Analysis of an Extremum Seeking Controller Under Bounded
Disturbance

Samuel C. Pinto! and Sean B. Andersson

1,2

Department of Mechanical Engineering, 2Division of Systems Engineering,
{samcerq,sanderss } @bu.edu

Abstract— One of the applications of Extremum Seeking
(ES) is to localize the source of a scalar field by using a
mobile agent that can measure this field at its current location.
While the scientific literature has presented many approaches
to this problem, a formal analysis of the behavior of ES
controllers for source seeking in the presence of disturbances
is still lacking. This paper aims to fill this gap by analyzing a
specific version of an ES control algorithm in the presence of
source movement and measurement disturbances. We define an
approximate version of this controller that captures the main
features but allows for a simplified analysis and then formally
characterize the convergence properties of this approximation.
Through simulations and physical experiments, we compare the
theoretically-predicted regions of attraction of the simplified
system with the behavior of the full system and show that the
simplified version is a good predictor of the behavior of the
initial ES controller.

I. INTRODUCTION

In this paper we consider the problem of tracking a moving
source using a mobile agent. We consider that the agent
senses this moving source using scalar measurements, and
that these measurements are stronger the closer the agent is
to the source. This paradigm can be used to model a wide
variety of practical engineering scenarios, such as particle
tracking using a confocal microscope [1], [2], localizing
acoustic sources using drones [3] and tracking moving targets
using WiFi-based radars [4]. A common approach to these
types of problems is that of Extremum Seeking (ES) (see [5]
for a review of the field). More recently, approaches such as
optimization based schemes for ES [6] and heuristic-based
circular motions with proven stability [7], [8] have been of
particular interest for source seeking.

In previous works from our group [1], [2], we built upon
the results in [8] to create a source-seeking ES controller.
In this formulation, the controller seeks to converge to a
circular movement around the source with a radius defined
as a controller parameter. Note that in applications where
the goal is to estimate the position of a (fixed) source in a
two-dimensional setting, the optimal policy in terms of the
corresponding Cramer-Rao lower bound on the estimate of
the position is to move in a circle around the source with a
radius that depends on the observation model parameters [1].
This approach is appealing because a circular motion with
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constant linear velocity tends to be easy to implement in real
world systems, particularly for systems with non-holonomic
kinematics. The control law is also computationally simple
and is based only on the local measurement, independent of
any global knowledge, making it useful for systems with fast
dynamics and limited computational power.

The global convergence of this ES controller was proven
for a static source in [8]. However, simulations [1] and
physical experiments [9] have shown that this convergence is
not global in practical scenarios. In this paper, our main goal
is to explain this discrepancy between the existing theory and
the practical application, as well as to provide a formal and
systematic way to design the system parameters, with pre-
dictable and well-characterized regions of attraction. In order
to achieve this goal, instead of using the exact ES formulation
in [8], we consider an approximate version with a simpler
algebraic formulation that still captures the salient features of
the original controller. By using this approximate version, we
show that in the presence of disturbances in the measurement
and the movement, the controller is guaranteed to steer the
agent towards an approximately circular orbit around the
source if its initial location is within a certain distance from
the source. Then, we use simulations to demonstrate that
the behavior of the simplified controller is indeed similar to
the original one and that the predictions on the convergence
region based on the simplified controller are a good predictor
of the behavior of the initial ES controller. We note that this
simplified version of the controller is intended only as a tool
for analysis, not as a practical controller.

II. EXTREMUM SEEKING CONTROLLER

In the source seeking problem, we consider an agent trying
to find a source in a two dimensional environment. This
source is able to move, though its movement model is un-
known to the agent. In order to simplify future calculations,
we assume that the reference frame is always centered on
the source, and thus its location is [0 O}T. The dynamics
of the position of the agent, s(-), is given by

$(t) = u(t) —w(t), M

where w(t)is the control input and w(t) is an unknown
disturbance that accounts for the source movement. We
assume that w(¢) is bounded, with ||w(¢)|| < M, where
[| - ]| is the usual L5 norm.



For many real-world scalar signals of interest (such as the
fluorescence intensity of a single fluorescent particle in a
confocal microscope, or the measured power of an electro-
magnetic wave), the signal decays smoothly as a function
of distance, reaching zero only when that distance tends
to infinity. Of course, in practice, any such measurement is
corrupted by measurement noise. To capture this, we assume
the agent can continuously acquire a signal y(-) of the scalar
field f(-) according to the measurement model

y(@) = f([s@I]) +v(?), 2

where v(t) is a bounded disturbance, with |[v(t)|| < M,
and f : RT — RT. We assume the function f(-) satisfies
the following technical assumptions to ensure smoothness:

1) f(-) is differentiable and its derivative is bounded,;

2) f(-) is strictly decreasing;

3) f(€) >0 forall £ € RT;

4) limg oo f(€) =0
Note that these are generally satisfied by most real-world
signals of interest and are thus not particularly restrictive.

To move towards the source location, we use the ES
controller introduced in [8] and refer to it as the Original
ES Controller (OESC). The OESC is given by

—wRsin(0(t))
u(t) = [ wR cos(0(t)) ] ! (32)
1) =~k (s, 0(0),  3b)

where R, w and k, are positive constants chosen by the
designer and can be understood as a radius, angular velocity
and proportional controller gain, respectively.

In order to give some intuition on the behavior of this
controller, we highlight that in the absence of sensing dis-
turbance or source movement (i.e. w = v = 0), the OESC
steers the system to a limit cycle given by a circular orbit
with radius R around the source. Note that the control law
only adjusts the angular velocity 6 to steer the system to
this orbit. Global convergence to this limit cycle (in the
absence of disturbances) was shown in [8]. This controller
has many interesting practical features, such as the fact that
its linear velocity is constant and that it is inherently able
to handle non-holonomic kinematics. Moreover, simulations
and experiments with real hardware, as will be discussed
later in this paper, show that the trajectories generated using
this controller are smooth and easily followed by physical
systems such as mobile robots.

Simplified Extremum Seeking Controller: The main
goal of this paper is to study the behavior of the OESC in
the presence of source movement and disturbances in the
measurements. To achieve this, we now develop a simplified
version of the OESC, denoted the Simplified ES Controller
(SESC), that captures the main features of the behavior but
is more amenable to analysis.

To this end, consider first the OESC with w = v = 0. We
define the instantaneous center of the motion, ¢(t), as

cft) =s(t)— R {Z?j((g((z))))] ’ ¥

where R = v/w. The time derivative of ||c(¢)|| is

d _ ()C'(f)

Using (3) in this expression yields

R Tt
dt|le(t)l|

(&)

d —sin(0(t))
Lhe) = - P e

cos(0(t))

Note that ¢(t)/||c(t)]| is a unit vector that gives the direction
to the instantaneous center from the origin (that is, from the
source location). We denote this unit vector as

T

c(t)/lle(t)|| = [cos(a(t)) sin(a(t))] . )
From this we can rewrite (6)

d B dy(t) .

S| = kpwR—=sin (6(2) — a(?)). ®)

This shows that the behavior of the OESC is to drive the
agent along a circular path of radius R around the center
¢(t) while simultaneously continuously moving that center
towards the origin according to (8).

The difficulty in analyzing the OESC is at least in part
due to the continuous motion of the center of the rotation.
Therefore, in the SESC, our goal is to maintain the same
average feedback of the OESC, but to make the center of
rotation fixed for a full rotation before updating. Then, the
dynamics of the agent are as in (3), but with the angle
dynamics 6(s) replaced by:

O(t) = w, t € (tolk], tolk] +T), 9)

where T = 2T and {o[k] is the the beginning of the k-
th revolution. The center of rotation c[k]is instantaneously
translated at the end of each revolution according to

clk + 1] = c[k] + kpv[K], (10)
where ~[k] is given by
T
= [ e+ tolk) E?j((jjf Totni e an

Intuitively, the SESC computes v by doing an average of the
signal received during its circular motion, “weighted” by the
direction. The closer the agent is to the source, the higher
the intensity of the signal is. It is thus expected that, in the
absence of noise, v will point towards the source. We will
show below that the norm of v is equivalent to the average
OESC feedback effect on the rotation center, given by (8).

We now show that the feedback of the SESC is analogous
to the OESC in terms of the revolution center displacement.
If the agent movement is perfectly circular, then its velocity
is given by

o [—v sin(wt)} ' (12)

v cos(wt)



Given this movement policy for the agent, we can integrate
(8) over one period. Integrating by parts, we get:

to+T d
/ y(®) sin(wt — a)dt
t dt

T
= é / y(t + to) cos(wt + O(tp) — a)dt. (13)
0

Prop. 1 below shows that the integral in (13) (which
represents the average feedback effect of the OESC) is
equivalent to ||y||. Moreover, we show that the equivalent
feedback ~ is directed towards the source.

Proposition 1: Under the agent policy in (12), we have

T

Il = ||/ y(t + to) cos(wt + O(to) — a)dt||,  (14a)
0

A (14b)

ol el

Additionally, ||v|| only depends on ||c||.

Proof: First note that
B cos(wt + 6(to))

y(t—i—to)—y( C+R[sin(wt+9(t0)) ) (15)

Introducing the change of variables ¢ =t — (6 (o) — ) /w
into (11) yields

= [ o(fenfmaza] D iz
Note that _ (16)
[etoimte] I oo esrnt] B

u

Thus, v is given by

T
ul o(lu llell ‘R cos cos gt
o 0 sin(w sin(w '

(18)

Since U/ is a rotation matrix, it does not affect the norm of

the vector. Therefore, we have
[COS } H) [COS ] .
SlIl SlIl

—u (e
19)

Thus (19) shows that ||7|| only depends on ||c||. Then,
[-+izts

sin(wt)
Consequently, (19) can be rewritten as

= Vllel]? + R? + 2 ||c[| R cos(wt)
g(t)

(20)

[Fvoo iz [ oo (5] o
+/Ty(g(t)) [COS( t;] @ en

T sin(wt

2

Then we introduce the change of variables ¢’ = T — ¢t in the
second part of the integral and use the fact that sin(wt) =

—sin(w(T —t)) and g(T —t) = g(t) to get
|at

/OT v (9(0) {‘;fjggg] b2 /0 o [cosém
@)

Therefore, we conclude that the second component of the
integral in (19) is zero. Using this and the definition of ¢/ in
(19), we get

cos(a)

y= Lm(a)} / Cy ) costet — o)t @23)

If we introduce the change of variables ' = ¢ + to and take
the norm of (23), we arrive at the expression (14a).

Finally, we show that the direction of ~ is the opposite
direction of ¢ (which given by [cos(a), sin(a)]T). To do so,
we need only show that

T
/0 y (g(t)) cos(wt — a)dt < 0.

If ||c|| > 0, we have

[ vtott)eosr ~ ayit = |

T
+/I y(g(t)) cos(wt — a)dt. (25)

2

(24)

vl

y(g(t)) cos(wt — a)dt

Moreover, using the change of variables ¢’ = ¢t — 7/w, in
the integral that goes from T'/2 to T we get that (25) is
equivalent to

/0g (f(g(t)) —f (g (t + g))) cos(wt —a)dt  (26)

Recalling the fact that the function y is strictly decreasing
and inspecting (20), we get g(t) < g (¢ + Z). Thus (24) must
be negative when ||c|| > 0. By inspection, we also have that
if ||c|| = 0, then ||| = 0, which concludes the proof. ®

Remark 1: Prop. 1 shows that the agent does not need to
know its global coordinate (which would require knowledge
of the source location) for the SESC, since + can be
computed using (11), which does not depend on the angle
a. Moreover, Prop. 1 also shows that the norm of + depends
uniquely on ||c|| and the direction of ~ is along that of ||c||.
This means the the SESC is invariant to rotation and we can
always rotate the reference frame such that ¢ = [||c|| 0] T

III. ANALYSIS OF THE SESC

In this section, we provide a method for formally analyz-
ing the behavior of the SESC in the presence of disturbances.
We begin by noting that we can pursue a discrete-time
perspective since the goal is to drive the center location as
close as possible to zero and, under the SESC, the center
only updates at discrete time steps.

When the center position is updated, we must now take
into account the fact that the source may also have moved.
The discrete-time center update equation then becomes

clk + 1] = c[k] + kpy[k] + WE], 27



where W[k] = t’:‘“ —w(t)dt and tj is the instant when

the k-th revolution of the system starts. Note that ||V [k]|| is
bounded by M,,T. Similarly, y[k] can be rewritten as

1= 1 (s o] s o
(28)

sin(wt sin(wt
where V'[k] is effect of the disturbance v(-) in the measure-
ments as well as effects due to source motion during the
period T'. In order to compute an upper bound on ||V'[k]||, we
begin by computing the instantaneous relative position of the
center with respect to the source during the k-th revolution:

B(c[k])

s(t) = [k] + R [‘;fjgjg] _ /t:w(t)dt. (29)
Thus, f(ls(t) — (1)) s given by
1 (et + =[] +o0r o0

where ||5()]| is upper bounded by £, My, (t—tz) with f, ..

being the maximum of the absolute value of the derivative
of the function f. Thus,

i1 T ,
‘/ ’[)kdtH < _fmaxK
tr 2

Additionally, since H S o dtH is bounded by K, T, we
have that ||V [k]|| is upper bounded by T'(f. .. Kuw/2+ K.).

max
Thus, the complete dynamics of the center of revolution can

be described as

clk + 1) = c[k] + kpB(clk]) + k, VK] + WIK].

(€19

(32)

The expression (32) has a surprisingly simple structure:
Blk] is a term that only depends on the value of ¢[k] and
the disturbances are additive and upper bounded. In the
sequence, we develop a deeper understanding of S(c[k]), in
order to use it to analyze the behavior of the system.

A. Intepretation of 5(c[k])

In (32), we see that 5(-) is responsible for driving the
revolution center towards the source. Note that from Prop. 1
the norm of §(c[k]) is invariant with respect to the orientation
of the coordinate frame. Thus, the revolution center at time
k can be written as c[k] = [||c[k]|| O}T. From Prop. 1, we
also know that 3(c[k]) is in the opposite direction of c[k].
This means that, in the absence of disturbances, the SESC
will move the revolution center directly towards the source.

In order to build intuition on the effectiveness of this
restoring control, we numerically computed ||5(c[k])|| as a
function of the norm of ¢[k] using
1
2
f(T) - exp(?‘ (1 4 )
and considered various values of R. The results are shown
in Fig 1. From these plots, we see that the ||3(c[k])|| has a
unique peak and falls off rapidly as the distance to the source

) and f(r) = (33)

either decreases (the agent moves towards the source) or
increases (the agent moves away from the source). Therefore,
if the agent starts far from the source, any disturbance in
the system may overwhelm the restoring force from S and
prevent convergence. Similarly, the disturbances will prevent
perfect convergence to the source with the proximity defined
by the shape of 3(-) and the level of the disturbance.
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Fig. 1: Tllustration of 3(c[k]) as a function of c[k] with (left)
f(r) = exp(—r?) and (right) f(r) = 1+T)2

With this intuition in hand, we now characterize the
regions where the agent will be guaranteed to be pushed
towards the source, even in the presence of disturbances and
source movement. Towards this, we define the following set:

F=A{ce R? | kp”ﬂ(c)” + Diax < 2||c]|,
kaB(C)” > Diax}

where Dyax = kpT(fiaxMuw/2+ M) +T M, is the bound
on the norm of the disturbance W k] + K,V [k] in (32). This
region F is illustrated in Fig. 2.
Proposition 2: If c[k] € F, then under the SESC, ||c[k +
1)1 < |/l
Proof: As noted in (1), the SESC is invariant to rotation.
Therefore, without loss of generality, we assume that c[k] =

(34)

[z O}T with # > 0 and that 3(c[k]) = [-b O]T, for some
b > 0. Thus, (32) gives that
[k +1] = [x _Ok”b] +h,VIE| +WIE. 35

Therefore, since Dmax is an upper bound on ||K,V[k] +
Wk]||, using the triangle inequality we have

llelk + 1] < |z — Kpb| + Dimax- (36)
Since c[k] € F, we get
— (@ — Dmax) < — kpb < & — Dpax. (37)
Thus, | — Kpb| <  — Dypes. Using this in (36) yields
e[k +1]I] < = = [|<[K]]]- (38)
|

Remark 2: Prop. 2 shows that for initial revolution center
positions such that the agent is inside the region F, the
SESC guarantees to move the center towards the origin.
Note that it does not establish asymptotic convergence to
the origin, as the disturbance may overcome the restoring
force when ||c|| < ||¢||min (see Fig. 2). In the remainder of



the paper, when we refer to convergence, we mean that the
revolution center approaches the set given by ||c|| < ||¢||min-
Additionally, we note that the set F can be easily computed
numerically since its computation consists in verifying the
conditions in the definition of F and ||3(c)|| is a function
of a single variable (||c||) that can be efficiently computed
using numerical integration (see Prop. 1).

By construction of the proof we see that the rate of con-
vergence increases as || 5(c[k])|| approaches ||c[k]||. However,
the converse is also true; that is, if ||3(c[k])|| is on the order
of the disturbance bound, then convergence can be very slow.
This also highlights the fact that by computing the region F',
we can predict the convergence of the controller, taking into
account the disturbances. If the system begins outside these
domains, then the disturbance may be larger than the ability
of the SESC to move towards the source.
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Fig. 2: Representation of . When k,||5(c)|| (blue) is not in

the red area (i.e. ||c[| ;, < |l¢]] < |l¢]| yas)s the rotation cen-
ter will move towards the source. Here f = exp(—r?), R =
0.5,T = 0.05, k, = 0.5, M,, = 1, M, = 0.1.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we describe simulation and experimental
results using both the SESC and the OESC in order to
demonstrate the results and compare the predictions based
on the SESC to the results using the OESC.

A. Simulation Results

We first simulated the OESC and the SESC in order to
compare their response. The parameters in (1)-(3) for both
were set to k, = 0.5,R = 0.5,T = 0.01,M,, = 1, M, =
0.1. The disturbance and source movement were simulated
using a random uniform noise, bounded according to M,,
and M,. The scalar field was defined as f(r) = exp (—1?).
The values of 3 for this specific setup are shown in Fig. 1.

The results of a simulation with an initial condition at
(2,1.5) and run for 30 complete revolutions are shown
in Fig. 3. This figure shows that the behavior of the two
controllers is qualitatively similar. In the SESC, the agent
makes a perfect circular orbit and then jumps to the next
orbit as the center position updates. The OESC follows
a smooth path (and is therefore physically implementable)
with motions that are approximately circular with radius R.
In both cases, the initial motion of the center position is

T

Fig. 3: Simulated trajectories using the SESC and OESC
under equivalent conditions. (left) Agent trajectory (black)
under the SESC and the revolution center (blue circle). (right)
Agent trajectory (black) under the OESC.

slow; convergence then accelerates (most easily seen in the
increasing distance between centers in Fig. 3) before slowing
down again when the center gets close to the source at the
origin. This, of course, reflects the shape of the restoring
term defined by 8 as shown in Fig. 1.

To investigate the region of attraction defined by the set F,
we performed a series of simulations with initial conditions
selected such that the initial distance to the origin ranged
from 0.1 to 4. For this particular choice of parameters, we
have that F' = {c | ||¢||min < |l¢|| < ||Cmax} With ||c||min =
0.07 and and ||cmax|| = 2.83. We declared that a trajectory
had converged when the rotation center had norm lower than
[|¢]|mins since if [|¢|| < ||¢||min We can not expect the rotation
center to move closer to the source.

For each of these distances, we randomly chose 100 dif-
ferent initial locations and calculated the ratio of the number
of runs that converged to the origin within 100 revolutions
to the total number of runs. Based on Prop. 2, the expected
maximum range of convergence for the parameters in these
simulations was 2.83. The results of these simulations are
shown in Fig. 4. In general, the SESC results match well
with the prediction, though there are a small number of runs
just prior to the boundary that did not achieve convergence.
This was due to the fact that the convergence rate is small
when starting right at the maximum distance, and depending
on the realization of the disturbance in any particular run, 100
revolutions may not be sufficiently long. A more interesting
result is that the prediction holds well for the OESC, though
it is conservative. Since the OESC continuously updates its
center location, it is more robust to disturbances and has a
slightly higher chance to converge in practice than the SESC.

B. Experimental Demonstration

We implemented the OESC using a direct-drive wheeled
robot (iRobot Create 2) to demonstrate that the OESC is
a practical controller, even in the face of practical realities,
and to show that the phenomena predicted via the theoretical
analysis of SESC (such as the existence of a radius of
convergence based on the position of the center of revolution)
are also observed in practice. Note that the SESC is not a
practical controller as it demands instantaneous transitions
between different circular orbits. Our results, then, only
involve the OESC. All the code was implemented using ROS
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Fig. 4: Ratio of trajectories that converged after 100 full revo-
lutions under the SESC (mauve) and the OESC (blue). (black

dotted line) Maximum expected distance for convergence.

and Python 2.7 on a Raspberry Pi 2 running Ubuntu 18.04.
The position of the agent was captured using a Optitrack
motion capture system and these measurements, while of
high quality, are subject to measurement noise. The source
was created artificially, with movement using a simulated
uniformly distributed disturbance with M, = 0.01 m/s. The
random signal was artificially generated according f(r) =
exp(—2r?), where r is the distance in meters between the
artificial source and the agent. To compute the bound on
the measurement noise, M,, we placed the robot at many
fixed positions in the experimental area, measured the mean
and the maximum deviation of the intensity calculated from
the measured position and the form of f(-), and set M, to
the maximum among these. For these experiments. we found
M, = 0.03 m.

The parameters of the OESC were set to R = 0.54 m,
T =6.7 s and k, = 0.2. We computed the corresponding F
and found that convergence of the revolution center towards
the source was expected if 0.13 m < ||¢|| < 1.25 m. We then
ran experiments with two different initial conditions. The
resulting trajectories and time traces of the rotation center
are shown in Fig. 5 with an initial distance of 1.23 m (blue
line) and 1.70 m (red line). As expected, at 1.23 m the robot
converged to the a small region around the source while at
1.70 m it did not. To better illustrate the behavior of the robot
after converging, we ran another experiment that focused on
the region near the source; this trajectory is shown in Fig. 6.

-0.5 0 0.5 1 15 2 0 5 10 15 20 25 30 35 40
x (m) Time (s)

Fig. 5: OESC experimental results from initial conditions
at a distance of (blue) 1.35 m and (red) 1.70 m from the
source. (left) Robot trajectories. (right) Evolution of distance
between revolution center and the source. (dotted black lines)
Predicted bounds for convergence.
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Fig. 6: OESC experimental trajectory, with special focus on
the behavior after convergence.

These experimental results highlight one (perhaps) sur-
prising result of our analysis, namely that it is not the
position of the agent itself that matters but only its center of
revolution. Observing the results in Fig. 5 we see that along
the trajectory that failed to converge (red), the agent actually
get closer to the source than the initial condition of the
successful (blue) trajectory. However, the revolution center
remained outside the region of convergence. The results also
support the theoretical calculations of the region F.

V. CONCLUSION AND FUTURE WORK

In this work, we used a simplified version of a partic-
ular extremum seeking controller to develop intuition on
its behavior in the presence of disturbances and analyzed
its convergence properties. Through simulations we demon-
strated that the analysis of the simplified version predicted
the main aspects of the response of the original controller
and effectively explained why convergence in the presence
of disturbance is limited despite previous theoretical results
showing global convergence. We were also able to provide
insights on how the convergence speed of the controller vary
with the distance between agent and source.
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