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Quantum control of two critically dressed spin-1/2 species in magnetic fluctuations

Raymond Tat® and C. M. Swank
Division of Physics, Math and Astronomy, California Institute of lechnology, Pasadena, California 91125, USA

® (Received 3 December 2021; revised 14 April 2022; accepted 11 May 2022; published 25 May 2022)

The neutron electric dipole moment experiment at the Spallation Neutron Source (nEDM @ SNS experiment)
proposes to measure the nEDM using the spin-dependent capture cross section of neutrons on He. The critical
dressing mode of this experiment uses an oscillating magnetic field to dress the gyromagnetic ratios of neutrons
and 3He to the same value. While this technique grants increased sensitivity to the nEDM by improving the
signal-to-noise ratio, this mode of measurement also introduces additional noise from the power supply used to
drive the dressing field. This can lead to randomly fluctuating magnetic fields which cause the spins of neutrons
and *He to drift apart over time. Here we use second-order time-dependent perturbation theory to compute
relaxation and frequency shifts due to fluctuations in the dressing field in terms of the magnetic field noise power
spectrum and compare these calculations to numerical solutions obtained by integrating the Bloch equations.
We then use these results to develop mitigation strategies for this type of noise. Furthermore, we report on spin
dressing modulation techniques that significantly amplify coherence times for the critically dressed system, and

attempt to quantify the achievable coherence time.
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I. INTRODUCTION

When a particle’s spin precessing in a static magnetic field
is exposed to an off-resonant oscillating orthogonal magnetic
field, the effective gyromagnetic ratio of the particle—and
thus its precession frequency—is modified. This phenomenon
is known as spin dressing and was first studied theoretically
in Ref. [1]. Spin dressing is found to have applications across
multiple subfields in quantum information and fundamental
physics, including increasing coherence time of free induction
decay (FID) in relatively large magnetic field gradients [2,3].
The use of multiple dressing frequencies tuned to extend the
coherence of atomic clocks in field gradients was first reported
in Ref. [4], whereas the authors of Ref. [5] used this technique
to mitigate Stark shifts. With multiple dressing field direc-
tions, enhanced spin manipulation for quantum information
is achievable and can even accelerate the effective Larmor
precession; this is discussed in Refs. [6,7]. In Ref. [8], the au-
thors found that critical spin dressing (CSD), the simultaneous
dressing of two spin species to the same Larmor frequency,
can be applied for a very sensitive measurement of the neutron
electric dipole moment (nEDM). A detailed investigation in
Ref. [9] found that this technique would halve the statistical
uncertainty of an nEDM measurement compared to an anal-
ogous measurement using FID. Additionally, by modulating
the parameters of CSD as described in Refs. [3,8], system-
atic uncertainty from phase fluctuations not associated with
noise in the spin dressing field (e.g., external magnetic field
drifts) is significantly reduced even without correction from a
comagnetometer. For example, with modulation at the angular
frequency w,,, phase accumulation from slow field drifts in the
apparatus will be modified by a factor ~1/,/w,, [10].

In the nEDM at the Spallation Neutron Source
(nEDM@SNS) experiment, ultracold neutrons (UCNs)
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are confined to a pair of acrylic (polymethylmethacrylate,
PMMA) measurement cells with dimensions Ly x L, x L, =
40 x 10.2 x 7.6 cm in solution with polarized *He in
superfluid “He. A large electrode sits between the two cells,
which are sandwiched by ground electrodes on either side
and provide a large electric field of the order of 7.5 MV/m
between each cell in the Z direction so the electric field
strength has opposite sign for each cell. A superconducting
persistent cos 6 coil provides a static uniform magnetic field
of magnitude By > 3 uT along the Z direction and is the
same in each cell. Inside the static field is a separate audio
frequency cos 6 coil which provides a dressing field with
amplitude of up to 100 4T oriented along the X direction.
In between the static uniform field and the dressing field
is a copper shield, which limits interaction between the
dressing coil and the static field coil and acts as a flux
return for the dressing field. To determine the relative phase
between the neutron and >He spins, nEDM@ SNS detects
the spin-dependent capture rate of neutrons on *He through
the reaction n+3He — 3H 4 p+ 764 keV. The critical
dressing mode of the experiment uses a strong oscillating
magnetic field to dress gyromagnetic ratios of neutrons and
He to the same value. This improves sensitivity to the
nEDM by allowing continuous operation at the most sensitive
relative phase between the neutron and 3He [9] for a given
3He concentration. However, this mode of measurement
introduces additional noise, as current fluctuations in the spin
dressing coil will lead to fluctuating magnetic fields. These
fluctuating magnetic fields can cause the spins of neutrons
and >He to drift apart over time.

Here, we use second-order time-dependent perturbation
theory to assess the implications of magnetic field fluctua-
tions for precision measurements performed on dressed spin
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systems, with particular emphasis on applying these results
to mitigate uncertainty in the critical dressing mode of the
nEDM@ SNS experiment. In Sec. II, we introduce the rele-
vant Hamiltonian for spin dressing for a spin-1/2 system. In
Sec. III, we apply time-dependent perturbation theory to this
Hamiltonian to compute the phase variance, frequency shift,
and run-to-run variance of the capture rate signal induced by
a fluctuating dressing field. We express these results in terms
of the power spectrum of these fluctuations. In this section,
we also discuss the absence of run-to-run signal variance due
to magnetic field gradients in either the static uniform field
or the dressing field. In Sec. IV, we confirm these calcula-
tions by numerical integration of the Bloch equations, and
discuss the implications of these results for the nEDM @ SNS
experiment. Section V proposes several strategies to mitigate
dressing field fluctuations for the nEDM@ SNS experiment.
Finally, in Sec. VI, we introduce a modulation scheme
which can be used to combat the dressing field noise ad-
dressed in the previous section, as well as enabling precise
control of dressed spins in the presence of magnetic field
gradients.

II. SPIN DRESSING HAMILTONIAN

A spin-1/2 system with gyromagnetic ratio y precessing
in a static uniform field ByZ and a strong oscillating magnetic
dressing field By cos(wt)x (with By > By) is described by the
Hamiltonian

H=odtat Zoata)+ Lo (1)
- 2 X 2 Vel

where o, 0y, and o, are the usual Pauli spin matrices, a' and
a are the raising and lowering operators for the photon field,
wo = yBy is the undressed frequency of a spin in a static
uniform field, defined along Z, and €2 is a coupling constant
given by

_ YBi

Tl
where A = (n) is the average photon number. We are inter-
ested in how applying a small fluctuating magnetic field §B(t)

with a known power spectrum would affect the time evolution
of an initial state o) under this Hamiltonian.

(@)

III. THEORY

In the following section, we first outline a general frame-
work to compute the expectation value and variance of
operators under small, time-dependent perturbations to the
Hamiltonian of Sec. II. We then use this framework to evaluate
two observables to second order for a magnetic fluctuation
8B(t) which occurs parallel to the dressing field. These ob-
servables are the variance in phase for each spin species and

t t
/ dr' / di" e " (sB(t")SB(1"))
0 0

the frequency shift for each spin species. For an experiment
such as nEDM @ SNS, these results can be used to estimate
the sensitivity of dressed systems in the presence of field fluc-
tuations. In deriving these formulas, we make no assumption
about the source of the fluctuations, and therefore these results
apply equally whether the random magnetic field arises from
current fluctuations in the dressing coil or from static magnetic
field gradients coupled with the stochastic motion of the spin
species throughout the measurement cell. In the latter case,
the power spectrum of §B(f) may be calculated through the
position-position autocorrelation function, as in [11]. In addi-
tion to these two observables, we also compute the variance
of the phase between two species that are exposed to the same
fluctuating magnetic field, as would be the case for current
fluctuations. This is useful for nEDM@ SNS, as the capture
rate of neutrons on helium-3 depends linearly on this phase
difference [9].

A. Time-dependent perturbation theory

Suppose that at time ¢t = 0, a system is in the state ), and
we wish to compute the expectation value of some operator
Ao at some future time ¢. Given a time-dependent perturbation
V(t) to a Hamiltonian H, the time-evolution operator 7' (¢) to
second order in time-dependent perturbation theory is given
by

t t t
T()=1- i/ dt’V,(t’)—/ / dar'dt"vi@"Hvt")
0 0 JO

+ OV, (3)

where Vi(t) = ¢V (t)e=H" is the perturbation evaluated
in the interaction picture. Thus, we need to compute
W) Ao ¥ (@) = (Yo T)AT(t) o), where A is likewise
evaluated in the interaction picture, i.e., A(t) = eH'Age~ ",

If V(¢) is proportional to §B(¢), then we can decompose
Vi(t) as a sum of complex exponentials as follows:

Vi) = (Z Qje " + QEe”“’”)@B(n., )
j

where Q; are time-independent operators. Provided that §B(z)
has zero mean, the terms of TTAT which are linear in 8B(t)
will vanish when we compute an expectation value over func-
tions 8B(¢). Therefore we need only consider the quadratic
terms, which can be decomposed as

> 1Q;. 00 / dr’ / dt"e " ¢ sB(t)8B(t").  (5)
jk 0 0

where f(Q;. Ox) is some operator which is a function
of only Q;, O, and their Hermitian conjugates. We
now evaluate the expectation value of the integral over
functions 8B(t),

(6)

t t
— / dl/ / dt//e—t(a),'—a)k)(t'+t”)/2e—t(a),'+a)k)(t'—t”)/2<8B(t/)8B(t//)) (7)
0 0
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where in Eq. (8) we have made the variable substitutions

w1 + wy

0= , 10
15) 7 (10
szwl—wg, (]])

l,/ "
= (integration variable), (12)
At =1t —t” (integration variable), (13)
Rsp(At) = (8B(A1)5B(0)). (14)

In Eq. (9), we assume that §B(¢) is stationary and has a short
correlation time compared to ¢, and so it is valid to replace
the limit of the second integral with infinity. The first integral
in Eq. (9) only grows with time if Aw # 0, and therefore
any term where Aw # 0 can be neglected. From this, we
conclude that for the purpose of noise analysis, it is sufficient
to consider the individual frequency components of V() inde-
pendently. Therefore, without loss of generality, we can write

Vi(t) = (Qe ™ + Q'™ )8B(t). (15)

TTAT can now be expressed in terms of Q and A to second
order in V;:

t t
TTAT = A+ / / dr'dt"vi(t"HAV; (1)
0 0

t t
- / dt’/ dt"Vvi" Wi (tHA + AV, V(")
0 0

(16)
= A+ uu*(QAQ" + Q'AQ) - v(Q'QA + AQQ")
~v*(QQ'A +AQ"0). an
where we have defined the integrals
t
u(t; w) = / dt'e " sB(t"). (18)
0

t t
vt w) = / dr' / dr"e " ="sB"SB(").  (19)
0 0

We can further simplify Eq. (17) by noting that

t t
vt vt = / dr’ / di"(e" N 4 P AN)SB(1)8B(")  (20)
0 0

t t
= / / ar'dt"e " sB(t")sB(t") @1
o Jo
= uu’. (22)
If we now collect the terms proportional to v and v*, we get

TTAT = A+1Q". [A. Qv + Q. [A. Q"TIv". (23)

We can alternatively choose to collect terms proportional to
Re(v) and Im(v), in which case we get

TTAT = A+ (1Q. [A. Q"1 + Q. [A. Q1DRe(v)
+i[A. [Q". QlIm(v). 24)

This allows us to calculate the expectation value of an operator
A at time ¢ in the interaction picture. In other cases, it may also
be useful to calculate the variance of A. In the nEDM @ SNS
experiment, for example, variance in the capture rate signal,
which depends linearly on the dot product between neutron
and *He spins, could increase uncertainties in the nEDM mea-
surement. In this particular case, we are concerned not with
the quantum mechanical variance of & - &, (which is nonzero
even if the magnetic field has no fluctuations), but rather in
how the magnetic field perturbs the spin vectors classically.
In other words, we wish to find the variance of the quantum
mechanical expectation value of &) - 6. We thus define the
classical variance of an operator A as

Varq(A) = ({A) *)sp — ((A))sp °. (25)
where (-)sp denotes an average over random functions §B(t),
while () denotes a quantum mechanical expectation value,

ie, (A) = (Y A ). A similar analysis as was used to derive
Eq. (17) yields, in the case that A is Hermitian,

Varg(TTAT) = 4(Q", A)(|A. Q))Re(v). (26)

These results can also be applied to a pair of noninteracting
spin-1/2 systems through use of the tensor product. Suppose
that in the interaction picture, the time-dependent perturba-
tions for each of the two spins are given by

Vi) = (Qre 4 Qle®)sB(1). Q27

Va(t) = (Qae™™ + Qe™)8B(1). (28)

If we wish to compute the expectation value (A) from an initial
state V) = V1)o ® Va2)o, then we can apply Eq. (24) or (26)
by substituting

0->01QL+15L®0,. (29)

where I} and I, are identity operators.
Lastly, we express v in terms of the power spectrum S(w)
of 8B(t). The power spectrum is defined as

S(w) = / dte™ ™ Rsp(1). (30)

[o]

From Eq. (9), we have

2t oc
u(t: @) = %(/ df)[/o dre_i“’TR(gB(r)i| (31)
0

t [ Y gy
dre‘"‘”/ do'S(w)e'™®” (32)

2 0 oo
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= .
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27 J_o o —w

- t[%S(a)) _ b / ¥ o 3@ } (35)

/
27 J_ oo o —w

B. Initial state

An oscillating magnetic field corresponds quantum me-
chanically to a coherent state, denoted by o). A coherent state
is an eigenstate of the lowering operator with eigenvalue o.
The average photon number in such a state is given by « 2 =
A, and so we separate « into its magnitude and complex phase
as a = +/Ae® . In the appendices, it is shown that a complex
phase of « is equivalent to a rotation of the neutron and *He
spins. The initial state in the following is taken to be

Vo) = @) ). (36)

where &) is the initial spin state, or if we are considering both
the neutron and *He spins,

Vo) = @) s1) $2). @37

C. Computation of matrix elements

We now compute the Q operators [and thus V;(¢)] for
the spin dressing Hamiltonian in the case where the time-
dependent fluctuating magnetic field is parallel to X. This
calculation will proceed in two steps. We first apply a
carefully chosen time-independent unitary transform to the
Hamiltonian in order to compute its eigenstates, and then
compute the matrix elements of the operator o, with respect
to these states. We then transform these matrix elements into
the interaction picture by multiplying each matrix element
by the appropriate time-dependent phase factor. In the limit
where A > 1 and w > wy, the eigenstates and eigenvalues of
the spin dressing Hamiltonian can be approximately found by
expressing H as H = Hy + H,, where

Q
Hy = wa'a+ Foxla+ ah. (38)
H, = %az. (39)

As shown in [1], Hy can be diagonalized by considering each
of the two eigensubspaces of o, individually. The Hamiltoni-
ans of the two subspaces are given by

Q
H. = wa'a + Ee(a +ah), 40)

where € € {1, —1} corresponds to the eigenvalues of o,. The
part of the Hamiltonian contained in H, is diagonalized by ap-
plying the displacement operator D(e2/2w), which is defined
by its action on the raising and lower operators;

D'(naD(n) = a+ 1. @41
D'(n) = D(~n). 42)

Explicitly, the displacement operator is given by
D(n) = ", 43)

Note that while the definition of the displacement operator
D(n) allows for complex 7, here we restrict our attention to
the case where 7 is real. Applying this operator to H, and
abbreviating D(e2/2w) as D, yields

(39
D.H.D! = oD.a‘aD! + —D- (a+a")D!  (44)

_<T eQ( eQ
= el 2w 4 2w

eQ s eQ
+ —<u+u - — (45)
2 w
QZ
=wdla— —. (46)
4w

From D, we can construct a unitary operator U, which applies
D, to the appropriate eigensubspace of o,. Explicitly,

Q of ©
U=D|— +x) (+x +D FUR _x) (—x (47)
2w 2w
where =) are the eigenvectors of o,. Applying U to Hp
yields
, Q2
UHU" = wa'a — —. (48)
4w

We thus see that U diagonalizes Hy, and that the eigenstates
of UHyU" are n) =+,). Meanwhile, H, in this basis becomes

UHUT =2 DT<E> +a) (= +D<9> —) }
4 - 2 w X X w X X .
(49)

For large photon number (A > 1), the displacement operator
can be approximated in terms of Bessel functions. Refer-
ence [1] gives the matrix elements of D(n) as

(n D(n) n—q) =(n enat=a q) = Jq(Znﬁ), (50)
where J, is a Bessel function of the first kind with order g.
From this, we derive

D(n) ~ Y J,@nv/A) n+g) (n | (51)
n.q
With this approximation, the full Hamiltonian H in the dis-
placed basis is

UHU' = wala + %Jo(x)oz

_ %Jl(x)(z nn+1 — n+1)<n>ioy

n

—|—%Jg(x)(z nn+2 + n+2) <n>oz

n

+0(g 2 3). (52)

where we have defined the spin dressing parameter x =
2QvA/w = yB;/w. In Ref. [3], the matrix elements of
various perturbations are calculated in time-dependent per-
turbation theory. Here, we extend those results to the case
where wp may not be small compared to @ by incorporating
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the first-order correction to the eigenstates of U HyU T. We first
consider the energy correction. Let the eigenstates of UHU '

—_—

be denoted by n, ;). Treating H; as a perturbation on H, the
energies of these states can be calculated to first order in wy/w
using perturbation theory, as in Ref. [1]. The energy shift is
simply

E,x =E" +n (x;, H, £;) n) (53)

wo
=nw* 7.’0()6). 54)

H, thus lifts the degeneracy of n) =;) and leads to an effec-
tive Larmor frequency ) = woJo(x). We similarly derive the
eigenstates of UH U to first order in wy/w:

Ji1(x)wo

nE) = n) )+ (n=1) F)+ n+1) F)

J2(x)wo
4w

+ 0(g 2 3). (55)

(n=2) £;) — n+2) £;))

We can now calculate the matrix elements of various time-
dependent perturbations with respect to these eigenstates. For
dressing field noise generated from fluctuations in the current
provided by the power supply, the only relevant operator is
oy, provided the linearly polarized dressing field is homoge-
neous. Fortunately, o, is unchanged by U, as Uo, U = o,. We
obtain

o~ o~ J
({n, :l:z oy 1, :l:z) == I()C)wofsl, n—n'
w
+0(q 2 3). (56)
o~ —~— J X))y
(n, 2 001, F7) = 8w = 2(2) 082, n—n'
w
+0(q = 3). (57

We have truncated terms containing Bessel functions of order
3 or greater. From these matrix elements, we can now evaluate

the perturbation in the interaction picture by computing the
iUHU't  ,—iUHU't

individual frequency components of ¢ o4 using
R e~
elUHU r_ Z n. S)“’l, s ela),mt.’ (58)
n,s

where 7w, is the energy of the state n,s). Expanding
eiUHU*toxe—iUHwt’ we get

e
E n,s)n, s o n, )N n. s e ,

/ !
nn',s,s

. t . +
etUHU tUx(:’ iUHUt —

(359

—

where Aw is the frequency difference between n,s) and

—_~—

n’, s'). Here we only consider the leading-order term of each
frequency component, so we make the approximation that

n, sy, s ~ n) s)(n (s . With this approximation, we can
now write

eiUHUTthe—iUHU*t =W+ WT, (60)

where
v Jiwo _;
- —0_ l(DOt _ 1 iwt
o_e + o, E,, n—1)n —Q ¢
J . , . ,
— o En n—2)(n 2(2);))0)0 (eft(2w+w0)t _ efz(wawO)t)
+ O0(g = 3). 61)

We can simplify this expression further. In the classical limit,
we can make the approximation that

a~V1Y n-1)ymn. 62)

provided that A is large. Thus, when applying operators of the
form )", n— ¢) (n to a coherent state, we get

aq
(Xn:n—qwn a)~ﬁa) (63)
= q). (64)

This allows us to replace the terms operating on the photon
field in W with simple phase factors. Thus,

- : [ ;
W = _o_e—tw(,t + oze’e ‘II ()C) Oe—twt

2i0 12 (X)wo ( emiQutapr _ e—i(2w—w6)t)
2

+0(g 2 3). (65)

Each independent frequency term of W corresponds to a O
operator. In particular, for a perturbation §H (t) = 0,8B(t), the
corresponding Q operators are

Oy, = —0-. (66)
0u = Ji (X)onZ’ ©7)
)
Qrotawy = _Jz(;)wo o-. (68)
)
QZ(u—w{) = J2(2X)w0 o4 (69)
)

In writing these operators, we have omitted any phase factors,
as in both Egs. (24) and (26), Q is always paired with Q0" and
so any phase factor will be eliminated.

D. Explicit calculation for magnetic field fluctuations

Recalling that Eq. (24) allows us to calculate the expecta-
tion value of an operator at any time in the interaction picture,
and combining Egs. (24) and (66)—(69), we can now explicitly
compute the effects of fluctuations in the amplitude and phase
of the dressing field. As in [3], we compute the phase variance
and frequency shifts by taking the real and imaginary parts of
(ox + ioy) in the interaction picture (rotating frame) for a spin
which starts in the +X direction at time ¢t = 0, i.e., o) =
(42) 4+ —2))/+/2. We will denote the rate of accumulation
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of phase variance as I'y and the frequency shift as Sw. Given
a perturbation H (t) = y§B(t)o,/2, we obtain

dor) _ 7', Ji@wo\*

1 (yhx)wo
* Z<T

+0(g 2 3). (70)

2
) [SCw — wpy) + SQw + wy)]

2 o0 /
S — d{oy) __r do S(w")

dt 4 J_ o o — W

2 poo
LT [ s

C4n| 2w ~

1 1
g <w’—2w+w6 +w’—2w—w6)
+ 0(g 2 3). (71)

We note that in the case where §B(t) is different for spins in
the same measurement cell, as would be the case for magnetic
field gradients, I'y, may be regarded as the transverse relax-
ation rate, i.e., I'y = 1/T,. Conversely, in the case where all
neutrons experience the same time-dependent magnetic field
as would be the case for dressing field fluctuations arising due
to current fluctuations in the dressing coil, I'y, represents the

1 ~ N
Vara(oy - 020 = 501 = 120 & x (B x B) " S(ahy + 2(

1 (Vllz(xl)wl = y2a(n)w,

+5 2w

The first term in Eq. (72) represents the variance due to noise
at the effective Larmor frequency. However, if both spins start
in the plane of precession, this term will not contribute. The
second term represents variance due to noise at the dress-
ing frequency, which unlike the first term is maximized if
the spins start in the plane of precession. The third term,
like the first, is minimized when the spins start in the plane
of the precession and is generated from noise at twice the
dressing frequency shifted by the effective Larmor precession
frequency.

Equation (72) may appear to suggest that if b, = b, one
could altogether eliminate variance due to current fluctu-
ations. However, under critical spin dressing, the quantity
proportional to the nEDM is the relative phase between neu-
tron and *He spins, i.e., ¢, — ¢ « d,. Meanwhile, the signal
rate of nEDM@ SNS is linear in oy - 05, which is in turn
related to the relative phase by

o1 - 03 = cos(¢2 — ¢1). (73)

provided both spins start in the plane of precession. Thus,
setting ¢, = ¢ would decrease sensitivity to an nEDM, as
o1 - 0o would no longer be sensitive to the relative phase
in this configuration. Furthermore, the variance of ¢, — ¢,
is independent of the starting phase of either spin. Again,

run-to-run phase variation. Thatis, I'y = ‘%Var(qb), where the
variance is taken over multiple runs of the experiment. While
I'y and dw are quantities that are of general importance in
situations where precise control of the phase of dressed spins
is required, for nNEDM@ SNS we are particularly concerned
with effects which can perturb the neutron->He capture rate.
This rate depends linearly on &) - &>, so we would like to
compute the variance of this operator in order to find the
run-to-run variance in the signal rate, this time under the
assumption that the neutrons and *He atoms are exposed to
the same magnetic field. However, the expectation values
computed from time-dependent perturbation theory are in the
interaction picture, so to convert these values to those actually
observed in the laboratory frame we must find the variance
of UlUre™'ay - 02¢~ MU U], Details of this calculation are
found in Appendix D. Generically, this is a time-dependent
operator having terms which oscillate at frequencies that are
sums of integer multiples of the dressing field frequency @ and
the dressed Larmor precession frequency w;. However, be-
cause capture signal rates in the nNEDM @ SNS experiment are
not sufficiently high to resolve oscillations at these frequen-
cies, we consider only the time-independent component of
this operator. We can now calculate the variance in the capture
rate due to a fluctuating magnetic field. Let 5, =(a1)(t =0)
and by = (65)(t = 0) be the Bloch vectors of the neutron and
He atom at time t = 0. Then,

yiJi(xDwr — yaJi(x2)w;
w

2
) 2. (by x by) 2S(w)t

2
) 2 x (by x by) 2[SQw — @) + SQw + w))lt + O(qg = 3).  (72)

assuming both spins start in the plane of precession,

2 (b) x by) = sin(¢ — 1) (74)

The variance can be propagated using the Taylor expansion.
We have

Var (01 - 02) ~ sin(¢y — ¢1) *Varg(pr — ¢1).  (75)

Therefore, in the plane of precession, the phase of the spin
of one species with respect to the other spin species does not
matter, and the variance in the relative phase will accumulate
according to

viJi(xwr — yaJi (x2)ws
®

2
) S(w)t.
(76)

Vara (s — ¢1) ~ 2(

In Fig. 1, we show the per-run frequency uncertainty due to
noise in the dressing field with a perfect band pass around
the dressing frequency, predicted by Eq. (76). Explicitly, the
frequency uncertainty is found by taking the square root of
the variance at a given time in the measurement to find
the standard deviation of the phase at that time, then divid-
ing this phase uncertainty by the time in the measurement
to find the frequency uncertainty. The per-run sensitivity of
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FIG. 1. Run-to-run uncertainty in the measured frequency due to
dressing field noise for 57 and 5.7 pT/+/Hz dressing field noise and
a perfect band-pass filter around the dressing frequency, calculated
from Eq. (76). The predicted per-run sensitivity for the nEDM @ SNS,
formulated from Ref. [9], is shown for comparison. It is shown that
57 pT/~/Hz dressing field noise will significantly reduce the ultimate
sensitivity of the measured frequency, while 5.7 pT/+/Hz dressing
field noise is acceptable.

nEDM @ SNS according to Ref. [9] is also shown for compar-
ison. If we define. the signal-to-noise ratio (SNR) to be

SNR = Psigna]/Pnoise = (Asigna]/Anoise )21 )

where P is the power of the signal or noise and A is the
corresponding amplitude, we find that for 80 dB SNR, and
a perfect band-pass filter around the dressing frequency, the
phase uncertainty is comparable in magnitude to the statistical
sensitivity of nEDM @ SNS.

Lastly, we find an absence of run-to-run signal variance
for neutrons and 3He, Vary (o, - 03), from magnetic fluctu-
ations arising from motion in a static magnetic gradient of
any field along any direction, assuming that the gradient field
does not change from run to run. This is due to two effects:
first, for each run, o, - 03 is averaged over many particles
as each neutron and *He samples a different magnetic field;
and second, the neutron and *He trajectories are uncorrelated,
and so Eq. (72) (which is derived under the assumption that
the neutron and *He are exposed to the same field) does
not apply. Instead, because these trajectories are uncorrelated,
the decay rate of the signal during a run can be computed
from the relaxation rate of each individual species using the
formalism of Ref. [3]. The relaxation rate and frequency
shifts for each species are given by the expectation value
of o,

t
Re({oy)) =1~ o (78)
Im({o4)) = dwt. (79)

Therefore, keeping only terms to second order in magnetic
gradients after computing the expectation value of oy and o,

TABLE I. Optimized parameters for the starting position on the
Bloch sphere for neutrons and *He to achieve cosine dressing with
a sine dressing field described in Sec. Il E. ¢,3 = ¢, — ¢3 is the
relative azimuthal angle of the neutron and *He that is desired during
critical dressing; ¢, 3 and 6, 3 are the absolute azimuthal angle and
absolute polar angle of the neutron and >He, respectively. When
the neutron and >He start at these positions with sine dressing, the
result is cosine dressing dynamics for the respective relative phase
¢,3. All units are in radians. Values are for the fiducial NEDM @ SNS
experiment parameters for critical dressing, where the dressing field
amplitude is 40.2497 uT oscillating at 1 kHz with a static uniform
field strength of 5.2 uT in the Z direction. Optimization of the fiducial
nEDM@ SNS parameters is discussed in Ref. [9].

¢n3 d’n O ¢3 03

0 —0.99650 1.81020 —1.00759 1.85511
/4 —0.59186 1.84162 —1.40374 1.77373
/2 —0.18485 1.83092 —1.78485 1.66284

with the perturbed wave function, we find

t t
Re(<a+”)<a_3)) =1- T_Z” — T_zz (80)

(03,){0) ~ 0. 81

Using the identity o, - 03 = 0,,0,, + Re(oy,0-,), we derive

d{oy, - 03) 1 ( 1 1 !
= (—4+—)~-—— (82
dt  cos(¢, — ¢3) D, + Tz;) b, ®2

The transverse relaxation 7, for both species can be calculated
from Ref. [3]. Typically, because the trajectories of UCN
are ballistic, and highly oscillatory in the measurement cell
resulting in significant motional narrowing, the contribution
of the transverse relaxation of the neutron to the signal decay
is small. This result shows that there is no run-to-run phase
fluctuation if the gradients of all magnetic fields remain the
same, run to run. The gradients in the magnetic fields diminish
the statistical sensitivity by decreasing the coherence time of
a single measurement, and the effect is predictable without
stochastic variations, contrary to the case with dressing field
amplitude fluctuations.

E. The feasibility of dressing with a cosine wave form

In order to minimize the variance in Eq. (72), both spins
should start in the plane of precession at t = 0. However, in
deriving Eq. (72), we assumed a magnetic field with a cosine
dependence, i.e., By(t) = B; cos(wt ). This poses a problem, as
such a dressing pulse would require an instantaneous change
in magnetic field at + = 0, which is impossible to achieve due
to the inductance of the dressing coil and limited slew rates of
power supplies. Instead, the same dynamics can be achieved
with sine dressing, i.e., By(t) = B; sin(wt), by having the
neutron and >He spins start outside the plane of precession.
The polar angle 6, 3 and absolute phase ¢, 3 of the neutron and
He required at t = 0 to achieve this are specified in Table .
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FIG. 2. Predicted and simulated values of I'y, for various high-
pass filter cutoffs. The theory line is calculated from Egs. (70)
and (83). Each simulated point represents 200 neutrons. Note that
cutoff values beyond the dressing frequency (1000 Hz) are only
achievable in simulation, and are shown here for comparison to the
theory.

IV. SIMULATION

The calculations in the previous section are verified
by numerically integrating the Bloch equations with an
adaptive Runge-Kutta integrator. Ensembles of spins are sim-
ulated using the fiducial critical spin dressing parameters for
the nEDM @ SNS experiment (B; ~ 40 uT,  ~ 27 x 1kHz,
wy ~ 2w x 100 Hz), with the addition of a noisy magnetic
field with amplitude spectral density of 57 pT/+/Hz. This
assumed spectral density corresponds to a 0.01% rms vari-
ation in B; over a bandwidth of 5kHz. While this is a
reasonable figure for the power supplies being considered for
nEDM@ SNS, it should be noted that the noise power spec-
trum for the dressing field will generally be peaked around
the dressing field frequency, and therefore S(w = 1 kHz) may
be significantly larger than the assumed value of 57 pT/~/Hz.
The noise power spectrum is varied by changing the cutoff
frequency of a simulated high-pass filter. In computing the
theoretical values, we assume that this high-pass filter is ideal,
so that

W > Weutoff 83
otherwise. (83)

S(w) = (()57 pT/+/Hz)?,

We substitute this power spectrum into Egs. (70) and (71) to
obtain the theory line in Figs. 2 and 3. Figure 2 shows the
simulated and theoretical relaxation times for different values
of the high-pass filter cutoff. As evidenced by a sharp decrease
in relaxation rate as the cutoff frequency is swept past 27wy,
and 2mw, T, depends only on the power spectral density at
a set of discrete frequencies. Figure 3 compares the simulated
and theoretical frequency shifts. The frequency shift decreases
logarithmically as the high-pass filter cutoff is increased past
the dressed Larmor frequency. Therefore, if a physical high-
pass filter is employed to reduce the run-to-run phase variation
due to current fluctuations, its cutoff frequency should be cho-
sen to be well above the Larmor frequency in order to mitigate
the frequency shift. It should be noted, however, that for the
case of nEDM@SNS experiment, a frequency shift caused
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FIG. 3. Predicted and simulated frequency shifts, with magnetic
field noise given by Eq. (83), for various high-pass filter cutoffs. The
theory line is calculated from Egs. (71) and (83). Each simulated
point represents 100 000 neutrons.

by current fluctuations can be corrected for by comparing the
signal from the two measurement cells for the same run or by
comparing the signal after reversal of the electric field.

A. Discussion of results

The results derived in Sec. III and verified in Sec. IV
apply generally to any time-dependent magnetic field pertur-
bation parallel to the dressing field. For nEDM @ SNS, these
perturbations can arise primarily from two sources: current
fluctuations in the dressing coil, or gradients in the magnetic
field coupled with the random motion of neutrons and *He
atoms in the measurement cells. We first consider the case
of current fluctuations, in which all spins are exposed to the
same fluctuating magnetic field. As shown in Figs. 2 and 3,
the effect of these fluctuations can be separated into two
components; the run-to-run variation in phase caused by the
stochastic nature of the fluctuations, and a systematic fre-
quency shift. The frequency shift is relatively harmless for
nEDM@ SNS, as this shift is eliminated by reversal of the
electric field. However, the variation in phase over the course
of multiple runs can pose a problem, as this contributes di-
rectly to the statistical uncertainty of the nEDM measurement,
as evidenced by Fig. 1. Because the phase accumulated by
this effect varies from run to run, electric field reversal will
not nullify this effect. One could also attempt to correlate
the scintillation signals from each of the two measurement
cells under the assumption that the perturbing magnetic field
is identical between the two cells. However, this approach
also has limitations, as we discuss in the following section.
Especially problematic is noise at the dressing field frequency,
as the results of Eq. (72) indicate that the primary contribution
to phase variance for spins precessing in the plane orthogonal
to the static field comes from noise at this frequency. This
is compounded with the results from tests with the power
supply used in Sec. V B, which indicate that the noise power
spectrum is peaked around the dressing field frequency. Thus,
to reduce the statistical uncertainty caused by fluctuations in
the dressing field, the following section will explore several
techniques to mitigate this type of noise.
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V. MITIGATION STRATEGIES

The considerations in the previous sections show that
fluctuations in the nEDM signal due to current fluctuations
in the dressing coil would arise primarily due to the noise
power spectrum at S(w), which corresponds to amplitude
fluctuations in the dressing field. We discuss two strategies
to mitigate this effect. First, one can leverage the fact that
the two measurement cells of nEDM@ SNS are exposed to
opposite electric fields in order to eliminate this effect during
data postprocessing; however, as we show, this approach has
limitations when there are static field gradients between the
two cells. An alternative approach is to directly reduce S(w)
by applying feedback to the dressing coil in order to maintain
the dressing field amplitude close to its target value.

A. Cross-cell correlation

In order to combat systematic effects, the nEDM@ SNS
experiment uses two measurement cells which will be exposed
to opposite electric fields [9]. Under the assumption that the
magnetic field noise §B(¢) is identical in the two cells, it may
be possible to correlate the effects of dressing field noise in
the two cells and thus eliminate its effect on the measurement
of the neutron EDM. One confounding factor for this strategy
is the presence of static magnetic field gradients. Due to im-
perfections in the static and dressing field coils, the dressed
Larmor frequencies between the two cells may differ by a
small amount. In this case, the same noise field §B(¢) may af-
fect the two cells differently, hampering our ability to correlate
the two cells. In order to determine the correlations between
the spins in different cells, we compute the expectation value
(01 - 02), where &) and &, represent two spins of the same
species in opposite cells. Let w; and w, be the dressed Larmor
frequencies in the two cells. In this case, calculating the ex-
pectation value is complicated by the fact that w; and w, may
be very close in frequency, and thus we can no longer use the
approximation that cross-frequency terms may be neglected.
These terms are calculated in Appendix A. The expectation
value (87 - 8,) is then given by

(84)

2 .
(G G2) =1— %S(ID)<[ _ M)

2Aw

We see that decorrelation between the two cells may only be
neglected if either S(®) is small or Awt remains small over
the course of the experiment.

B. Feedback control

In situations where decorrelation between the two cells is
too large to apply the strategy of the previous section, we
can instead employ feedback control on the dressing field.
As we are primarily concerned with amplitude fluctuations
in the dressing field, we regard the instantaneous dressing
amplitude as a constant ideal value, Bj jgear, plus a small fluc-
tuating 8B (t), so that the dressing field is given by B(t) =
[B1 ideal + 8B1(¢)] cos(wt). Under critical dressing, the phase
accumulated between the neutron and *He is, to first order in
8B, (1), proportional to the integral of §B(¢) over time. Thus,
one way to limit the impact of current fluctuations would be
to employ feedback control to minimize the deviation of this

/
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FIG. 4. The root-mean-square deviation of the angle between the
neutron and *He spins (¢,3) as a function of time, with dressing
field powered by a Kepco four-quadrant 400 36-12 power supply, for
magnetic fields generated with (solid line) and without (dashed line)
feedback control. The dataset without feedback consists of 28 runs,
while the dataset with feedback consists of 50. Data are smoothed
for clarity.

integral from a target value. Using a Kepco four-quadrant 400

36-12 power supply and a DT9837A digital signal analyzer,

we demonstrate a proof of concept for using feedback control

in the nEDM @ SNS experiment. The signal analyzer outputs a
1000 Hz sine wave, which we feed into the voltage control in-

put of the power supply. The power supply drives a cosine coil,

at the center of which is a pickup coil. The voltage across this
pickup coil is measured by the signal analyzer, and the output
of the signal analyzer is adjusted based on this measurement
using a digital PI loop to maintain the integral of the signal
amplitude near its target value. We then use the measured fluc-
tuating magnetic field to simulate the motion of neutron and
3He spins, using the CODATA values for their gyromagnetic
ratios [12]. The measured magnetic field is postprocessed with
a high-pass filter to remove lower-frequency noise, and a sin-
gle global scaling factor is applied to the field to replicate the
CSD parameters of the nNEDM@SNS experiment. Figures 4
and 5 show the resulting rms deviation of the relative phase
shift between neutron and *He spins. In Fig. 5, we also plot
the phase accumulation estimated by applying Eq. (76) to the
measured noise power spectrum of the Kepco power supply.
Assuming a 400 pT/+/Hz white noise spectrum which is then
high-pass filtered at 500 Hz, we can see that this approach
underestimates the actual phase accumulation. This indicates
that, as expected, the noise power spectrum is peaked around
the dressing field frequency. Nonetheless, these results show
that introducing the feedback loop substantially reduces the
run-to-run phase variation caused by amplitude fluctuations in
the dressing field. There are a number of ways to implement
this type of feedback loop in the nEDM @ SNS experiment. A
simple scheme would be to place a shunt resistor in series with
the dressing coil to measure the current. Alternatively, pickup
coils may be used, as was done in this section. The advantage
of this approach for nEDM @ SNS is that multiple pickup coils
can be used to detect spatial inhomogeneities in the dressing
field. This latter approach also enables us to detect changes in
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FIG. 5. Phase standard deviation with feedback control applied
from the field powered by a Kepco four-quadrant 400 36-12 power
supply (solid line). The rms phase deviation rises for a period of
less than five seconds, then appears to settle near a fixed value.
For comparison, the theoretical estimate (dotted line) is computed
assuming 400 pT/~/Hz noise that is high-pass filtered at 500 Hz.
Data are smoothed for clarity.

the dressing field that are not due to the current; for example,
temperature fluctuations may affect the conductivity of the
copper flux return, which would in turn alter the dressing field
amplitude even if the current amplitude remains constant.

VI. ROBUST DRESSING

While feedback and cross-cell correlation can be employed
to reduce the impact of magnetic field fluctuations which are
homogeneous across the measurement cells, these strategies
do not mitigate decoherence caused by magnetic field gradi-
ents in either the static or dressing field. Thus, we now turn our
attention to strategies to amplify coherence times of systems
undergoing fluctuating fields, particularly in the presence of
magnetic field gradients. The dressing scheme presented in
this section is a different technique which, among other appli-
cations, can be used to mitigate gradient decoherence of the
dressed spins. In this scheme, we apply modulation with angu-
lar frequency w,, to the dressing parameter x = y By /w, where
oy, is faster than the dressed Larmor precession wj. This
differs from the modulated CSD presented in Refs. [3,8,9] in
that our modulation frequency is much higher. We find that
by tuning the rate and amplitude of modulation in conjunction
with the dressing parameters B; and w so that there is no phase
accumulation in the laboratory frame, we can significantly de-
crease decoherence, similar to what is found in Refs. [4,5,7].
In a system with two spin species, these parameters can be
selected such that both states on a short timescale are rapidly
oscillating but on average are effectively frozen in time with
respect to the laboratory frame. With this combination of fast
oscillation and no phase accumulation in the laboratory frame,
quantum states become especially robust to field fluctuations.
On average, both spin species remain fixed on the Bloch
sphere in the laboratory frame for arbitrary long timescales
limited by the coherence. This technique may prove useful in
storing quantum information by keeping the state static and
robust to electromagnetic fluctuations.

For the nEDM@ SNS experiment, the extended coher-
ence time afforded by robust dressing is a valuable tool to
rapidly identify and compensate for large magnetic field gra-
dients. The nEDM@ SNS experiment is performed in a large
cryogenic apparatus; as such, modifications to the apparatus
require a long dead time to allow the apparatus to warm, and
then cool to its operating temperature (7" < 500 mK). Thus, it
is crucial to be able to mitigate gradients in the measurement
cell without the need to make modifications to the apparatus.
Aside from robust dressing, nNEDM @ SNS has two techniques
available to measure static magnetic field gradients. First, for
stray static field gradients in the precession volume, gradients
can be determined by the cryogenic probe array described
in Ref. [13]. This array consists of 39 fluxgate magnetome-
ters which will reconstruct the magnetic field by fitting the
coefficients of a harmonic scalar potential expansion to the
magnetic field values measured by the probes. However, if the
ideal static uniform field is distorted by magnetic materials
within the volume of interest, the described probe array will
not be sufficient to reconstruct the field due to the reconstruc-
tion condition that there be no magnetic sources within the
volume of interest. Second, gradients can be determined by
measuring transverse relaxation rates versus the applied field.
However, during the initial phases of the experiment, there
may be static field gradients large enough that the scintil-
lation signal decays too quickly to be measured effectively.
Such gradients may be caused, for example, by an unknown
nickel flash (nickel coating) on an electric connection close
to the measurement cell. In the following sections, we first
outline a form of precession-free dressing, which we call
robust dressing because it is particularly robust against relax-
ation and dressing field noise. This is due to the fact that a
spin undergoing robust dressing does not accumulate phase in
the laboratory frame and remains fixed on the Bloch sphere.
The longer relaxation time of the robustly dressed system
allows us to measure larger gradients than would normally
be possible. These results are similar to those obtained for
multiple field dressing in Refs. [6,7]. While these references
consider dressing fields acting along multiple axes, here we
limit ourselves to a single dressing field in the % direction, as
is the case for the nEDM@ SNS experiment. We apply this
technique to find precession-free dressing for both *He and
neutron simultaneously, which we call robust critical dressing
(RCD).

A. Description within the Bessel function approximation

The dressed system of a single species can be held at a
value where no phase accumulates in the laboratory frame,
around the zero crossing of the Bessel function, Jo(y By /w) ~
0. This is described in detail in Ref. [14] for a number of
multiple spin systems to achieve a Zeeman-insensitive optical
clock atomic transition. Alternatively, the dressing parame-
ter can be modulated between values that achieve a system
where no phase accumulation occurs in the laboratory frame.
For example, the effective absolute phase of the neutron is
approximately

t nB
bu(t) = / ynJo(V (;(t))Bodﬁ (85)
0

053120-10



QUANTUM CONTROL OF TWO CRITICALLY DRESSED ...

PHYSICAL REVIEW A 105, 053120 (2022)

There are many possible choices for B;(t). Here we choose
B;(¢) to be a constant plus a cosine of frequency w,,, so that

bu01= [
0

for dimensionless parameters xo and x;. Robust dressing is
achieved when there is no phase accumulation in the labora-
tory frame,

B
Y l[xo+ﬂ(1+coswmt)]}30dz, (86)
w 2

{on(0)) = 0. (87)

parameters for which can be found numerically. The param-
eters required to achieve robust dressing in simulations with
cosine modulation can be estimated from Eqgs. (86) and (87)
by integration of the modulation function over a modulation
period: moderate deviations from the values predicted ana-
lytically are expected due to violation of the Landau-Zener
approximation. This is described in the context of spin dress-
ing in Ref. [15]. It is found that the shorter the modulation
period, the further the RCD parameters deviate from the ana-
lytic prediction. In the simple analytic formulation, it is found
that if xo = 1.2 and x; & 3.17, then (¢, (t)) ~ 0 (for both the
neutron and *He). Despite violation of the Landau-Zener ap-
proximation, detailed simulations of the Bloch equation find
a continuum of values for xo and x; that satisfy the robust
dressing condition, {¢,(t)) = 0. Deviations away from the av-
erage phase can be made small when ) < w,,. The average
projection of the spin on the Bloch sphere remains fixed, with
fluctuations on the order of the modulation period and the
instantaneous precession rate.

1. Robustness

Robust dressing suppresses transverse relaxation due to
field fluctuations in B; and B,. For By, this can be seen from
the dressing approximation—the effective gyromagnetic ratio
under precession-free dressing is zero, and therefore the local
static field strength is irrelevant. Likewise, a variation in B,
can be viewed as a rotation of the static field, which in the case
where the effective gyromagnetic ratio is zero has no effect
on the spins’ overall behavior. Thus, the only static gradients
and field offsets which contribute to the transverse relaxation
rate are those in B, along any direction. To analyze these, it is
useful to consider a simplified model of robust dressing.

B. An intuitive model of robust dressing

While we are not aware of any purely analytical solu-
tions for the robust dressing field, robust dressing has several
properties that allow for a convenient approximation. We
have chosen the modulation frequency w,, such that it evenly
divides the dressing field frequency w. Thus, the pulse is pe-
riodic with frequency w,,, and its behavior is entirely defined
by its action on a spin during the interval t = 0 tot = 27 /.
This property allows us to analyze this pulse using Floquet
theory, described in Ref. [16]. In short, Floquet's theorem al-
lows us to write the time evolution operator of robust dressing
as

T(t) = M(t)e ™, (88)

where M(t) is a unitary operator with period 27 /w,, and A
is a time-independent Hermitian operator. The operator A can

FIG. 6. A classical visualization of the neutron spin trajectory
undergoing robust dressing on the Bloch sphere in the laboratory
frame, with arrows representing the static uniform field By, the dress-
ing field By, and the robust dressing effective field B.g.

then be written in the form
A=—JyBy- 5. (89)

The overall rotation under robust dressing can thus be treated
as arising due to an effective magnetic field Begr. The effective
magnetic field B can be computed by numerical integration
of the Bloch equations over a single period, or approximated
perturbatively as in Refs. [6] and [7].

Numerically, we find that robust dressing corresponds to
a weak ( yBegr ~ 1 Hz) magnetic field whose primary com-
ponent is in the X direction. The precise orientation of an-
may be adjusted by careful selection of the robust dressing
parameters,

In light of this, we analyze relaxation in the robust dressing
scenario by treating B:;ff as an effective static uniform field
which lies along X and redefining 77 and 7> accordingly. We
also define ¢ to be the angle between the spin and %. A
geometrical representation of the robust dressed system for
a neutron is shown in Fig, 6.

C. Robust dressing applications

Before presenting an analysis of relaxation under robust
dressing, we describe several applications of robust dressing
for an nEDM search such as the nEDM @ SNS experiment.

1. Gradient metrology through spin relaxation

Because the effects of gradients in By, and B, along any
direction are suppressed by robust dressing, 75 is always much
shorter than 7} for the nEDM@ SNS experiment’s expected
operating and initial commissioning conditions. This will lead
to a fast initial decay dominated by 75, followed by a slower
decay whose rate is given by 7;. In general, the polarization
of spins decays as

P@t) = \/e_ 7 cos? o + PT22 (¢) sin? ¢y. (90)
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where Pr,(t) is the component of the polarization transverse
to X and ¢y is the value of ¢ at the onset of robust dressing.
The transition between fast and slow decay then occurs at
polarization Py ~ cos(¢y). This behavior can be applied for
gradient metrology, as a gradient in B, will cause the spins to
relax quickly to a known value, while robust dressing extends
the coherence of the system from gradients in B, or B;. For
the nEDM@ SNS experiment, a static magnetic gradient of
any field transverse to the static uniform field direction along
the dressing axis represents the largest potential systematic
effect by generating a frequency shift linear in the applied
electric field, as evidenced by Refs. [3,11,17-23]. If this pre-
cise gradient measurement technique is used to feedback on
magnetic gradient shimming, a powerful mitigation strategy
for this linear-in-E frequency shift is achieved.

D. Relaxation under robust dressing

The longitudinal relaxation of the system can be decom-
posed into two contributions. One contribution arises from
the Redfield-like longitudinal decay, which is generated from
field imperfections in By and B;, and which we compute by
evaluating the system in the interaction picture, similar to the
dual harmonic dressing treatment provided by Ref. [7], but
with the oscillating field in only the % direction. A derivation
is found in Appendix F. The model predicts relaxation to
be extended beyond the 7} time found in Refs. [24,25] for
the corresponding static uniform field of the nEDM@ SNS
experiment’s operating parameters, discussed in Ref. [9]. This
is because the integral over the field correlation function is
shifted in frequency according to the harmonics of the dress-
ing field and not the static uniform field as is the case in
Ref. [24]. An expansion of the spin’s reaction to the applied
field into a Fourier series is used to formulate the longitudinal
relaxation rate. In the diffusion limit, we find

ap ?

On

T ~ (Gl + Gg)DZ

nw}

where a, are the Fourier coefficients of the series and are
found numerically. This result can be extended beyond the
diffusion limit by using the spectrum of the trajectory auto-
correlation function; this is described in Appendix F.

An additional source of longitudinal relaxation arises from
the field imperfections in B,, which generate longitudinal
relaxation by rotating the local effective field off of the x
direction, resulting in a contribution of the effective field along
y and/or z. This in turn will cause relaxation according to

1

— ~ (G o) 92
T (Gl etr) Bowr 2 92)
3B 2 D
2 1 eff 2
~ G , 93
Y ( 0By ) ¥ Boett 2 ©3)

where G o and B o refer to components of the effective
gradient and magnetic field orthogonal to the effective static
uniform field By .. The validity of this estimate depends on
the magnitude of gradients in B, in the cell. In particular, if
L, is the length of the cell along the x direction, then this ap-
proximation breaks down when G,L,/2 2 By because the
scaling of B, ¢ with B, becomes nonlinear. The longitudinal

relaxation will not be proportional to ch, but will scale with a
higher power of G, due to the nonlinearity in the effective field
scaling. To find the exact scaling in closed form is difficult.
However, it is found from simulations that the robust dressing
parameters can be tuned to mitigate this source of relaxation,
even for large gradients in B,. By tuning the robust critical
dressing parameters to minimize the relaxation rate, we can
mitigate the contribution from the B, field imperfections to the
level of the contribution from the other field directions. With
this optimized tuning, the relaxation rate from this gradient
returns to G scaling, implying a return to the linear scaling of
the effective field under optimized robust dressing. Due to the
ability to mitigate or increase relaxation by tuning the robust
dressing parameters, we find that this modulation technique is
a useful form of quantum control.

In practice, because Maxwell’s equations require a gradient
contribution in at least two directions, this optimization proce-
dure to minimize relaxation obtains diminishing returns when
the relaxation from the gradient in B, becomes comparable
in magnitude to the relaxation contributed from gradients in
By and/or B;. Due to the nonlinear scaling and the precision
of the robust dressing parameters required, we expect that in
the large gradient regime, the relaxation from gradients in B,
can be mitigated to parity with the contribution from B, and
B,. However, in the small gradient regime, where tuning need
not be as precise, we may more easily find optimized robust
dressing parameters where the contribution from the gradient
in B, can be ignored. The prediction is formulated as

2

! _ 2 2(2 2 Un
7 = GG+ v (G + GZ)D; o O

where Cyp, is determined from specifics of the parameters,
but, in general, it can be estimated to be of magnitude

dp
Cap, VDY ——. (95)

The relaxation from simulations of a linear gradient, where
Gy = dB./dx = —dBz/dz, is shown in Fig. 7 for all regimes
of robust dressing, as well as the theoretical prediction after
optimization for both limits of Cyzp,. The smallness of B
compared to By and the nonlinear dependence on G, lead nat-
urally to three different regimes depending on the magnitude
of the G, gradient relative to Beg.

1. Small gradient regime

If G:L./2 < Beg ,the magnetic field gradient across the
cell is smaller in magnitude than the effective static uniform
field. The tuning of the parameters need not be terribly pre-
cise (8xp.1 ~ Xo,1 X 1073) to achieve the 7; relaxation time
shown in Eq. (91). Additionally, the G, contribution to 7; may
be found using the effective magnetic field formalism using
Eq. (92).

Similar to traditional nuclear magnetic resonance (NMR)
transverse relaxation, the RCD analog can be predicted from
Refs. [24,25]; however, only gradients in B, contribute signif-
icantly. Thus, for the transverse polarization, we find

Pht)=e 7, 96)
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FIG. 7. Relaxation after optimization of robust dressing param-
eters for 200 Hz robust dressing and a wide range of gradient

magnitudes. The gradients in this simulation arise from the diver-

dB, _ _ dBy
gence theorem, 7= = — 7=,

where, in the diffusion limit,

U Y 10D

Outside the diffusion limit, the transverse relaxation can be
found from the spectrum of the trajectory autocorrelation
function at zero frequency.

2. Intermediate gradient regime

If GyL,/2 ~ Be ,then the gradient magnetic field nearly
cancels Begr in a significant portion of the cell. For untuned
robust dressing parameters, the effective magnetic field may
have a nonzero B, . component in this region, leading the
local magnetic field here to be misaligned with the x axis. This
drastically increases the longitudinal relaxation rate for this
gradient regime. While no theoretical prediction exists for the
dynamics of the spins in this regime, a thorough investigation
is presented in Ref. [26]. The strong dependence of 7} on G,
in the vicinity of the intermediate gradient regime can be em-
ployed for gradient metrology. Specifically, a gradient large
enough to induce this regime could be identified by measuring
the 7; relaxation of the spin species under study. Although
the gradients in B, required to achieve this regime are a
couple of orders of magnitude larger than the initial gradients
expected at the onset of commissioning of the nEDM@ SNS
experiment, they are in the realm of possibility if there is an
unaccounted for magnetized material—for example, a nickel
flash (nickel coating) on an electrical connection, or other
unknown magnetic material close to the measurement cell.
Note that while precise (8xo,1 ~ xo,1 X 1077) tuning of the
robust dressing parameters can eliminate the B; ¢;r component
in the misaligned region, thus recovering the 77 of Eq. (91),
this is not required nor useful for gradient metrology.

“-Polarization
o
w

——20dB SNR
T 40 dB SNR ]
60 dB SNR
.......... 80 dB SNR
10°®
107 ' ' : l l
0 1 2 3 4 ° ®

Time (s)

FIG. 8. 1-Polarization for robust dressing modulated according
to Eq. (86), where By = 40.2497 uT and w,, = 200 Hz, with simu-
lated noise power varied from 20 to 80 dB SNR.

3. Large gradient regime

As G,L,/2 becomes large compared to B , the region
of low magnetic field shrinks in volume and the effect of mis-
alignment becomes less significant. The treatment of 77 and 7,
is straightforward. Longitudinal relaxation can be computed
from Eq. (91). Transverse relaxation under gradients of this
magnitude behave according to the adiabatic regime described
in Ref. [27], as the spins dephase on a shorter timescale than
the diffusion time. This results in a relatively fast relaxation,
given by

P, (1) = sin(y GeLat /2) 93)

y GyLyt
y GyLyt
)

= sinc( (99)

sin(x)

where sinc(x) = -

4. Robust dressing and dressing field noise

From the simple model that describes robust dressing, we
expect that robust dressing is also robust to fluctuations of
the dressing field because the integral of the total phase ac-
cumulated on average is zero. In simulations of noise, we find
that after an initial relaxation period on the timescale of the
modulation frequency, the random phase accumulation nearly
ceases and dressing field fluctuations arising from power sup-
ply noise can typically be ignored with commercial linear
amplifiers. The polarization of a robust dressing wave form
generated according to Eq. (86), where B; = 40.2497 1T and
wm = 27 x 200 rad/s with amplitude noise ranging from 20
to 80 dB SNR, is shown in Fig. 8. In that figure, it is shown that
at 20 dB SNR, where the amplitude of the field noise is 10%
of the amplitude of the pulse, polarization can be observed for
along time and the rate in Eq. (91) is still achievable after an
initial loss.
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TABLE II. Optimized parameters for robust critical dressing. All
values are calculated for a static uniform field of 5.2 uT and ampli-
tude modulation of a nominal critical dressing field of 40.2497 uT
oscillating at 1000 Hz.

wn/2w (Hz) Xo Xi V{AO%) (rad)
200 1.0470 3.1224 0.68
300 1.1005 3.6645 0.41
500 1.3290 3.4435 0.25

5. Robust critical dressing

There exists a nontrivial solution that satisfies the robust
dressing conditions for both the neutron and *He at the same
time. Robust critical dressing is achieved when

{Pn) ~ (¢3) = 0.

Table II shows optimized robust dressing parameters for the
CODATA values of the magnetic moments of the neutron and
3He. We find that robust critical dressing significantly reduces
relaxation from field fluctuations in the static uniform field
and dressing fields.

Figure 9 shows a simulation of the robust critical dressing
signal for w,, = 27w x 200 Hz in a large gradient, along with
the theoretical estimation for robust critical dressing based on

). (101)

We have ignored neutron relaxation in this prediction, as
it is expected to be small because neutrons exhibit strong
motional narrowing. The applied gradient satisfies Maxwell’s
equations with dB,/dz = —dB,/dx = 2 x 1072 By/cm. For
comparison, unmodulated critical dressing is also simulated

(100)

2
~ D2 22 An
(0, - 03) & Py exp ()/3 G;Dt 2,,: oo

08 R R R
- 06 Robust Critical Dressing Simulation Data
l.3 dB,/dx = —dB,/dz = 2 %By/cm
\bi Critical Dressing Simulation Data
0.4 | dB,/dx = —dB,/dz = 2 %B,/cm 1
- - =Theory, neglecting contribution from dB,/dx
0.2} 1
o e | L
0 5 10 15 20

Time (s)

FIG. 9. Simulated signal for highly tuned RCD modulated at
200 Hz (red) and CSD (green), with theoretical estimation for RCD
(blue). The starting phase for *He is ¢3 = /8, and it is the same
for neutrons, ¢, = 7 /8. Signal is observable for a long time in the
RCD scenario, while the signal is indistinguishable from noise in a
traditional critical dressing scenario.

in the same gradient and the signal is found to decay rapidly
compared to the robust case.

6. Mitigation of linear-in-E effects

Perhaps the most troublesome systematic effects of EDM
experiments is the linear-in-E frequency shift. The linear-in-E
frequency shift arises from correlated fluctuations due to the
motion of the spin in magnetic field gradients perpendicular
to the applied static field, coupled with the v x E motional
magnetic field arising from the motion of the spin within the
measurement cell. The effect can be described from second-
order perturbation theory in terms of the spectrum of the
spin’s position-velocity correlation function. An abundance of
details concerning this shift is presented in Refs. [3,11,17-23].

Nominally for nNEDM@ SNS, the electric field is applied
parallel to the static uniform field. In this case, robust dressing
cannot be used to detect an nEDM. However, if the electric
field is instead applied along %, robust critical dressing can be
employed to measure an nEDM and simultaneously mitigate
linear-in-E frequency shifts arising from the v x E motional
magnetic field via the same mechanism that mitigates the
longitudinal relaxation; specifically, the response of the spin
precession system to magnetic field fluctuations is determined
by the power spectrum of the noise evaluated at integer mul-
tiples of the modulation frequency rather than at the Larmor
frequency. Due to the 1/w? dependence of the trajectory cor-
relation functions in this regime, described in Ref. [11], the
contribution to the linear-in-E frequency shift is significantly
mitigated.

VII. CONCLUSION

In this work, we developed a model to evaluate the effect of
magnetic field noise on a critically dressed system of neutrons
and *He atoms in the case where the Larmor frequency is a
non-negligible fraction of the dressing field frequency. Ap-
plying this model to the case of magnetic field fluctuations
parallel to the dressing field, we find that the relaxation time
is given by an infinite sum over the noise power spectrum
evaluated at discrete frequencies, with higher-frequency terms
suppressed by higher-order Bessel functions. For the purpose
of calculating the impact of current fluctuations in the dressing
field coil, these results demonstrate that the primary concern
is amplitude fluctuations in the dressing field. These results
were verified by numerical integration of the Bloch equations.

With these results as motivation, we propose several strate-
gies to increase coherence and sensitivity for systems of
dressed spins. Feedback control of the dressing amplitude,
for example, can substantially reduce the phase uncertainty
in the presence of current fluctuations in the dressing field
coil, while correlating the signal rate from opposing cells
allows for rejection of noise sources which are common to
both cells. We emphasize that while these strategies are pro-
posed in the context of the nEDM@ SNS experiment, these
techniques are generally applicable to systems where precise
control of dressed spins is required. Of particular interest is
robust dressing, which sets the effective Larmor frequency
of each species to zero by modulating the dressing field.
This substantially reduces relaxation due to magnetic field
fluctuations and effectively freezes a state in time which is

053120-14



QUANTUM CONTROL OF TWO CRITICALLY DRESSED ...

PHYSICAL REVIEW A 105, 053120 (2022)

useful for extending the coherence of quantum information.
Measuring the relaxation of a robustly dressed system allows
for precise determination and feedback on gradients parallel to
the dressing field, and thus can be applied as gradient metrol-
ogy for fundamental physics measurements which require a
uniform magnetic field. For the nNEDM @ SNS experiment, this
effect can be leveraged to measure or shim relatively large
spatial gradients in a critically dressed system of neutrons
and *He. Furthermore, robust dressing allows for mitigation
of linear-in-E frequency shifts in EDM experiments where the
electric field is chosen to be parallel to the dressing field.
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APPENDIX A: NEAR-FREQUENCY TERMS

Suppose V;(¢) contains a pair of terms with frequencies
w; and w; which are very close in frequency, such that
w; — w; ~ 1/t. Then the cross-frequency term can no longer
be neglected. Define the integral

t v
vj = / dr / di"e " T (SBANSBA")). (A1)
0 0

Using Eq. (9), vjx can be written in terms of the noise power
spectrum as

_6721'Awt_] ]S(_) i /-ood
T T e 1270 T 2 )Y

Then the cross terms of 7TAT are

, S() ]

o — o

t pt t t
/{; /{; dt/dt//(Qie—iw,-t” + Q}eiw,-t” )A(lefiwkt’ + Qli'eiwkt’) _ /{; dt//(; dt//(Qie—iw,-t” + Q}eiw,-t”)(lefiwkt’ + Q}(‘eiwkt’)A

t t
_/ dt/f dt//A(lefiwkt’ +Ql1('eiwkt’)(Qiefiw,-t” +Q1/:eiw,-t”)+ (] < k)
0 0
= QiAQ Wik + vi)) + QJAQk(uij + v) — Q;Q1AV; — Q) QiAukj — AQkQ vk — AQLQ v + (j < k)
= vik(Q;AQ] + QJAQ; — 0} QA — AQ;Q)) + v (QAQ] + Q1AQk — QkQTA — AQTQK) + (j © k)

= vl Q. [A. Q11+ vyl Q. [A. Q}11 + (j < k).

1. Explicit calculation for case of static gradients
We first consider noise near the dressed Larmor frequency
wy. Using Q; = Yo,y and O = Loy 5, we get
2
(G Gy =1— T(U|+UT+U2+U;)

2
Y
_ T(U;:j +Ukj + Ujk + U);k)

2 2

y B y“sinQAwt) . _
= ] _ — _—_——

5 tS(w) ) v S(@)

2 .

y B sin(2Awt)
= 1 —_— — —_— — .

2 S(“’)<t 200 )

Next, we consider the contribution of noise near w, the dress-
ing field frequency. In this case, static gradients do not affect
the time dependence of the noise Hamiltonian—that is, the
frequency of the complex exponential ¢/’ is unaffected by a
change in wy or B; (see Sec. III C). Therefore, there are no
cross-frequency terms to consider and so noise near w which
applies equally to both cells cannot cause the spins between
the two cells to decorrelate.

APPENDIX B: TRANSFORMATION OF THE SIGNAL
RATE INTO THE INTERACTION PICTURE

Computing the variance of o7 0, in the labora-
tory frame corresponds to computing the variance of

UiUyeM oy - 02¢~™'USU in the interaction picture. We
begin by calculating U, U, 07 azU;U,T.
From the definition of Uy,

Uy =D(m1/2) +o) (+x +D'(m/2) =) (= (BD)
= 3D(11/2)(1 +03) + 3D' (1 /2)1 ~ 02). (B2)
The Pauli spin operators then transform as

Uio,U] = o,. (B3)

Ulo’yU,T = %[D(m)+ DT(”])]Uy + %i[D(m)— D' (n)]o.
(B4)
Uio,U) = YD(n1) + D' (n)lo; — LilD(n) — D' (1)]oy.
(B5)
So the observable oy - o, transforms as
U1U2(01 . UQ)U;UIT
= (U1011U))(U200U,) + (U101 U, ) (Ur0,0U,)

+ (U0, U, )(Ur02U,) (B6)

= Ox10x2 (B7)
1

+51D(An) + D' (Am)(oy1092 + 0,40,2)  (BS)

- %[D(An) — D (AD)N(oy00 — 0.10y). (BY)

where An = n; — 1.
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Applying the approximation in Eq. (51), we have that

D(An) ~ Yy —x) n+q)in .
nq

(B10)

For the fiducial nEDM@ SNS experimental parameters, the
dressing parameters of the neutrons and *He atoms are, re-
spectively,

x, ~ —1.184, x3 ~—1.317.

Because x, — x3 is significantly smaller than I, the magni-
tude of J,(x, — x3) is small for ¢ > 0. For example,

Jo(x, — x3) = 0.9956,
Jo(x, — x3) = 0.0022.

J1(xn — x3) = 0.0662,

We therefore make the approximation that

UiUs(oy - 0)U, U ~ oy - 0. (B11)

iHyt iHyt

Next, we need to compute ¢V’ oy - ope™ """, where we define
Hy = U,U,HU,U;. We make use of the identity

eiHutol .ozefiHut
N N N
= E n.s1. 520 (087,85 (1. 81, 82 0
n,n',s1,87,52,8,
—
cop s, sh) et (B12)

where, as before, Aw is the frequency difference between

the states n.s;.$2) and #'.s), s5). We make two simpli-
fications to this expression. First, we are concerned with
the time-averaged signal and therefore we ignore any terms
where Aw # 0. Second, we consider only the leading-
order terms in wj/w and therefore make the approximation

that nﬁz) ~ n) s1) s2). The expression in (B12) then
becomes
(e[Hut

oy - ope )

>

, ,
n,n',sy,8),52,8,

Aw=0
n) s1) s2) (" (s) (5 (g (81 (82 oy

* 02 l’l/) 3/1) 3/2) 8n,n’8x|+x2,x’l+x’2- (B13)

It turns out that (sy (32 (n 0102 1) ) s5) =0forn # n’,
and for §; + s, # 8| + ). Therefore,
(U100 - ane ™' USUY) (B14)

Aw=0 = 01 0).

APPENDIX C: CALCULATION OF VARIANCE

If arandom variable X can be written as a Taylor expansion
in some small parameter A, i.e.,

o
X = ZA"Y,,, (ChH
n=1

where Y, are random variables, then, to second order in A,
the variance of X is simply Var(X) = A*Var(Y). Therefore,
to compute the variance of 7TAT, we need only compute the
variance of the terms of 7TAT which are linear in 8B(t). We

get

t
Var (TTAT) = Varcl[i/ dr'Vi(tHA — AV](t/)i| (C2)
0
t . .
— Varc[[l/ dt/(Qeflwt + QTetwt)A
0

— A(Qe ™ + QTeiw’):| 8B(t") (C3)

= Varg[i((Q. Alu+ Q. Alu®)].  (C4)

Using the fact that (u)sp = 0, we rewrite this expression as

Vary (TTAT) = (([Q. Alu+[Q". Alu*) *)ss (C5)
= ((([Q. AIN(AT. Q1)
+1[Q". AD). (|AT. Q1)uu*)sp  (C6)
= 2(1Q. AIN[AT. Q"))
+([Q". A). (IA". Q1)Re(v).  (CT)
If A is Hermitian, then this can be further simplified to

Varg (TTAT) = 41Q". A)([A. Q])Re(v). (C8)

APPENDIX D: SIGNAL VARIANCE CALCULATION

For Qu; = Bo_1 + % o_ 5, we need to calculate

[G) - 02. 0_ 1] = 0410x2 — Ox1072 + (0,102 — 0710y2).
(D1)
Then,

- - N V2
0]+ 02, EU_’I + ?U—,2i|

1 .
= 5()/1 — Y0104 — 04100 +i(0y10n — 0;1040)].
(D2)

Since d) - &, is Hermitian, we compute the magnitude squared
of the above quantity to find Var(TT&, - &,T):

Var (TG - 62T,

= 410}, . AD(A. Quy)Re(v) (D3)

= 1(y1 — 1) (031002 — 0y10p)°

+(0y107 — 07103)2)S (wp)t (D4)
= 1(y1 — ) 2 x {161) x (65)} *S(wp)t.  (DS)

For Qa) — nhw o + V2-112(x2)(1)2 020, We get

2w 10}
[G1 - G2, 0711 = 2i(0x10y2 — 0310x2). (D6)
Then,
( . o i) y2J1(x2)ws
0]+ 02, 071 072
2w 2w

J — J

_ i( niJi(x)wy - 2) 1(J62)a)2>(ax]ay2 — o). (D7)
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Thus,
Var, (TG, - 6:T), = 40, AI)([A. Qu))Re(v)
_ 2( viJi(xwy — yaJy (Xz)w2)2

w

(D?)

D9)

X (legyZ - Uylng)ZS(a))t

_ 2( yiJi(x)or — yadi (Xz)w2>2

w

x 2-{(a1) x (&)} *S(w). (D10)

APPENDIX E: INITIAL STATE OF MAGNETIC FIELD

In this analysis, we assume that the magnetic field oscil-
lates sinusoidally with amplitude B;. However, this leaves
some freedom in choosing the phase of magnetic field at time
t = 0. A magnetic field B(t) = B cos(wt — ¢) corresponds
to the coherent state +/Ae'#), where A is the average photon
number. Because calculations in this work take place in the
displaced basis (which is obtained by applying the unitary
transformation U to operators in the laboratory frame), we
must also apply U to the initial state «) s). We first show
that for n < land o > 1,

D(n) a) ~ "™ 7T g, (E)
We use the identity that for any complex numbers « and 7,
D(n)D(a) = "™ ~"*D(a)D(1). (E2)
Therefore,
D(n) a) = D(n)D(a) 0) (E3)
= "™ D(@)D(n) 0) (E4)
=D () 7). (ES)

Coherent states are given explicitly in terms of the Fock states
by

o0
n) = e-"zﬂg 5—2_ k). (E6)
For n « 1, all but the k = 0 terms are small, and so we make
the approximation n) &~ 0). From this, we conclude that
D(n) ) ~ """ D(a) 0) (E7)
AT ) (E8)
Now we examine what happens when we apply

U=D®) +) 4+ +D)" =) (= . (E9)

where 1 = Q/2w to the state «) s). We get

U a)s)=Dm) a) +)+c 8) +Dm)' a) —) (= )
(E10)

= a)(¢¥ +0) (+x )+ =)= ) (E1D

= a) (¢’ +0) (4 +e " =)= ) s (BI2)

= a)e?% ), (E13)

where 6 = Im(2n*«). We thus see that an initial phase ¢
corresponds to a rotation by an angle 6 about the x axis.

APPENDIX F: ROBUST DRESSING RELAXATION
DUE TO A RELATIVELY STRONG GRADIENT FIELD

The dynamics of the system can be described by
Uy = 92wy . ae™/2y, (F1)

where
t
O = Vi/ By (t')dt'. (F2)
0

Within this interaction picture, we can write longitudinal
relaxation as the decay rate of (o), which is given by time-
dependent perturbation theory as

(oy) =1 - yzRe{/ dr’ / dt" ¢~ 19t iex ")

x (§B(t")8B(t")) } , (F3)

where 8B(t) in this case represents fluctuations in either B,
or By. In writing this approximation, we have taken the static
uniform field to be small, which allows us to neglect the
contribution to 77 relaxation from B,. The integral can be
evaluated in terms of the Fourier transform of ¢~ given
by

[o0]
e—i(px(t) — Z aneinwmt1 (F4)

where w,, is the modulation frequency. By the same reasoning
as in Sec. IIT A, we need only consider terms that are the same
frequency. Thus we get

t t
(o) =1— yzRe / dl// d[//z a zeinwm(t’—t”)
0 0 P
(8B(t")$B(1")) } (F5)
=1-2 Z ap 2S(nwpy,). (F6)

Therefore, we get

1 2
== % Z an 2S(nwy) (F7)
1 n

2

2 2
v (G +GY) DZ(a) et

(F8)

where, in the last step, we took the diffusion approximation
to evaluate S(nw,,). If the system is not in the diffusion limit,
a more exact formulation can be implemented, for example,
the spectrum of the correlation function presented in Ref. [11]
would allow accurate predictions from the ballistic through
the diffusive regimes.
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