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Abstract  18 

Streamflow response in headwater catchments is highly sensitive to the hydrologic 19 

connectivity of hillslopes to streams during spring snowmelt. Despite strong evidence at 20 

point- to plot-scales of flow paths creating lateral connectivity within an alpine snowpack, 21 

meltwater is commonly assumed to infiltrate vertically through the snowpack. Hydrologic 22 

models only treat the horizontal (downstream) routing of water once released from the 23 

snowpack and/or soil column. This assumption limits our ability to represent the full dynamic 24 

nature of hydrologic connections in snow-dominated mountainous headwaters. Thus, the goal 25 

of this study is to assess the mechanisms that control the spatiotemporal distribution of liquid 26 

water in an alpine snowpack during the spring snowmelt season. We utilize terrestrial laser 27 

scanning (TLS), ground penetrating radar (GPR), and manual observations to map the 28 

seasonal dynamics of snow depth, snow water equivalent (SWE), and within-snow liquid 29 

water content (LWC). We compare these observations to point-scale parameter sensitivity 30 

analyses with a modular snow model (SUMMA). The results show high spatial variability of 31 

LWC in an alpine snowpack during snowmelt. Statistical analyses show LWC is most highly 32 

correlated to snow depth (r2 = 0.62). However, including the distance to bare soil and 33 
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topographical slope slightly improved the coefficient of determination (r2 = 0.67). While 34 

hydrologic models have the flexibility to simulate many of the observed dynamics in 35 

snowpack liquid water storage, model simulations using previously published parameter 36 

ranges always underestimated the high liquid water storage at one of the three sites. This is 37 

likely a result of current model structures that lack capabilities for surface ponding of water 38 

within a snowpack or surface runoff laterally through a snowpack. Our slope-scale 39 

characterization of the spatiotemporal distribution of in-snow LWC, together with a model-40 

based sensitivity assessment, will inform future efforts in hydrologic model development and 41 

catchment observations. 42 
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1. INTRODUCTION 48 

Seasonal snow accumulation and melt are critical components of the hydrologic cycle 49 

in mountainous areas with important controls on climate, ecosystem function, flood risk, and 50 

water resources (Bales et al., 2006). Globally, over one billion people rely on water that 51 

originates as snow (Barnett, Adam, & Lettenmaier, 2005) with continuing increases in both 52 

demand for and value of that water (Wada & Bierkens, 2014). In mountainous headwater 53 

basins, more than 85% of annual precipitation can accumulate as a winter snowpack. In the 54 

western United States , seasonal snowmelt produces two-thirds of total inflow to reservoirs 55 

(Li, Wrzesien, Durand, Adam, & Lettenmaier, 2017). Historical trends and 21st century 56 

projections indicate that as air temperatures continue to warm, snowpack will decline and 57 

winter snowmelt will become more frequent (Knowles, Dettinger, & Cayan, 2006; 58 

Musselman, Addor, Vano, & Molotch, 2021; Stewart, Cayan, & Dettinger, 2004). This earlier 59 

snowmelt is projected to occur at slower rates due to the shift towards a time of lower 60 

available energy (Musselman, Clark, Liu, Ikeda, & Rasmussen, 2017). Assessments of the 61 

potential socioeconomic and environmental impacts of ongoing and projected changes in 62 

snowmelt timing and magnitude require consideration of physical processes by which 63 

snowmelt water becomes available for streamflow. 64 

Changes in the timing and rate of meltwater (i.e., the snowmelt pulse) have profound 65 

implications on seasonal soil moisture (Harpold et al., 2015; Webb, Fassnacht, & Gooseff, 66 

2015), evapotranspiration (ET) (Winchell, Barnard, Monson, Burns, & Molotch, 2016), 67 

groundwater recharge (Ford, Kendall, & Hyndman, 2020), downstream water availability 68 

(Vano et al., 2014), and rain-on-snow flood risk (Musselman et al., 2018). Streamflow and 69 

groundwater recharge respond nonlinearly to input of snowmelt such that slight reductions in 70 

snowmelt rates may disproportionately reduce runoff (Barnhart et al., 2016; Musselman, 71 

Molotch, & Margulis, 2017). However, our understanding of these potential impacts remains 72 

conceptual in nature through the use of hydrologic models. However, these hydrologic 73 

models need further verification of physical processes in complex terrain during snowmelt to 74 

ensure appropriate representation of the important processes.  Improved process-level 75 

understanding of physical hydrologic processes during snowmelt is needed to properly 76 

structure ecohydrologic models. In this context, improvements to model structure are needed 77 

to simulate the interactions amongst snow distribution, melt, ET, runoff, and more broadly, to 78 

assess the sensitivity of snow-dominated regions to climate change. One key source of 79 

uncertainty is our relatively limited knowledge of the dynamic pathways of snowmelt in 80 

headwater systems – how meltwater moves from melting snow grains to the soil system. 81 
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The hydrologic connectivity of hillslopes to streams greatly impacts streamflow 82 

response (e.g. Detty & McGuire, 2010; Jencso et al., 2009; McGlynn & McDonnell, 2003; 83 

McNamara, Chandler, Seyfried, & Achet, 2005). We conceptualize two types of hydrologic 84 

connectivity: static and dynamic. Static connectivity is related to the landscape architecture 85 

that can be categorized and mapped (e.g., the ‘plumbing’ of hydrologic response units). 86 

Dynamic connectivity refers to variations in antecedent wetness and storage capacity that 87 

facilitates and buffers streamflow, ultimately producing a nonlinear response to inputs 88 

(Bracken & Croke, 2007). Hillslopes have both static and dynamic connectivity that operate 89 

simultaneously to generate streamflow. In snow-dominated catchments, these concepts of 90 

static and dynamic hydrologic connectivity have been limited to near-surface groundwater 91 

dynamics (e.g. Gasemizade & Schirmer, 2013; Jencso & McGlynn, 2011; McNamara et al., 92 

2005). To date, there has been little focus on the hydrologic connectivity that occurs because 93 

of liquid water storage and transport within and among the layers of a seasonal snowpack in 94 

mountainous terrain. Despite strong evidence of lateral connectivity of liquid water within 95 

snow (e.g. Eiriksson et al., 2013; Webb, Wigmore, Jennings, Fend, & Molotch, 2020; 96 

Williams, Rikkers, & Pfeffer, 2000), meltwater is commonly assumed to infiltrate vertically 97 

and only mobilize horizontally once at or below the snow-soil interface (Fig. 1; e.g. Clark, 98 

Nijssen, & Luce, 2017; Kormos et al., 2014). This assumption may limit our ability to 99 

represent the full dynamic nature of hydrologic connections in snow-dominated mountainous 100 

headwater systems (Brauchli, Trujillo, Huwald, & Lehning, 2017) needed to simulate snow 101 

water resources and the ecohydrologic sensitivity to climate change. 102 

 103 

[Insert Figure 1] 104 

 105 

To represent snowmelt infiltration more accurately across a landscape, it is beneficial 106 

to consider snow as a layered porous media with unsaturated flow dynamics occurring during 107 

spring snowmelt (Webb, Jennings, Finsterle, & Fassnacht, 2021). Snow is a complex, three-108 

dimensional matrix of ice, air, liquid water, and constituents (e.g., dust). The hydraulic 109 

properties of snow layers depend on crystal structure, snow density, and relative saturation 110 

(i.e., liquid water content). These dynamic properties are determined by the meteorological 111 

conditions under which snow layers are deposited and subsequently evolve (Colbeck, 1991; 112 

Domine, Morin, Brun, Lafaysse, & Carmagnola, 2013; Hirashima, Avanzi, & Wever, 2019; 113 

Wever, Fierz, Mitterer, Hirashima, & Lehning, 2014; Yamaguchi, Watanabe, Katsushima, 114 

Sato, & Kumakura, 2012) that vary across a catchment by elevation, wind exposure, slope, 115 
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aspect, and vegetation (Elder, Dozier, & Michaelsen, 1991; López-Moreno, Fassnacht, 116 

Beguería, & Latron, 2011; Molotch, Colee, Bales, & Dozier, 2005; Sexstone & Fassnacht, 117 

2014). Similar to soils, the hydraulic properties of snow layers can form hydraulic barriers 118 

(Webb, Fassnacht, Gooseff, & Webb, 2018), translating meltwater tens of meters downslope 119 

(Eiriksson et al., 2013; Liu, Williams, & Caine, 2004; Peitzsch, Birkeland, & Hansen, 2008), 120 

and creating complex hydrologic flow paths (Kampf, Markus, Heath, & Moore, 2015; Webb, 121 

Jennings, Finsterle, & Fassnacht, 2021; Webb, Williams, & Erickson, 2018; Williams, 122 

Erickson, & Petrzelka, 2010). Unlike flow paths through soils, which can be conceptualized 123 

as a mix of static and dynamic components, all flow paths through snow are dynamic because 124 

the physical snowpack structure evolves at sub-daily timescales. To date, the ever-changing 125 

nature of flow paths through snow has limited our understanding to what can be directly 126 

observed at small scales (i.e., cm to m) (e.g. Williams et al., 2010; Leroux, Marsh, & 127 

Pomeroy, 2020) with only recent advances using remote sensing techniques applied at plot-128 

scales (up to tens of meters) (e.g. Webb et al., 2020). As remote sensing tools continue to 129 

evolve, it is critical to advance our understanding of how liquid water in snow evolves at the 130 

hillslope and catchment scales. 131 

The goal of this study is to assess the mechanisms that control the spatiotemporal 132 

distribution of liquid water in an alpine snowpack during the spring snowmelt season. We 133 

answer the following research questions: 1) What factors control the storage of liquid water 134 

in snow? 2) How does the liquid water storage in snow change throughout the snowmelt 135 

season? And 3) How accurately do hydrologic models simulate the observed snowpack liquid 136 

water storage?  137 

To address these questions, we use terrestrial laser scanning (TLS), ground 138 

penetrating radar (GPR), and manual observations to map the seasonal dynamics of snow 139 

depth, snow water equivalent (SWE), and the within-snow liquid water content (LWC) in an 140 

experimental alpine headwater catchment. Leveraging these unique observations, we conduct 141 

point-scale parameter sensitivity analyses with a modular snow model to compare the 142 

observation-based estimates of snow LWC to the simulated ranges. Our slope-scale 143 

characterization of the spatiotemporal distribution of liquid water in a melting alpine 144 

snowpack, together with a model-based sensitivity assessment, will inform future efforts in 145 

hydrologic model development and catchment observations. 146 

 147 

2. METHODS  148 

2.1 Study Site 149 
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This study was conducted in an alpine headwater catchment at the Niwot Ridge Long 150 

Term Ecological Research (LTER) study site near Boulder, Colorado. The Saddle catchment 151 

(SDL) is instrumented with a meteorological station that records hourly measurements of 152 

shortwave and longwave radiation, wind speed, barometric pressure, air temperature, and 153 

relative humidity (Jennings, Kittel, Molotch, & Yang, 2021). An ultrasonic sensor near the 154 

station records measurements of snow depth every 30-minutes (Morse et al., 2021). Hourly 155 

precipitation and SWE is measured ~2 km away at the University Camp SNOTEL site. 156 

Decades of work in SDL include water flow through snow (Webb et al., 2020; Williams et 157 

al., 2010; Williams et al., 2000), hydrograph separation (Hill, 2017; Liu et al., 2004), 158 

groundwater modelling (Evans, Ge, Voss, & Molotch, 2018), biogeochemical processes 159 

(Knowles et al., 2015; Williams, Seibold, & Chowanski, 2009), and ecological processes (e.g. 160 

Wieder, Knowles, Blanken, Swenson, & Suding, 2017). Nearby laboratory facilities are 161 

maintained on the ridge of SDL providing storage, line power, and access to this otherwise 162 

remote catchment.  163 

 The SDL research catchment is approximately 0.3 km2 with elevations ranging from 164 

3400 to 3650 m asl and 80% of the area above treeline (Fig. 2a). The terrain has generally 165 

modest slopes and a predominantly southeast aspect, creating an environment largely affected 166 

by strong westerly winds. Wind deposition of snow occurs on leeward slopes (SE and E 167 

aspects) and wind scour on windward slopes (SW and W aspects). Streamflow discharge in 168 

SDL has been monitored for over two decades (Williams et al., 2015) with recent 169 

hydrochemistry analysis indicating more than 60% of annual runoff derives from snowmelt 170 

that lacks geochemical evidence of interaction with the local geology (Hill, 2017). 171 

For this study, the SDL catchment was monitored for the spatial and temporal 172 

distribution of liquid water storage within the snowpack during the 2019 melt season. During 173 

this melt season, peak SWE in the SDL catchment occurred on approximately 17-May. The 174 

observation period of this study occurred between 14-May and 27-June with a total of 3 175 

terrestrial lidar scans and 11 GPR surveys. The timing of these surveys targeted early and 176 

peak snowmelt. 177 

 178 

[Insert Figure 2] 179 

 180 

2.2 Snow Depth Estimates 181 

The spatial distribution of snow depth (ds) was determined using established TLS 182 

methodology (e.g. Deems, Painter, & Finnegan, 2013). TLS data were collected on 14-May, 183 
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7-June, and 27-June with a Riegl VZ-6000 lidar scanner from three scan positions to capture 184 

the area of interest. Georeferencing and aligning multiple scans was accomplished using 185 

Trimble Business Center and Riegl RiSCAN Pro software packages. Ground surface (i.e., 186 

snow-free) scans occurred on August 20, 2019. Scans were georeferenced using four 16.5 cm 187 

diameter reflective targets with Trimble R10 rover GPS units corrected to a Trimble NetR9 188 

base station with a Zephyr Geodetic antenna. Post-processing estimates of TLS absolute 189 

accuracy are ~0.02 m.  The TLS surfaces were aggregated to produce 3 m resolution digital 190 

elevation models (DEMs) of the ground and snow surfaces. For each scan date, ds was 191 

calculated by subtracting the ground surface DEM from the snow surface DEMs.  192 

 To estimate the spatial snow depth patterns on dates when TLS observations were not 193 

available, temporal interpolation was applied to leverage information from TLS and 194 

continuous ds observations from the ultrasonic sensor. For accumulation events, the relative 195 

distribution of event-based snow accumulation was assumed to follow the same spatial 196 

pattern as that observed near peak accumulation from the 14-May TLS data collection. Thus, 197 

the maximum accumulation ds field, as observed by TLS, was normalized relative to the 198 

observed ds at the SDL ultrasonic sensor on 14-May (Fig. 3). Similarly, ablation was assumed 199 

to occur in the spatial pattern observed as the difference of ds fields from the 14-May and 7-200 

June TLS scans. These assumptions regarding the spatial patterns of spring accumulation and 201 

melt were assessed by comparing ultrasonic ds values measured at the SDL site against the 202 

University Camp SNOTEL site located ~2 km away (Fig. 3c). In the comparison between the 203 

two sites, consistent relationships in spring snow accumulation and melt would result in a 204 

linear trend when the daily ds values are plotted against each other. A linear regression fit to 205 

the data has an r2 value of 0.89 indicating this method to be acceptable, particularly since all 206 

points of interest at the SDL site are much closer to the depth sensor than the SNOTEL site. 207 

 208 

[Insert Figure 3] 209 

 210 

2.3 Ground Penetrating Radar 211 

We used GPR data collection to obtain further information of snowpack properties 212 

(e.g., Marshall, Koh, & Forster, 2005). A GPR pulse is an electromagnetic wave that travels 213 

through the snowpack and is reflected off changes in material properties such as density, with 214 

the strongest reflection often from the snow-soil interface (Bradford, Harper, & Brown, 2009; 215 

Holbrook, Miller, & Provart, 2016; Webb, 2017). For this study, two-way-traveltime (t2) of 216 

GPR waves through snow were obtained along transects on eight survey dates: 17-May, 23-217 
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May, 27-May, 31-May, 7-June, 14-June, 20-June, and 27-June. We used a Mala Geoscience, 218 

Inc. ProEx control unit pulse GPR system with an 800 MHz shielded antenna. The antenna 219 

was fixed in place on a plastic sled towed behind a user or between two users. A GPS antenna 220 

connected to the ProEx control unit registered location information every second. Transect 221 

end points were marked with 2.5 cm diameter, 2 m long plastic pipes inserted halfway into 222 

the snow to maintain a repeatable travel path each survey.  223 

Radar pulses were triggered on 0.05 s intervals using eight times stacking. The 224 

average survey travel speed was ~0.5 m/s resulting in ~40 returns per meter. The ReflexW 225 

2D Software package was used for time-zero adjustment, taken as the first break in the first 226 

wavelet, a dewow filter, and spherical divergence correction to compensate for signal 227 

attenuation. The dewow filter removes low frequency content by calculating a running mean 228 

that is subtracted from a central point. The reflection of the snow-soil interface was then 229 

picked at the first break prior to the first peak of the reflection. Topography was corrected for 230 

by dividing t2 by the cosine of the ground surface slope at that location. Distributed t2 data 231 

were aggregated to a 3 m raster using the mean of t2 values, to match the distributed ds maps. 232 

 233 

2.4 Estimating Liquid Water Content 234 

The effective dielectric permittivity (εeff) of snow is sensitive to snowpack density and 235 

LWC (Bradford et al., 2009; Heilig et al., 2015; Webb, Jennings, Fend, & Molotch, 2018), 236 

and is calculated from the observed velocity (v) of the radar wave through snow: 237 

𝜀𝑒𝑓𝑓 = (𝑠
𝑣⁄ )2     Eq (1) 238 

where s is the speed of light in a vacuum (~0.3 m/ns) and v is calculated using: 239 

𝑣 =
𝑑𝑠

(
𝑡2

2⁄ )
     Eq (2) 240 

where ds is the distributed snow depth estimates derived from TLS as described in section 241 

2.2. 242 

The bulk volumetric LWC (θw) of snow is calculated from εeff (Eq. 1) using the Roth 243 

et al. (1990) three phase mixing model that is commonly applied (Heilig et al., 2015; Koch, 244 

Prasch, Schmid, Schweizer, & Mauser, 2014; Mitterer, Heilig, Schweizer, & Eisen, 2011; 245 

Schmid et al., 2015; Webb, Jennings, et al., 2018): 246 

𝜃𝑤 =
𝜀𝑒𝑓𝑓

0.5 −
𝜌𝑑
𝜌𝑖

𝜀𝑖
0.5−(1−

𝜌𝑑
𝜌𝑖

)𝜀𝑎
0.5

𝜀𝑤
0.5−𝜀𝑎

0.5      Eq (3) 247 

where ρd is the density of dry snow, ρi is the density of ice (917 kg m-3), εi, εa, and εw are the 248 

dielectric permittivities of ice, air, and liquid water, respectively. At 0°C these dielectric 249 
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permittivities are known (εi = 3.18, εa = 1.0, and εw = 87.9). For this study, we observed ρd 250 

through manual snow pit measurements at two locations within SDL, one near the depth 251 

sensor on a flat aspect and one near a deep snow drift on a southern aspect slope. Snow pit 252 

observations in this study were only used to obtain bulk density estimates using a 1000 cm3 253 

wedge cutter and digital scale with 1 g precision. The density observations were made in 10 254 

cm vertical increments to provide a density profile that was averaged for the bulk density. 255 

The methods described above result in an estimated accuracy for θw of ~0.02. When applying 256 

equation 3 to the SDL catchment, we set a maximum θw value of 0.30 due to the lack of 257 

studies confirming permittivity equations for snow with such high values of liquid water 258 

storage. For more information concerning this method, see Webb et al. (2018). 259 

 260 

2.5 Snowpack Modelling 261 

The snowpack was modelled with the Structure for Unifying Multiple Modelling 262 

Alternatives (SUMMA) (Clark, Fan, et al., 2015; Clark, Nijssen, Lundquist, Kavetski, Rupp, 263 

Woods, Freer, Gutmann, Wood, Brekke, et al., 2015; Clark, Nijssen, Lundquist, Kavetski, 264 

Rupp, Woods, Freer, Gutmann, Wood, Gochis, et al., 2015). SUMMA is a hydrologic model 265 

that provides flexibility to experiment with different hydrologic model decisions including 266 

spatial representations, flux parameterizations, and parameter values. One-dimensional (i.e., 267 

point) simulations were conducted at three locations selected to represent the basin range of 268 

slope, snow depth, and snow cover persistence in the SDL catchment. Table 1 summarizes 269 

the site characteristics. In SUMMA, in-snow LWC and transmission are estimated as a 270 

function of snow temperature, volumetric ice content, and gravity drainage, with 271 

consideration of capillary retention processes within the pore space of a snow layer.  272 

 Elevation, slope, and aspect were derived from a 10 m airborne lidar-derived DEM 273 

(Anderson, Guo, & Parrish, 2013). Local soils and geological surveys conducted in SDL 274 

(Hill, 2017) were used to define the model discretization and initial conditions of eight soil 275 

layers to a total depth of 4 m. The lower soil boundary conditions were specified as a zero-276 

flux for the soil thermodynamics and free-draining for the soil hydrology. Vegetation was 277 

classified as tundra and was buried by snow-cover. Except for precipitation, which is 278 

described below, hourly meteorological variables from the SDL station were used to force the 279 

model. Due to a sensor error, measured incoming longwave radiation was unavailable and 280 

was estimated using a parameterization based on SDL station measurements of air 281 

temperature, relative humidity, and incoming shortwave radiation (Schmucki, Marty, Fierz, 282 
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& Lehning, 2014). Measured shortwave radiation was projected onto the slope of each point 283 

simulation.  284 

Wind speed at each site was estimated from measurements at the SDL station using a 285 

linearized, spatially distributed windflow model run at 10 m resolution for eight windflow 286 

directions to produce maps of normalized wind speed values relative to the SDL station (see 287 

Musselman et al., 2015). From the prevailing wind direction (southwest), point values for 288 

each of the three simulation locations were extracted and this normalized value was 289 

multiplied by the wind speed measured at the SDL station (Table 1). For precipitation, hourly 290 

data from the nearby University Camp SNOTEL site was interpolated to the elevation of the 291 

SDL catchment through an iterative manual procedure specific to each site to align simulated 292 

and observed snow depth and SWE on the date of maximum accumulation. First, measured 293 

hourly precipitation at the nearest SNOTEL site (450 m lower in elevation and 2 km east) 294 

was doubled. Second, a SUMMA parameter used to scale frozen precipitation to approximate 295 

the effect of wind scour and drifting was manually tuned to match the observed maximum 296 

snow depth and SWE at each site (see Table 1). The precipitation adjustment informed by 297 

snow depth observations bypassed the challenges of explicitly simulating complex wind 298 

scour and drift dynamics. By accurately resolving maximum snow accumulation, the 299 

experiment could focus on better representing melt season dynamics (Brauchli et al., 2017). 300 

The remaining variables were assumed to be spatially invariant over the 0.3 km2 catchment. 301 

The model was run from October 1, 2018, to September 30, 2019. 302 

 303 

[Insert Table 1] 304 

 305 

 In SUMMA, the vertical flux, q (m s-1), and storage, θw (-), of liquid water in snow is 306 

parameterized as gravity drainage, where the hydraulic conductivity of snow is expressed 307 

using the Brooks and Corey relation (Brooks & Corey, 1964): 308 

𝑞 = 𝑘𝑠𝑎𝑡 (
𝜃𝑤−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
)

𝑐

                 Eq. (4) 309 

where ksat (m s-1) is the saturated hydraulic conductivity of snow, θsat (-) is the porosity of 310 

snow, θres (-) is the irreducible liquid water in the snowpack, and c is an exponent related to 311 

the pore size distribution. In Eq. (4), θres = ϕtensθsat, where the parameter ϕtens defines the 312 

fraction of pore space that must be filled before drainage can occur (Clark, Nijssen, 313 

Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann, Wood, Gochis, et al., 2015).    314 
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 A model sensitivity analysis was conducted in which nine different parameter sets 315 

were created by modifying ksat, ϕtens, and c each with three values that span observational 316 

ranges reported in the literature (e.g. Yamaguchi et al., 2012; Domine et al., 2013; Leroux & 317 

Pomeroy, 2019). As summarized in Table 2, ksat was specified as 0.0005, 0.005, and 0.05 m s-318 

1, ϕtens was specified as 0.01, 0.06 and 0.15, and c was specified as 1, 3 and 5. A graphical 319 

visualization of these 9 sets of parameters shows the hydraulic conductivity as a function of 320 

θw (Fig. 4). To explore the sensitivity of results to the number of snow layers, the parameter 321 

sensitivity experiment was repeated with the snow model set to represent a maximum of 5 322 

and 100 snow layers. Thus, the nine parameter sets (Table 2) were run twice for a total of 18 323 

simulations at each of three sites.  324 

This modelling sensitivity analysis allowed a comparison of a 100-layer and 5-layer 325 

representations of snowpack stratigraphy that are commonly utilized in hydrologic models 326 

(e.g., SNTHRM and CLM, respectively; Jordan, 1991; Toure et al., 2016). Within this 327 

comparison, we then explored the sensitivity of modifying the parameters that govern liquid 328 

water storage and flux in Eq. 4 as described above. Thus, the SUMMA simulations allowed 329 

comparisons between hydrologic model decisions that are often part of the internal structure 330 

of hydrologic models. 331 

 332 

[Insert Table 2] 333 

 334 

[Insert Figure 4] 335 

 336 

3. RESULTS  337 

3.1 Observations  338 

The 2019 snow season at the nearby University Camp SNOTEL site was close to the 339 

long-term median for observed SWE values (1981-2010; Fig. 5). The long-term median peak 340 

SWE is 483 mm occurring 2-May. In 2019, peak SWE was 106% of the median (513 mm) 341 

and occurred 10-days later, on 12-May. After peak SWE, snowmelt progressed relatively 342 

consistently except for two accumulation events in late-May and late-June. Snow depth in the 343 

SDL catchment ranged from zero in wind-scoured areas up to nearly 7 m in drifts with peak 344 

ds during the May 23rd survey (Table 3). The observation-based snow θw was highly variable, 345 

with values ranging from near zero to ≥ 0.3 (Fig. 6, Table 4). 346 

 347 

[Insert Figure 5] 348 
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 349 

[Insert Table 3] 350 

 351 

[Insert Table 4] 352 

 353 

 Locations that had particularly high θw include shallow snow near the base of a 354 

hillslope in flat terrain and on a south aspect hillslope near the edges of large drifts (Fig. 6). 355 

These locations had consistently higher θw throughout the observation period. Generally, over 356 

the observation period, θw increased in value and variability (Table 4). Lower θw values were 357 

observed in the first two weeks after peak ds with mean values close to 0.14. Beyond two 358 

weeks from peak ds, θw increased with a maximum mean value of 0.18 occurring on 20-June. 359 

The increases in θw generally corresponded with increases in streamflow and similarly, 360 

decreases in θw coincided with decreases in streamflow (Fig. 7a). Decreases in θw typically 361 

coincided with snow accumulation events during which active melt paused and cold, dry 362 

snow accumulated. These snow accumulation events, and associated decreases in θw, were 363 

observed prior to the 23-May and 26-Jun surveys. 364 

 365 

[Insert Figure 6] 366 

 367 

[Insert Figure 7] 368 

 369 

Regression analysis of our observations show that snow depth is strongly correlated 370 

with θw in a non-linear fashion with a r2 value of 0.62 (3rd-order polynomial; Fig. 8, Table 5). 371 

A similar regression of θw with distance to bare soil resulted in an r2 value of 0.32 (Fig. 8, 372 

Table 5). Both regressions were significant at the 0.01 level. Other parameters investigated 373 

for correlation to θw include slope, aspect, elevation, and terrain curvature, though none of 374 

these parameters resulted in r2 values greater than 0.30 when considered individually. When 375 

considering multiple parameters, combining snow depth and distance to bare soil achieved an 376 

r2 value of 0.67 and combining snow depth with ground surface slope resulted in an r2 value 377 

of 0.65, both significant at the 0.01 level. For all regressions, best fits were achieved with 378 

third order polynomial regressions, highlighting the strong non-linearity of θw with these 379 

terrain and snow depth variables (Fig. 8, Table 5). 380 

 Additionally, a local-scale grid was repeatedly surveyed near the base of a hillslope 381 

where the terrain transitions to a flat slope. This grid was the same location as the plot-scale 382 
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study conducted in 2017 by Webb et al. (2020). Spatial patterns in the distribution of θw at the 383 

local-scale hold throughout the observation period and result in a similar distribution of θw as 384 

observed in 2017 (Webb et al., 2020), suggesting that this is not an anomalous year or set of 385 

observations, but rather indicative of the distribution of θw within the snowpack during the 386 

melt season for the SDL catchment. This plot contains some of the highest variability in θw 387 

observed within the SDL catchment, with high values consistently observed in the flat terrain 388 

throughout the observation period. Because of this high variability and previous plot-scale 389 

studies at this location, this was one of our simulated sites for the modelling portion of this 390 

investigation (Site 1). 391 

 392 

[Insert Figure 8] 393 

 394 

[Insert Table 5] 395 

 396 

3.2 Modelling  397 

Sites 1, 2, and 3 had observed maximum snow depths of 200 cm, 320 cm, and 450 398 

cm, respectively. Despite being tuned to closely match the observed site-dependent effects of 399 

wind scour and drifting on seasonal maximum snow depth and SWE via modification of the 400 

frozen precipitation multiplier (Table 1), the ensemble spread of 18 SUMMA simulations at 401 

three sites did not uniformly correspond with observed θw. Nor was θw at the three sites 402 

simply explained by variations in snowpack depth or SWE. Fig. 9 shows the observed and 403 

modelled snow depth, SWE, and θw at the three sites during the observation campaign. 404 

Perturbing the three parameters governing snowpack liquid water transmission and storage, 405 

as well as the maximum number of snow layers, had the greatest effect on θw, followed by 406 

SWE, and the least effect on ds (Fig. 9; inferred from the modelled range of each variable 407 

indicated by the grey shading). 408 

 409 

[Insert Figure 9] 410 

 411 

SUMMA generally did not simulate substantial inter-site variability in LWC. 412 

Simulated θw generally increased from near-zero in mid-May to reach a plateau in early-June 413 

that persisted through the melt season. Simulated θw generally did not exceed 0.2 and the 414 

magnitude was sensitive to the parameter values in Eq. 4. In contrast, the observed θw 415 

magnitude varied greatly among sites yet exhibited a similar seasonal increase in May and 416 
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plateau in June. Site 1 had the highest observed mean and standard deviation of θw of the 417 

three sites despite having the shallowest snowpack and the slowest seasonal melt rate 418 

(inferred from the slope of a line fit to the SWE observations in Fig. 9d; not shown). Of the 419 

three sites, the simulations at Site 1 had the largest mean absolute error (MAE) in θw, 420 

followed by Site 3 and the lowest errors occurred at Site 2 (Fig. 10). Indeed, SUMMA 421 

accurately simulated depth, SWE, and θw at Site 2. 422 

No single parameter set universally minimized the θw error (Fig. 10). Generally, 423 

simulations with lowest ksat and highest c (related to pore size distribution and thus indirectly 424 

related to grain size) values performed best (simulation IDs 1 and 2; Fig. 10 and Table 2). At 425 

Site 2, where simulated θw errors were smallest, the simulation with the highest ksat and 426 

highest c values performed best (simulation ID 6) and the same simulation was ranked third-427 

best at the other two sites (Fig. 10). With only one exception (Site 2; simulation ID 2), the 428 

five-layer snow model outperformed the 100-layer snow model in estimating LWC compared 429 

to observations. 430 

 431 

[Insert Figure 10] 432 

 433 

4. DISCUSSION  434 

We present a unique observation campaign of snow θw at the slope to watershed scale. 435 

Using lidar and GPR measurements, the estimated θw values ranged from what would be 436 

expected to higher than previously documented in any study, to our knowledge. We observed 437 

the highest variability of liquid water storage in the snowpack near the base of a hillslope in 438 

flat terrain and on sloped terrain at the edges of deep snow drifts. A previous study in the 439 

SDL catchment using hydrogeochemical end member mixing analysis concluded that ~60% 440 

of the annual streamflow is a result of overland or lateral within-snow flow paths and ~10% 441 

interflow (Hill, 2017). This has been explained by a combination of frozen ground that 442 

inhibits infiltration in the winter and spring (Rey, Hinckley, Walvoord, & Singha, 2021; M. 443 

Williams et al., 2015) and saturation excess overland flow as the deep snow produces 444 

snowmelt volumes above the storage capacity of the relatively shallow soils (Hill, 2017). Our 445 

observations confirm that high θw interpreted to mean ponding at the snow-soil interface is 446 

occurring within the snowpack that is likely producing overland/intra-snowpack flow. 447 

Importantly, our observations bring new insight to the catchment-scale distribution of these 448 

processes. Rather than elevated θw occurring across a widespread area, our results suggest 449 

that regions of very high θw values (i.e., > 0.2) are highly localized at the base of a hillslope 450 
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and shallow snow adjacent to deeper snowdrifts (Fig. 6) yet may contribute 451 

disproportionately to catchment response (Fig. 7). Future efforts to further detail and predict 452 

where these processes are occurring will promote the improvement of conceptual models of 453 

physical hydrologic flow paths that occur during the spring snowmelt season in headwater 454 

basins (Fig. 11). 455 

 456 

[Insert Figure 11] 457 

 458 

The strong correlation of high θw and shallow snow depth (Fig. 8) is consistent with a 459 

similar relation previously observed at the point scale from lysimeters measuring snowmelt at 460 

a treeline site (Webb, Williams, et al., 2018). In the present study of an alpine catchment, the 461 

ponding of meltwater at the snow-soil interface may also be the result of the of the near-462 

surface water table rising into the snowpack as meltwater is transported to localized areas 463 

faster than it can be conveyed elsewhere (Fig. 11). This is likely the result of snowmelt being 464 

transported readily along a combination of interflow and inter-snowpack flow paths with high 465 

hydraulic conductivities (Webb et al., 2021; Webb et al., 2020). Furthermore, these 466 

observations of high θw in localized areas are similar to those in previous years at the plot 467 

scale (Rikkers, Williams, & Sommerfeld, 1996) and SDL catchment scale (Webb et al., 2020) 468 

suggesting that this process of accumulating meltwater at the snow-soil interface is regularly 469 

occurring during each melt season. While frozen soils have been previously posed as a 470 

hypothesis in playing a role in infiltration processes in the SDL catchment, our observations 471 

do not provide conclusive evidence to this effect. Frozen soil has been shown to increase 472 

interflow processes within the SDL catchment on hillslopes at lower elevations and with a 473 

less spatially continuous snowpack (Rey et al., 2021). However, the proximity of high θw 474 

values to bare soil, that would have lacked insulation from cold air temperatures, suggests 475 

that frozen soil may be a topic to investigate further in future studies.  476 

The SUMMA model was able to adequately capture the melt season progression of 477 

snow depth and SWE at multiple sites after the date of peak accumulation, suggesting that the 478 

model was accurately resolving snowmelt rates via the calculation of snow mass and energy 479 

budgets. As for θw, the simulations show reasonable results for site 2, but underestimated 480 

values at Sites 1 and 3 (Figs. 9 & 10). The observed θw at Site 3 was within the range of 481 

simulated θw for ~50% of the surveys whereas Site 1 observed θw was always well above the 482 

simulated values (Fig. 9). Algorithms and parameter ranges used to simulate liquid water 483 

storage and transmission are developed and tested at point-scales that lack the terrain and 484 
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snowpack complexities examined in the present study. Additionally, no hydrologic model, to 485 

our knowledge, allows for the lateral flow of liquid water through snow that has been shown 486 

to occur within the SDL catchment (Rikkers et al., 1996; Webb et al., 2021; Webb et al., 487 

2020). Most hydrologic models only allow for lateral water transport after meltwater is 488 

released from the snowpack (Fig. 1). However, even if surface runoff beneath a snowpack is 489 

simulated to occur, it is routed as surface flow that lacks the porous media physics that occur 490 

within a snowpack. A lack of connection between the snowpack and ground surface in 491 

hydrologic model structure results in water storage processes that occur in our catchment to 492 

be neglected in model simulations. Thus, we present a conceptual model of the physical 493 

processes (Fig. 11) and how these may be incorporated into simulations for SDL during 494 

snowmelt that includes variably saturated flow paths within the snowpack to create lateral 495 

connectivity above the snow-soil interface as variably saturated porous media flow (Fig. 12). 496 

 497 

[Insert Figure 12] 498 

 499 

Intra-snowpack lateral connectivity has been shown to occur during rain-on-snow and 500 

regular seasonal snowmelt events (e.g. Eiriksson et al., 2013; Würzer, Jonas, Wever, & 501 

Lehning, 2016; Webb et al., 2020). Hydraulic barriers that include both capillary and 502 

permeability barriers have been shown to laterally divert liquid water tens of meters within a 503 

snowpack (Eiriksson et al., 2013) with simulations suggesting orders of magnitude 504 

differences in hydrologic fluxes (Webb et al., 2021; Webb, Fassnacht, Gooseff, et al., 2018). 505 

These diversions have also been observed to result in locations of focused infiltration at rates 506 

that are high enough to produce infiltration excess runoff (Webb, Williams, et al., 2018). 507 

When multiple flow paths converge, liquid water can accumulate faster than the snowpack 508 

and soil can transport the water elsewhere resulting in the rising of the local water table above 509 

the snow-soil interface and into the snowpack as observed in SDL as well as elsewhere 510 

(Webb, Fassnacht, & Gooseff, 2018). These above-described processes result in spatially and 511 

temporally dynamic flow paths that impact the hydrologic connectivity of a headwater 512 

catchment (Fig. 11) with increased streamflow during days of higher liquid water retention in 513 

snow (Fig. 7).  514 

Further investigations could be conducted to address some of the limitations in the 515 

current study. Our observation campaign would benefit from detailed soil moisture 516 

observations to further determine the saturation level of the soil beneath the snow. Soil 517 

moisture and temperature sensors could be installed strategically based upon the results of the 518 
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presented work to capture the variability of within-snow liquid water storage and basal ice 519 

lenses near the snow-soil interface. The surveyed transects could also be further refined to 520 

better capture the variability in snow depths and further test the presented regressions (Table 521 

5). Lastly, we did not compare SUMMA modelled snowmelt rates to infiltration capacities of 522 

the soils within the SDL catchment that can vary widely amongst soil types and soil ice 523 

content (Hermes, 2019; Hermes et al., 2020). Combining observations that address the 524 

limitations of the present study could further elucidate runoff processes and flow paths 525 

occurring within an alpine catchment beneath the snowpack during the spring melt season. 526 

Future research is necessary to determine the significance of these processes in streamflow 527 

generation.  528 

We recommend that future studies explore the importance of lateral flow through 529 

snow in sloped terrain by incorporating intra-snowpack lateral connectivity in hydrologic 530 

models (Fig. 12) and investigations to determine the frequency of surface runoff in the 531 

presence of a snowpack. Previous work has shown that these processes are likely less 532 

important at lower elevation, forested sites (Thayer et al., 2018; Webb et al., 2020). However, 533 

further studies are necessary to determine the controlling factors that determine the 534 

significance, or lack thereof, of intra-snowpack flow paths and the role that they play in 535 

runoff production. 536 

 537 

5. CONCLUSIONS 538 

We present a detailed observation campaign of snow depth and snow LWC at the 539 

watershed scale using terrestrial scanning lidar and surveys of ground penetrating radar. The 540 

results show high spatial variability of liquid water in an alpine snowpack during the spring 541 

snowmelt season. Statistical analyses show that volumetric liquid water content is most 542 

highly correlated to snow depth (r2 = 0.62), with higher liquid water storage occurring in 543 

locations of shallow snow at the base of a hillslope and adjacent to deeper snow patches. 544 

Including the distance to bare soil and topographical slope slightly improved the coefficient 545 

of determination (r2 = 0.67). We observed an area of the alpine basin that consistently had 546 

high volumetric liquid water content at the base of a hillslope throughout the snowmelt 547 

season. However, throughout the entire observation campaign, regions with high volumetric 548 

liquid water content values remained consistently high throughout the melt season. We 549 

present a conceptual model of the physical runoff processes that have been previously shown 550 

in our alpine catchment and how they converge to produce the spatial patterns observed in the 551 

present study. While hydrologic models have the flexibility to simulate many of the observed 552 
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dynamics in snowpack liquid water storage, model simulations using previously published 553 

parameter ranges underestimated the high liquid water storage at one of the three sites. This is 554 

a result of current model structures that lack capabilities for surface ponding of water within a 555 

snowpack or lateral flow through a snowpack. The results of the present study improve 556 

process-level understanding of physical hydrologic processes during snowmelt. This 557 

understanding may be used to improve hydrologic models to better simulate the interactions 558 

amongst snow distribution, melt, ET, and runoff. 559 

 560 
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 844 

TABLES 845 

 846 

Table 1. Site characteristics and parameters used in the SUMMA model. 847 

 
Slope, 

deg. 

Aspect, 

deg. 

Windspeed 

factor 

Frozen precipitation 

factor 

Site 1 0 NA 0.65 0.92 
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Site 2 12 111 0.85 1.45 

Site 3 14 156 0.50 1.85 

 848 

  849 



 

28 

 

Table 2. Parameter values used in the SUMMA sensitivity analysis. Parameters shown 850 

include hydraulic conductivity (ksat, m s-1), fraction of pore space that must be filled prior to 851 

drainage (𝜙𝑡𝑒𝑛𝑠), and pore size distribution (c). 852 

   
Simulation ID 

    

Variable 1 2 3 4 5 6 7 8 9 

𝑘𝑠𝑎𝑡  0.0005 0.0005 0.0005 0.0005 0.05 0.05 0.05 0.05 0.005 

𝜙𝑡𝑒𝑛𝑠   0.01 0.08 0.01 0.08 0.01 0.08 0.01 0.08 0.05 

c 5 5 1 1 5 5 1 1 3 

 853 

  854 
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Table 3. Summary statistics for all snow depth (ds) DEMs based on lidar scans including 855 

maximum, mean, median, standard deviation (Std. Dev.) and coefficient of variation (CV).   856 

Date (2019) Max ds (m) Mean ds (m) Median ds (m) Std. Dev. (m) CV 

14-May 5.99 1.18 1.60 1.17 0.99 

17-May 5.76 0.55 1.69 0.99 1.80 

23-May 6.76 0.59 1.75 1.04 1.76 

27-May 6.16 0.57 1.74 1.02 1.79 

31-May 6.33 0.57 1.74 1.03 1.81 

07-Jun 5.99 0.53 1.46 0.93 1.75 

14-Jun 5.15 0.42 0.99 0.74 1.76 

20-Jun 4.71 0.30 0.79 0.63 2.10 

26-Jun 6.00 0.30 1.01 0.66 2.20 

27-Jun 6.00 0.30 1.01 0.66 2.20 

 857 

  858 
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Table 4. Summary statistics for all snow depth and volumetric liquid water content (θw) 859 

estimates along surveyed transects including maximum, mean, median, standard deviation 860 

(Std. Dev.) and coefficient of variation (CV).    861 

  Snow Depth (m) Volumetric Liquid Water Content (-) 

Date n Max Mean Median Std. Dev. CV Mean Median Std. Dev. CV 

17-May 1930 3.97 1.56 1.54 0.78 0.50 0.157 0.140 0.054 0.346 

23-May 1023 6.57 2.34 2.19 0.96 0.41 0.136 0.126 0.050 0.367 

27-May 857 6.06 2.41 2.23 0.92 0.38 0.135 0.129 0.045 0.331 

31-May 896 6.21 2.41 2.24 0.88 0.37 0.132 0.125 0.045 0.341 

07-Jun 595 5.70 2.03 1.84 1.09 0.54 0.163 0.149 0.056 0.342 

14-Jun 1023 5.01 1.67 1.53 0.82 0.49 0.166 0.155 0.056 0.336 

20-Jun 1016 4.27 1.37 1.25 0.77 0.56 0.178 0.161 0.065 0.367 

26-Jun 1034 6.00 1.39 1.22 0.82 0.59 0.168 0.159 0.064 0.384 

27-Jun 917 6.00 1.42 1.24 0.86 0.60 0.165 0.156 0.064 0.391 

 862 

  863 
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Table 5. Results of volumetric liquid water content regression analysis showing the 864 

parameters used, resulting r2, and fit equation. All regressions shown were found to be 865 

significant at the 0.01 level. 866 

 867 

  868 

Parameters r2 Equation 

Snow Depth 0.62 −0.005𝑥3 + 0.047𝑥2 − 0.167𝑥 + 0.316 

Dist. to Bare Soil 0.32 −2.32𝑒−7𝑥3 + 6.04𝑒−5𝑥2 − 0.005𝑥 + 0.254 

Snow Depth (x) 

Dist. to Bare Soil (y) 
0.67 

0.33 − 0.15𝑥 − 1.9𝑒−3𝑦 + 0.04𝑥2  +  3.3𝑒−4𝑥𝑦 + 1.5𝑒−5𝑦2

− 4.1𝑒−3𝑥3 + 3.9𝑒−5𝑥2𝑦 − 4.7𝑒−6𝑥𝑦2 

Snow Depth (x) 

Ground Surface 

Slope (y) 

0.65 
0.36 − 0.16𝑥 − 0.01𝑦 + 0.04𝑥2 + 1.3𝑒−3𝑥𝑦 + 5.4𝑒−4𝑦2

− 4.5𝑒−3𝑥3 + 4.4𝑒−4𝑥2𝑦 − 1.3𝑒−4𝑥𝑦2 
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FIGURE LEGENDS  869 

 870 

Figure 1. Visualizations of hydrologic model structure that is commonly applied when a 871 

snowpack is present. Note the lack of lateral connectivity between two adjacent snowpacks. 872 

 873 

Figure 2. Summary of the Saddle Catchment (SDL) physiographic characteristics including: 874 

a) satellite imagery showing treeline, b) general location of SDL in the contiguous United 875 

States, c) elevation, d) topographic slope, and e) topographic aspect. 876 

 877 

Figure 3. a) Lidar derived snow depth on 14-May 2019 used to determine b) the normalized 878 

distribution of snow depth relative to the snow depth sensor (77 cm on 14-May). c) A 879 

comparison to the SNOTEL station depth shows a linear correlation with an r2 value of 0.89 880 

during the melt season. No data were collected below tree line during the lidar scans as 881 

indicated by the hashed area in panels a and b. 882 

 883 

Figure 4. The hydraulic conductivity of snow as a function of volumetric liquid water 884 

content (𝜃𝑤) using the 9 sets of parameters presented in Table 2. Note that the y-axis is 885 

presented in log scale. 886 

 887 

Figure 5. A comparison of the 2019 snow water equivalent (SWE) to the 30-year median 888 

(1981-2010) at the University Camp SNOTEL station. 889 

 890 

Figure 6. Observed snow depth and volumetric LWC for representative dates of a) early 891 

snowmelt prior to observable runoff, b) moderate snowmelt during the rising limb of the 892 

hydrograph, and c) peak snowmelt immediately prior to peak runoff. Insets indicated the 893 

timing of each observation relative to the observed hydrograph at the SDL stream gage. For 894 

visual purposes, LWC was resampled to a 10 m raster and LWC was only calculated along 895 

GPR transects. 896 

 897 

Figure 7. (a) Observed discharge at the SDL stream gauge and the percent of observed 898 

snowpack volumetric LWC that was > 15%. (b) histogram of volumetric LWC observations 899 

for 23-May and 27-June. 900 

 901 
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Figure 8. Third order polynomial regressions for (a) snow depth vs. θw, (b) distance to bare 902 

soil vs θw, (c) snow depth and distance to bare soil vs. θw, and (d) snow depth and ground 903 

surface slope vs. θw. The associated r2 values are given for each regression and all regressions 904 

are shown to a maximum θw of 0.3. 905 

 906 

Figure 9. At each of the three study sites (panel columns), simulations and observations of 907 

snow depth (a-c), snow water equivalent (d-f), and volumetric liquid water content (g-i). 908 

Mean observations are indicated as a point with whiskers extending one standard deviation 909 

calculated based on a 20 m by 20 m box centered on the modeled locations. Simulations are 910 

shown as the range (gray shading) of 18 parameter sensitivity runs. Three example 911 

simulations (slow, moderate, and fast draining) are shown as the blue, black and red lines in 912 

the bottom panels.  913 

 914 

Figure 10. Mean absolute error in SUMMA simulations of volumetric liquid water content, 915 

cm cm-3, at each of the three sites (panel columns). Errors (y-axis) are ranked by simulation 916 

ID (x-axis; ranking is lowest to highest, left to right) for the five-layer snow model (gray 917 

bars). The error accompanying the five-layer ranked simulation ID is also shown for the 100-918 

layer snow model (blue bars). 919 

 920 

Figure 11. Conceptual diagram showing the meltwater flow through-snow processes that 921 

occur including: a) ponding water on ice lenses, b) saturation excess through-snow flow, c) 922 

diversion of flow paths along stratigraphic layers (i.e. hydraulic barriers), d) lateral advancing 923 

of a wetting front, and e) infiltration excess as a result of focused infiltration. 924 

 925 

Figure 12. Visualizations of hydrologic model structure that is recommended for further 926 

investigation based on the present study that adds connectivity between the snowpack and 927 

soil and lateral connectivity within the snowpack above the snow-soil interface. Changes to 928 

the structure from Figure 1 are indicated in red.  929 

 930 

 931 

 932 

 933 

 934 

 935 
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 936 

 937 

Figure 1 938 

 939 

Figure 1. Visualizations of hydrologic model structure that is commonly applied when a snowpack is present on 940 

the ground surface. Note the lack of lateral connectivity between two adjacent snowpacks. 941 

  942 
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 943 

Figure 2 944 

 945 

 946 

  947 

Figure 2. Summary of the Saddle Catchment (SDL) physiographic characteristics including: a) satellite imagery 

showing treeline, b) general location of SDL in the contiguous United States, c) elevation, d) topographic slope, 

and e) topographic aspect. 
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Figure 3 948 

 949 

 950 

 951 

  952 

Figure 3. a) Lidar derived snow depth on May 14, 2019 used to determine b) the normalized distribution of 

snow depth relative to the snow depth sensor (77 cm on May 14). c) A comparison to the SNOTEL station 

depth shows a linear correlation with an r2 value of 0.89 during the melt season. No data were collected below 

tree line during the Lidar scans as indicated by the hashed area in panels a and b. 
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Figure 4 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

  967 

Figure 4. The hydraulic conductivity of snow as a 

function of volumetric water content (𝜃𝑤) using 

the 9 sets of parameters presented in Table 2. 

Parameter sets are organized by their simulation 

ID in Table 2. Note that the y-axis is presented in 

log scale. 
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Figure 5 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

  982 

Figure 5. A comparison of the 2019 snow water 

equivalent (SWE) to the 30-year median (1981-

2010) at the University Camp SNOTEL station. 
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Figure 6 983 

 984 

 985 

 986 

  987 

Figure 6. Observed snow depth and volumetric LWC for representative dates of a) early snowmelt prior to 

observable runoff, b) moderate snowmelt during the rising limb of the hydrograph, and c) peak snowmelt 

immediately prior to peak runoff. Insets indicated the timing of each observation relative to the observed 

hydrograph at the SDL stream gage. For visual purposes, LWC was resampled to a 10 m raster and LWC was 

only calculated along GPR transects. 
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Figure 7 988 

 989 

 990 

 991 

  992 

Figure 7. (a) Observed discharge at the SDL 

stream gauge and the percent of observed 

snowpack volumetric LWC that was > 15%. (b) 

histogram of volumetric LWC observations for 

May 23 and June 27. 
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Figure 8 993 

 994 

  995 

  996 

Figure 8. Third order polynomial regressions for (a) snow 

depth vs. 𝜃𝑤, (b) distance to bare soil vs 𝜃𝑤, (c) snow 

depth and distance to bare soil vs. 𝜃𝑤, and (d) snow 

depth and ground surface slope vs. 𝜃𝑤. The associated r2 

values are given for each regression and all regressions 

are shown to a maximum 𝜃𝑤 of 0.3. 
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Figure 9 997 

 998 

 999 

  1000 

Figure 9. At each of the three study sites (panel columns), simulations and observations of snow depth (a-c), 

snow water equivalent (d-f), and volumetric liquid water content (g-i). Mean observations are indicated as a 

point with whiskers extending one standard deviation calculated based on a 20 m by 20 m box centered on the 

modeled locations. Simulations are shown as the range (gray shading) of 18 parameter sensitivity runs. Three 

example simulations (slow, moderate, and fast draining) are shown as the blue, black and red lines in the 

bottom panels.  
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Figure 10 1001 

 1002 

  1003 

Figure 10. Mean absolute error in SUMMA simulations of volumetric liquid water content, cm cm-3, at each of 

the three sites (panel columns). Errors (y-axis) are ranked by simulation ID (x-axis; ranking is lowest to highest, 

left to right) for the five-layer snow model (gray bars). The error accompanying the five-layer ranked simulation 

ID is also shown for the 100-layer snow model (blue bars). 
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Figure 11 1004 

 1005 

 1006 

  1007 

Figure 11. Conceptual diagram showing the meltwater flow through-snow processes that occur including: a) 

ponding water on ice lenses, b) saturation excess through-snow flow, c) diversion of flowpaths along 

stratigraphic layers (i.e. hydraulic barriers), d) lateral advancing of a wetting front, and e) infiltration excess as a 

result of focused infiltration. 
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Figure 12 1008 

 1009 

Figure 12. Visualizations of hydrologic model structure that is recommended for further 1010 

investigation based on the present study that adds connectivity between the snowpack and 1011 

soil. Changes to the structure from Figure 1 are indicated in red.  1012 

 1013 

 1014 

 1015 


