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Abstract—Average consensus plays a key role in distributed
networks, with applications ranging from time synchronization,
information fusion, load balancing, to decentralized control.
Existing average consensus algorithms require individual agents
to exchange explicit state values with their neighbors, which leads
to the undesirable disclosure of sensitive information in the state.
In this paper, we propose a novel average consensus algorithm for
time-varying directed graphs that can protect the confidentiality
of a participating agent against other participating agents. The
algorithm injects randomness in interaction to obfuscate informa-
tion on the algorithm-level and can ensure information-theoretic
privacy without the assistance of any trusted third party or data
aggregator. By leveraging the inherent robustness of consensus
dynamics against random variations in interaction, our proposed
algorithm can also guarantee the accuracy of average consensus.
The algorithm is distinctly different from differential-privacy
based average consensus approaches which enable confidentiality
through compromising accuracy in obtained consensus value.
Numerical simulations confirm the effectiveness and efficiency
of our proposed approach.

Index Terms—Average consensus, confidentiality, time-varying
directed graphs.

I. INTRODUCTION

Averaging consensus is an important tool in distributed
computing. For a network of N agents interacting on a graph,
average consensus can enable the states of all agents to
converge to the average of their initial values through local
interactions between neighboring agents.

Recently, average consensus is finding increased appli-
cations in load balancing [2], [3], network synchronization
[4], distributed information fusion [5], [6], and decentralized
control [7], [8]. To ensure all agents converge to the average
value of their initial values, conventional average consensus
approaches require individual agents to exchange explicit state
values with their neighbors. This results in the disclosure of
sensitive state information, which is sometimes undesirable
in terms of confidentiality. In fact, in many applications such
as the smart grid, health-care or banking networks, confiden-
tiality is crucial for promoting participation in collaboration
since individual agents tend not to trade confidentiality for
performance [9]–[11]. For instance, a group of people using
average consensus to reach a common opinion may want to
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keep their individual opinions secret [12]. Another typical
example is power systems in which multiple generators have
to reach agreement on cost while maintaining their individual
generation information confidential [13].

To achieve confidentiality in average consensus, recently
results have started to emerge. A commonly used confiden-
tiality mechanism is differential privacy from the database
literature [14]–[20] (and its variants [21], [22]) which injects
independent (and hence uncorrelated) noises directly to agents’
states in order to achieve confidentiality in average consensus.
However, the use of independent noises on the states in these
approaches prevents converging to the exact average value
[23]. To improve consensus accuracy, which is crucial in
cyber-physical systems and sensor networks, [24]–[31] inject
carefully calculated correlated additive noises to agents’ states,
instead of independent (and hence uncorrelated) noises used in
differential-privacy based approaches. (A similar approach was
proposed in [32] to achieve maximum consensus.) However,
these prior works only consider average consensus under bal-
anced and static network topologies. Different from injecting
noises to agents’ states in the aforementioned approaches, [33]
employed carefully designed mask maps to protect the actual
states. Observability based approaches have also been reported
to protect the confidentiality of multi-agent consensus [34]–
[36]. Its idea is to design the topology of interactions such
that the observability from a compromised agent is minimized,
which amounts to minimizing the ability of the compromised
agent to infer the initial states of other agents. Recently,
encryption based approaches have been proposed to protect
the confidentiality by encrypting exchanged messages with
the assistance of additive homomorphic encryption [37]–[40],
with the price of increasing computation and communication
overhead. Another confidentiality approach was proposed in
[41] where each agent’s confidentiality is protected by de-
composing its state into two sub-states. However, [41] relies
on undirected interactions and is inapplicable to time-varying
directed graphs considered in this paper.

This paper addresses the confidentiality of average consen-
sus under time-varying directed graphs that are not necessarily
balanced. Since push-sum based average consensus approaches
do not require balanced topologies, we build our confidential
average consensus algorithm on the push-sum approach. More
specifically, to protect the confidentiality of the initial states of
participating agents, in the first several iterations, we let agents
send random values instead of their actual states to obfuscate
their initial values. Of course, to guarantee the accuracy of
average consensus, we have to judiciously design the state-
update rule such that the randomness added in the first several
iterations does not affect the final convergence result. Different
from approaches injecting correlated additive noises directly
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to agents’ states, our approach adds independent (and hence
uncorrelated in time) randomness directly to the average con-
sensus dynamics, which makes it applicable to time-varying
directed graphs. Compared with our prior work in [40] which
employs homomorphic encryption to preserve confidentiality
and [41] which protects each agent’s confidentiality by de-
composing its state into two sub-states, this paper proposes a
different approach that enables confidentiality by judiciously
adding randomness in interaction dynamics. More importantly,
both [40] and [41] rely on undirected interactions and hence
are inapplicable to time-varying directed graphs considered
in this paper. Some of the results here were presented at
the 2018 IEEE Conference on Communications and Network
Security (CNS) [1]. Compared with the conference version,
the journal version has the following significant differences:
1) the journal version extends the results for constant directed
graphs in [1] to time-varying directed graphs; 2) the journal
version provides formal and rigorous analysis of convergence
rate that does not exist in the conference version; 3) the
journal version allows multiple adversaries to collude to infer
the sensitive value a target agent, which is not addressed in
our conference version; and 4) the journal version revises
and enhances the proposed confidential average consensus
algorithm to guarantee information-theoretic privacy, which is
stronger than the confidentiality achieved in the conference
version.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Representation

We represent a network of N agents as a sequence of
time-varying directed graphs {G(k) = (V, E(k))} where
V = {1, 2, . . . , N} is the set of agents and k = 0, 1, . . . is
the time index. E(k) ⊂ V × V is the edge set at time k,
whose elements are such that (i, j) ∈ E(k) holds if and only
if there exists a directed edge from agent j to agent i at time
k, i.e., agent j can send messages to agent i at time k. For
notational convenience, we assume that there are no self edges,
i.e., (i, i) /∈ E(k) for all k and i ∈ V . At time k, each edge
(i, j) ∈ E(k) has an associated weight, pij(k) > 0. The out-
neighbor set of agent i at time k, which represents the set
of agents that can receive messages from agent i at time k,
is denoted as N out

i (k) = {j ∈ V | (j, i) ∈ E(k)}. Similarly,
at time k, the in-neighbor set of agent i, which represents
the set of agents that can send messages to agent i at time
k, is denoted as N in

i (k) = {j ∈ V | (i, j) ∈ E(k)}. From
the above definitions, it can be obtained that i ∈ N out

j (k)
and j ∈ N in

i (k) are equivalent. Agent i’s out-degree at time
instant k is represented by Dout

i (k) = |N out
i (k)| and its in-

degree is represented by Din
i (k) = |N in

i (k)|, where |S| is the
cardinality of the set S .

At iteration k, the incidence matrix C(k) = [cil(k)]N×E(k)

for graph G(k) = (V, E(k)) is defined as

cil(k) =


1 if the l-th edge in E(k) is (i, j)

−1 if the l-th edge in E(k) is (j, i)

0 otherwise
(1)

where E(k) = |E(k)| represents the number of edges in E(k).
Note that the l-th column of C(k) is corresponding to the l-th
edge in E(k), and the sum of each column of C(k) is 0, i.e.,
1TC(k) = 0T .

For a sequence of time-varying directed graphs {G(k) =
(V, E(k))}, we define E∞ as the set of directed edges (i, j)
that exist for infinitely many time instants, i.e.,

E∞ =
{

(i, j)
∣∣(i, j) ∈ E(k) for infinitely many indices k

}
(2)

We focus on time-varying directed graphs which satisfy the
following assumptions:

Assumption 1: For a sequence of time-varying directed
graphs {G(k) = (V, E(k))}, for any i, j ∈ V with i 6= j,
there exists at least one directed path from i to j in (V, E∞),
i.e., (V, E∞) is strongly connected.

Assumption 2: For a sequence of time-varying directed
graphs {G(k) = (V, E(k))}, there exists an integer T ≥ 1
such that for every (i, j) ∈ E∞, agent j directly communicates
with agent i at least once in every T consecutive time instants.
T is called intercommunication interval bound.

Assumption 3: We assume that each agent i has access to
its out-degree Dout

i (k) at each iteration k.
Remark 1: Assumption 3 is widely used in existing literature

on time-varying directed graphs such as [42]–[44]. In fact, in
many directed graphs, it is feasible for a node to know its
out-neighbors. For example, in many safety-critical systems
such as industrial control systems, the exchange of data occurs
in a directed way due to unidirectional gateways (aka data
diode) whereas control messages (a special type of messages
used to configure network connections) can be exchanged in
a bidirectional manner to establish connections [45].

B. The Conventional Push-Sum

The conventional push-sum considers N agents interacting
on a constant directed graph G = (V, E), with each agent hav-
ing an initial state x0i (i = 1, 2, . . . , N ) [46], [47]. Represent
the average value of all initial states as x̄0 =

∑N
j=1 x

0
j/N .

The conventional push-sum algorithm conducts two iterative
computations simultaneously, and allows each agent to obtain
the exact average of the initial values x̄0 in an asymptotic way.
This mechanism is summarized in Algorithm 0 below:

Algorithm 0: The conventional push-sum algorithm

1) N agents interact on a constant directed graph G =
(V, E). Each agent i is initialized with si(0) = x0i ,
wi(0) = 1, and πi(0) = si(0)/wi(0). The weight pij
associated with the edge (i, j) ∈ E satisfies pij ∈ (0, 1)
if j ∈ N in

i ∪ {i} is true and pij = 0 otherwise. For any
given j = 1, 2, . . . , N , pij satisfies

∑N
i=1 pij = 1.

2) At iteration step k:
a) Agent i calculates pjisi(k) and pjiwi(k), and sends

both values to all of its out-neighbors j ∈ N out
i .
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b) After receiving the values of pijsj(k) and pijwj(k)
from all its in-neighbors j ∈ N in

i , agent i updates si
and wi as follows:

si(k + 1) =
∑

j∈N in
i ∪{i}

pijsj(k)

wi(k + 1) =
∑

j∈N in
i ∪{i}

pijwj(k)
(3)

c) Agent i uses the ratio πi(k+1) = si(k+1)/wi(k+1)
to estimate the average value x̄0 =

∑N
j=1 x

0
j/N .

For the sake of notational simplicity, we rewrite (3) in the
following more compact form:{

s(k + 1) = Ps(k)

w(k + 1) = Pw(k)
(4)

where s(k) = [s1(k), s2(k), . . . , sN (k)]T and w(k) =
[w1(k), w2(k), . . . , wN (k)]T , and P = [pij ]. From Algorithm
0, we have s(0) = [x01, x

0
2, . . . , x

0
N ]T and w(0) = 1. We

can also obtain that the matrix P is column-stochastic, i.e.,∑N
i=1 pij = 1 holds for j = 1, 2, . . . , N .
At iteration step k, each agent computes the ratio πi(k +

1) = si(k + 1)/wi(k + 1) to estimate the average value
x̄0 =

∑N
j=1 x

0
j/N . Since G is assumed to be a strongly

connected directed graph, Pk will converge to a rank-1 matrix
exponentially fast [48], [49]. Defining P∞ as the limit of Pk

as k → ∞, we can obtain the form of P∞ as P∞ = v1T

where v = [v1, v2, . . . , vN ]T . Using the facts s(k) = Pks(0)
and w(k) = Pkw(0), we can further have [50]:

πi(∞) =
si(∞)

wi(∞)
=

[P∞s(0)]i
[P∞w(0)]i

=
vi
∑N

j=1 sj(0)

vi
∑N

j=1 wj(0)
= x̄0

(5)
where [P∞s(0)]i and [P∞w(0)]i represent the i-th element
of vector P∞s(0) and vector P∞w(0), respectively. Hence,
all estimates π1(k), π2(k), . . . , πN (k) will asymptotically con-
verge to the average x̄0 =

∑N
j=1 x

0
j/N .

C. Problem Formulation

In this paper, we will address average consensus under time-
varying directed graphs while protecting the confidentiality of
participating agents against adversaries. To this end, we first
present some assumptions and definitions.

Assumption 4: We assume that all agents’ initial states x0i
are bounded. Without loss of generality, the lower bound and
upper bound are denoted as a and b, respectively. Both a and
b are assumed known to all agents.

Remark 2: It is worth noting that although the bounds a
and b are assumed known to all agents, this does not mean
that the minimum and maximum of all agents’ initial states
are known to all agents. In fact, a (resp. b) can be arbitrarily
small (resp. large) compared with the actual minimum (resp.
maximum) of agents’ initial states.

Definition 1: We define an honest-but-curious adversary as
an agent who follows all protocol steps correctly but collects
received messages in an attempt to infer the initial value of
other participating agents.

Assumption 5: We assume that agents can collude, i.e., a
set of honest-but-curious agents A can share information with
each other to infer the initial value x0i of a target agent i /∈ A.

Definition 2: We define that confidentiality (privacy) of the
initial value x0i of agent i is preserved if x0i is indistinguishable
from the viewpoint of honest-but-curious adversaries A. By
“indistinguishable,” we mean that the probability distribution
of information set accessible to A does not change when agent
i’s initial state x0i is altered to any x̃0i 6= x0i under the constraint
that the sum of the initial states of all nodes not in A (i.e.,∑

j∈V\A x
0
j ) is unchanged.

Our definition of confidentiality requires perfect indistin-
guishability of a target agent’s different initial states from the
viewpoint of honest-but-curious adversaries A, and, therefore,
is more stringent than the confidentiality definition in [31],
[32], [51]–[53] which defines confidentiality as the inability
of an adversary to uniquely determine the sensitive value.

We next show that the conventional push-sum is not con-
fidential. From (3) and (4), an honest-but-curious agent i can
receive pijsj(0) and pijwj(0) from its in-neighbor agent j
after the first iteration step k = 0. Then agent i is able
to uniquely determine x0j by x0j = sj(0) =

pijsj(0)
pijwj(0)

using
the fact wj(0) = 1. Therefore, an honest-but-curious agent
can always infer the initial values of all its in-neighbors, and
hence the conventional push-sum algorithm cannot provide
confidentiality against honest-but-curious adversaries. It is
worth noting that using a similar argument, we can also obtain
that the conventional push-sum is not confidential even when
the weight is allowed to be time-varying (e.g., [47].)

III. THE CONFIDENTIALITY ALGORITHM AND
PERFORMANCE ANALYSIS

In this section, we will propose a confidential average
consensus algorithm for time-varying directed graphs, and then
provide rigorous analysis of its convergence rate and enabled
strength of confidentiality.

A. Confidential Average Consensus Algorithm

The analysis above reveals that using the same weight pij
for both pijsj(0) and pijwj(0) discloses the initial state value.
Motivated by this observation and the work in [29], here we
introduce a novel confidential average consensus algorithm
which injects randomness in the dynamics of interactions in
iterations k = 0, . . . ,K . Note that here K is a non-negative
integer and is known to every agent. Its influence will be
discussed in detail in Remark 11 and Remark 12.

Algorithm 1: Confidential average consensus algorithm

1) N agents interact on a sequence of time-varying directed
graphs {G(k) = (V, E(k))}. Each agent i is initialized
with si(0) = 1

N2 +
(N−2)(x0

i−a)
(b−a)N2 ∈ [ 1

N2 ,
N−1
N2 ], wi(0) =

1, and πi(0) = b−a
N−2 [N × frac(Nsi(0)

wi(0)
)−1]+a where the

function frac(x) = x−bxc denotes the fractional part of
a real number x (here bxc represents the largest integer
not greater than x).

2) At iteration step k:
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a) Agent i generates a set of random weights
{
pji(k) ∈

(ε, 1)
∣∣ j ∈ N out

i (k) ∪ {i}
}

with the sum of this set
equal to 1, and sets ∆wji(k) = pji(k)wi(k) for j ∈
N out

i (k) ∪ {i}.
b) If k ≤ K, agent i independently generates uni-

formly distributed values ∆sji(k) ∈ [0, 1) for its
out-neighbors j ∈ N out

i (k), and sets ∆sii(k) =
frac

(
si(k)−

∑
j∈N out

i (k) ∆sji(k)
)
; otherwise, agent i

sets ∆sji(k) = pji(k)si(k) for j ∈ N out
i (k) ∪ {i}.

c) Agent i sends ∆sji(k) and ∆wji(k) to its out-
neighbors j ∈ N out

i (k).
d) After receiving ∆sij(k) and ∆wij(k) from its in-

neighbors j ∈ N in
i (k), agent i updates si and wi as

si(k+ 1) =


frac

( ∑
j∈N in

i (k)∪{i}

∆sij(k)
)

for k ≤ K

∑
j∈N in

i (k)∪{i}

∆sij(k) for k ≥ K + 1

(6)
and

wi(k + 1) =
∑

j∈N in
i (k)∪{i}

∆wij(k) for k ≥ 0 (7)

respectively.
e) Agent i uses the ratio πi(k + 1) = b−a

N−2 [N ×
frac(Nsi(k+1)

wi(k+1) )− 1] + a to estimate the average value
x̄0 =

∑N
j=1 x

0
j/N .

Remark 3: Compared to the conventional confidentiality-
violating push-sum algorithm which broadcasts messages,
Algorithm 1 needs agent i to send different random numbers to
different out-neighbors in iterations k ≤ K. This is a price of
obtaining confidentiality without losing accuracy in the time-
varying directed topology case.

Remark 4: The way of injecting randomness in ∆sji(k) is
different in iterations k ≤ K from k > K. In fact, in iterations
k ≤ K, ∆sji(k) can be nonzero even when si(k) is zero.
This is crucial in enabling strong confidentiality as receiving
∆sji(k) of a value zero will not allow the recipient to infer
information about si(k).

Remark 5: In Algorithm 1, the coupling weights are ran-
domly chosen at every iteration. Compared with the commonly
used deterministic setting in which the weights are set as
pji(k) = 1/(Dout

i (k)+1) for all j ∈ N out
i (k)∪{i}, our setting

is more general since it includes the commonly used setting as
a special case by fixing pji(k) to deterministic values. Further-
more, the random weights beyond step K in Algorithm 1 can
provide additional confidentiality protection for intermediate
states si(k) after iteration K. Given ∆sji(k) = pji(k)si(k)
for k ≥ K + 1, we can see that using random weights pji(k)
makes the intermediate state si(k) more difficult to infer than
using deterministic weights pji(k).

Setting ∆sji(k), ∆wji(k), and pji(k) to 0 for j /∈
N out

i (k) ∪ {i}, we can rewrite the update rules of s(k) for

k ≥ K + 1 and w(k) for k ≥ 0 as
si(k + 1) =

N∑
j=1

∆sij(k) =
N∑
j=1

pij(k)sj(k) for k ≥ K + 1

wi(k + 1) =
N∑
j=1

∆wij(k) =
N∑
j=1

pij(k)wj(k) for k ≥ 0

(8)
Denoting s(k), w(k), and P(k) as s(k) = [s1(k) · · · sN (k)]T ,
w(k) = [w1(k) · · · wN (k)]T , and P(k) = [pij(k)]N×N , we
can further rewrite (8) into a matrix form{

s(k + 1) = P(k)s(k) for k ≥ K + 1

w(k + 1) = P(k)w(k) for k ≥ 0
(9)

For iteration k = 0, we have s(0) = [x01, x
0
2, . . . , x

0
N ]T and

w(0) = 1. From Algorithm 1, we know that P(k) in (9) is
time-varying and column-stochastic for k ≥ 0.

Defining the transition matrix as follows

Φ(k : t) = P(k) · · ·P(t) (10)

for all k and t with k ≥ t, where Φ(k : k) = P(k), we can
rewrite (9) as{

s(k + 1) = Φ(k : K + 1)s(K + 1) for k ≥ K + 1

w(k + 1) = Φ(k : 0)w(0) for k ≥ 0
(11)

B. Convergence Analysis

Next we prove that Algorithm 1 can guarantee that the
estimates of all agents converge to the exact average value
of initial values. We will also analyze the rate of conver-
gence of Algorithm 1. Using the convergence definition in
[43] and [54], we define the rate of convergence to be at
least γ ∈ (0, 1) if there exists a positive constant value C
such that

∥∥π(k) − x̄01
∥∥ ≤ Cγk is true for all k, where

π(k) = [π1(k), . . . , πN (k)]T and x̄0 =
∑N

j=1 x
0
j/N is the

average value. Note that this definition means a smaller γ
corresponding to a faster convergence. To analyze the conver-
gence rate of Algorithm 1, we first introduce Lemma 1 below:

Lemma 1: For a network of N agents represented by a
sequence of time-varying directed graphs {G(k) = (V, E(k))}
which satisfy Assumptions 1, 2, and 3, under Algorithm 1,
each agent i has wi(k) ≥ εT (N−1) for k ≥ 1 where T is
defined in Assumption 2.

Proof: For k ≥ 1, from (11) we have

w(k) = Φ(k − 1 : 0)1 (12)

Represent δ(k) as

δ(k) , min
1≤i≤N

wi(k) = min
1≤i≤N

[Φ(k − 1 : 0) 1]i (13)

for k ≥ 1. To prove wi(k) ≥ εT (N−1) for k ≥ 1, it is sufficient
to prove δ(k) ≥ εT (N−1) for k ≥ 1. We divide our proof into
two parts: 1 ≤ k ≤ T (N − 1) and k ≥ T (N − 1) + 1.
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Part 1: δ(k) ≥ εT (N−1) for 1 ≤ k ≤ T (N − 1). One can
verify that the following relationship holds

[Φ(k − 1 : 0)]ii

= [P(k − 1) · · ·P(0)]ii

≥ [P(k − 1)]ii [P(k − 2) · · ·P(0)]ii

≥ ε [Φ(k − 2 : 0)]ii

(14)

Given [Φ(0 : 0)]ii = [P(0)]ii ≥ ε, one can obtain [Φ(k − 1 :
0)]ii ≥ εk. Therefore, it follows that

[Φ(k − 1 : 0) 1]i ≥ [Φ(k − 1 : 0)]ii

≥ εk ≥ εT (N−1) (15)

is true for i = 1, . . . , N and 1 ≤ k ≤ T (N − 1), implying
δ(k) ≥ εT (N−1) for 1 ≤ k ≤ T (N − 1).

Part 2: δ(k) ≥ εT (N−1) for k ≥ T (N − 1) + 1. Under
Assumptions 1 and 2, and the requirements on weights pij(k)
in Algorithm 1, and following the arguments in Lemma 2 in
[55], we can obtain

[Φ(k − 1 : k − T (N − 1))]ij ≥ εT (N−1) (16)

for 1 ≤ i, j ≤ N . Since k ≥ T (N − 1) + 1 holds and P(k)
is a column-stochastic matrix,

Φ(k−T (N−1)−1 : 0) = P(k−T (N−1)−1) · · ·P(0) (17)

should also be a column-stochastic matrix. Further using the
fact Φ(k−1 : 0) = Φ(k−1 : k−T (N−1))Φ(k−T (N−1)−1 :
0) leads to [Φ(k − 1 : 0)]ij ≥ εT (N−1) for 1 ≤ i, j ≤ N .
Therefore, we have

[Φ(k − 1 : 0) 1]i ≥ NεT (N−1) ≥ εT (N−1) (18)

for i = 1, . . . , N , meaning δ(k) ≥ εT (N−1) for k ≥ T (N −
1) + 1.

Based on δ(k) ≥ εT (N−1) for k ≥ 1, we can obtain wi(k) ≥
εT (N−1) for k ≥ 1. In summary, we always have wi(k) ≥
εT (N−1) for k ≥ 1. �

Theorem 1: For a network of N agents represented by a
sequence of time-varying directed graphs {G(k) = (V, E(k))}
satisfying Assumptions 1, 2, 3, and 4, under Algorithm 1, the
estimate πi(k) = b−a

N−2 [N × frac(Nsi(k)
wi(k)

) − 1] + a of each
agent i will converge to the average x̄0 =

∑N
j=1 x

0
j/N . More

specifically, the rate of convergence of Algorithm 1 is at least
γ = (1− εT (N−1))

1
T (N−1) ∈ (0, 1), meaning that there exists

a positive constant value C satisfying
∥∥π(k) − x̄01

∥∥ ≤ Cγk

for all k.

Proof: From (6), we have

frac
( N∑

i=1

si(k + 1)
)

=frac

( N∑
i=1

frac
( ∑

j∈N in
i (k)∪{i}

∆sij(k)
))

=frac

( N∑
i=1

∑
j∈N in

i (k)

∆sij(k) +
N∑
i=1

∆sii(k)

)

=frac

( N∑
i=1

∑
j∈N in

i (k)

∆sij(k)

+
N∑
i=1

frac
(
si(k)−

∑
j∈N out

i (k)

∆sji(k)
))

=frac
( N∑

i=1

si(k)
)

(19)

for k ≤ K where in the derivation we used the property
frac(x + y) = frac(x + frac(y)) = frac(frac(x) + y) =
frac(frac(x) + frac(y)) for any x, y ∈ R. According to
Assumption 4, x0i ∈ [a, b] holds for each agent i. Given
si(0) = 1

N2 +
(N−2)(x0

i−a)
(b−a)N2 , one can obtain si(0) ∈ [ 1

N2 ,
N−1
N2 ],

leading to

frac
( N∑
i=1

si(0)
)

=

N∑
i=1

si(0) ∈ [
1

N
,
N − 1

N
] ⊂ (0, 1) (20)

Further combining (19) and (20) yields

frac
( N∑
i=1

si(K + 1)
)

= · · · = frac
( N∑
i=1

si(0)
)

=
N∑
i=1

si(0)

(21)
Since P(k) is column stochastic, from (9) we have

1Tw(k + 1) = 1Tw(k) = · · · = 1Tw(0) = N (22)

for k ≥ 0. Then we rewrite (11) as{
s(K + l + 1) = Φ(K + l : K + 1)s(K + 1)

w(K + l + 1) = Φ(K + l : K + 1)w(K + 1)
(23)

for l ≥ 1. Under Assumptions 1 and 2, and the requirements
on weights pij(k) in Algorithm 1, following Proposition 1(b)
in [56], we know that the transition matrix Φ(K + l : K + 1)
will converge to a stochastic vector ϕ(K+l) with a geometric
rate for all i and j, i.e., for all i, j = 1, . . . , N and l ≥ 1, we
have ∣∣[Φ(K + l : K + 1)]ij − ϕi(K + l)

∣∣ ≤ C0γ
l−1 (24)

with C0 = 2(1 + ε−T (N−1))/(1− εT (N−1)) and γ = (1 −
εT (N−1))

1
T (N−1) . Defining M(K + l : K + 1) as

M(K + l : K + 1) , Φ(K + l : K + 1)−ϕ(K + l) 1T

(25)
we have ∣∣∣[M(K + l : K + 1)]ij

∣∣∣ ≤ C0γ
l−1 (26)
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for all i, j = 1, . . . , N and l ≥ 1. Further combining (25) with
(23) leads to

s(K + l + 1) =M(K + l : K + 1)s(K + 1)

+ ϕ(K + l) 1T s(K + 1)

w(K + l + 1) =M(K + l : K + 1)w(K + 1)

+ Nϕ(K + l)

(27)

where in the derivation we used 1Tw(K+1) = N from (22).
Then from (27), we have

si(K + l + 1)

wi(K + l + 1)
−
∑N

j=1 sj(K + 1)

N

=
si(K + l + 1)

wi(K + l + 1)
− 1T s(K + 1)

N

=
si(K + l + 1)

wi(K + l + 1)
− 1T s(K + 1)wi(K + l + 1)

Nwi(K + l + 1)

=
[M(K + l : K + 1)s(K + 1)]i + ϕi(K + l)1T s(K + 1)

wi(K + l + 1)

− 1T s(K + 1)[M(K + l : K + 1)w(K + 1)]i
Nwi(K + l + 1)

− 1T s(K + 1)Nϕi(K + l)

Nwi(K + l + 1)

=
[M(K + l : K + 1)s(K + 1)]i

wi(K + l + 1)

− 1T s(K + 1)[M(K + l : K + 1)w(K + 1)]i
Nwi(K + l + 1)

(28)
Therefore, for i = 1, . . . , N and l ≥ 1, we can obtain

∣∣N si(K + l + 1)

wi(K + l + 1)
−

N∑
j=1

sj(K + 1)
∣∣

≤
N
∣∣[M(K + l : K + 1)s(K + 1)]i

∣∣
wi(K + l + 1)

+
N
∣∣1T s(K + 1)[M(K + l : K + 1)w(K + 1)]i

∣∣
Nwi(K + l + 1)

≤ N

εT (N−1)

(
max

j

∣∣[M(K + l : K + 1)]ij
∣∣)∥∥s(K + 1)

∥∥
1

+
N

εT (N−1)

∣∣1T s(K + 1)
∣∣(max

j

∣∣[M(K + l : K + 1)]ij
∣∣)

(29)
where in the derivation we used wi(K + l + 1) ≥ εT (N−1)

from Lemma 1 and
∥∥w(K + 1)

∥∥
1

=
∑N

i=1 |wi(K + 1)| =
1Tw(K + 1) = N from (22). Further using the relationship∣∣1T s(K + 1)

∣∣ ≤ ∥∥s(K + 1)
∥∥
1

and (26) yields

∣∣N si(k)

wi(k)
−

N∑
j=1

sj(K + 1)
∣∣ ≤ C1γ

k (30)

for k ≥ K + 2 with C1 given by

C1 = 2NC0

∥∥s(K + 1)
∥∥
1
ε−T (N−1)γ−K−2 (31)

Given si(0) = 1
N2 +

(N−2)(x0
i−a)

(b−a)N2 , we have

x̄0 =
1

N

N∑
j=1

x0j =
b− a
N − 2

(
N

N∑
j=1

sj(0)− 1
)

+ a

=
b− a
N − 2

(
N × frac

( N∑
j=1

sj(K + 1)
)
− 1
)

+ a

(32)

where in the derivation we used frac
(∑N

j=1 sj(K + 1)
)

=∑N
j=1 sj(0) from (21). Combining (32) with πi(k) =

b−a
N−2 [N × frac(Nsi(k)

wi(k)
)− 1] + a leads to

πi(k)− x̄0

=
b− a
N − 2

N
(

frac
(Nsi(k)

wi(k)

)
− frac

( N∑
j=1

sj(K + 1)
)) (33)

From (20) and (21), one can obtain frac
(∑N

j=1 sj(K+1)
)

=∑N
j=1 sj(0) ∈ [ 1

N ,
N−1
N ]. Defining η as η ,

∑N
j=1 sj(0) ∈

[ 1
N ,

N−1
N ], then there must exist an integer Q such that∑N

j=1 sj(K + 1) = Q+ η holds. From (30), we can see that
there must exist a positive integer K1 ≥ K + 2 such that

∣∣N si(k)

wi(k)
−

N∑
j=1

sj(K + 1)
∣∣ ≤ C1γ

k <
1

N
(34)

holds for k ≥ K1. Then it follows naturally one has

Q < Q+ η − C1γ
k ≤ N si(k)

wi(k)
≤ Q+ η + C1γ

k < Q+ 1

(35)
for k ≥ K1, which leads to

0 < η − C1γ
k ≤ frac

(
N
si(k)

wi(k)

)
≤ η + C1γ

k < 1 (36)

for k ≥ K1. Thus, we have∣∣πi(k)− x̄0
∣∣ =

b− a
N − 2

N
∣∣frac

(Nsi(k)

wi(k)

)
− η
∣∣

≤ b− a
N − 2

NC1γ
k

(37)

and further ∥∥π(k)− x̄01
∥∥ ≤ C2γ

k (38)

for k ≥ K1 with C2 , b−a
N−2N

√
NC1.

For k ≤ K1 − 1, from (33), we have

|πi(k)− x̄0| < b− a
N − 2

N (39)

which further implies

‖π(k)− x̄01‖ < b− a
N − 2

N
√
N (40)

for k ≤ K1 − 1. Defining C as

C , max
{
C2,

b− a
N − 2

N
√
Nγ−k

∣∣ 0 ≤ k ≤ K1 − 1
}

(41)

one can obtain ∥∥π(k)− x̄01
∥∥ ≤ Cγk (42)
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for all k. Therefore, each agent i will converge to the average
value x̄0 =

∑N
j=1 x

0
j/N with the rate of convergence of at

least γ = (1− εT (N−1))
1

T (N−1) ∈ (0, 1). �
From Theorem 1, we can see that a smaller γ means a faster

convergence. Under the relationship γ = (1−εT (N−1))
1

T (N−1) ,
to expedite the convergence, i.e., a smaller γ, it is sufficient
to increase ε, which amounts to reducing the width of the
range (ε, 1) for the random selection of pji(k). Note that
although a reduced range (ε, 1) enables an honest-but-curious
adversary to obtain a better estimation of the range of agent
i’s intermediate states si(k) and wi(k) for k ≥ K + 1 from
received pji(k)si(k) and pji(k)wi(k), it does not affect the
confidentiality of agent i’s initial state x0i , as will be shown
in the following subsection. It is also worth noting that to
meet the requirement of randomly selecting weights in our
algorithm, ε cannot be arbitrarily close to 1. In fact, ε must
satisfy ε < 1/maxi,k(Dout

i (k) + 1). An easy way to select ε
is to set 0 < ε < 1/N since Dout

i (k) ≤ N − 1 is true for all
k and i ∈ V .

Remark 6: Theorem 1 provides a detailed analysis of the
rate of convergence under time-varying directed graphs, the
results on which are sparse in the literature on Push-Sum under
time-varying random weights.

C. Confidentiality Analysis

Before presenting our main confidentiality result, we first
introduce the following lemma.

Lemma 2: Consider a network of N agents represented by a
sequence of time-varying directed graphs {G(k) = (V, E(k))}
which satisfy Assumptions 1, 2, 3, 4, and 5. Under the
proposed Algorithm 1, if at some time instant 0 ≤ k∗ ≤ K,
agent i /∈ A has an in-neighbor or out-neighbor l not belonging
to A, then under I∗s , {∆smn(k) | (m, n) ∈ E(k), (m, n) 6=
(i, l), (m, n) 6= (l, i), k = 0, 1, . . . ,K}, the joint probability
distributions of si(K + 1) and sl(K + 1) are identical for
any two different initial states x0, x̃0 ∈ [a, b]N subject to
x0i + x0l = x̃0i + x̃0l and x0j = x̃0j for j ∈ V \ {i, l}.

Proof: According to (6), we can rewrite the update rule of
si(k) as follows

si(k + 1)

=frac
( ∑

j∈N in
i (k)

∆sij(k) + si(k)−
∑

j∈N out
i (k)

∆sji(k)
)
(43)

for k ≤ K. We stack all variables ∆smn(k) into a vector
∆s(k) according to indices of edges in E(k), namely, the
index of ∆smn(k) is determined by the index of the edge
(m, n) in E(k). Then we can further rewrite (43) in the
following more compact form:

s(k + 1) = frac
(
s(k) + C(k)∆s(k)

)
(44)

for k ≤ K, where C(k) is the incidence matrix for graph G(k)
at iteration k.

Define the subsets of agents H and R as H = {i, l}
and R = V \ (H ∪ A), respectively. Let NA = |A| and
NR = |R| represent the number of agents in A and R,
respectively. It is clear that H, A, and R are disjoint, and

H ∪ A ∪ R = V holds. For graph G(k) = (V, E(k)), we
define the subgraph GH(k) as GH(k) = (H, EH(k)) where
EH(k) ⊂ E(k) is the set of edges entirely within H. The
union of subgraphs GH(k) for iterations k = 0, 1, . . . ,K

is further denoted as G∗H =
K⋃

k=0

GH(k) = (H, E∗H), where

E∗H =
K⋃

k=0

EH(k) is the union of edge sets EH(k) for iterations

k = 0, 1, . . . ,K . Denote the edge set EA(k) as the collection
of edges associated with all agents in A at iteration k, i.e.,
EA(k) = {(m, n) | (m, n) ∈ E(k),m or n ∈ A}. Then the
set of remaining edges not belonging to EH(k) or EA(k) can
be denoted as ER(k) = E(k) \ (EH(k) ∪ EA(k)), which is a
collection of edges that are either entirely withinR or between
R and H. Let EH(k) = |EH(k)|, EA(k) = |EA(k)|, and
ER(k) = |ER(k)| represent the number of edges in EH(k),
EA(k), and ER(k), respectively. Note that EH(k), EA(k), and
ER(k) are disjoint, and we always have EH(k) ∪ EA(k) ∪
ER(k) = E(k). Without loss of generality, we can partition
the state vector s(k) as s(k) = [sH(k)T sA(k)T sR(k)T ]T

where sH(k), sA(k), and sR(k) denote the state vectors of
agents in H, A, and R, respectively. Then we can further
rewrite the update rule of s(k) for k ≤ K assH(k + 1)

sA(k + 1)
sR(k + 1)

 = frac

(sH(k)
sA(k)
sR(k)


+

 CH(k) C1
A(k) C1

R(k)
0NA×EH(k) C2

A(k) 0NA×ER(k)

0NR×EH(k) C3
A(k) C2

R(k)

∆sH(k)
∆sA(k)
∆sR(k)

)
(45)

where CH(k) is the incidence matrix for subgraph GH(k) =
(H, EH(k)), and ∆sH(k), ∆sA(k), and ∆sR(k) are vectors
stacking ∆smn(k) corresponding to edge sets EH(k), EA(k),
and ER(k), respectively. It is obvious that ∆sA(k) is com-
pletely known to agents in A since every element in ∆sA(k)
is either sent or received by the agents in A. From (45), we
can further obtainsH(K + 1)

sA(K + 1)
sR(K + 1)

 = frac

(sH(0)
sA(0)
sR(0)


+

 C∗H C1∗
A C1∗

R
0NA×E∗H C2∗

A 0NA×E∗R
0NR×E∗H C3∗

A C2∗
R

∆s∗H
∆s∗A
∆s∗R

) (46)

where E∗H =
∑K

k=0EH(k), E∗R =
∑K

k=0ER(k), and

C∗H =
[
CH(0) · · · CH(K)

]
Ct∗
A =

[
Ct
A(0) · · · Ct

A(K)
]
, t = 1, 2, 3

Ct∗
R =

[
Ct
R(0) · · · Ct

R(K)
]
, t = 1, 2

∆s∗H =
[
∆sH(0)T · · · ∆sH(K)T

]T
∆s∗A =

[
∆sA(0)T · · · ∆sA(K)T

]T
∆s∗R =

[
∆sR(0)T · · · ∆sR(K)T

]T
(47)

It is worth noting that C∗H is the incidence matrix for graph
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G∗H =
K⋃

k=0

GH(k). From (46), we have

sH(K + 1)

= frac
(
sH(0) + C∗H∆s∗H + C1∗

A∆s∗A + C1∗
R∆s∗R

) (48)

Denoting v = [v1 v2]T as

v , frac
(
C∗H∆s∗H

)
(49)

next we prove that v is uniformly distributed in [0, 1)× [0, 1)
subject to frac(v1 + v2) = 0 if at some time instant 0 ≤ k∗ ≤
K, agent i has an in-neighbor or out-neighbor l not belonging
to A.

Given H = {i, l}, if at some time instant 0 ≤ k∗ ≤ K,
agent i has an in-neighbor or out-neighbor l not belonging to
A, the columns of C∗H are either [1 −1]T (l is an in-neighbor
of agent i) or [−1 1]T (l is an out-neighbor of agent i). Denote
the j-th column of C∗H as c∗j , then c∗j can be expressed as

c∗j = rjc
∗
1 (50)

where rj ∈ {1,−1} is the corresponding coefficient. Defining
r as r = [r1 · · · rE∗H ], one can obtain

v = frac
(
C∗H∆s∗H

)
= frac

(
c∗1r∆s∗H

)
= frac

(
c∗1 · frac(r∆s∗H)

) (51)

Since all the elements in ∆s∗H are independent of each other
and uniformly distributed in [0, 1), we have that frac(r∆s∗H)
is uniformly distributed in [0, 1). As c∗1 is either [1 − 1]T or
[−1 1]T , we have that v is uniformly distributed in [0, 1) ×
[0, 1) subject to frac(v1 + v2) = 0.

From (48), we have sH(K + 1) = frac
(
sH(0) + v +

C1∗
A∆s∗A + C1∗

R∆s∗R
)
. Further taking into account the fact

that v is uniformly distributed in [0, 1) × [0, 1) subject to
frac(v1 + v2) = 0 if at some time instant 0 ≤ k∗ ≤ K,
agent i has an in-neighbor or out-neighbor l not belonging
to A, we can obtain that sH(K + 1) is also uniformly
distributed in [0, 1)× [0, 1) subject to frac(1T sH(K + 1)) =
frac(1T sH(0) + 1TC1∗

A∆s∗A + 1TC1∗
R∆s∗R).

Now we analyze the probability distributions of sH(K +
1) under different initial conditions of agent i. For any
two different initial conditions x0, x̃0 ∈ [a, b]N subject
to x0i + x0l = x̃0i + x̃0l and x0j = x̃0j for j ∈ V \
{i, l}, one can obtain si(0) + sl(0) = s̃i(0) + s̃l(0). Note
that all the elements in ∆s∗A and ∆s∗R belong to the set
I∗s = {∆smn(k) | (m, n) ∈ E(k), (m, n) 6= (i, l), (m, n) 6=
(l, i), k = 0, 1, . . . ,K}. Thus, given I∗s , both sH(K +
1) and s̃H(K + 1) are uniformly distributed in [0, 1) ×
[0, 1) subject to frac(1T sH(K + 1)) = frac(1T sH(0) +
1TC1∗

A∆s∗A+1TC1∗
R∆s∗R) = frac(1T s̃H(0)+1TC1∗

A∆s∗A+
1TC1∗

R∆s∗R) = frac(1T s̃H(K + 1)). Therefore, given I∗s ,
the probability distributions of sH(K + 1) under different x0

and x̃0 are identical when x0j = x̃0j for j ∈ V \ {i, l} and
x0i +x0l = x̃0i + x̃0l hold for some agent l that is an in-neighbor
or out-neighbor of agent i at some time instant 0 ≤ k∗ ≤ K
but does not belong to A. �

Now we are in position to present our main confidentiality
result.

Theorem 2: Consider a network of N agents represented
by a sequence of time-varying directed graphs {G(k) =
(V, E(k))} which satisfy Assumptions 1, 2, 3, 4, and 5.
Under the proposed Algorithm 1, the confidentiality of agent
i /∈ A can be preserved against A if at some time instant
0 ≤ k∗ ≤ K, agent i has an in-neighbor or out-neighbor l not
belonging to A.

Proof: To show that the confidentiality of agent i can be
protected, we have to show that under different initial values
of agent i, the probability distributions are identical for honest-
but-curious agents A’ information set. It suffices to prove that
the probability distributions of information sets accessible to
A are identical for all x0, x̃0 ∈ [a, b]N subject to x0i + x0l =
x̃0i + x̃0l and x0j = x̃0j for j ∈ V \ {i, l} where agent l is an
in-neighbor or out-neighbor of agent i at some time instant
0 ≤ k∗ ≤ K and does not belong to A. Note that under such
x0 and x̃0, the sum of the initial states of all nodes not in
A keeps unchanged, i.e.,

∑
j∈V\A x

0
j =

∑
j∈V\A x̃

0
j . Given

si(0) = 1
N2 +

(N−2)(x0
i−a)

(b−a)N2 , this is equivalent to proving that
the probability distributions of information sets accessible to
A are identical for all s(0), s̃(0) ∈ [ 1

N2 ,
N−1
N2 ]N subject to

si(0) + sl(0) = s̃i(0) + s̃l(0) and sj(0) = s̃j(0) for j ∈
V \ {i, l}. Denoting Is(k) and Iw(k) as

Is(k) = {sA(k),∆sA(k)}
Iw(k) = {wA(k),∆wA(k)}

(52)

where sA(k) and wA(k) are state vectors of agents in A, and
∆sA(k) and ∆wA(k) are augmented vectors of ∆smn(k)
and ∆wmn(k) corresponding to edge set EA(k), respectively.
We can see that agents in A have access to both Is(k) and
Iw(k) at each iteration k. Further denote Is1 , Iw1 , Is2 , Iw2 , I1,
and I2 as

Is1 =

K⋃
k=0

Is(k) Iw1 =

K⋃
k=0

Iw(k) ∪ {w(0)}

Is2 =
∞⋃

k=K+1

Is(k) Iw2 =
∞⋃

k=K+1

Iw(k)

I1 = Is1 ∪ Iw1 I2 = Is2 ∪ Iw2

(53)

According to Algorithm 1, I , I1∪I2 represents all the infor-
mation accessible to A. We denote the conditional probability
density of I given s(0) as f(I | s(0)). Thus, to show that the
confidentiality of agent i can be protected, it is equivalent
to proving f(I | s(0)) = f(I | s̃(0)) for all s(0), s̃(0) ∈
[ 1
N2 ,

N−1
N2 ]N subject to si(0) + sl(0) = s̃i(0) + s̃l(0) and

sj(0) = s̃j(0) for j ∈ V \ {i, l}.
Since

f(I | s(0)) = f(I1, I2 | s(0)) = f(I1 | s(0))f(I2 | I1, s(0))
(54)

holds, to show f(I | s(0)) = f(I | s̃(0)), it suffices to prove
that

f(I1 | s(0)) = f(I1 | s̃(0)) (55)

and
f(I2 | I1, s(0)) = f(I2 | I1, s̃(0)) (56)
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hold for any s(0), s̃(0) ∈ [ 1
N2 ,

N−1
N2 ]N subject to si(0) +

sl(0) = s̃i(0) + s̃l(0) and sj(0) = s̃j(0) for j ∈ V \ {i, l}.
We first show f(I1 | s(0)) = f(I1 | s̃(0). Since Iw1 is

independent of Is1 and s(0), one can obtain f(I1 | s(0)) =
f(Is1 , Iw1 | s(0)) = f(Iw1 )f(Is1 | s(0)). From (45), we can see
that given sA(0), Is1 is independent of sH(0) and sR(0),
where H = {i, l} and R = V \ (H ∪ A). So f(Is1 | s(0)) =
f(Is1 | sA(0), sH(0), sR(0)) = f(Is1 | sA(0)) holds. Therefore,
we have

f(I1 | s(0)) = f(Iw1 )f(Is1 | sA(0)) = f(Iw1 )f(Is1 | s̃A(0))

= f(I1 | s̃(0))
(57)

where we used sA(0) = s̃A(0) in the derivation.
To show f(I2 | I1, s(0)) = f(I2 | I1, s̃(0)), it suffices to

prove

f(I2, s(K + 1),w(K + 1) | I1, s(0))

= f(I2, s(K + 1),w(K + 1) | I1, s̃(0))
(58)

Given s(K+1) and w(K+1), I2 is independent of I1, which
further leads to

f(I2, s(K + 1),w(K + 1) | I1, s(0))

=f(I2 | s(K + 1),w(K + 1), I1, s(0))

× f(s(K + 1),w(K + 1) | I1, s(0))

=f(I2 | s(K + 1),w(K + 1))

× f(s(K + 1),w(K + 1) | I1, s(0))

=f(I2 | s(K + 1),w(K + 1))

× f(s(K + 1) |w(K + 1), I1, s(0))f(w(K + 1) | I1, s(0))
(59)

Further taking into account the facts that 1) s(K + 1) is
conditionally independent of w(K + 1) and Iw1 given Is1 and
s(0); and 2) w(K+1) is conditionally independent of Is1 and
s(0) given Iw1 , one can obtain

f(I2, s(K + 1),w(K + 1) | I1, s(0))

=f(I2 | s(K + 1),w(K + 1))f(s(K + 1) | Is1 , s(0))

× f(w(K + 1) | Iw1 )

(60)

Similarly, one can also obtain

f(I2, s(K + 1),w(K + 1) | I1, s̃(0))

=f(I2 | s(K + 1),w(K + 1))f(s(K + 1) | Is1 , s̃(0))

× f(w(K + 1) | Iw1 )

(61)

Therefore, to show f(I2 | I1, s(0)) = f(I2 | I1, s̃(0)), it suf-
fices to prove f(s(K+ 1) | Is1 , s(0)) = f(s(K+ 1) | Is1 , s̃(0)).
Denote IsR as IsR , {∆sR(k) | k = 0, 1, . . . ,K}. To prove
f(s(K+ 1) | Is1 , s(0)) = f(s(K+ 1) | Is1 , s̃(0)), we only need
to prove

f(s(K + 1), IsR | Is1 , s(0)) = f(s(K + 1), IsR | Is1 , s̃(0))
(62)

From (46), we can obtain the following facts: 1) sH(K + 1)
is conditionally independent of sA(K + 1) and sR(K + 1)
given IsR, Is1 , and s(0); and 2) sA(K + 1) and sR(K + 1)

are conditionally independent of sH(0) given IsR, Is1 , sA(0),
and sR(0). Taking into account these facts, we have

f(s(K + 1), IsR | Is1 , s(0))

=f(sH(K + 1), sA(K + 1), sR(K + 1), IsR | Is1 , s(0))

=f(sH(K + 1) | sA(K + 1), sR(K + 1), IsR, Is1 , s(0))

× f(sA(K + 1), sR(K + 1) | IsR, Is1 , s(0))f(IsR | Is1 , s(0))

=f(sH(K + 1) | IsR, Is1 , s(0))

× f(sA(K + 1), sR(K + 1) | IsR, Is1 , sA(0), sR(0))f(IsR)
(63)

where in the derivation we used the independence between IsR
and {Is1 , s(0)}. Similarly, one can obtain

f(s(K + 1), IsR | Is1 , s̃(0))

=f(sH(K + 1) | IsR, Is1 , s̃(0))

× f(sA(K + 1), sR(K + 1) | IsR, Is1 , s̃A(0), s̃R(0))f(IsR)
(64)

From Lemma 2, we have that if at some time instant 0 ≤
k∗ ≤ K, agent i has an in-neighbor or out-neighbor l
not belonging to A, f(sH(K + 1) | I∗s , s(0)) = f(sH(K +
1) | I∗s , s̃(0)) holds, where I∗s = {∆smn(k) | (m, n) ∈
E(k), (m, n) 6= (i, l), (m, n) 6= (l, i), k = 0, 1, . . . ,K} =
{∆smn(k) | (m, n) ∈ EA(k)∪ER(k), k = 0, 1, . . . ,K} is the
collection of all elements ∆smn(k) in ∆sA(k) and ∆sR(k)
from iteration 0 to iteration K. Given that ∆sA(k) ∈ Is1 and
∆sR(k) ∈ IsR hold for k = 0, 1, . . . ,K , we further have
f(sH(K + 1) | IsR, Is1 , s(0)) = f(sH(K + 1) | IsR, Is1 , s̃(0).
Based on sA(0) = s̃A(0) and sR(0) = s̃R(0), we have
f(s(K + 1), IsR | Is1 , s(0)) = f(s(K + 1), IsR | Is1 , s̃(0)),
implying f(I2 | I1, s(0)) = f(I2 | I1, s̃(0)) if at some time
instant 0 ≤ k∗ ≤ K, agent i has an in-neighbor or out-
neighbor l not belonging to A.

Therefore, we have f(I | s(0)) = f(I | s̃(0)) for any
s(0), s̃(0) ∈ [ 1

N2 ,
N−1
N2 ]N subject to si(0) + sl(0) = s̃i(0) +

s̃l(0) and sj(0) = s̃j(0) for j ∈ V \ {i, l}, meaning that the
confidentiality of agent i can be preserved if at some time
instant 0 ≤ k∗ ≤ K, agent i has an in-neighbor or out-
neighbor l that does not belong to A. �

Remark 7: Compared with our previous work [1] which
defines privacy as the positivity of probability that adversaries’
accessible information set being the same under two different
initial states, in this work we significantly improved our
confidential results by proving that the probability distributions
of information sets are identical under different initial states,
meaning that the initial states are perfectly indistinguishable
from the viewpoint of adversaries.

Remark 8: It is worth noting that although the confidential
approach in [30] looks similar to ours (both protocols employ
random values in the first several iterations), they are in
fact significantly different. More specifically, to guarantee the
accuracy of average consensus, not only does the confidential
protocol in [30] require pairwise local averaging of exchanged
random values in the first several iterations, but it also needs
to compensate the errors induced by the random values imme-
diately after the first several iterations, which is equivalent to
introducing time-correlated additive random noises to agents’
states. To the contrary, our confidential approach exchanges
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time-uncorrelated random values for iterations k ≤ K. To
ensure consensus accuracy, each agent i uses a carefully-
designed ∆sii(k) to compensate the errors induced by the
random values at each iteration k ≤ K. Therefore, the random
values used in our approach are space-correlated. As shown
in Theorem 2, the space-correlated randomness can make
the probability distributions of information sets accessible to
adversaries identical under different initial states and hence
achieves information-theoretic privacy, which is stronger than
the confidentiality achieved using time-correlated noises in
[30].

Next we proceed to show that if the conditions in Theorem
2 are not met, then the confidentiality of agent i may be
breached.

Theorem 3: Consider a network of N agents represented
by a sequence of time-varying directed graphs {G(k) =
(V, E(k))} which satisfy Assumptions 1, 2, 3, 4, and 5.
Under the proposed Algorithm 1, the confidentiality of agent
i /∈ A cannot be preserved against A if all in-neighbors
and out-neighbors of agent i belong to A, i.e., {N in

i (k) ∪
N out

i (k)
∣∣ k ≥ 0} ⊂ A. In fact, when {N in

i (k)∪N out
i (k)

∣∣ k ≥
0} ⊂ A is true, the initial value x0i of agent i can be uniquely
determined by honest-but-curious agents in A.

Proof: From (43) we have

frac
(
si(k + 1)− si(k)

)
=frac

( ∑
n∈N in

i (k)

∆sin(k)−
∑

m∈N out
i (k)

∆smi(k)
)

(65)

for k ≤ K and further

frac
(
si(K + 1)− si(0)

)
=frac

( K∑
k=0

[ ∑
n∈N in

i (k)

∆sin(k)−
∑

m∈N out
i (k)

∆smi(k)
])

(66)
Since si(0) ∈ [ 1

N2 ,
N−1
N2 ] holds, one can obtain

si(0) =frac

(
si(K + 1)

−
K∑

k=0

[ ∑
n∈N in

i (k)

∆sin(k)−
∑

m∈N out
i (k)

∆smi(k)
])
(67)

According to the requirements in Algorithm 1, we have
∆sii(k) +

∑
m∈N out

i (k) ∆smi(k) = si(k) for k ≥ K + 1

and ∆wii(k) +
∑

m∈N out
i (k) ∆wmi(k) = wi(k) for k ≥ 0.

Plugging these relationships into (6) and (7), we can obtain

si(k + 1)− si(k) =∑
n∈N in

i (k)

∆sin(k)−
∑

m∈N out
i (k)

∆smi(k) (68)

for k ≥ K + 1 and

wi(k + 1)− wi(k) =∑
n∈N in

i (k)

∆win(k)−
∑

m∈N out
i (k)

∆wmi(k) (69)

for k ≥ 0, which further lead to

si(k)− si(K + 1) =
k−1∑

l=K+1

[ ∑
n∈N in

i (k)

∆sin(l)−
∑

m∈N out
i (k)

∆smi(l)
] (70)

for k ≥ K + 1 and

wi(k)− wi(0) =
k−1∑
l=0

[ ∑
n∈N in

i (k)

∆win(l)−
∑

m∈N out
i (k)

∆wmi(l)
] (71)

for k ≥ 0.
Under Assumption 5, if {N out

i (k) ∪ N in
i (k)

∣∣ k ≥ 0} ⊂ A
is true, then all terms on the right-hand side of (70) and
(71) are known to the honest-but-curious agents in A. Further
taking into account wi(0) = 1, we have that agents in A can
uniquely determine wi(k) for all k. Under Assumption 1 and
{N out

i (k) ∪ N in
i (k)

∣∣ k ≥ 0} ⊂ A, there must exist at least
one agent j ∈ A such that (j, i) ∈ E∞ is true. This is because
otherwise graph (V, E∞) is not strongly connected, which
does not satisfy Assumption 1. According to Assumption 2,
agent i directly communicates with agent j ∈ A at least
once in every T consecutive time instants. So there must exist
k′ ≥ K + 1 at which agent i directly communicates with
agent j, i.e., agent i sends ∆sji(k

′) and ∆wji(k
′) to agent j

at iteration k′. As j ∈ A, every honest-but-curious agent in
A has access to ∆sji(k

′) and ∆wji(k
′). So agents in A can

easily infer si(k′) by using the following relationship

si(k
′) =

∆sji(k
′)

∆wji(k′)
wi(k

′) =
pji(k

′)si(k
′)

pji(k′)wi(k′)
wi(k

′) (72)

and then determine the value of si(K+ 1) using (70). Further
making use of (67), agents in A can infer the value of si(0),
and then uniquely determine the initial value of agent i using
x0i = b−a

N−2 (N2si(0)−1) +a. Therefore, the confidentiality of
agent i /∈ A cannot be preserved against A if all in-neighbors
and out-neighbors of agent i belong to A. �

Remark 9: It is worth noting that in confidential average
consensus, topology requirements such as the ones in Theorem
2 are widely used. In fact, to guarantee both accuracy and
confidentiality, [26]–[31], [33]–[35], [39]–[41] all rely on
similar topology requirements.

Remark 10: Our algorithm can protect the confidentiality
of an agent even when all its neighbors interact (at least one
does not collude) with adversaries, which is not allowed in
[27] and [31].

Remark 11: From the above analysis, we know that intro-
ducing randomness into interaction dynamics by each agent i
for k ≤ K is key to protect confidentiality against honest-
but-curious agents. It is worth noting that compared with
the conventional push-sum approach which does not take
confidentiality into consideration, the introduced randomness
in our approach has no influence on the convergence rate
γ. However, the randomness does delay the convergence
process and hence leads to a trade-off between confidentiality
preservation and convergence time. This is confirmed in our
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numerical simulations in Fig. 2, which shows that convergence
only initiates after k = K + 1.

Remark 12: If an adversary can obtain side information,
then a larger K protects the confidentiality of more inter-
mediate states si(k) for 1 ≤ k ≤ K. This is because for
k ≥ K + 1, si(k) can be easily obtained by its out-neighbor
j due to the relationship si(k) = wi(k)∆sji(k)/∆wji(k) if
side information about wi(k) is available to the adversary
j. Therefore, although a larger K leads to more delay in
the convergence process, as discussed in Remark 11, it can
protect more intermediate states (si(k) for 1 ≤ k ≤ K) when
an adversary can obtain side information. Of course, if side
information is not of concern, a smaller K is preferable to
minimize the delay in the convergence process.

Remark 13: Our algorithm can be extended to preserve
confidentiality against external eavesdroppers wiretapping all
communication links without compromising algorithmic ac-
curacy by patching partially homomorphic encryption. More
specifically, using public-key cryptosystems (e.g., Paillier [57],
RSA [58], and ElGamal [59]), each agent generates and floods
its public key before the consensus iteration starts. Then in
decentralized implementation, an agent encrypts its messages
to be sent, which can be decrypted by a legitimate recipient
without the help of any third party. Note that since public-key
cryptosystems can only deal with integers, the final consensus
result would be subject to a quantization error. However, as
indicated in our previous work [40], the quantization error can
be made arbitrarily small in implementation.

IV. RESULTS VALIDATION

We conducted numerical simulations to verify the correct-
ness and the effectiveness of our proposed approach.

We first evaluated our proposed Algorithm 1 under a net-
work of N = 5 agents interacting on a time-varying directed
graph. More specifically, we used the interaction graph in
Fig. 1(a) when k is even and Fig. 1(b) when k is odd. It
can be verified that this time-varying directed graph satisfies
Assumptions 1 and 2. Parameter ε was set to 0.05. The
initial values x0i for i = 1, . . . , N were randomly chosen
from (−50, 50). We used e(k) to measure the estimation
error between the estimate πi(k) = si(k)/wi(k) and the true
average value x̄0 =

∑N
j=1 x

0
j/N at iteration k, i.e.,

e(k) =
∥∥π(k)− x̄01

∥∥ =
( N∑
i=1

(πi(k)− x̄0)2
)1/2 (73)

Three experiments were conducted with parameter K being
10, 20, and 30, respectively. The evolution of e(k) is shown
in Fig. 2. It can be seen that e(k) approached 0, meaning that
every agent converged to the average value x̄0 =

∑N
j=1 x

0
j/N .

From Fig. 2, we can also see that Algorithm 1 did not start
to converge in the first K + 1 iterations due to the introduced
randomness, which confirms our analysis in Remark 11.

We also evaluated the influence of parameter ε on the
convergence rate γ. The interaction graph was the same as
above. K was set to 10. The simulation results are given in
Fig. 3 where the mean and variance of γ from 1, 000 runs of
the algorithm are shown under different values of ε. Fig. 3

1

5

43

2

1

5

43

2

(a) (b)

Fig. 1: A time-varying directed graph with 5 agents.
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Fig. 2: The evolution of error e(k) under different K.

shows that as ε increases, the convergence rate γ decreases
(i.e., the convergence speed increases), which confirms our
analysis in Sec. III-B.
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0.5

0.55
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0.65

0.7

0.75

Fig. 3: The influence of ε on the convergence rate γ.

We then compared the proposed Algorithm 1 with exist-
ing data-obfuscation based approaches, more specifically, the
differential-privacy based approach in [14], the decaying-noise
approach in [27], and the finite-noise-sequence approach in
[31]. Under the same setup as in the previous simulation,
we chose the initial values as {10, 15, 20, 25, 30}, which led
to an average value 20. We adopted the weight matrix W
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from [14], i.e., the ij-th entry was wij = 1/(|N out
j |+ 1) for

i ∈ N out
j ∪{j} and wij = 0 for i /∈ N out

j ∪{j}. As the graph
is directed and imbalanced, and does not meet the undirected
or balanced assumption in [14], [27], [31], all three approaches
failed to achieve average consensus, as shown in the numerical
simulation results in Fig. 4, Fig. 5, and Fig. 6, respectively.
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Fig. 4: The evolution of xi(k) under the approach in [14].
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Fig. 5: The evolution of xi(k) under the approach in [27].

Iteration step
0 10 20 30 40 50 60

S
ta
te

va
lu
es

0

10

20

30

40
x1(k)

x2(k)

x3(k)

x4(k)

x5(k)

Fig. 6: The evolution of xi(k) under the approach in [31].

Finally, we conducted numerical simulations to verify the
scalability of our proposed Algorithm 1 using a network of
N = 1, 000 agents. At every iteration k, each agent i was
assumed to have three out-neighbors, i.e.,

N out
i (k) =

{{
i+ 1, i+ 1 + 1, i+ 2 + 1

}
if k is even{

i− 2 + 1, i− 3 + 1, i− 4 + 1
}

if k is odd
(74)

where the superscript “ ¯ ” represents modulo operation on N ,
i.e., i , i mod N . The initial values x0i for i = 1, 2, . . . , N
were randomly chosen from (−50, 50). ε and K were set to
0.05 and 10, respectively. The evolution of estimation error
e(k) = ‖π(k)− x̄01‖ is shown in Fig. 7. It can be seen that
e(k) converged to 0, implying that our proposed algorithm can
guarantee the convergence of all agents to the actual average
value even when the network size is large.
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Fig. 7: The evolution of error e(k) in a network of N = 1, 000
agents.

V. CONCLUSIONS

We proposed a confidential average consensus algorithm
for time-varying directed graphs. In distinct difference from
existing differential-privacy based approaches which enable
confidentiality through compromising the accuracy of ob-
tained consensus value, we leveraged the inherent robustness
of average consensus to embed randomness in interaction
dynamics, which guarantees confidentiality of participating
agents without sacrificing the accuracy of average consensus.
Finally, we provided numerical simulation results to confirm
the effectiveness and efficiency of our proposed approach.
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