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Abstract

Streamflow response in headwater catchments is highly sensitive to the hydrologic
connectivity of hillslopes to streams during spring snowmelt. Despite strong evidence at
point- to plot-scales of flow paths creating lateral connectivity within an alpine snowpack,
meltwater is commonly assumed to infiltrate vertically through the snowpack. Hydrologic
models only treat the horizontal (downstream) routing of water once released from the
snowpack and/or soil column. This assumption limits our ability to represent the full dynamic
nature of hydrologic connections in snow-dominated mountainous headwaters. Thus, the goal
of this study is to assess the mechanisms that control the spatiotemporal distribution of liquid
water in an alpine snowpack during the spring snowmelt season. We utilize terrestrial laser
scanning (TLS), ground penetrating radar (GPR), and manual observations to map the
seasonal dynamics of snow depth, snow water equivalent (SWE), and within-snow liquid
water content (LWC). We compare these observations to point-scale parameter sensitivity
analyses with a modular snow model (SUMMA). The results show high spatial variability of
LWC in an alpine snowpack during snowmelt. Statistical analyses show LWC is most highly

correlated to snow depth (r* = 0.62). However, including the distance to bare soil and
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topographical slope slightly improved the coefficient of determination (r? = 0.67). While
hydrologic models have the flexibility to simulate many of the observed dynamics in
snowpack liquid water storage, model simulations using previously published parameter
ranges always underestimated the high liquid water storage at one of the three sites. This is
likely a result of current model structures that lack capabilities for surface ponding of water
within a snowpack or surface runoff laterally through a snowpack. Our slope-scale
characterization of the spatiotemporal distribution of in-snow LWC, together with a model-
based sensitivity assessment, will inform future efforts in hydrologic model development and

catchment observations.
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1. INTRODUCTION

Seasonal snow accumulation and melt are critical components of the hydrologic cycle
in mountainous areas with important controls on climate, ecosystem function, flood risk, and
water resources (Bales et al., 2006). Globally, over one billion people rely on water that
originates as snow (Barnett, Adam, & Lettenmaier, 2005) with continuing increases in both
demand for and value of that water (Wada & Bierkens, 2014). In mountainous headwater
basins, more than 85% of annual precipitation can accumulate as a winter snowpack. In the
western United States , seasonal snowmelt produces two-thirds of total inflow to reservoirs
(L1, Wrzesien, Durand, Adam, & Lettenmaier, 2017). Historical trends and 21st century
projections indicate that as air temperatures continue to warm, snowpack will decline and
winter snowmelt will become more frequent (Knowles, Dettinger, & Cayan, 2006;
Musselman, Addor, Vano, & Molotch, 2021; Stewart, Cayan, & Dettinger, 2004). This earlier
snowmelt is projected to occur at slower rates due to the shift towards a time of lower
available energy (Musselman, Clark, Liu, Ikeda, & Rasmussen, 2017). Assessments of the
potential socioeconomic and environmental impacts of ongoing and projected changes in
snowmelt timing and magnitude require consideration of physical processes by which
snowmelt water becomes available for streamflow.

Changes in the timing and rate of meltwater (i.e., the snowmelt pulse) have profound
implications on seasonal soil moisture (Harpold et al., 2015; Webb, Fassnacht, & Gooseff,
2015), evapotranspiration (ET) (Winchell, Barnard, Monson, Burns, & Molotch, 2016),
groundwater recharge (Ford, Kendall, & Hyndman, 2020), downstream water availability
(Vano et al., 2014), and rain-on-snow flood risk (Musselman et al., 2018). Streamflow and
groundwater recharge respond nonlinearly to input of snowmelt such that slight reductions in
snowmelt rates may disproportionately reduce runoff (Barnhart et al., 2016; Musselman,
Molotch, & Margulis, 2017). However, our understanding of these potential impacts remains
conceptual in nature through the use of hydrologic models. However, these hydrologic
models need further verification of physical processes in complex terrain during snowmelt to
ensure appropriate representation of the important processes. Improved process-level
understanding of physical hydrologic processes during snowmelt is needed to properly
structure ecohydrologic models. In this context, improvements to model structure are needed
to simulate the interactions amongst snow distribution, melt, ET, runoff, and more broadly, to
assess the sensitivity of snow-dominated regions to climate change. One key source of
uncertainty is our relatively limited knowledge of the dynamic pathways of snowmelt in

headwater systems — how meltwater moves from melting snow grains to the soil system.
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The hydrologic connectivity of hillslopes to streams greatly impacts streamflow
response (e.g. Detty & McGuire, 2010; Jencso et al., 2009; McGlynn & McDonnell, 2003;
McNamara, Chandler, Seyfried, & Achet, 2005). We conceptualize two types of hydrologic
connectivity: static and dynamic. Static connectivity is related to the landscape architecture
that can be categorized and mapped (e.g., the ‘plumbing’ of hydrologic response units).
Dynamic connectivity refers to variations in antecedent wetness and storage capacity that
facilitates and buffers streamflow, ultimately producing a nonlinear response to inputs
(Bracken & Croke, 2007). Hillslopes have both static and dynamic connectivity that operate
simultaneously to generate streamflow. In snow-dominated catchments, these concepts of
static and dynamic hydrologic connectivity have been limited to near-surface groundwater
dynamics (e.g. Gasemizade & Schirmer, 2013; Jencso & McGlynn, 2011; McNamara et al.,
2005). To date, there has been little focus on the hydrologic connectivity that occurs because
of liquid water storage and transport within and among the layers of a seasonal snowpack in
mountainous terrain. Despite strong evidence of lateral connectivity of liquid water within
snow (e.g. Eiriksson et al., 2013; Webb, Wigmore, Jennings, Fend, & Molotch, 2020;
Williams, Rikkers, & Pfeffer, 2000), meltwater is commonly assumed to infiltrate vertically
and only mobilize horizontally once at or below the snow-soil interface (Fig. 1; e.g. Clark,
Nijssen, & Luce, 2017; Kormos et al., 2014). This assumption may limit our ability to
represent the full dynamic nature of hydrologic connections in snow-dominated mountainous
headwater systems (Brauchli, Trujillo, Huwald, & Lehning, 2017) needed to simulate snow

water resources and the ecohydrologic sensitivity to climate change.

[Insert Figure 1]

To represent snowmelt infiltration more accurately across a landscape, it is beneficial
to consider snow as a layered porous media with unsaturated flow dynamics occurring during
spring snowmelt (Webb, Jennings, Finsterle, & Fassnacht, 2021). Snow is a complex, three-
dimensional matrix of ice, air, liquid water, and constituents (e.g., dust). The hydraulic
properties of snow layers depend on crystal structure, snow density, and relative saturation
(i.e., liquid water content). These dynamic properties are determined by the meteorological
conditions under which snow layers are deposited and subsequently evolve (Colbeck, 1991;
Domine, Morin, Brun, Lafaysse, & Carmagnola, 2013; Hirashima, Avanzi, & Wever, 2019;
Wever, Fierz, Mitterer, Hirashima, & Lehning, 2014; Yamaguchi, Watanabe, Katsushima,

Sato, & Kumakura, 2012) that vary across a catchment by elevation, wind exposure, slope,

4
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aspect, and vegetation (Elder, Dozier, & Michaelsen, 1991; Lopez-Moreno, Fassnacht,
Begueria, & Latron, 2011; Molotch, Colee, Bales, & Dozier, 2005; Sexstone & Fassnacht,
2014). Similar to soils, the hydraulic properties of snow layers can form hydraulic barriers
(Webb, Fassnacht, Gooseff, & Webb, 2018), translating meltwater tens of meters downslope
(Eiriksson et al., 2013; Liu, Williams, & Caine, 2004; Peitzsch, Birkeland, & Hansen, 2008),
and creating complex hydrologic flow paths (Kampf, Markus, Heath, & Moore, 2015; Webb,
Jennings, Finsterle, & Fassnacht, 2021; Webb, Williams, & Erickson, 2018; Williams,
Erickson, & Petrzelka, 2010). Unlike flow paths through soils, which can be conceptualized
as a mix of static and dynamic components, all flow paths through snow are dynamic because
the physical snowpack structure evolves at sub-daily timescales. To date, the ever-changing
nature of flow paths through snow has limited our understanding to what can be directly
observed at small scales (i.e., cm to m) (e.g. Williams et al., 2010; Leroux, Marsh, &
Pomeroy, 2020) with only recent advances using remote sensing techniques applied at plot-
scales (up to tens of meters) (e.g. Webb et al., 2020). As remote sensing tools continue to
evolve, it is critical to advance our understanding of how liquid water in snow evolves at the
hillslope and catchment scales.

The goal of this study is to assess the mechanisms that control the spatiotemporal
distribution of liquid water in an alpine snowpack during the spring snowmelt season. We
answer the following research questions: 1) What factors control the storage of liquid water
in snow? 2) How does the liquid water storage in snow change throughout the snowmelt
season? And 3) How accurately do hydrologic models simulate the observed snowpack liquid
water storage?

To address these questions, we use terrestrial laser scanning (TLS), ground
penetrating radar (GPR), and manual observations to map the seasonal dynamics of snow
depth, snow water equivalent (SWE), and the within-snow liquid water content (LWC) in an
experimental alpine headwater catchment. Leveraging these unique observations, we conduct
point-scale parameter sensitivity analyses with a modular snow model to compare the
observation-based estimates of snow LWC to the simulated ranges. Our slope-scale
characterization of the spatiotemporal distribution of liquid water in a melting alpine
snowpack, together with a model-based sensitivity assessment, will inform future efforts in

hydrologic model development and catchment observations.

2. METHODS
2.1 Study Site
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This study was conducted in an alpine headwater catchment at the Niwot Ridge Long
Term Ecological Research (LTER) study site near Boulder, Colorado. The Saddle catchment
(SDL) is instrumented with a meteorological station that records hourly measurements of
shortwave and longwave radiation, wind speed, barometric pressure, air temperature, and
relative humidity (Jennings, Kittel, Molotch, & Yang, 2021). An ultrasonic sensor near the
station records measurements of snow depth every 30-minutes (Morse et al., 2021). Hourly
precipitation and SWE is measured ~2 km away at the University Camp SNOTEL site.
Decades of work in SDL include water flow through snow (Webb et al., 2020; Williams et
al., 2010; Williams et al., 2000), hydrograph separation (Hill, 2017; Liu et al., 2004),
groundwater modelling (Evans, Ge, Voss, & Molotch, 2018), biogeochemical processes
(Knowles et al., 2015; Williams, Seibold, & Chowanski, 2009), and ecological processes (e.g.
Wieder, Knowles, Blanken, Swenson, & Suding, 2017). Nearby laboratory facilities are
maintained on the ridge of SDL providing storage, line power, and access to this otherwise
remote catchment.

The SDL research catchment is approximately 0.3 km? with elevations ranging from
3400 to 3650 m asl and 80% of the area above treeline (Fig. 2a). The terrain has generally
modest slopes and a predominantly southeast aspect, creating an environment largely affected
by strong westerly winds. Wind deposition of snow occurs on leeward slopes (SE and E
aspects) and wind scour on windward slopes (SW and W aspects). Streamflow discharge in
SDL has been monitored for over two decades (Williams et al., 2015) with recent
hydrochemistry analysis indicating more than 60% of annual runoff derives from snowmelt
that lacks geochemical evidence of interaction with the local geology (Hill, 2017).

For this study, the SDL catchment was monitored for the spatial and temporal
distribution of liquid water storage within the snowpack during the 2019 melt season. During
this melt season, peak SWE in the SDL catchment occurred on approximately 17-May. The
observation period of this study occurred between 14-May and 27-June with a total of 3
terrestrial lidar scans and 11 GPR surveys. The timing of these surveys targeted early and

peak snowmelt.

[Insert Figure 2]

2.2 Snow Depth Estimates
The spatial distribution of snow depth (ds) was determined using established TLS
methodology (e.g. Deems, Painter, & Finnegan, 2013). TLS data were collected on 14-May,
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7-June, and 27-June with a Riegl VZ-6000 lidar scanner from three scan positions to capture
the area of interest. Georeferencing and aligning multiple scans was accomplished using
Trimble Business Center and Riegl RiSCAN Pro software packages. Ground surface (i.e.,
snow-free) scans occurred on August 20, 2019. Scans were georeferenced using four 16.5 cm
diameter reflective targets with Trimble R10 rover GPS units corrected to a Trimble NetR9
base station with a Zephyr Geodetic antenna. Post-processing estimates of TLS absolute
accuracy are ~0.02 m. The TLS surfaces were aggregated to produce 3 m resolution digital
elevation models (DEMs) of the ground and snow surfaces. For each scan date, d; was
calculated by subtracting the ground surface DEM from the snow surface DEMs.

To estimate the spatial snow depth patterns on dates when TLS observations were not
available, temporal interpolation was applied to leverage information from TLS and
continuous ds observations from the ultrasonic sensor. For accumulation events, the relative
distribution of event-based snow accumulation was assumed to follow the same spatial
pattern as that observed near peak accumulation from the 14-May TLS data collection. Thus,
the maximum accumulation d; field, as observed by TLS, was normalized relative to the
observed dy at the SDL ultrasonic sensor on 14-May (Fig. 3). Similarly, ablation was assumed
to occur in the spatial pattern observed as the difference of d fields from the 14-May and 7-
June TLS scans. These assumptions regarding the spatial patterns of spring accumulation and
melt were assessed by comparing ultrasonic d; values measured at the SDL site against the
University Camp SNOTEL site located ~2 km away (Fig. 3¢). In the comparison between the
two sites, consistent relationships in spring snow accumulation and melt would result in a
linear trend when the daily d; values are plotted against each other. A linear regression fit to
the data has an r? value of 0.89 indicating this method to be acceptable, particularly since all

points of interest at the SDL site are much closer to the depth sensor than the SNOTEL site.

[Insert Figure 3]

2.3 Ground Penetrating Radar

We used GPR data collection to obtain further information of snowpack properties
(e.g., Marshall, Koh, & Forster, 2005). A GPR pulse is an electromagnetic wave that travels
through the snowpack and is reflected off changes in material properties such as density, with
the strongest reflection often from the snow-soil interface (Bradford, Harper, & Brown, 2009;
Holbrook, Miller, & Provart, 2016; Webb, 2017). For this study, two-way-traveltime (#2) of

GPR waves through snow were obtained along transects on eight survey dates: 17-May, 23-

7
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May, 27-May, 31-May, 7-June, 14-June, 20-June, and 27-June. We used a Mala Geoscience,
Inc. ProEx control unit pulse GPR system with an 800 MHz shielded antenna. The antenna
was fixed in place on a plastic sled towed behind a user or between two users. A GPS antenna
connected to the ProEx control unit registered location information every second. Transect
end points were marked with 2.5 cm diameter, 2 m long plastic pipes inserted halfway into
the snow to maintain a repeatable travel path each survey.

Radar pulses were triggered on 0.05 s intervals using eight times stacking. The
average survey travel speed was ~0.5 m/s resulting in ~40 returns per meter. The ReflexW
2D Software package was used for time-zero adjustment, taken as the first break in the first
wavelet, a dewow filter, and spherical divergence correction to compensate for signal
attenuation. The dewow filter removes low frequency content by calculating a running mean
that is subtracted from a central point. The reflection of the snow-soil interface was then
picked at the first break prior to the first peak of the reflection. Topography was corrected for
by dividing 7, by the cosine of the ground surface slope at that location. Distributed ¢, data

were aggregated to a 3 m raster using the mean of £ values, to match the distributed ds; maps.

2.4 Estimating Liquid Water Content
The effective dielectric permittivity (eep) of snow is sensitive to snowpack density and
LWC (Bradford et al., 2009; Heilig et al., 2015; Webb, Jennings, Fend, & Molotch, 2018),
and is calculated from the observed velocity (v) of the radar wave through snow:
Eeff = (/v)? Eq (1)

where s is the speed of light in a vacuum (~0.3 m/ns) and v is calculated using:

v =ﬁ Eq (2)

where d; is the distributed snow depth estimates derived from TLS as described in section
2.2

The bulk volumetric LWC (6y) of snow is calculated from e, (Eq. 1) using the Roth
et al. (1990) three phase mixing model that is commonly applied (Heilig et al., 2015; Koch,
Prasch, Schmid, Schweizer, & Mauser, 2014; Mitterer, Heilig, Schweizer, & Eisen, 2011;
Schmid et al., 2015; Webb, Jennings, et al., 2018):
et -L0ep-(1-22) g5

eff
s Eq (3)

€a

6, =

35—

where pq is the density of dry snow, p; is the density of ice (917 kg m™), &, &4, and &, are the

dielectric permittivities of ice, air, and liquid water, respectively. At 0°C these dielectric
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permittivities are known (&; = 3.18, ¢, = 1.0, and &, = 87.9). For this study, we observed pa
through manual snow pit measurements at two locations within SDL, one near the depth
sensor on a flat aspect and one near a deep snow drift on a southern aspect slope. Snow pit
observations in this study were only used to obtain bulk density estimates using a 1000 cm’
wedge cutter and digital scale with 1 g precision. The density observations were made in 10
cm vertical increments to provide a density profile that was averaged for the bulk density.
The methods described above result in an estimated accuracy for 6,, of ~0.02. When applying
equation 3 to the SDL catchment, we set a maximum 6,, value of 0.30 due to the lack of
studies confirming permittivity equations for snow with such high values of liquid water

storage. For more information concerning this method, see Webb et al. (2018).

2.5 Snowpack Modelling

The snowpack was modelled with the Structure for Unifying Multiple Modelling
Alternatives (SUMMA) (Clark, Fan, et al., 2015; Clark, Nijssen, Lundquist, Kavetski, Rupp,
Woods, Freer, Gutmann, Wood, Brekke, et al., 2015; Clark, Nijssen, Lundquist, Kavetski,
Rupp, Woods, Freer, Gutmann, Wood, Gochis, et al., 2015). SUMMA is a hydrologic model
that provides flexibility to experiment with different hydrologic model decisions including
spatial representations, flux parameterizations, and parameter values. One-dimensional (i.e.,
point) simulations were conducted at three locations selected to represent the basin range of
slope, snow depth, and snow cover persistence in the SDL catchment. Table 1 summarizes
the site characteristics. In SUMMA, in-snow LWC and transmission are estimated as a
function of snow temperature, volumetric ice content, and gravity drainage, with
consideration of capillary retention processes within the pore space of a snow layer.

Elevation, slope, and aspect were derived from a 10 m airborne lidar-derived DEM
(Anderson, Guo, & Parrish, 2013). Local soils and geological surveys conducted in SDL
(Hill, 2017) were used to define the model discretization and initial conditions of eight soil
layers to a total depth of 4 m. The lower soil boundary conditions were specified as a zero-
flux for the soil thermodynamics and free-draining for the soil hydrology. Vegetation was
classified as tundra and was buried by snow-cover. Except for precipitation, which is
described below, hourly meteorological variables from the SDL station were used to force the
model. Due to a sensor error, measured incoming longwave radiation was unavailable and
was estimated using a parameterization based on SDL station measurements of air

temperature, relative humidity, and incoming shortwave radiation (Schmucki, Marty, Fierz,
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& Lehning, 2014). Measured shortwave radiation was projected onto the slope of each point
simulation.

Wind speed at each site was estimated from measurements at the SDL station using a
linearized, spatially distributed windflow model run at 10 m resolution for eight windflow
directions to produce maps of normalized wind speed values relative to the SDL station (see
Musselman et al., 2015). From the prevailing wind direction (southwest), point values for
each of the three simulation locations were extracted and this normalized value was
multiplied by the wind speed measured at the SDL station (Table 1). For precipitation, hourly
data from the nearby University Camp SNOTEL site was interpolated to the elevation of the
SDL catchment through an iterative manual procedure specific to each site to align simulated
and observed snow depth and SWE on the date of maximum accumulation. First, measured
hourly precipitation at the nearest SNOTEL site (450 m lower in elevation and 2 km east)
was doubled. Second, a SUMMA parameter used to scale frozen precipitation to approximate
the effect of wind scour and drifting was manually tuned to match the observed maximum
snow depth and SWE at each site (see Table 1). The precipitation adjustment informed by
snow depth observations bypassed the challenges of explicitly simulating complex wind
scour and drift dynamics. By accurately resolving maximum snow accumulation, the
experiment could focus on better representing melt season dynamics (Brauchli et al., 2017).
The remaining variables were assumed to be spatially invariant over the 0.3 km? catchment.

The model was run from October 1, 2018, to September 30, 2019.
[Insert Table 1]

In SUMMA, the vertical flux, ¢ (m s™!), and storage, 0, (-), of liquid water in snow is
parameterized as gravity drainage, where the hydraulic conductivity of snow is expressed

using the Brooks and Corey relation (Brooks & Corey, 1964):

g = kyge (22 res )’ Eq. (4)

Osat—bres
where ks (m s7!) is the saturated hydraulic conductivity of snow, s (-) is the porosity of
snow, O (-) is the irreducible liquid water in the snowpack, and ¢ is an exponent related to
the pore size distribution. In Eq. (4), Ores = @rensOsar, where the parameter ¢.ns defines the
fraction of pore space that must be filled before drainage can occur (Clark, Nijssen,

Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann, Wood, Gochis, et al., 2015).
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A model sensitivity analysis was conducted in which nine different parameter sets
were created by modifying ksas, @rens, and ¢ each with three values that span observational
ranges reported in the literature (e.g. Yamaguchi et al., 2012; Domine et al., 2013; Leroux &
Pomeroy, 2019). As summarized in Table 2, ks was specified as 0.0005, 0.005, and 0.05 m s
L drens was specified as 0.01, 0.06 and 0.15, and ¢ was specified as 1, 3 and 5. A graphical
visualization of these 9 sets of parameters shows the hydraulic conductivity as a function of
6y (Fig. 4). To explore the sensitivity of results to the number of snow layers, the parameter
sensitivity experiment was repeated with the snow model set to represent a maximum of 5
and 100 snow layers. Thus, the nine parameter sets (Table 2) were run twice for a total of 18
simulations at each of three sites.

This modelling sensitivity analysis allowed a comparison of a 100-layer and 5-layer
representations of snowpack stratigraphy that are commonly utilized in hydrologic models
(e.g., SNTHRM and CLM, respectively; Jordan, 1991; Toure et al., 2016). Within this
comparison, we then explored the sensitivity of modifying the parameters that govern liquid
water storage and flux in Eq. 4 as described above. Thus, the SUMMA simulations allowed
comparisons between hydrologic model decisions that are often part of the internal structure

of hydrologic models.

[Insert Table 2]

[Insert Figure 4]

3. RESULTS
3.1 Observations

The 2019 snow season at the nearby University Camp SNOTEL site was close to the
long-term median for observed SWE values (1981-2010; Fig. 5). The long-term median peak
SWE is 483 mm occurring 2-May. In 2019, peak SWE was 106% of the median (513 mm)
and occurred 10-days later, on 12-May. After peak SWE, snowmelt progressed relatively
consistently except for two accumulation events in late-May and late-June. Snow depth in the
SDL catchment ranged from zero in wind-scoured areas up to nearly 7 m in drifts with peak
ds during the May 23rd survey (Table 3). The observation-based snow 8,, was highly variable,

with values ranging from near zero to > 0.3 (Fig. 6, Table 4).

[Insert Figure 5]
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[Insert Table 3]

[Insert Table 4]

Locations that had particularly high 6,, include shallow snow near the base of a
hillslope in flat terrain and on a south aspect hillslope near the edges of large drifts (Fig. 6).
These locations had consistently higher 6,, throughout the observation period. Generally, over
the observation period, 6, increased in value and variability (Table 4). Lower 6,, values were
observed in the first two weeks after peak ds with mean values close to 0.14. Beyond two
weeks from peak d;, 6, increased with a maximum mean value of 0.18 occurring on 20-June.
The increases in 6,, generally corresponded with increases in streamflow and similarly,
decreases in 6,, coincided with decreases in streamflow (Fig. 7a). Decreases in 6, typically
coincided with snow accumulation events during which active melt paused and cold, dry
snow accumulated. These snow accumulation events, and associated decreases in 6,,, were

observed prior to the 23-May and 26-Jun surveys.

[Insert Figure 6]

[Insert Figure 7]

Regression analysis of our observations show that snow depth is strongly correlated
with 6,, in a non-linear fashion with a r* value of 0.62 (3"-order polynomial; Fig. 8, Table 5).
A similar regression of 6,, with distance to bare soil resulted in an r* value of 0.32 (Fig. 8,
Table 5). Both regressions were significant at the 0.01 level. Other parameters investigated
for correlation to 6, include slope, aspect, elevation, and terrain curvature, though none of
these parameters resulted in 1 values greater than 0.30 when considered individually. When
considering multiple parameters, combining snow depth and distance to bare soil achieved an
r? value of 0.67 and combining snow depth with ground surface slope resulted in an r? value
of 0.65, both significant at the 0.01 level. For all regressions, best fits were achieved with
third order polynomial regressions, highlighting the strong non-linearity of 6,, with these
terrain and snow depth variables (Fig. 8, Table 5).

Additionally, a local-scale grid was repeatedly surveyed near the base of a hillslope

where the terrain transitions to a flat slope. This grid was the same location as the plot-scale
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study conducted in 2017 by Webb et al. (2020). Spatial patterns in the distribution of 8, at the
local-scale hold throughout the observation period and result in a similar distribution of 6, as
observed in 2017 (Webb et al., 2020), suggesting that this is not an anomalous year or set of
observations, but rather indicative of the distribution of #,, within the snowpack during the
melt season for the SDL catchment. This plot contains some of the highest variability in 6,,
observed within the SDL catchment, with high values consistently observed in the flat terrain
throughout the observation period. Because of this high variability and previous plot-scale
studies at this location, this was one of our simulated sites for the modelling portion of this

investigation (Site 1).

[Insert Figure §]

[Insert Table 5]

3.2 Modelling

Sites 1, 2, and 3 had observed maximum snow depths of 200 cm, 320 cm, and 450
cm, respectively. Despite being tuned to closely match the observed site-dependent effects of
wind scour and drifting on seasonal maximum snow depth and SWE via modification of the
frozen precipitation multiplier (Table 1), the ensemble spread of 18 SUMMA simulations at
three sites did not uniformly correspond with observed 6,.. Nor was 6, at the three sites
simply explained by variations in snowpack depth or SWE. Fig. 9 shows the observed and
modelled snow depth, SWE, and 6, at the three sites during the observation campaign.
Perturbing the three parameters governing snowpack liquid water transmission and storage,
as well as the maximum number of snow layers, had the greatest effect on 6,,, followed by
SWE, and the least effect on ds (Fig. 9; inferred from the modelled range of each variable
indicated by the grey shading).

[Insert Figure 9]

SUMMA generally did not simulate substantial inter-site variability in LWC.
Simulated 6,, generally increased from near-zero in mid-May to reach a plateau in early-June
that persisted through the melt season. Simulated 6,, generally did not exceed 0.2 and the
magnitude was sensitive to the parameter values in Eq. 4. In contrast, the observed 6,

magnitude varied greatly among sites yet exhibited a similar seasonal increase in May and
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plateau in June. Site 1 had the highest observed mean and standard deviation of 6,, of the
three sites despite having the shallowest snowpack and the slowest seasonal melt rate
(inferred from the slope of a line fit to the SWE observations in Fig. 9d; not shown). Of the
three sites, the simulations at Site 1 had the largest mean absolute error (MAE) in 6,,
followed by Site 3 and the lowest errors occurred at Site 2 (Fig. 10). Indeed, SUMMA
accurately simulated depth, SWE, and 8, at Site 2.

No single parameter set universally minimized the 6,, error (Fig. 10). Generally,
simulations with lowest ks and highest ¢ (related to pore size distribution and thus indirectly
related to grain size) values performed best (simulation IDs 1 and 2; Fig. 10 and Table 2). At
Site 2, where simulated 6,, errors were smallest, the simulation with the highest k. and
highest ¢ values performed best (simulation ID 6) and the same simulation was ranked third-
best at the other two sites (Fig. 10). With only one exception (Site 2; simulation ID 2), the
five-layer snow model outperformed the 100-layer snow model in estimating LWC compared

to observations.

[Insert Figure 10]

4. DISCUSSION

We present a unique observation campaign of snow 6, at the slope to watershed scale.
Using lidar and GPR measurements, the estimated 6,, values ranged from what would be
expected to higher than previously documented in any study, to our knowledge. We observed
the highest variability of liquid water storage in the snowpack near the base of a hillslope in
flat terrain and on sloped terrain at the edges of deep snow drifts. A previous study in the
SDL catchment using hydrogeochemical end member mixing analysis concluded that ~60%
of the annual streamflow is a result of overland or lateral within-snow flow paths and ~10%
interflow (Hill, 2017). This has been explained by a combination of frozen ground that
inhibits infiltration in the winter and spring (Rey, Hinckley, Walvoord, & Singha, 2021; M.
Williams et al., 2015) and saturation excess overland flow as the deep snow produces
snowmelt volumes above the storage capacity of the relatively shallow soils (Hill, 2017). Our
observations confirm that high 6, interpreted to mean ponding at the snow-soil interface is
occurring within the snowpack that is likely producing overland/intra-snowpack flow.
Importantly, our observations bring new insight to the catchment-scale distribution of these
processes. Rather than elevated 6., occurring across a widespread area, our results suggest

that regions of very high 6, values (i.e., > 0.2) are highly localized at the base of a hillslope
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and shallow snow adjacent to deeper snowdrifts (Fig. 6) yet may contribute
disproportionately to catchment response (Fig. 7). Future efforts to further detail and predict
where these processes are occurring will promote the improvement of conceptual models of
physical hydrologic flow paths that occur during the spring snowmelt season in headwater

basins (Fig. 11).

[Insert Figure 11]

The strong correlation of high ,, and shallow snow depth (Fig. 8) is consistent with a
similar relation previously observed at the point scale from lysimeters measuring snowmelt at
a treeline site (Webb, Williams, et al., 2018). In the present study of an alpine catchment, the
ponding of meltwater at the snow-soil interface may also be the result of the of the near-
surface water table rising into the snowpack as meltwater is transported to localized areas
faster than it can be conveyed elsewhere (Fig. 11). This is likely the result of snowmelt being
transported readily along a combination of interflow and inter-snowpack flow paths with high
hydraulic conductivities (Webb et al., 2021; Webb et al., 2020). Furthermore, these
observations of high 6, in localized areas are similar to those in previous years at the plot
scale (Rikkers, Williams, & Sommerfeld, 1996) and SDL catchment scale (Webb et al., 2020)
suggesting that this process of accumulating meltwater at the snow-soil interface is regularly
occurring during each melt season. While frozen soils have been previously posed as a
hypothesis in playing a role in infiltration processes in the SDL catchment, our observations
do not provide conclusive evidence to this effect. Frozen soil has been shown to increase
interflow processes within the SDL catchment on hillslopes at lower elevations and with a
less spatially continuous snowpack (Rey et al., 2021). However, the proximity of high 6,
values to bare soil, that would have lacked insulation from cold air temperatures, suggests
that frozen soil may be a topic to investigate further in future studies.

The SUMMA model was able to adequately capture the melt season progression of
snow depth and SWE at multiple sites after the date of peak accumulation, suggesting that the
model was accurately resolving snowmelt rates via the calculation of snow mass and energy
budgets. As for 6, the simulations show reasonable results for site 2, but underestimated
values at Sites 1 and 3 (Figs. 9 & 10). The observed 6, at Site 3 was within the range of
simulated 6,, for ~50% of the surveys whereas Site 1 observed 6,, was always well above the
simulated values (Fig. 9). Algorithms and parameter ranges used to simulate liquid water

storage and transmission are developed and tested at point-scales that lack the terrain and
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snowpack complexities examined in the present study. Additionally, no hydrologic model, to
our knowledge, allows for the lateral flow of liquid water through snow that has been shown
to occur within the SDL catchment (Rikkers et al., 1996; Webb et al., 2021; Webb ¢t al.,
2020). Most hydrologic models only allow for lateral water transport after meltwater is
released from the snowpack (Fig. 1). However, even if surface runoff beneath a snowpack is
simulated to occur, it is routed as surface flow that lacks the porous media physics that occur
within a snowpack. A lack of connection between the snowpack and ground surface in
hydrologic model structure results in water storage processes that occur in our catchment to
be neglected in model simulations. Thus, we present a conceptual model of the physical
processes (Fig. 11) and how these may be incorporated into simulations for SDL during
snowmelt that includes variably saturated flow paths within the snowpack to create lateral

connectivity above the snow-soil interface as variably saturated porous media flow (Fig. 12).

[Insert Figure 12]

Intra-snowpack lateral connectivity has been shown to occur during rain-on-snow and
regular seasonal snowmelt events (e.g. Eiriksson et al., 2013; Wiirzer, Jonas, Wever, &
Lehning, 2016; Webb et al., 2020). Hydraulic barriers that include both capillary and
permeability barriers have been shown to laterally divert liquid water tens of meters within a
snowpack (Eiriksson et al., 2013) with simulations suggesting orders of magnitude
differences in hydrologic fluxes (Webb et al., 2021; Webb, Fassnacht, Gooseff, et al., 2018).
These diversions have also been observed to result in locations of focused infiltration at rates
that are high enough to produce infiltration excess runoff (Webb, Williams, et al., 2018).
When multiple flow paths converge, liquid water can accumulate faster than the snowpack
and soil can transport the water elsewhere resulting in the rising of the local water table above
the snow-soil interface and into the snowpack as observed in SDL as well as elsewhere
(Webb, Fassnacht, & Gooseft, 2018). These above-described processes result in spatially and
temporally dynamic flow paths that impact the hydrologic connectivity of a headwater
catchment (Fig. 11) with increased streamflow during days of higher liquid water retention in
snow (Fig. 7).

Further investigations could be conducted to address some of the limitations in the
current study. Our observation campaign would benefit from detailed soil moisture
observations to further determine the saturation level of the soil beneath the snow. Soil

moisture and temperature sensors could be installed strategically based upon the results of the
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presented work to capture the variability of within-snow liquid water storage and basal ice
lenses near the snow-soil interface. The surveyed transects could also be further refined to
better capture the variability in snow depths and further test the presented regressions (Table
5). Lastly, we did not compare SUMMA modelled snowmelt rates to infiltration capacities of
the soils within the SDL catchment that can vary widely amongst soil types and soil ice
content (Hermes, 2019; Hermes et al., 2020). Combining observations that address the
limitations of the present study could further elucidate runoff processes and flow paths
occurring within an alpine catchment beneath the snowpack during the spring melt season.
Future research is necessary to determine the significance of these processes in streamflow
generation.

We recommend that future studies explore the importance of lateral flow through
snow in sloped terrain by incorporating intra-snowpack lateral connectivity in hydrologic
models (Fig. 12) and investigations to determine the frequency of surface runoff in the
presence of a snowpack. Previous work has shown that these processes are likely less
important at lower elevation, forested sites (Thayer et al., 2018; Webb et al., 2020). However,
further studies are necessary to determine the controlling factors that determine the
significance, or lack thereof, of intra-snowpack flow paths and the role that they play in

runoff production.

5. CONCLUSIONS

We present a detailed observation campaign of snow depth and snow LWC at the
watershed scale using terrestrial scanning lidar and surveys of ground penetrating radar. The
results show high spatial variability of liquid water in an alpine snowpack during the spring
snowmelt season. Statistical analyses show that volumetric liquid water content is most
highly correlated to snow depth (r*> = 0.62), with higher liquid water storage occurring in
locations of shallow snow at the base of a hillslope and adjacent to deeper snow patches.
Including the distance to bare soil and topographical slope slightly improved the coefficient
of determination (1> = 0.67). We observed an area of the alpine basin that consistently had
high volumetric liquid water content at the base of a hillslope throughout the snowmelt
season. However, throughout the entire observation campaign, regions with high volumetric
liquid water content values remained consistently high throughout the melt season. We
present a conceptual model of the physical runoff processes that have been previously shown
in our alpine catchment and how they converge to produce the spatial patterns observed in the

present study. While hydrologic models have the flexibility to simulate many of the observed
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dynamics in snowpack liquid water storage, model simulations using previously published
parameter ranges underestimated the high liquid water storage at one of the three sites. This is
a result of current model structures that lack capabilities for surface ponding of water within a
snowpack or lateral flow through a snowpack. The results of the present study improve
process-level understanding of physical hydrologic processes during snowmelt. This
understanding may be used to improve hydrologic models to better simulate the interactions

amongst snow distribution, melt, ET, and runoff.
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TABLES

Table 1. Site characteristics and parameters used in the SUMMA model.
Slope, Aspect, Windspeed Frozen precipitation
deg. deg. factor factor
Site 1 0 NA 0.65 0.92
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Site 2 12 111 0.85 1.45
Site 3 14 156 0.50 1.85
848
849
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854

Table 2. Parameter values used in the SUMMA sensitivity analysis. Parameters shown

include hydraulic conductivity (ksr, m s™), fraction of pore space that must be filled prior to

drainage (¢¢ens), and pore size distribution (c).

Simulation ID

Variable | 1 2 3 4 s 6 7 8 9
Keous 0.0005 0.0005 0.0005 0.0005 0.05 0.05 005 005 0.005
bons | 001 008 001 008 001 008 001 008 0.05

¢ 5 5 I 1 s 05 1 1 3
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855  Table 3. Summary statistics for all snow depth (ds) DEMs based on lidar scans including

856  maximum, mean, median, standard deviation (Std. Dev.) and coefficient of variation (CV).

Date (2019) | Max dy (m) Mean d; (m) Median dy (m) Std. Dev. (m) CV
14-May 5.99 1.18 1.60 1.17 0.99
17-May 5.76 0.55 1.69 0.99 1.80
23-May 6.76 0.59 1.75 1.04 1.76
27-May 6.16 0.57 1.74 1.02 1.79
31-May 6.33 0.57 1.74 1.03 1.81
07-Jun 5.99 0.53 1.46 0.93 1.75
14-Jun 5.15 0.42 0.99 0.74 1.76
20-Jun 4.71 0.30 0.79 0.63 2.10
26-Jun 6.00 0.30 1.01 0.66 2.20
27-Jun 6.00 0.30 1.01 0.66 2.20

857

858
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859  Table 4. Summary statistics for all snow depth and volumetric liquid water content (6.)
860  estimates along surveyed transects including maximum, mean, median, standard deviation
861  (Std. Dev.) and coefficient of variation (CV).

Snow Depth (m) Volumetric Liquid Water Content (-)
Date n |Max Mean Median Std. Dev. CV | Mean Median Std. Dev. CV
17-May [1930({3.97 1.56 1.54 0.78 0.50] 0.157 0.140 0.054 0.346
23-May [1023]6.57 2.34 2.19 096 0.41] 0.136 0.126  0.050 0.367
27-May | 857 |6.06 2.41 2.23 092 0.38] 0.135 0.129 0.045 0.331
31-May | 896 [6.21 2.41 224 0.88 0.37] 0.132 0.125 0.045 0.341
07-Jun |595(5.70 2.03 1.84 1.09 0.54| 0.163 0.149 0.056 0.342
14-Jun [1023|5.01 1.67 1.53 0.82 0.49| 0.166 0.155 0.056 0.336
20-Jun |1016({4.27 1.37 1.25 0.77 0.56] 0.178 0.161  0.065 0.367
26-Jun [1034/6.00 1.39 1.22 0.82 0.59] 0.168 0.159  0.064 0.384
27-Jun |917]6.00 1.42 1.24 0.86 0.60] 0.165 0.156 0.064 0.391

862
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864  Table 5. Results of volumetric liquid water content regression analysis showing the
865  parameters used, resulting 12, and fit equation. All regressions shown were found to be

866  significant at the 0.01 level.

Parameters 12 Equation
Snow Depth 0.62 —0.005x3 + 0.047x% — 0.167x + 0.316
Dist. to Bare Soil 0.32 —2.32e77x3 4+ 6.04e 5x2 — 0.005x + 0.254
Snow Depth (x) 0 033 0.15x — 1.9¢ 3y + 0.04x2 + 3.3e *xy + 1.5¢ 52
Dist. to Bare Soil (y) —4.1e73x3 + 3.9e 5x%y — 4.7e Oxy?
Snow Depth (x)
0.36 — 0.16x — 0.01y + 0.04x2 + 1.3e 3xy + 5.4e~4y?
Ground Surface 0.65
—4.5e73x3 + 4.4e *x%y — 1.3e*xy?

Slope (y)

867

868
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FIGURE LEGENDS

Figure 1. Visualizations of hydrologic model structure that is commonly applied when a

snowpack is present. Note the lack of lateral connectivity between two adjacent snowpacks.

Figure 2. Summary of the Saddle Catchment (SDL) physiographic characteristics including:
a) satellite imagery showing treeline, b) general location of SDL in the contiguous United

States, c) elevation, d) topographic slope, and e) topographic aspect.

Figure 3. a) Lidar derived snow depth on 14-May 2019 used to determine b) the normalized
distribution of snow depth relative to the snow depth sensor (77 cm on 14-May). c) A
comparison to the SNOTEL station depth shows a linear correlation with an r* value of 0.89
during the melt season. No data were collected below tree line during the lidar scans as

indicated by the hashed area in panels a and b.

Figure 4. The hydraulic conductivity of snow as a function of volumetric liquid water
content (6,,) using the 9 sets of parameters presented in Table 2. Note that the y-axis is

presented in log scale.

Figure 5. A comparison of the 2019 snow water equivalent (SWE) to the 30-year median

(1981-2010) at the University Camp SNOTEL station.

Figure 6. Observed snow depth and volumetric LWC for representative dates of a) early
snowmelt prior to observable runoff, b) moderate snowmelt during the rising limb of the
hydrograph, and c) peak snowmelt immediately prior to peak runoff. Insets indicated the
timing of each observation relative to the observed hydrograph at the SDL stream gage. For
visual purposes, LWC was resampled to a 10 m raster and LWC was only calculated along

GPR transects.

Figure 7. (a) Observed discharge at the SDL stream gauge and the percent of observed
snowpack volumetric LWC that was > 15%. (b) histogram of volumetric LWC observations

for 23-May and 27-June.
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Figure 8. Third order polynomial regressions for (a) snow depth vs. 6y, (b) distance to bare
soil vs 6, (c) snow depth and distance to bare soil vs. 8., and (d) snow depth and ground
surface slope vs. 6y. The associated 1 values are given for each regression and all regressions

are shown to a maximum 6,, of 0.3.

Figure 9. At each of the three study sites (panel columns), simulations and observations of
snow depth (a-c), snow water equivalent (d-f), and volumetric liquid water content (g-i).
Mean observations are indicated as a point with whiskers extending one standard deviation
calculated based on a 20 m by 20 m box centered on the modeled locations. Simulations are
shown as the range (gray shading) of 18 parameter sensitivity runs. Three example
simulations (slow, moderate, and fast draining) are shown as the blue, black and red lines in

the bottom panels.

Figure 10. Mean absolute error in SUMMA simulations of volumetric liquid water content,
cm cm?, at each of the three sites (panel columns). Errors (y-axis) are ranked by simulation
ID (x-axis; ranking is lowest to highest, left to right) for the five-layer snow model (gray
bars). The error accompanying the five-layer ranked simulation ID is also shown for the 100-

layer snow model (blue bars).

Figure 11. Conceptual diagram showing the meltwater flow through-snow processes that
occur including: a) ponding water on ice lenses, b) saturation excess through-snow flow, ¢)
diversion of flow paths along stratigraphic layers (i.e. hydraulic barriers), d) lateral advancing

of a wetting front, and e) infiltration excess as a result of focused infiltration.

Figure 12. Visualizations of hydrologic model structure that is recommended for further
investigation based on the present study that adds connectivity between the snowpack and
soil and lateral connectivity within the snowpack above the snow-soil interface. Changes to

the structure from Figure 1 are indicated in red.
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940  Figure 1. Visualizations of hydrologic model structure that is commonly applied when a snowpack is present on

941  the ground surface. Note the lack of lateral connectivity between two adjacent snowpacks.
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Figure 2. Summary of the Saddle Catchment (SDL) physiographic characteristics including: a) satellite imagery
showing treeline, b) general location of SDL in the contiguous United States, c) elevation, d) topographic slope,
and e) topographic aspect.
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Figure 3. a) Lidar derived snow depth on May 14, 2019 used to determine b) the normalized distribution of
snow depth relative to the snow depth sensor (77 cm on May 14). c) A comparison to the SNOTEL station
depth shows a linear correlation with an r? value of 0.89 during the melt season. No data were collected below
tree line during the Lidar scans as indicated by the hashed area in panels a and b.
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Figure 4. The hydraulic conductivity of snow as a
function of volumetric water content (6,,) using
the 9 sets of parameters presented in Table 2.
Parameter sets are organized by their simulation
ID in Table 2. Note that the y-axis is presented in
log scale.
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Figure 5. A comparison of the 2019 snow water
equivalent (SWE) to the 30-year median (1981-
2010) at the University Camp SNOTEL station.
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983  Figure 6
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Figure 6. Observed snow depth and volumetric LWC for representative dates of a) early snowmelt prior to
observable runoff, b) moderate snowmelt during the rising limb of the hydrograph, and c) peak snowmelt
immediately prior to peak runoff. Insets indicated the timing of each observation relative to the observed
hydrograph at the SDL stream gage. For visual purposes, LWC was resampled to a 10 m raster and LWC was
only calculated along GPR transects.
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Figure 7. (a) Observed discharge at the SDL
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40



993  Figure 8

994
995
0.3
_0.25[%
(@]
= 0.2
-
£20.15
3
£ 04
o
>
0.05
) il
50 100 150
Depth (m)
r =0.67
30
—~120 \c)
3 :
E 100
o 80 §20
a S
o 60 °
P &
S 40 17} 10
8
1%}
] 20
0f , 0
0 2 4 6 0 2 4 6
Bl Volumetric LWC (-) Bt ()
0.0 0.1 0.2 0.3
Figure 8. Third order polynomial regressions for (a) snow
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Figure 9. At each of the three study sites (panel columns), simulations and observations of snow depth (a-c),
snow water equivalent (d-f), and volumetric liquid water content (g-i). Mean observations are indicated as a
point with whiskers extending one standard deviation calculated based on a 20 m by 20 m box centered on the
modeled locations. Simulations are shown as the range (gray shading) of 18 parameter sensitivity runs. Three
example simulations (slow, moderate, and fast draining) are shown as the blue, black and red lines in the
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m panels.
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Figure 10. Mean absolute error in SUMMA simulations of volumetric liquid water content, cm cm, at each of
the three sites (panel columns). Errors (y-axis) are ranked by simulation ID (x-axis; ranking is lowest to highest,
left to right) for the five-layer snow model (gray bars). The error accompanying the five-layer ranked simulation
ID is also shown for the 100-layer snow model (blue bars).
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1004  Figure 11
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Figure 11. Conceptual diagram showing the meltwater flow through-snow processes that occur including: a)
ponding water on ice lenses, b) saturation excess through-snow flow, c) diversion of flowpaths along
stratigraphic layers (i.e. hydraulic barriers), d) lateral advancing of a wetting front, and e) infiltration excess as a
result of focused infiltration.
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1010  Figure 12. Visualizations of hydrologic model structure that is recommended for further

1011  investigation based on the present study that adds connectivity between the snowpack and

1012 soil. Changes to the structure from Figure 1 are indicated in red.
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