced by:

θ̇(t) = ω, t ∈ (t0[k], t0[k] + T ), (9)

where T = 2π
ω

and t0[k] is the the beginning of the k-

th revolution. The center of rotation c[k]is instantaneously

translated at the end of each revolution according to

c[k + 1] = c[k] + kpγ[k], (10)

where γ[k] is given by

γ[k] =

∫ T

0

y(t+ t0[k])

[
cos(ωt+ θ(t0[k]))
sin(ωt+ θ(t0[k]))

]

dt. (11)

Intuitively, the SESC computes γ by doing an average of the

signal received during its circular motion, “weighted” by the

direction. The closer the agent is to the source, the higher

the intensity of the signal is. It is thus expected that, in the

absence of noise, γ will point towards the source. We will

show below that the norm of γ is equivalent to the average

OESC feedback effect on the rotation center, given by (8).

We now show that the feedback of the SESC is analogous

to the OESC in terms of the revolution center displacement.

If the agent movement is perfectly circular, then its velocity

is given by

ṡ =

[
−v sin(ωt)
v cos(ωt)

]

. (12)



Given this movement policy for the agent, we can integrate

(8) over one period. Integrating by parts, we get:

∫ t0+T

t0

dy(t)

dt
sin(ωt− α)dt

=
1

ω

∫ T

0

y(t+ t0) cos(ωt+ θ(t0)− α)dt. (13)

Prop. 1 below shows that the integral in (13) (which

represents the average feedback effect of the OESC) is

equivalent to ||γ||. Moreover, we show that the equivalent

feedback γ is directed towards the source.

Proposition 1: Under the agent policy in (12), we have

‖γ‖ =

∥
∥
∥
∥
∥

∫ T

0

y(t+ t0) cos(ωt+ θ(t0)− α)dt

∥
∥
∥
∥
∥
, (14a)

γ

‖γ‖
= −

c

‖c‖
. (14b)

Additionally, ||γ|| only depends on ||c||.
Proof: First note that

y(t+ t0) = y

(∥
∥
∥
∥
c+R

[
cos(ωt+ θ(t0))
sin(ωt+ θ(t0))

]∥
∥
∥
∥

)

. (15)

Introducing the change of variables t′ = t− (θ0(t0)− α)/ω
into (11) yields

γ =

∫ T

0

y

(∥
∥
∥
∥
c+R

[
cos(ωt− α)
sin(ωt− α)

]∥
∥
∥
∥

)[
cos(ωt− α)
sin(ωt− α)

]

dt.

(16)

Note that
[
cos(ωt− α)
sin(ωt− α)

]

=

[
cos(α) sin(α)
− sin(α) cos(α)

]

︸ ︷︷ ︸

U

[
cos(ωt)
sin(ωt)

]

. (17)

Thus, γ is given by

U

∫ T

0

y

(∥
∥
∥
∥
U

([
||c||
0

]

+R

[
cos(ωt)
sin(ωt)

])∥
∥
∥
∥

)[
cos(ωt)
sin(ωt)

]

dt.

(18)

Since U is a rotation matrix, it does not affect the norm of

the vector. Therefore, we have

γ = U

∫ T

0

y

(∥
∥
∥
∥

[
||c||
0

]

+R

[
cos(ωt)
sin(ωt)

]∥
∥
∥
∥

)[
cos(ωt)
sin(ωt)

]

dt.

(19)

Thus (19) shows that ||γ|| only depends on ||c||. Then,
∥
∥
∥
∥

[
||c||
0

]

+R

[
cos(ωt)
sin(ωt)

]∥
∥
∥
∥
=

√

||c||2 +R2 + 2 ‖c‖R cos(ωt)
︸ ︷︷ ︸

g(t)

(20)

Consequently, (19) can be rewritten as

∫ T

0

y (g(t))

[
cos(ωt)
sin(ωt)

]

dt =

∫ T

2

0

y (g(t))

[
cos(ωt)
sin(ωt)

]

dt

+

∫ T

T

2

y (g(t))

[
cos(ωt)
sin(ωt)

]

dt (21)

Then we introduce the change of variables t′ = T − t in the

second part of the integral and use the fact that sin(ωt) =
− sin(ω(T − t)) and g(T − t) = g(t) to get

∫ T

0

y (g(t))

[
cos(ωt)
sin(ωt)

]

dt = 2

∫ T

2

0

y(g(t))

[
cos(ωt)

0

]

dt.

(22)

Therefore, we conclude that the second component of the

integral in (19) is zero. Using this and the definition of U in

(19), we get

γ =

[
cos(α)
sin(α)

] ∫ T

0

y (g(t)) cos(ωt− α)dt (23)

If we introduce the change of variables t′ = t+ t0 and take

the norm of (23), we arrive at the expression (14a).

Finally, we show that the direction of γ is the opposite

direction of c (which given by [cos(α), sin(α)]T ). To do so,

we need only show that
∫ T

0

y (g(t)) cos(ωt− α)dt < 0. (24)

If ‖c‖ > 0, we have

∫ T

0

y(g(t)) cos(ωt− α)dt =

∫ T

2

0

y(g(t)) cos(ωt− α)dt

+

∫ T

T

2

y(g(t)) cos(ωt− α)dt. (25)

Moreover, using the change of variables t′ = t − π/ω, in

the integral that goes from T/2 to T we get that (25) is

equivalent to

∫ T

2

0

(

f(g(t))− f
(

g
(

t+
π

ω

)))

cos(ωt− α)dt (26)

Recalling the fact that the function y is strictly decreasing

and inspecting (20), we get g(t) < g
(
t+ π

ω

)
. Thus (24) must

be negative when ‖c‖ > 0. By inspection, we also have that

if ||c|| = 0, then ‖γ‖ = 0, which concludes the proof.

Remark 1: Prop. 1 shows that the agent does not need to

know its global coordinate (which would require knowledge

of the source location) for the SESC, since γ can be

computed using (11), which does not depend on the angle

α. Moreover, Prop. 1 also shows that the norm of γ depends

uniquely on ||c|| and the direction of γ is along that of ||c||.
This means the the SESC is invariant to rotation and we can

always rotate the reference frame such that c =
[
||c|| 0

]T
.

III. ANALYSIS OF THE SESC

In this section, we provide a method for formally analyz-

ing the behavior of the SESC in the presence of disturbances.

We begin by noting that we can pursue a discrete-time

perspective since the goal is to drive the center location as

close as possible to zero and, under the SESC, the center

only updates at discrete time steps.

When the center position is updated, we must now take

into account the fact that the source may also have moved.

The discrete-time center update equation then becomes

c[k + 1] = c[k] + kpγ[k] +W [k], (27)



where W [k] =
∫ tk+1

tk
−w(t)dt and tk is the instant when

the k-th revolution of the system starts. Note that ‖W [k]‖ is

bounded by MwT . Similarly, γ[k] can be rewritten as

γ[k] =

∫ T

0

f

(∥
∥
∥
∥
c[k] +R

[
cos(ωt)
sin(ωt)

]∥
∥
∥
∥

)[
cos(ωt)
sin(ωt)

]

dt

︸ ︷︷ ︸

β(c[k])

+V [k],

(28)

where V [k] is effect of the disturbance v(·) in the measure-

ments as well as effects due to source motion during the

period T . In order to compute an upper bound on ‖V [k]‖, we

begin by computing the instantaneous relative position of the

center with respect to the source during the k-th revolution:

s(t) = c[k] +R

[
cos(ωt)
sin(ωt)

]

−

∫ t

tk

w(t)dt. (29)

Thus, f(‖s(t)− x(t)‖) is given by

f

(∥
∥
∥
∥
c[k] +R

[
cos(ωt)
sin(ωt)

]∥
∥
∥
∥

)

+ ṽ(t), (30)

where ‖ṽ(t)‖ is upper bounded by f
′

maxMw(t−tk) with f
′

max

being the maximum of the absolute value of the derivative

of the function f . Thus,
∥
∥
∥
∥

∫ tk+1

tk

ṽkdt

∥
∥
∥
∥
<

T

2
f

′

maxKw. (31)

Additionally, since

∥
∥
∥

∫ tk+1

tk
v(t)dt

∥
∥
∥ is bounded by KvT , we

have that ‖V [k]‖ is upper bounded by T (f
′

maxKw/2+Kv).
Thus, the complete dynamics of the center of revolution can

be described as

c[k + 1] = c[k] + kpβ(c[k]) + kpV [k] +W [k]. (32)

The expression (32) has a surprisingly simple structure:

β[k] is a term that only depends on the value of c[k] and

the disturbances are additive and upper bounded. In the

sequence, we develop a deeper understanding of β(c[k]), in

order to use it to analyze the behavior of the system.

A. Intepretation of β(c[k])

In (32), we see that β(·) is responsible for driving the

revolution center towards the source. Note that from Prop. 1

the norm of β(c[k]) is invariant with respect to the orientation

of the coordinate frame. Thus, the revolution center at time

k can be written as c[k] =
[
||c[k]|| 0

]T
. From Prop. 1, we

also know that β(c[k]) is in the opposite direction of c[k].
This means that, in the absence of disturbances, the SESC

will move the revolution center directly towards the source.

In order to build intuition on the effectiveness of this

restoring control, we numerically computed ||β(c[k])|| as a

function of the norm of c[k] using

f(r) = exp(r2) and f(r) =
1

(1 + r)2
, (33)

and considered various values of R. The results are shown

in Fig 1. From these plots, we see that the ||β(c[k])|| has a

unique peak and falls off rapidly as the distance to the source

either decreases (the agent moves towards the source) or

increases (the agent moves away from the source). Therefore,

if the agent starts far from the source, any disturbance in

the system may overwhelm the restoring force from β and

prevent convergence. Similarly, the disturbances will prevent

perfect convergence to the source with the proximity defined

by the shape of β(·) and the level of the disturbance.
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Fig. 1: Illustration of β(c[k]) as a function of c[k] with (left)

f(r) = exp(−r2) and (right) f(r) = 1
(1+r)2 .

With this intuition in hand, we now characterize the

regions where the agent will be guaranteed to be pushed

towards the source, even in the presence of disturbances and

source movement. Towards this, we define the following set:

F = {c ∈ R
2 | kp||β(c)||+Dmax < 2||c||,

kp||β(c)|| > Dmax} (34)

where Dmax = kpT (f
′

maxMw/2+Mv)+TMw is the bound

on the norm of the disturbance W [k]+KpV [k] in (32). This

region F is illustrated in Fig. 2.

Proposition 2: If c[k] ∈ F , then under the SESC, ||c[k +
1]|| < ||c[k]||.

Proof: As noted in (1), the SESC is invariant to rotation.

Therefore, without loss of generality, we assume that c[k] =
[
x 0

]T
with x > 0 and that β(c[k]) =

[
−b 0

]T
, for some

b > 0. Thus, (32) gives that

c[k + 1] =

[
x− kpb

0

]

+ kpV [k] +W [k]. (35)

Therefore, since Dmax is an upper bound on ||KpV [k] +
W [k]||, using the triangle inequality we have

||c[k + 1]|| < |x−Kpb|+Dmax. (36)

Since c[k] ∈ F , we get

− (x−Dmax) < x− kpb < x−Dmax. (37)

Thus, |x−Kpb| < x−Dmax. Using this in (36) yields

||c[k + 1]|| < x = ||c[k]||. (38)

Remark 2: Prop. 2 shows that for initial revolution center

positions such that the agent is inside the region F , the

SESC guarantees to move the center towards the origin.

Note that it does not establish asymptotic convergence to

the origin, as the disturbance may overcome the restoring

force when ||c|| < ||c||min (see Fig. 2). In the remainder of



the paper, when we refer to convergence, we mean that the

revolution center approaches the set given by ||c|| ≤ ||c||min.

Additionally, we note that the set F can be easily computed

numerically since its computation consists in verifying the

conditions in the definition of F and ||β(c)|| is a function

of a single variable (||c||) that can be efficiently computed

using numerical integration (see Prop. 1).

By construction of the proof we see that the rate of con-

vergence increases as ‖β(c[k])‖ approaches ‖c[k]‖. However,

the converse is also true; that is, if ‖β(c[k])‖ is on the order

of the disturbance bound, then convergence can be very slow.

This also highlights the fact that by computing the region F ,

we can predict the convergence of the controller, taking into

account the disturbances. If the system begins outside these

domains, then the disturbance may be larger than the ability

of the SESC to move towards the source.
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Fig. 2: Representation of F . When kp||β(c)|| (blue) is not in

the red area (i.e. ‖c‖min < ||c|| < ‖c‖max), the rotation cen-

ter will move towards the source. Here f = exp(−r2), R =
0.5, T = 0.05, kp = 0.5,Mw = 1,Mv = 0.1.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we describe simulation and experimental

results using both the SESC and the OESC in order to

demonstrate the results and compare the predictions based

on the SESC to the results using the OESC.

A. Simulation Results

We first simulated the OESC and the SESC in order to

compare their response. The parameters in (1)-(3) for both

were set to kp = 0.5, R = 0.5, T = 0.01,Mw = 1,Mv =
0.1. The disturbance and source movement were simulated

using a random uniform noise, bounded according to Mw

and Mv. The scalar field was defined as f(r) = exp
(
−r2

)
.

The values of β for this specific setup are shown in Fig. 1.

The results of a simulation with an initial condition at

(2, 1.5) and run for 30 complete revolutions are shown

in Fig. 3. This figure shows that the behavior of the two

controllers is qualitatively similar. In the SESC, the agent

makes a perfect circular orbit and then jumps to the next

orbit as the center position updates. The OESC follows

a smooth path (and is therefore physically implementable)

with motions that are approximately circular with radius R.

In both cases, the initial motion of the center position is
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Fig. 3: Simulated trajectories using the SESC and OESC

under equivalent conditions. (left) Agent trajectory (black)

under the SESC and the revolution center (blue circle). (right)

Agent trajectory (black) under the OESC.

slow; convergence then accelerates (most easily seen in the

increasing distance between centers in Fig. 3) before slowing

down again when the center gets close to the source at the

origin. This, of course, reflects the shape of the restoring

term defined by β as shown in Fig. 1.

To investigate the region of attraction defined by the set F ,

we performed a series of simulations with initial conditions

selected such that the initial distance to the origin ranged

from 0.1 to 4. For this particular choice of parameters, we

have that F = {c | ||c||min < ||c|| < ||cmax} with ||c||min =
0.07 and and ||cmax|| = 2.83. We declared that a trajectory

had converged when the rotation center had norm lower than

||c||min, since if ||c|| < ||c||min we can not expect the rotation

center to move closer to the source.

For each of these distances, we randomly chose 100 dif-

ferent initial locations and calculated the ratio of the number

of runs that converged to the origin within 100 revolutions

to the total number of runs. Based on Prop. 2, the expected

maximum range of convergence for the parameters in these

simulations was 2.83. The results of these simulations are

shown in Fig. 4. In general, the SESC results match well

with the prediction, though there are a small number of runs

just prior to the boundary that did not achieve convergence.

This was due to the fact that the convergence rate is small

when starting right at the maximum distance, and depending

on the realization of the disturbance in any particular run, 100

revolutions may not be sufficiently long. A more interesting

result is that the prediction holds well for the OESC, though

it is conservative. Since the OESC continuously updates its

center location, it is more robust to disturbances and has a

slightly higher chance to converge in practice than the SESC.

B. Experimental Demonstration

We implemented the OESC using a direct-drive wheeled

robot (iRobot Create 2) to demonstrate that the OESC is

a practical controller, even in the face of practical realities,

and to show that the phenomena predicted via the theoretical

analysis of SESC (such as the existence of a radius of

convergence based on the position of the center of revolution)

are also observed in practice. Note that the SESC is not a

practical controller as it demands instantaneous transitions

between different circular orbits. Our results, then, only

involve the OESC. All the code was implemented using ROS
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Fig. 4: Ratio of trajectories that converged after 100 full revo-

lutions under the SESC (mauve) and the OESC (blue). (black

dotted line) Maximum expected distance for convergence.

and Python 2.7 on a Raspberry Pi 2 running Ubuntu 18.04.

The position of the agent was captured using a Optitrack

motion capture system and these measurements, while of

high quality, are subject to measurement noise. The source

was created artificially, with movement using a simulated

uniformly distributed disturbance with Mw = 0.01 m/s. The

random signal was artificially generated according f(r) =
exp(−2r2), where r is the distance in meters between the

artificial source and the agent. To compute the bound on

the measurement noise, Mv, we placed the robot at many

fixed positions in the experimental area, measured the mean

and the maximum deviation of the intensity calculated from

the measured position and the form of f(·), and set Mv to

the maximum among these. For these experiments. we found

Mv = 0.03 m.

The parameters of the OESC were set to R = 0.54 m,

T = 6.7 s and kp = 0.2. We computed the corresponding F
and found that convergence of the revolution center towards

the source was expected if 0.13 m < ‖c‖ < 1.25 m. We then

ran experiments with two different initial conditions. The

resulting trajectories and time traces of the rotation center

are shown in Fig. 5 with an initial distance of 1.23 m (blue

line) and 1.70 m (red line). As expected, at 1.23 m the robot

converged to the a small region around the source while at

1.70 m it did not. To better illustrate the behavior of the robot

after converging, we ran another experiment that focused on

the region near the source; this trajectory is shown in Fig. 6.
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Fig. 5: OESC experimental results from initial conditions

at a distance of (blue) 1.35 m and (red) 1.70 m from the

source. (left) Robot trajectories. (right) Evolution of distance

between revolution center and the source. (dotted black lines)

Predicted bounds for convergence.
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Fig. 6: OESC experimental trajectory, with special focus on

the behavior after convergence.

These experimental results highlight one (perhaps) sur-

prising result of our analysis, namely that it is not the

position of the agent itself that matters but only its center of

revolution. Observing the results in Fig. 5 we see that along

the trajectory that failed to converge (red), the agent actually

get closer to the source than the initial condition of the

successful (blue) trajectory. However, the revolution center

remained outside the region of convergence. The results also

support the theoretical calculations of the region F .

V. CONCLUSION AND FUTURE WORK

In this work, we used a simplified version of a partic-

ular extremum seeking controller to develop intuition on

its behavior in the presence of disturbances and analyzed

its convergence properties. Through simulations we demon-

strated that the analysis of the simplified version predicted

the main aspects of the response of the original controller

and effectively explained why convergence in the presence

of disturbance is limited despite previous theoretical results

showing global convergence. We were also able to provide

insights on how the convergence speed of the controller vary

with the distance between agent and source.
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