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Accurate tight-binding model for twisted bilayer graphene describes topological
flat bands without geometric relaxation
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A major hurdle in understanding the phase diagram of twisted bilayer graphene is the roles of lattice relaxation
and electronic structure on isolated band flattening near magic twist angles. In this work, the authors develop an
accurate local environment tight-binding model fit to tight-binding parameters computed from ab initio density-
functional theory calculations across many atomic configurations. With the accurate parametrization, it is found
that the magic angle shifts to slightly lower angles than often quoted, from around 1.05° to around 0.99°, and
that isolated flat bands appear for rigidly rotated graphene layers, with enhancement of the flat bands when the
layers are allowed to distort. Study of the orbital localization supports the emergence of fragile topology in the

isolated flat bands without the need for lattice relaxation.
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I. INTRODUCTION

An exciting new task in condensed matter physics is un-
derstanding the microscopic mechanisms leading to a diverse
set of electronic states in twisted bilayer graphene (TBLG).
TBLG is a van der Waals structure that consists of two sheets
of single-layer graphene laid on top of each other and twisted
with a relative twist angle 6. For certain “magic” values of
6, the first of which has been cited as near 1.05° [1], TBLG
hosts correlated insulating and superconducting phases [1-5]
and anomalous Hall effects [6,7]. It is believed that these
correlated phases emerge through the interplay of electronic
and structural degrees of freedom [8—10].

The rich phase diagram of TBLG has been suggested to
arise from band flattening at the Fermi level [1,2]. The current
understanding is that with sufficiently flat bands, even weak
effective interactions can dominate the low-energy behav-
ior, leading to the observed correlated states in TBLG near
magic twist angles. The bulk of evidence for band flattening
in TBLG is found in theoretical calculations [10-15] where
bands near the Fermi level are shown to flatten to a few meV
bandwidth near magic twist angles. Experimentally, a recent
combination of low-energy electron microscopy and angle-
resolved photoemission spectroscopy measurements [16] also
observe flat bands at charge neutrality with bandwidths of 30
+ I5meV at6 = 1.3°.

Structural relaxations accompany the changes in electronic
structure near the magic twist angles. In TBLG, structural
relaxations enhance the size of low-energy AB regions and
constrict those of AA regions and are paired with out-of-
plane buckling, bringing together AB regions and pushing
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apart AA regions. This structural relaxation has been observed
experimentally through scanning tunneling microscopy mea-
surements on TBLG [17] and in theoretical calculations
[9,10,18-22]. Using simple tight-binding models—such as
the one of Moon and Koshino (MK) [23]—it has been pro-
posed that lattice relaxation is required to maintain the fragile
topology [24-30] of the flat bands and their energetic isolation
[10] from the rest of the bands in the system.

Thus it appears that the structural and electronic degrees
of freedom are tightly coupled in this system. However, the
conclusion that lattice relaxation is required for energetic iso-
lation and fragile topology of flat bands—indicators of tightly
coupled electronic and structural degrees of freedom—were
derived using phenomenological tight-binding models which
have no direct link to ab initio simulation. As such, it re-
mains to be seen whether accurate, ab initio treatment of the
electronic and structural degrees of freedom would arrive at
the same conclusions. While some density-functional theory
(DFT) calculations have been performed at the magic angle
scale [11,19], these calculations are very computationally de-
manding and it is not feasible to perform many calculations to
disentangle electronic and structural degrees of freedom.

In this manuscript, we present a highly accurate local
environment tight-binding (LETB) model for TBLG, fit to
DFT calculations of 72 structural configurations of bilayer
graphene. We show that the LETB model reproduces DFT for
structural configurations relevant to TBLG much more accu-
rately than simpler tight-binding (TB) models. In the LETB
model, isolated flat bands with fragile topology are observed
both with and without lattice relaxation, in contrast to the
current understanding in which lattice relaxation is required
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for isolated flat bands with fragile topology. A Python package
that generates LETB models for any atomic configuration is
made available [31].

II. TRAINING DATA FOR TWISTED BILAYER
GRAPHENE MODEL

A. Atomic configurations

Our goal is to develop a TB model that correctly accounts
for the variations in structure of TBLG. Our approach is
to use deformed, untwisted, primitive cell bilayer graphene
configurations. We use two deformation strategies in order to
capture the variations in stacking pattern as well as in-plane
and out-of-plane relaxations seen in small twist angle TBLG.
The first are in-plane and out-of-plane shifts, strains, and
shears, and the second are random atomic variations. Com-
bined we consider 72 different deformed configurations of
bilayer graphene. Details of the deformation strategies follow.

We begin by introducing notation for the deformed atomic
configurations. There are four atoms in our configurations
with positions denoted by the vectors dy, b 1, da, l;z, where a, b
refer to the two distinct atoms in a given graphene layer and
1,2 are layer indices. The real space lattice vectors for the
primitive cell are denoted by Ly, [,. These six vectors fully
describe the atomic configurations.

The shifted, strained, and sheared configurations are best
understood through the deformation equation
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The first matrix on the right-hand side denotes our ref-
erence configuration: the equilibrium AA configuration with
lattice constant ay = 2.683 bohr and interlayer separation
co = 6.646 bohr. The second matrix applies the relative shift
between the two layers through the parameter s and interlayer
spacing variations through A. In our dataset, s takes three
values (0, a, and 3a/2), which correspond to the AA, AB, and
SP bilayer configurations, and A takes three values (0 bohr,
—0.149 bohr, —0.126 bohr) corresponding to the AA, AB, and
SP layer spacings. The third matrix applies the in-plane shears
via €,, and in-plane strains in the x and y directions via €y, €y,.
All three parameters independently take three values, —0.01,
0, and 0.01, corresponding to 1% atomic position variations
in-plane. The five parameters, s, A, €y, €y, €,, can be varied
together, leading to a large space of strained, sheared, and
shifted configurations of the bilayer graphene.

For the random configurations, the parameters
S, A, €y, €xy, €y, are chosen at random from a uniform
distribution between the corresponding ranges described in

the previous paragraph. Once this new deformed configuration
is constructed, we add an additional 6 x 3 random matrix
R to the configuration to allow for arbitrary interatomic
displacements not captured by Eq. (1). To ensure that the
random displacements incurred by R are not too large,
we require that the Frobenius norm ||R||r = 0.01ay,
corresponding to random variations that move the atomic
configurations by a percentage of the equilibrium atomic
spacing. We reserve two twisted configurations at 9.4° and
4.4° to test the models.

B. Tight-binding parameters from density-functional theory

In Fig. 1 we illustrate our workflow for computing the
tight-binding parameters from atomic configurations. First,
we compute band structures for each configuration using van
der Waals DFT. Then we extract the w bands near the Fermi
level and Wannierize these low-energy bands. The Wannier-
ization procedure returns tight-binding parameters for the
low-energy bands which we want to model. Details of the
procedure follow.

For each of the deformed geometries in our training data
set, we computed the total SCF energies and band structure
using van der Waals DFT. We used the BEEF-VDW van der
Waals functional [32], a polarized triple-¢ all electron basis
constructed for solid-state DFT calculations [33], and a 36
x 36 x 1 k-point grid. All DFT calculations were carried
out using the PySCF package [34,35]. To demonstrate the
accuracy of the DFT calculations, we present a comparison
of the DFT band structure to angle-resolved photoemission
spectroscopy (ARPES) in the Appendix.

From each DFT calculation we isolate the four 7 bands and
Wannierize them to extract TB parameters. The disentangle-
ment scheme of Souza, Marzari, and Vanderbilt [36] is used to
isolate the four 7 bands from bands with C 1s, 2s, 2p,, 2p,
orbital character. The maximally localized Wannierization
procedure [37-39] is then used to generate maximally lo-
calized Wannier orbitals (MLWO), and the isolated r bands
are projected onto the MLWOs to obtain TB parameters. In
contrast to the Léwdin method [40], the Wannier downfolding
approach is simply a basis rotation and is guaranteed to obtain
the same band structures as the DFT calculation. All Wannier-
ization calculations are carried out using the Wannier90 [41]
and pyWannier90 packages [35]. A comparison of the Wan-
nierized band structure to DFT is presented in the Appendix.

C. Combined dataset

The full dataset containing deformed bilayer atomic con-
figurations and the corresponding tight-binding parameters
computed from DFT is available online alongside the model
Python package [31]. The dataset contains 72 different data
files, one for each atomic configuration as described in
Sec. IT A. Each data file has three pieces of information: the
atomic configuration, the DFT total energy, and the tight-
binding parameters from DFT. The atomic configurations are
stored as a list of three lattice vectors and a list of four atomic
basis vectors in units of angstroms. The tight-binding param-
eters are stored via five different lists encoding the hopping
magnitude between two atoms. The first pair of lists, labeled
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FIG. 1. Workflow for computing tight-binding parameters from atomic configurations. First, density-functional theory is used to compute
the band structure. Next, the low-energy m bands are disentangled, and these bands are Wannierized to return the first-principles tight-binding

parameters.

atomi, atomj,indicate which two atoms the hopping occurs
between, relative to the atomic basis list. The next pair, labeled
displacementi, displacement j,indicates how many lat-
tice vector displacements in the x, y directions are between the
hopping centers. The last of the five lists, tij, is the hopping
value in Hartree.

III. LOCAL ENVIRONMENT TIGHT-BINDING MODEL

We propose a local environment-dependent TB
parametrization which, in addition to the interatomic
separation, explicitly accounts for the detailed nuclear
configuration in the vicinity of atoms involved in hopping.
The general form of the LETB is

Higrs = ) i5°(Ri, R;, (Rijhclcjo +He.  (2)

ijo
Here i, j are atomic indices for the pair of atoms with a
hopping value of 7™, & is the spin index, c], is the creation
operator for a localized orbital on site i of p. character with
spin o, R;, is the location of atom i, and {R; j} is a set of
nuclear positions within the local environment of atoms i, j.
The definition of the local environment of two atoms i, j
and functional dependence of #;; on the local environment
coordinates are made explicit in Secs. III A and III B.
The LETB can be contrasted with the MK model [23]:
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where the constants take values VO = —27eV, VO —
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0.48 eV, ay = 2.683 bohr, dy = 6.331 bohr, and § = 0.246qy.

Conceptually, this model bridges two exponentials: the V),
exponential, which corresponds to intralayer matrix elements,
and the V),,, term, corresponding to interlayer matrix ele-
ments. Unlike the present LETB model, the MK hoppings
depend only on the pairwise displacement vector between
hopping centers. The MK parametrization is commonly used
for TBLG band structure calculations, and we use it as a point
of reference.

A. Intralayer hopping

Figure 2 shows the intralayer hopping obtained by Wan-
nierizing the DFT bands as a function of the in-plane distance
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FIG. 2. Intralayer hoppings in sampled configurations as a
function of the in-plane distance d,,, computed from the DFT calcu-
lations. The blue, orange, and green regions denote the first-, second-,
and third-nearest-neighbor regions defined by £5% intervals around
the the equilibrium distances of ay , «/§a0, and 2ay respectively. A
clear separation of nearest neighbors is present, allowing for separate
models to be fit for each term.
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FIG. 3. Schematic diagram listing all possible descriptors used to fit linear models for intralayer hopping. The blue atoms denote the atomic
pairs between (from left to right) nearest-, next-nearest-, and third-nearest-neighbor atoms. Solid lines denote direct distances between atoms
and dashed lines perpendicular distances. Composite descriptors also considered in regression are listed below the schematics.

dyy, which is the distance projected onto the xy plane. The
intralayer hopping decreases with the in-plane distance very
quickly, to the order of 0.01 eV by the fourth-nearest neigh-
bor. We thus focus on obtaining an accurate model up to the
third-nearest neighbor. This choice will be later justified by a
low error in computed band structures using the LETB model,
compared to the reference DFT band structures.

The nearest-neighbor hopping is well approximated by a
linear function in the distance a between the atoms, as shown
in Fig. 4(a). We find excellent agreement to the DFT data
with our fit yielding an R? of 0.98 and root-mean-square error
(RMSE) of 4.22 meV. The MK parametrization, while follow-
ing a similar trend to the LETB, consistently underestimates
the magnitude of the hoppings by 10%.

In contrast to the case for nearest neighbors, a parametriza-
tion only using interatomic distance fails dramatically for the
second- and third-nearest-neighbor hoppings, indicating the
need for local environment effects. As such, the effect of
the local environment is included by expanding the pool of
potential descriptors to include the descriptors shown in the
middle and right panels of Fig. 3. Descriptor selection is then
carried out using the least absolute shrinkage and selection
operator (LASSO) [42,43] to determine a minimal set of lo-
cal environment descriptors required to describe variations in
intralayer hoppings. After descriptor selection is carried out,
the linear models are fitted using cross-validated (CV) [44]
ordinary least-squares regression, with five folds. A summary
of the final regressed models with cross-validated parameter
means and uncertainties are presented in Table 1.

For the second-nearest-neighbor hopping, LASSO selects
the h; and h, descriptors before the intersite distance b
and discards all other descriptors. The descriptors /; and
h, parametrize the shape of the hexagon, indicating that the
hopping is mediated by the shape of the ring itself rather than
direct hopping. We find excellent agreement between the three
descriptor model and the DFT data, yielding an R? of 0.92 and
RMSE of 1.44 meV as shown in Fig. 4(b). This can be con-
trasted with the simpler MK parametrization, which predicts
a negative hopping parameter and an incorrect dependence on
geometry as it does not account for the %y, h, descriptors,
which are the most important for the second-nearest hopping.

The third-nearest-neighbor model in Fig. 4(c) is the most
complex, involving the size of the entire hexagonal environ-

ment around the hopping centers. The selected descriptors for
the LETB are A, I, and ¢, with a fit quality of R? = 0.96
and RMSE of 1.03 meV. LASSO selects the distance be-
tween the atoms ¢ before the local environment variables 4, /.
Similarly to the first-nearest neighbor, the MK parametriza-
tion consistently underestimates the hopping magnitude for
the third-nearest-neighbor hopping. However, in this case the
quantitative error is much larger, with a nearly 50% error
between the MK and DFT values.

B. Interlayer hoppings

For the interlayer hoppings, between a pair of atoms i, j
arranged such that one atom resides in either layer of the
bilayer, we use the parametrization proposed by Fang and
Kaxiras [8]. The Fang and Kaxiras model (FK model) takes
the following form:

IEK({EU}) = ™R — R}, 04, 64.:))
™8 (F, 64, 00) = Vo(rey /@) + V3 (1 /@)[c0s(36,) + cos(364)]
+ V6(rxy/a)[cos(69u) + 008(6961)]
Vo(r) = roe 5" cos(kor)
Vs(r) = )»3r267§‘(’7"3)2
Vi(r) = hge 560" sin(icqr). 4)
TABLE 1. LETB cross-validated fit parameters. The reported
values with parenthetical errors are the mean and standard deviation

of the parameters over five folds. The Fang parameters were refit to
our DFT data.

Intralayer hopping models

1-NN —9.68(4) + 2.52(1)a

2-NN 1.55(1) + 0.022(2)b — 0.66(1)h; — 0.20(1)h,

3-NN —1.23(1) + 0.04(1)c — 0.12(1)h + 0.23(1)!
Fang [8] Interlayer hopping model

i )\.,‘ (meV) S,‘ Xi Ki

0 239(2) 2.12(2) 1.871(4)

3 —40(1) 3.8(4) 0.52(4)

6 —=5.9(7) 6.0(8) 1.52(1) 1.73(2)
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FIG. 4. Predicted versus computed DFT intralayer hoppings for
(a) nearest neighbor, (b) next-nearest neighbor, and (c) third-nearest
neighbor. LETB refers to this work, and MK is using the MK
parametrization. The black line indicates perfect agreement with the
computed DFT values. Note for next-nearest-neighbor hopping we
present the MK hopping with a sign flip, as the model does not
predict negative values.

where r,, is the pair distance projected onto the x-y plane,
and the angles 6, ;;, 64,;; account for the local environment
effects between two atoms i, j. The first angle 6, indicates the
orientation of the nearest-neighbor triangle of the upper sheet
atom relative to the displacement vector ﬁ,- —R j» and 6, the
orientation of the same triangle of the lower sheet atom. The
constant a = agy/ V3 =1.549 bohr, and all other constants in
the expression are regression parameters.

TABLE II. Fang interlayer hopping model. The reported values
are taken directly from the original paper of Fang and Kaxiras [8].

i Aj (meV) & Xi Ki

0 315.5 1.7543 2.0010
3 —68.8 3.4692 0.5212

6 —8.3 2.8764 1.5206 1.5731

We use a nonlinear least-squares algorithm to fit the pa-
rameters in Eq. (4) to our DFT data. As with the intralayer
parameters, we use a fivefold CV to simultaneously fit pa-
rameters and assess the error bars for the parameters. The
summary of the fit parameters and their CV error bars are
presented in Table I. Our fit parameters agree with the original
FK model shown in Table II in both magnitude and sign of the
parameters.

The results of the interlayer fitting are shown in Fig. 5.
Looking at the MK parametrization first, we find that the
model performs well in two extreme regions (d < 7 bohr and
d > 10 bohr) but fails to describe most of the variation in
the region in between, near 8 bohr. The FK parametrization
ameliorates this issue and is able to describe the variation
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0.2 4 1 1
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FIG. 5. Plot of the predicted interlayer hoppings using the
(a) MK and (b) FK models compared to DFT, as a function of atomic
pairwise distance. Guidelines at 7 bohr and 10 bohr highlight the
intermediate region 7 bohr < d < 10 bohr where the MK model fails
to describe much of the variation while the FK model performs well.
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in the DFT data consistently across all bond lengths. Our
results indicate that local environmental effects are required
to describe interlayer hoppings in intermediate bond lengths
near 8 bohr.

C. Combined model

Hoppings between pairs of atoms i, j in a given twisted
configuration are computed using the LETB in a two step
process. First, the hopping between atoms i, j is classified
as interlayer or intralayer using the pairwise distance vector
d=R, - R ;- Next, the hopping value is computed using the
positions of nearby atoms in the twisted configuration. Details
of the classification method and hopping computation follow.

The hopping is classified as intralayer if the z projection of
the distance |d.| < 1 bohr, and interlayer otherwise. Intralayer
hoppings are further stratified via the xy distance d,, =

df + dy? into first-, second-, and third-nearest-neighbor clas-
sifications if dy, is within +5% of the equilibrium distances of
aop, \/gao, 2ay. Intralayer hoppings with d,, > 1.05 x 2qy are
collected in a single “out-of-bounds” category.

Once classified, the hopping is computed using the fit
functions in Table I. For in-bound classification—interlayer
hopping and intralayer hopping up to third-nearest neighbor—
all atoms within 2a( distance of atoms i and j are first
collected. The collection of atoms alongside i, j are then used
to compute the appropriate local environment descriptors and
subsequent hopping value between i, j. A hopping value of
zero is returned for out-of-bound classification.

D. Model validation

As a final check of model validity, in Fig. 6 we compare the
DFT band structures for TBLG at 9.4° and 4.4° twists against
the band structures computed using LETB. We find excellent
agreement between the DFT and LETB at all k points and
at both twists for the four 7 bands near the Fermi surface.
As such, the use of primitive cell bilayer configurations for
training paired with a local TB approximation generalizes
well to twisted bilayer.

IV. EFFECTS OF ACCURATE TB MODEL ON THE
ELECTRONIC STRUCTURE OF TBLG

To study the effects of the LETB on our understanding of
TBLG, we computed band structures for various small twist
angles using LETB and the MK model with rigid and fully
relaxed twisted geometries. We consider twist angles between
1.47° and 0.84°. Rigid geometries consist of two sheets of
unrelaxed graphene sheets twisted relative to each other with a
commensurate twist angle at equilibrium AB separation. The
fully relaxed geometries begin with the rigid geometries, and
the atomic positions are determined by atomistic molecular
static simulations using classical potentials. Details of the ge-
ometry optimization technique and comparison of computed
band structures follow. A summary of the computed quantities
is shown in Fig. 7.

Twist angle: 9.4 deg

N~ o =

E —Er (eV)

0.4 1

0.2 1

0.0 A1

E—Er (eV)

FIG. 6. Comparison of LETB and MK band structure versus
computed DFT band structures for 9.4° and 4.4° twist angles. Energy
is relative to the Fermi level, and the standard K - I' - M — K’
path through the computational supercell is shown.

A. Relaxed geometries

We perform molecular static simulations using the Large-
Scale Atomic Molecular Massively Parallel Simulator pack-
age [45] to obtain fully optimized geometries. Although a
low twist angle TBLG unit cell contains many atoms, it is
computationally feasible to optimize the system using clas-

0.06 -
0.04 4 Electron gap
S 0.02 1
)
o 0.00 "=®
I
-0.02
w =00 [Bandwidth I
—0.04 Hole gap
—0.06 A
K r M K'

FIG. 7. The band structure for a rigid 1.05° twist using the LETB
model, with important quantities labeled.
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sical potentials. We employ a hybrid of reactive empirical
bond order potential [46] for the intralayer interaction and
Kolmogorov-Crespi potential [47] for the interlayer interac-
tions. Atomic coordinates are relaxed by the centroid-gradient
energy minimization scheme [48] with a small stopping toler-
ance of 107! eV.

As a check of our structural optimization procedure, we
have calculated the RMSE between the structures obtained
by DFT using the PBE-vDW functional of Tkatchenko and
Scheffler [49,50] and our molecular static simulations at 4.4°
and 9.4° twist angles. We calculated separate in-plane and out-
of plane RMSE of the atomic positions as there is negligible
in-plane relaxation in TBLG at these twist angles [20,51] but
appreciable out-of-plane corrugation [19]. The in-plane and
out-of-plane RMSE of the atomic positions are 0.045 bohr
and 0.14 bohr at 9.4° twist and 0.17 bohr and 0.49 bohr at
4.4° twist. The computed RMSE values indicate agreement
between the molecular simulations and DFT within 5% of
the according length scale: the nearest-neighbor bond length
within a graphene sheet for in-plane and the spacing between
graphene sheets for out-of-plane.

B. Bandwidths

We begin by studying band flattening as described by the
LETB and MK models. In Fig. 8 we present the bandwidths
of the flat bands for the LETB and MK model with rigid and
relaxed geometries. Both models for both geometries yield
flat bands with bandwidth below 60 meV for twist angles
below 1.2°. With both geometries, the MK parametrization
achieves its first inflection point near 1.08° twist, whereas the
LETB continues the downward trend through 0.99° twist with
inflection points below 0.99°. Defining the first magic twist
angle as the first inflection point of the bandwidth with respect
to twist, the LETB yields a 10% smaller first magic twist angle
than the MK parametrization.

C. Fragile topology

Fragile topology in TBLG is characterized by the inability
to create symmetric, exponentially localized Wannier orbitals
with only the minimal set of nearly flat bands in TBLG
[26,27]. The existence of fragile topology is predicated on the
existence of a spectral gap between the minimal set of active
bands and the higher- (electron) and lower- (hole) lying states.
We therefore study the electron and hole band gaps (indicated
schematically in Fig. 7) as a necessary, but not sufficient,
requirement for any nontrivial topology in the flat bands. We
further study the orbital character across the first Brillouin
zone, which gives us direct insight into the emergence of Wan-
nier obstruction and hence the emergence of fragile topology.

In Fig. 9 we present the band gaps between the flat and
dispersive bands for the LETB and MK model with rigid
and relaxed geometries. Band gaps were computed for both
single-electron and single-hole excitations. Beginning with
the rigid geometry, we note that the LETB has a finite band
gap for all twist angles near and above the first inflection point
seen in Fig. 8(b), with the gap only closing far below the first
inflection point at 0.84°. The MK parametrization, however,
yields zero band gap for twists below 1.08°, coinciding with

MK
1401 | (a) —8— Rigid
—0— Relaxed
120 X
S
o 100 A
E
£ 80-
S
2 60+
C
©
m 40 -
20 A
O T T T
LETB
140 -
120 A
S
o 100 A
E
£ 80-
S
2 60-
C
©
M 40 A
20 A
0 T

1.0 1.2 1.4
Twist (Degree)

FIG. 8. Computed flat band bandwidths for small twist angles
near the magic twist angle using (a) MK and (b) LETB model
parametrizations. We consider two different sets of lattice geome-
tries: rigid twisted geometry and a fully relaxed, molecular dynamics
geometry.

the first inflection point observed in Fig. 8(a). With the relaxed
MD geometries, both LETB and MK follow qualitatively sim-
ilar trends, with band gaps nearly 10 times that of the rigid
geometries across all twist angles. Our results indicate that
fragile topology cannot emerge in the MK model for rigid
geometries in the vicinity of its first magic twist angle but that
fragile topology may emerge for the same twists when using
the LETB model.

To directly probe Wannier obstruction in the gapped flat
bands, we look at the orbital density across the first Brillouin
zone with a rigid 1.05° twisted geometry. As shown in Fig. 10,
the MK model does not exhibit Wannier obstruction as the
electron density in the flat bands localizes to AA character
across the Brillouin zone. However, the LETB model does
exhibit Wannier obstruction as the orbital character near I
abruptly changes to AB character, indicating the emergence of
a fragile topology in the flat bands. We also note that Wannier
obstruction does not exist in the MK model for any twists less
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FIG. 9. Computed electron and hole band gaps for small twist
angles near the magic twist angle using (a) MK and (b) LETB
model parametrizations. We consider two different sets of lattice
geometries: rigid twisted geometry and a fully relaxed, molecular
dynamics geometry.

than or equal to 1.08° when using rigid geometries, coinciding
with the band gap closing in Fig. 9(a).

The computed band gaps and orbitals in the LETB indicate
that geometry relaxation may not be required for isolated
bands and fragile topology of the flat bands in the LETB
model near the first magic twist angle, in contrast to the
picture from the MK parametrization. In the LETB model
the AB character at I is observed even with rigid geometries,
preventing the localization of Wannier orbitals within the flat
bands. This localization pattern associated with Wannier ob-
struction has also been previously observed and linked to the
emergence of fragile topology in extended tight-binding mod-
els using relaxed geometries [52]. While this is not definitive
evidence that LETB houses fragile topology, the emergence of
a finite band gap and Wannier obstruction strongly support the
emergence of fragile topology with rigid twists near the first

E —Ef (eV)

K r M K

FIG. 10. Computed band structure and electron density for I', M
points for a rigid 1.05° twisted geometry using the LETB and MK
models. Densities shown are for the bands between the Fermi level
with regions of higher density having darker color. The coordination
pattern of the density, AA or AB, is labeled for each density.

magic twist angle. A conclusive proof would require comput-
ing the appropriate topological invariant which distinguishes
the trivial and fragile topological flat bands; however, there is
no consensus currently on the appropriate invariant for TBLG.

D. Particle-hole symmetry

We conclude with a brief discussion on particle-hole sym-
metry in the LETB and MK models. As seen in Fig. 10, at
a rigid twist angle of 1.05°, there is an approximate particle-
hole symmetry in the flat bands of the LETB model which is
not present for the MK model, suggesting the possibility that
the LETB model generally exhibits particle-hole symmetry
for the flat bands in TBLG. However, at a 0.99° twisted geom-
etry with full lattice relaxation the opposite effect occurs, as
shown in Fig. 11. For this geometry, the MK model exhibits an
approximate particle-hole symmetry while the LETB model
does not. We thus conclude that use of particle-hole symmetry

0.100 -

LT [P
0.075 | LETB
' — MK
0.050 A
S 0.025-
)
& 0.000 &
4 —0.025 -
~0.050 -
~0.075 -
~0.100 :
K r MK

FIG. 11. Computed band structures using the LETB and MK
models at 0.99° twist angle with a fully relaxed MD geometry.
The MK model in this configuration has approximate particle-
hole symmetry while the LETB model does not, in contrast to
Fig. 10.
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for graphene is only sometimes justified, depending on the
twist angle, and can depend on details such as the geometry
relaxation.

V. CONCLUSION

We developed a LETB model that faithfully reproduces
density-functional-theory bands on 72 random configurations
of bilayer graphene. Transferability was tested versus DFT
band structures at 4.4° and 9.4°, resulting in very small errors
in the computed band structure. We found that for second
and third neighbors, the tight-binding parameters are not
well described by the distance between sites but instead are
best described using many-atom descriptors, as encoded in
the LETB. The model is implemented in a software pack-
age available online [31] and integrated with the pythtb
package [53].

Compared to a simpler parametrization by Moon and
Koshino [23], we find isolated flat bands with Wannier ob-
struction (known as fragile topology) without necessarily
requiring structural distortions. A local minimum in the band-
width attained at an angle slightly lower than 1.05°, reaching
zero at around 0.99°, which we identify with the first magic
angle. The variation in the minimum bandwidth between
tight-binding models is perhaps surprising, since one might
assume that it is mainly dependent on low-energy physics.
We find that the isolation of the flat bands is quantitatively
similar between the two models but that the MK model likely
incorrectly closes the electron and hole gaps for undistorted
(rigid) graphene, which qualitatively changes the nature of the
states. Namely, we found that the MK model cannot house
fragile topology near the first magic twist angle with rigid
geometries, whereas the emergence of Wannier obstruction in
the LETB indicates the presence of fragile topology even with
rigid twists.

Our study allows us to make some comments about what
parameters affect the bandwidth and electron/hole gaps in
twisted bilayer graphene. The bandwidth appears to be pri-
marily sensitive to the tight-binding parametrization, with
only a small dependence on the distortions of the layers.
On the other hand, the electron and hole gaps are primar-
ily sensitive to the distortions of the layers, and secondarily
dependent on the tight-binding parametrization. However, as
indicated above, the proposed parametrization can change the
qualitative nature of the bands, including the emergence of
fragile topology, in the case of rigid layers of graphene.

Having a highly accurate tight-binding model has partially
unraveled the many complex interactions in twisted bilayer
graphene. We hope that in future studies, interactions—such
as many-body electronic interactions or relativistic spin-orbit
interactions—can be added to this model to further disen-
tangle the effects of band structure, atomic structure, and
electronic interactions in twisted bilayer graphene.
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APPENDIX: DETAILED CHECKS FOR DFT
AND WANNIERIZATION

To demonstrate the accuracy of the DFT calculations, we
present a comparison of the DFT band structure to ARPES
measurements [54] in Fig. 12 for the eqilibrium AB config-
uration. Near the Fermi level we find excellent agreement
between DFT and ARPES, with DFT being within 0.1 eV of
the experimentally measured excitations. The errors between
DFT and ARPES increase away from K, but do not deviate
more than 10% from the experimental measurements.

We also present a comparison of the Wannierized band
structure to DFT is shown in Fig. 13 demonstrate the accuracy
of the Wannierization procedure. The figure shows the energy

15

10 -

— DFT
— Wannier

E —Ef (eV)

10

K r M K

FIG. 13. Comparison of DFT and Wannierized band structures
using the MLWO scheme near the Fermi level for AB bilayer
graphene. Only the 7 bands near the Fermi level are Wannierized.
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relative to the Fermi level for the DFT and Wannierized bands
for the AB configuration. The Wannierized bands fall exactly

on top the DFT bands, demonstrating the accuracy of both the
disentanglement and MLWO schemes.
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