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Abstract: 

We present a new, “FENE-mode”, constitutive model for conformation and stress dynamics of 

dilute polymer chains in arbitrary flows, obtained by pre-averaging equations for the normal modes 

using a “representative” spring constant that depends on the magnitudes of both the first and 

second modes, accounting for both overall chain stretch and chain folds. Simulations with this 

model are orders of magnitude faster than with multi-spring Brownian dynamics (BD) simulations, 

and yet retain more of their accuracy than other pre-averaged models. This is demonstrated by 

comparing the predictions of the FENE-mode model with those from BD simulations in start-up 

of uniaxial extension, steady shear, and mixed flows. For all cases, we find that, even when few 

modes are used, the transient and final steady-state conformations and stresses are in much better 

agreement with BD predictions than those of the existing pre-averaged FENE-P and the FENE-

PM models. The possibility of extension of the approach to the more important case of entangled 

polymers is also discussed. Because the model allows cost-accuracy trade-offs to be made through 

choice of the number of modes used, the model should be ideal for multi-dimensional simulations 

of polymer flows. 

 

Introduction: 

The dynamics of dilute polymer solutions have been thoroughly investigated over the last few 

decades by various experimental and theoretical techniques under equilibrium (no-flow) and 

flowing conditions [1-11]. The experimental studies include rheological measurements, light 

scattering and, more recently, fluorescent microscopy of DNA chains that serve as model polymer 

chains. The studies under no-flow conditions have yielded chain dimensions and segmental 

dynamics that can be compared with analytical models. Under flow, the primary interest is in 
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determining the deformations of the ensemble of chains accurately enough to compute the 

corresponding stresses and flow field with suitable accuracy.  Ideally, one derives a constitutive 

equation that, when combined with the momentum balance equations, yields the velocity and stress 

fields, as well as the other quantities, such as chain orientation, that are of engineering interest.  

 

Researchers have used a variety of methods to understand the physics of chain dynamics under the 

influence of flow, the most detailed of which is DNA imaging [1-4, 8]. Theoretical models have 

been inspired by the seminal work of Rouse [12], who described the chain dynamics through the 

introduction of normal modes. The effect of hydrodynamic interactions (HI) was incorporated later 

by Zimm in the linear viscoelastic regime [13], which yielded results that agreed well with 

experimental measurements. The framework set by the Rouse and Zimm models was closely 

followed by computational techniques, which also modeled the polymer chain by beads connected 

by springs. While only a few beads and springs [14-22] and dumbbells [49-50] were used in the 

early days when computational power was limited, in recent years the phenomenal rise in computer 

power has allowed analysis of highly detailed models that retain hundreds or thousands of degrees 

of freedom using Brownian dynamics (BD) or molecular dynamics (MD) simulations [23-27, 44-

45]. A summary of the findings of earlier work is given in various review articles [28, 41-43]. 

Most of those investigations were restricted to extensional and shear flows, while a few have 

explored planar mixed flows ranging between extensional to purely rotational [20]. In a fast 

extensional flow, the chain attains a nearly completely extended final state while in a fast shearing 

flow, which contains equal amounts of extension and rotation, the long-time behavior consists of 

incessant end-over-end tumbling events. Thus, in a shearing flow, the average chain stretch 

plateaus at a value equal to around half of the contour length at high shear rates. A few earlier 
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observations also reported chain compression, or shrinkage of the chain dimension, relative to 

equilibrium, at very high shear rates [23]. However, recent Brownian dynamics simulations have 

revealed those to be artifacts of inadequate chain discretization, which must be made finer with 

increasing shear rate to avoid spurious chain collapse [24]. The dynamics in planar mixed flows 

have been found to be a combination of stretching and tumbling [20]. Further detailed 

investigations of mixed flows can be found in some recent studies [46-47]. 

 

Brownian dynamics simulations, in which the polymer chain is modeled by a set of beads and 

springs, have proven to be highly successful in describing the temporal evolution of chain 

conformations. However, to arrive at the ensemble average of any time-dependent quantity from 

Brownian dynamics simulations, one needs to simulate a large number of chains with different 

initial configurations. This results in a very high computational cost for three-dimensional flow 

simulations, even when the polymer chain is mimicked by modest numbers of springs. A purely 

analytical ensemble-averaged constitutive model for multiple beads and springs, if available, 

would be extremely valuable in reducing this cost. Several such one-mode models for dilute 

polymer solutions have been developed, including the “FENE-P” and “FENE-PM” models by Bird 

and coworkers, which, however, lack the desired accuracy in mimicking the time evolution 

observed in BD simulations, particularly in shear flows [29]. Much more recently, Ghosh and 

coworkers formulated the adaptive length scale (ALS) model [30]. However, much like the 

previous models, the performance in shear flow was largely similar to that of the FENE-P model. 

One can gain improved accuracy by expanding these models to multi-mode versions, allowing the 

linear rheological behavior to be predicted with high accuracy when many modes are used. 

However, in the nonlinear state, both single-mode and multi-mode models must employ closure 
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approximation such as pre-averaging or Gaussian averaging to cope with the nonlinearity of the 

spring constant. In doing so, one is confronted with “molecular individualism” in which, at high 

strain rates, different chains in the ensemble possess very different states of stretch and hence 

different spring constants. In particular, high rates of strain yield various partially folded states, in 

which chains that are far from being fully extended, nevertheless, because of their high local 

stretch, exhibit high spring constants characteristic of the fully extended chain. While folded chain 

configurations in extensional flow converge at high extension rate to nearly fully extended states 

[2], in shear, even at steady state, the ensemble contains chains at various states of unraveling and 

collapsing back into internally folded chains [1]. As we discuss below, simple pre-averaging of 

the spring constant based on the overall stretch of the whole molecule fails to account for the effect 

of internal folds. Such pre-averaging schemes only reflect the influence of the slowest polymer 

mode on the spring constant, while in general all modes affect the spring constant, and each mode 

has its own effective spring constant. Capturing these effects within a constitutive equation is 

rather complex, but the consistent averaging technique by Öttinger and coworkers [31] of doing 

so has been promising. More recently, a sophisticated Gaussian averaging method by Prabhakar 

and Prakash [32] has shown success in capturing not only the effects of finite extensibility but also 

of hydrodynamic interactions. Kishbaugh and McHugh [48] have also derived approximate normal 

mode equations for bead-spring chain models with non-linear springs and hydrodynamic 

interactions. 

 

Here, to cope with this issue in a simpler, and more efficient, way, we formulate a new multi-mode 

constitutive model for chains with multiple beads and springs that, by using a “representative” 

spring constant that is a simple linear combination of the magnitudes of the first and second modes, 
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can predict the results of detailed BD simulations with surprisingly high accuracy in extensional, 

shear, and mixed flows, indicating its applicability to any general flow. If the normal modes are 

known at any instant, the chain conformational properties (and the corresponding stress) can be 

easily computed.  We show here that our new “Fene-mode” model is able to reproduce the average 

temporal evolution of chain dynamics of the full BD simulations in both extensional and shear 

flows, as well as in other planar mixed flows that range from purely extensional to purely 

rotational. Since the stresses are also predicted fairly accurately, this model can potentially be 

coupled with CFD solvers to predict multi-dimensional viscoelastic flow fields and stresses. To 

illustrate the potential for this, we provide here a comparison of some predictions from our model 

and of the FENE-P (developed by Bird and coworkers [33] and incorporated into CFD packages 

like ANSYS POLYFLOW and COMSOL) that clearly highlights the superiority of our model in 

reproducing the temporal evolution of stresses, especially in shear flow. We also compare the 

speed and accuracy of the Fene-mode model with that of multi-mode preaveraged models. Since 

theories for entangled polymers often involve decomposition of stress into a product of a chain 

orientation tensor and a chain stretch prefactor [34], we hope that our development of a method of 

handling chain stretch more accurately might also be applied to entangled solutions.  

   

Methods and model: 

Brownian dynamics (BD) simulations: 

The BD simulations performed in this work follow the algorithms and equations described in 

previous work [24], and we only provide a brief discussion here. The polymer chain is represented 

by N + 1 beads (numbered 0 to N) that are connected by N (numbered 1 to N) springs. Note, the 

effects of excluded volume and hydrodynamic interactions are beyond the scope of this work. 
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These will be incorporated in a future study. The equation of motion of any bead is therefore given 

as: 

  (1) 

where  is the drag coefficient,  is the position vector of the ith bead,  is the Brownian force 

on the ith bead,  is the force on the bead due to the flow field, and  and  represent the 

forces exerted due to the ith and (i+1)th springs, respectively. Here, the force due to flow is given 

as: 

      (2) 

where the tensor  is given as: 

   (3) 

where  is the velocity field and  is the gradient operator. The Brownian force on the ith bead is 

given by , where  represents a Wiener process in three dimensions. For the 

implementation of the same in BD simulations, we used the following form in our algorithm [24]: 

  (4) 

where T is the absolute temperature,  is the Boltzmann constant and  is a vector whose 

components are uniformly distributed within the interval [-1, 1]. We perform BD simulations using 

the dimensionless forms of these equations given here. The procedure to obtain the non-

dimensional form is discussed in detail in the earlier study [24]. 
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In this work, most of the simulations are performed using bead-spring models for polymer chains 

with spring forces given by the Cohen-Padé approximation: 

  (5)
 

where  denotes the fractional spring extension, relative to the fully extended length, and  

and . For comparison, a few simulations are performed using stiff Fraenkel springs, where 

the spring forces are given by: 

   (6) 

where  represents the spring vector, is the length of the Kuhn step and is the spring 

constant. A high value of the Fraenkel spring constant creates a stiff spring, which mimics a rod 

[24-25]. 

 

Now, we derive the equations needed to model the temporal evolution of the chain configuration 

for various types of flow fields. As discussed in the next few sections, we obtain simplified 

equations for the evolution of the modes of a polymer chain, using a “representative” spring 

constant for the chain that also evolves with time, as set by the magnitudes of the two slowest 

modes.  

 

Temporal Evolution of modes 

In our model, the dynamics of the polymer chain are analyzed through the temporal evolution of 
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  (7) 

where the position vectors of the beads are given as . The temporal evolution of the correlations 

of the components of the normal modes in any flow field is given by [35]:   

 (8) 

Note that, to arrive at Eq. (8), the spring constant  has been assumed to be same for all springs. 

Here, , where, at equilibrium, the spring constant is given as  

(H is the entropic linear spring constant). Also,  is the Boltzmann constant, T is the temperature, 
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the length of one Kuhn step. In Eq. (8),  (as defined in the text by Doi and Edwards 

[35]), where  is the bead drag coefficient mentioned earlier. The tensor  is defined by Eq. (3). 
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compute stress. (Note that numerical integration of the general equation, Eq. (8), is necessary for 

complicated flow fields that don’t yield simple analytical solutions.) These analytical normal mode 

difference equations for the flow fields used in this study are provided in the appendix. It can also 

be shown that these solutions satisfy the differential equation for the evolution of the correlations 

of the components of the normal modes (given by Eq. (8)).  

 

Spring constant: 

The above solutions are exactly those of the well-known Rouse theory (with the addition of flow 

fields), as long as the spring constant   is in fact constant, implying Hookean (i.e., linear) springs.  

However, since the polymer chains are exposed to the flow field, the springs (and the entire chain) 

are deformed from their equilibrium lengths and for realistic, finitely extensible springs, the force-

stretch behavior of the spring becomes nonlinear. At any given time during deformation, we 

therefore denote the instantaneous spring constant as , where  represents the ratio of the 

value of the spring constant to its value at equilibrium (i.e. H), which we pre-average over the 

distribution of spring conformations at each instant in time. If we were working with a single 

spring, or dumbbell model, our approach would be identical to that used to develop the “FENE-P” 

or pre-averaged FENE dumbell model. However, the FENE dumbbell model leads to relatively 

inaccurate predictions of stresses in shear flow and in transient stresses in start-up of extensional 

flow, because of its neglect of internal polymer conformations that are only captured by using 

multiple springs per molecule. In what follows, we retain use of a single pre-averaged spring 

constant that is the same for every spring, as well as the use of normal modes, but apply this to a 

polymer represented by multiple springs. The task then is to provide a simple approximate 

relationship connecting this spring nonlinearity  to the magnitudes of the modal variables of the 

k

k = Hf f

f
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chain. Henceforth, the square root of  is referred to as the magnitude of 

the pth mode and denoted by  in this manuscript. 

 

Our approach is to express the effective spring constant (also called the “representative spring 

constant”) as a function of the overall state of stretch in the chain. Note here, for a purely stretching 

flow (i.e. extensional flow) without any rotation, the chain stretches out without any tumbling [2, 

21]. Thus, the chain can be approximated as a stretched object with a few folds, although for long 

chains in very fast flows, there is a stage of multiply-folded states through which the chain passes 

(an example of such a temporary folded state is shown in Figure 1(a)) . In shear flow, it is well 

established that chains undergo an incessant end-over-end tumbling even when the behavior of the 

ensemble reaches steady state [8, 24-25]. For strong shear flows, this tumbling process is observed 

even when the chain is in a highly stretched state. This is in contrast to extensional flows, where 

the end-over-end tumbling, initiated at the chain end through folds, is absent. An end-over-end 

tumbling event, initiated at one chain end through a fold, is shown in Figure 1(b). 

X px
2 + X py

2 + X pz
2( )

X p
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Figure 1: (a) Example of temporary folded states through which a chain evolves to a stretched state 

in strong extensional flow, (b) an end-over-end tumbling event of a polymer chain in strong shear 

flow, initiated by a fold at an end, (c) schematic of the fully stretched state of the polymer chain, 

where the magnitudes of the first and second modes reach a maximum and minimum (zero), 

respectively and (d) a schematic of a hairpin-like fold when the second mode attains a maximum 

value, but first mode vanishes. The respective magnitudes are indicated in (c) and (d). 

 
Thus, to estimate the effective spring constant in an extensional flow, we only need a measure of 

the state of stretch of the chain relative to the maximum stretch that can be attained. In this context, 

we note that the root-mean-square magnitude of first mode, , attains a maximum value of  

  when the chain is fully stretched, while the corresponding magnitude of the second mode 

 vanishes for a fully stretched chain (a schematic is shown in Figure 1(c)). Thus, from this 

X1

2NνbK
π 2
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observation, we can obtain the ensemble average end-to-end length of the chain at any time in the 

later stages of extensional flow from the value of the first mode at that time, relative to its 

maximum value. This implies that for chains that are nearly fully stretched, can be assumed to 

be a function of the normalized first mode,   , alone.  

Shear flows and mixed flows have both stretching and rotational components, where in shear  the 

extension and rotation are present in equal magnitudes [1]. For fast shear flows, at steady state, the 

chain forms folds, typically initiated at the chains ends, leading to tumbling and the formation of 

hairpin-like folds, with the chain nearly fully stretched every where except at the folds. These 

hairpin-like folds also form as transients in start-up of fast extensional flows [4]. Thus, when a 

locally highly stretched, folded, configuration forms, the effective spring constant should be 

similar to that of a chain which is globally stretched in a strong extensional flow. However, owing 

to the presence of folds, the end-to-end vector of the chain is much less than its maximum value 

and so the normalized first-mode magnitude   is not close to unity. Thus, if the spring 

constant were to depend only on this variable, one would predict a much lower value of the spring 

constant. In fact, a chain that is locally almost fully stretched, but folded exactly in half, would 

show a zero value of  since the two ends of the chain lie on top of each other. If the 

spring constant were to depend only on this normalized first-mode magnitude, it would not differ 

from its value in the absence of flow.  
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Thus, a dependence on other modes is required to account for the effect of these internally folded 

states, which occur when the polymer is locally, but not globally, highly stretched. At a minimum, 

then, we need to include a dependence on the magnitude of the second mode , normalized by 

its maximum value of  , where the maximum value is attained when the chain is locally 

fully stretched, but has a hairpin fold at its center (schematic shown in Figure 1(d)). For this 

configuration, the first mode  vanishes, as mentioned above. Thus, if we wish to model the 

spring constant realistically for chains that can be either fully extended globally, or fully extended 

locally but folded in the center, the spring constant must depend, at a minimum, on the two ratios 

 and .  

 

Here, we use only these two modes to determine the spring constant of the chain, although we will 

use many modes to determine the stress. Since we are primarily using springs that follow the 

Cohen-Padé spring model, the effective spring constant will also be calculated using these same 

two modes, using an effective fractional stretch of the springs, designated here by , which we 

take to be  a function of  and . Here, we use the simplest linear function 

possible – a sum of the two factors with equal weighting. A simple justification of this is provided 

by an estimate of the state of stretch in a chain in a fast flow field, where the chain is treated as a 

one-dimensional object with one hairpin-like fold at one end. The chain consists of a total of 

X2

NνbK
π 2

X1

X1
2NνbK
π 2

⎛
⎝⎜

⎞
⎠⎟

X2
NνbK
π 2

⎛
⎝⎜

⎞
⎠⎟

r̂

X1
2NνbK
π 2

⎛
⎝⎜

⎞
⎠⎟

X2
NνbK
π 2

⎛
⎝⎜

⎞
⎠⎟

N



 15 

springs, each stretched to a length . The fold occurs at the bead position  (i.e. the last  

springs constitute the fold). The pth mode can be calculated as: 

 (9) 

which integrates to yield: 

  (10) 

Thus, we have the following expressions for the first two modes: 

  (11) 

 (12) 

In this study, we use the magnitudes of the modes, denoted by  and . The maximum values 

of the magnitudes of the first and second modes are reached when the chain is fully stretched and 

when there is a hairpin-like fold in the middle, respectively, and all the springs are stretched to 

their limit of , as discussed earlier. Let these maximum magnitudes be denoted as 

 and . Then, we have the following: 
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The state of stretch of the springs is given by . Combining Eqs. (13) and (14), we get the 

following quadratic equation for : 

  (15) 

which gives the following solution for : 

  (16) 

where we only consider the solution that is not negative. This solution can be rearranged as: 

 (17) 
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when the springs are not stretched, the fractions may be comparable. However, for such a case, the 

predicted spring constant will be close to the value at equilibrium, and insensitive to the 

approximation made. In fact, for all our simulations presented here, negligible difference is found 

in results when using Eq. (18) instead of Eq. (17). 

 
Surprisingly, our results, presented later, show that that Eq. (18) is sufficient to model the dynamics 

quite accurately in all the flows considered here. The success of such a crude approach is 

surprising, and suggests that the largest inaccuracy of using only the magnitude of first mode to 

determine the spring constant is in its neglect of highly stretched chains with a single fold. 

Multiply-folded chains presumably either have effective spring constants that are not so high, or, 

even if the chain is highly stretched between the folds, the contribution of these configurations to 

the stress is evidently not so large. This conclusion is supported by an analysis showing that the 

contribution to the stress of locally stretched, but folded, polymer conformations, is proportional 

to the cube of the length of a fully stretched segment between folds [36].  Thus, the contributions 

to the stress of short folded regions, which would be captured by modes higher than the second, 

contribute little to the stress compared to the contribution of long folded regions, the longest of 

which constitutes around half the chain length.  

 

Hence, to conclude, we have defined an effective fractional stretch at any given time: 

   (19) 
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The effective spring constant is then given as , where, at equilibrium, H is the spring 

constant and . Thus, in this study, we consider the evolution of modes with an effective 

spring constant that varies with the values of the magnitudes of the first and second modes. Hence, 

our method reduces to an equation similar to the FENE-p approximation if:  1) we use only the 

longest mode to obtain the fractional stretch , and 2) we obtain the stress from only one mode. 

We obtain much better results by both using multiple modes to obtain the stress, thus including 

the faster relaxing processes, and by obtaining the spring constant from the two longest modes, not 

just the longest one. The latter innovation allows the spring constant to be influenced not only by 

the overall chain conformation, captured by the longest mode, but also to some extent by the 

internal conformation of the chain, captured by the second-longest mode, thus accounting for the 

influence of local stretch, not just global stretch, on the spring constant. As in other pre-averaging 

methods, we also average  the spring constant over the ensemble of chains and moreover use the 

same spring constant for all modes, thus maintaining a much faster computation than in Brownian 

dynamics simulations, which requires simulating an entire ensemble of chains. It will soon become 

clear how greatly these fairly simple changes to the constitutive equation improve the resulting 

predictions. We note that here we include stress contributions from all modes allowed by the 

resolution of the model (i.e., the number of modes equals the number of springs.)  However, it is 

possible to further speed the calculation by using only a limited number of slower modes, a 

possibility we briefly discuss at the end of this work. 

 

Evolution of normal modes:  

Here, all normal mode evolution equations are solved numerically with a small time step size to 

obtain the dynamic evolution of their magnitudes. For uniaxial extensional flow, equations (A8) 

k = Hf

f = 1

r̂
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and (A10) in the Appendix are used to update the values of xx and yy components of all the normal 

modes. For shear flow, equations (A14) and (A20), in conjuction with (A21), in the Appendix, are 

used to solve for the temporal evolution of the yy, xx and xy components of all normal modes, 

respectively. For planar mixed flows, the relevant equations are (A27), (A28) and (A29) in the 

Appendix. These equations allow us to compute the values of mode variables at the next timestep, 

using the value of the representative spring constant at the current time step. At any given time, 

the spring constant is estimated using equations (19) and (20). Note that for a general flow field 

where an analytical solution may not be possible, we can integrate Eq. (8) to obtain the time 

evolution of the modes. 

 

Thus, to summarize, the model presented in this article for any general flow field consists of the 

evolution of the normal modes (Eq. (8)), the relation , and the expression for the 

nonlinearity  in the spring constant, , given in Eqs. (19) and (20). Alternatively, the more 

accurate Eq. (17) can be used instead of Eq. (19), but we have found little difference between the 

two. In this study, we use an explicit Euler method for all time integrations of these equations. 

 

Calculation of stress: 

Using the magnitude of the normal modes, we calculate the components of the stress tensor using 

the following relation [35]: 

   (21) 
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where  and , as defined earlier.  is the isotropic tensor,  is the number 

of polymer chains per unit volume and  . Incorporating all these, Eq. (21) can be 

further written as: 

   (22) 

(The dimensionless stress values compared with BD simulations later in this article are normalized 

by  and .) We assess in Appendix B the consistency of the formula Eq. (21) for the stress 

tensor with the “virtual work” argument, which is typically used to demonstrate the existence of 

an elastic free energy function from which the stress tensor can be derived. We address the validity 

of the virtual work argument in Appendix B in the limits of modest spring stretch where the spring 

constant is not dependent on chain deformation, and provide an argument for consistency in the 

limit of strongly stretched springs, forming folded or fully stretched states of the molecule. A more 

complete assessment of thermodynamic consistency of the model awaits future work.  However,  

the success of the model shown under a wide variety of conditions in the following is strong 

evidence that this limitation has little consequence on the model accuracy. In fact, as we discuss 

near the end of this paper and in Appendix B, the construction of a spring constant that is valid in 

the limit where the polymer is locally nearly fully stretched, and therefore highly dissipative under 

flow, is likely a key to the success of the model in fast nonlinear flows. We show below that the 

high rate of dissipation predicted by the model when the chain is highly stretched, is consistent 

with the behavior of the Brownian dynamics simulations, and likely makes the need for an elastic 

free energy at high chain stretch of relatively minor importance. 

 

Results and discussion: 
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As discussed earlier, we will show detailed comparisons of our “FENE-mode” predictions with 

BD simulations for a variety of flow fields, starting with uniaxial extension. For all cases, we will 

consider a wide range of values of Weissenberg number (Wi) and two different chain contour 

lengths (in terms of the number of Kuhn steps). The Weissenberg number is the product of the 

strain rate and the longest stress relaxation time, as defined in previous work [24]. For all figures, 

most of the predictions from the BD simulations are averaged over an ensemble of several hundred 

chains. The exact numbers of chains used to compute the average behavior are given in the figure 

captions. Most of the BD simulations are performed using the coarse-grained bead-spring 

representation, whose details are provided elsewhere [24]. For a few BD simulations, we have 

used a stiff Fraenkel spring, which mimics a single Kuhn step (or “rod”) that is nearly inextensible 

[24-25]. These are denoted by “BR”, denoting “bead-rod”. The cases denoted as “CG” have used 

the Cohen-Padé approximation for the spring law. 
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Figure 2: Comparison of the predictions of BD simulations (dotted lines) and FENE-mode (solid 

lines) for the strain dependence of the chain radius of gyration in the flow direction Rgx in startup 

of uniaxial extensional flow for two different polymer chains – consisting of 500 and 5000 Kuhn 

steps (denoted by NK in the legends). For each run, the legend shows the value of Wi. The terms 

“BD” and “FENE-mode” indicate results from BD simulations and predictions from the FENE-

mode models, respectively. For BD simulations, a bead-spring model, with the Cohen-Padé 

approximation serving as the spring law, is used. The number of Kuhn steps encompassed by a 

single spring is given by . The number of chains over which the BD simulations are averaged 

are: 400, 1200 and 1200 for Wi = 2.315, 4.63 and 19.29, respectively, for NK = 500; 50 and 100 

for Wi = 4.22 and 21.1., respectively, for NK = 5000. 

 

ν
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Figures 2-5 highlight the success of the FENE-mode model in predicting both overall chain 

conformation and stress in uniaxial extensional flow. In Fig. 2, we compare results of the FENE-

mode model with “exact” BD simulation results for the temporal evolution of the chain radius of 

gyration in the flow direction Rgx, defined precisely in earlier studies [24]. The results are plotted 

against Hencky strain, which is the product of the strain rate and time. Clearly, the FENE-mode 

predictions (solid lines) are in good agreement with those obtained from the BD simulations 

(dotted lines), across a range of Wi and chain length. Figure 3 compares the transient extensional 

stress in startup, again showing the success of the FENE-mode model. (Note that, owing to 

computational limitations, for BD simulations, the results are somewhat noisy at small strains.) 

Across all Wi considered, for two very different chain lengths, the predictions of the FENE-mode 

model, including the final steady state values, are in excellent agreement with BD simulations. 

Figures 4 and 5 show the steady-state values of the chain stretch (i.e. Rgx) and the thickness in the 

transverse direction (i.e. Rgy), respectively. Again, we observe an excellent match between the 

values obtained from the FENE-mode and BD simulations. Figures 2-5 show agreement between 

FENE-mode and BD simulations that is usually within 20% or so, with larger deviations generally 

confined to small regions of time or strain rate, such as the region of steeply increasing Rgx in 

Figure 4. Similar agreement is shown in the other figures displayed in what follows. 
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Figure 3: The same as Figure 2, except for the extensional stress given by the normal stress in the 

flow direction minus that perpendicular to it. Here, x represents the extensional flow direction. The 

inset shows results for a longer chain of 5000 Kuhn steps.  
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Figure 4: Predictions of BD simulations and FENE-mode model for the final steady state values 

of Rgx in uniaxial extensional flow for chain lengths of 500 and 5000 Kuhn steps, with  denoting 

the number of Kuhn steps per spring. Here, the term “CG” denotes a bead-spring model, with the 

Cohen-Padé approximation used as the spring law. The term “BR” indicates that stiff Fraenkel 

springs are used, each of which represents a single Kuhn step, for BD simulations (details given 

in earlier study [24]). Note that the legends are divided into two groups for the two different chain 

lengths considered. 

ν
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Figure 5: Predictions of BD simulations and FENE-mode for the steady-state values of the chain 

“thickness” Rgy in uniaxial extensional flow. The legends are the same as in Figure 4 (description 

is provided in the caption of Figure 4). 

 
 
Next, we test the FENE-mode for the polymer dynamics in steady shear flow, which has been 

thoroughly investigated by BD simulations in earlier articles [8, 24-26]. Figure 6 shows the strain 

dependence of Rgx at different values of Wi for two different chain lengths. Since the steady state 

in shear flow is an ensemble average over chains undergoing incessant tumbling events, a large 

number of chains are needed to obtain an accurate average, but even so, there is significant noise 

in the BD results. However, within the limits of the noise, the FENE-mode predictions are in 

excellent agreement with all the BD simulations considered for this study. Similar performance of 

FENE-mode is observed for the two important rheological measurements – the first normal stress 
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difference and the shear stress, presented in Figs. 7 and 8, respectively. At high values of Wi, an 

overshoot is visible in our data from BD simulations, consistent with observations reported in 

earlier studies [7]. Remarkably, the predictions of the FENE-mode model are in outstanding 

agreement with all the trends obtained from the BD simulations, including the magnitude and 

position of the overshoot at higher Wi and the final steady state values. Further, the predictions of 

the radius of gyration in both the flow direction Rgx (Fig. 9) and flow gradient direction Rgy (Fig. 

10) are in excellent agreement with BD results across all regimes reported earlier [24]. The FENE-

mode slightly under-predicts the values of Rgy but is consistent with the scaling law obtained for 

the chain thickness in shear flow (marked in Fig. 10) for bead-spring chains. 

 

In addition to these common flow fields, as a further check, we performed BD simulations for 

planar mixed flows, where  is defined as [20]: 

  (25)   

where the flow type is controlled by the parameter . The values = 1, 0 and -1 denote 

planar extension, simple shear, and pure rotational flow, respectively. For BD simulations with 

mixed flows, we selected values of 0.5 and -0.5 for . The first of these denotes a flow half-

way between extension and shear  (and the other a flow half-way between shear and 

pure rotation .  
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Figure 6: Predictions of BD simulations with  Kuhn steps per spring and FENE-mode model for 

the strain dependence of Rgx in startup of shear flow. Other details are the same as in Figure 2. The 

number of chains averaged over in the BD simulations are: 150, 200 and 100 for Wi = 10, 30 and 

100, respectively, for NK = 500; 150 and 100 for Wi = 30 and 100, respectively, for NK = 5000. 

ν
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Figure 7: The same as Figure 6, but for the first normal stress difference. Here, x and y represent 

the flow and gradient directions, respectively. The inset shows results for a longer chain of 5000 

Kuhn steps. In the inset, the symbols and solid lines indicate results from BD simulations and 

FENE-mode, respectively. 
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Figure 8: The same as Figure 6, except for the shear stress. The inset shows results for a longer 

chain of 5000 Kuhn steps. In the inset, the symbols and solid lines indicate results from BD 

simulations and FENE-mode, respectively. 
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Figure 9: Comparison of the predictions of coarse-grained (CG) and fine-grained bead-rod (BR) 

BD simulations and FENE-mode for the steady state values of Rgx in steady shear. Other details 

are the same as in Figure 5.  
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Figure 10: The same as in Figure 9, except for the chain thickness Rgy. The scaling law of   

for BD simulations using the bead-spring chains has been reported earlier in literature [24-25]. 

 
 
In Figures 11-13, we present the temporal evolution of the chain overall radius of gyration Rg, the 

first normal stress difference , and the shear stress , for various Wi, for two different 

chain lengths, for . The trends are qualitatively similar to those obtained for extensional 

flow. As in the earlier cases with extension and shear, the agreement between the FENE-mode 

predictions and BD simulations is exceptional for all cases considered. We also performed BD 

simulations for a flow field that lies between shear and pure rotation . For this, we 

only show the transient behavior of the chain size (Rg) in Fig. 14. Owing to the dominance of 

rotation in this flow, the chain shows oscillations in the ensemble-averaged Rg with time, with 

little stretch (i.e., the maximum value of Rg is within 8% of the equilibrium value). It is noteworthy 

Wi−1 3

τ xx −τ yy τ xy

α flow = 0.5

α flow = −0.5( )
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that, even for this case, the FENE-mode predictions for the position and amplitude of the peaks 

are in extremely good agreement with those obtained from BD simulations. Overall, these 

observations further bolster our belief in the accuracy of the FENE-mode model for such 

simulations. 

 

 

Figure 11: Predictions of BD simulations and FENE-mode for the strain dependence of the overall 

size of the chain Rg in startup of a planar mixed flow intermediate between extension and shear 

. Other details are the same as in Figure 2. Here, the number of chains over which the 

BD simulations are averaged are: 200, 100 and 100 for Wi = 2.5, 5 and 20, respectively, for NK = 

500 and 160 for NK = 5000 (Wi = 20). 

α flow = 0.5( )
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Figure 12: The same as in Figure 11 except for the first normal stress difference. 
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Figure 13: The same as in Figure 11, except for the shear stress. 
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Figure 14: The same as in Figure 11, except for a planar mixed flow between shear and pure 

rotation . Here, Rg is normalized with respect to Rg0, its value at equilibrium. The 

number of chains over which BD simulations are averaged are 2400, 1000 and 100 for Wi = 10, 

100 and 1000, respectively. 

 

Next, in Figures 15 and 16, we compare some rheological predictions obtained from the FENE-

mode model with those for FENE-P models. The FENE-P model is based on a dumbbell, and so 

is expected to perform more poorly than the FENE-mode model, which contains information on 

all the modes (even though the representative spring constant is estimated using only two modes). 

Note that the FENE-P model is incorporated into commercially available computational fluid 

dynamics (CFD) packages like ANSYS POLYFLOW and COMSOL, which can be used to study 

any transport problem that involves polymer solutions. The results for the first normal stress 

α flow = −0.5( )
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difference for uniaxial extension in Figure 15 shows that the FENE-P model captures the trends 

satisfactorily, but the FENE-mode model provides superior predictions at all strains. The 

difference between the two models becomes even clearer for the shear stress in shear flow, shown 

in Fig. 16, where the FENE-P shows the trends qualitatively, but the overall agreement with the 

results of simulations is poor. For the same flow, the FENE-mode shows excellent agreement with 

simulations, including the position and magnitude of the overshoot for higher values of Wi.  

 

 

Figure 15: Predictions of BD simulations (dotted lines), FENE-P (dash-dotted lines) and FENE-

mode (solid lines) models for the strain dependence of the extensional stress in startup of uniaxial 

extensional flow for polymer chains with 500 Kuhn steps. Other details are as in Figure 3.  
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Figure 16: The same as Figure 15, except for shear stress in startup of shear flow. Note that the 

results from the BD simulations are shown by dotted lines, FENE-P by dash-dotted lines and 

FENE-mode by solid lines. 

 

To explore this further, we compare the FENE-mode predictions, for varying number of modes, 

with BD simulations and FENE-P in Figures 17 and 18. For the normal stress difference at a fixed 

uniaxial extension flow rate (Fig. 17), the FENE-mode model shows a systematically increasing 

deviation from BD simulation results at low strains, as the number of modes is lowered. For a 

single mode FENE-mode model, the results are almost the same as for the FENE-P model. At 

higher strains, all the models agree well with one another. The comparison for the shear stress at a 

fixed shear rate is shown in Fig. 18. As in Fig. 17, systematic deviations increase at low strains as 

the number of modes are decreased in the FENE-mode model. The single-mode FENE-mode 
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prediction is almost the same as that of the FENE-P model, as is the case in uniaxial extension. 

However, significantly, at high strains, the FENE-mode model with just two modes agrees 

reasonably well with the BD simulations, whereas the FENE-P model shows significant 

deviations. Thus, the FENE-mode with just two modes provides much better predictions than 

FENE-P model, especially for shear flows. 

 

 

Figure 17: Predictions of the strain dependence of the extensional stress in startup of uniaxial 

extensional flow (for Wi = 2.315) for polymer chains with 500 Kuhn steps from the FENE-mode 

model, for varying number of modes (solid lines). BD simulations (dotted line) are performed for 

 Kuhn steps per spring. The FENE-P results are shown by the dash-dotted line. 

 

ν = 20
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Figure 18: The same as Figure 17, except for shear stress in startup of shear flow (Wi = 100). Note 

that the results from the BD simulations are shown by dotted line, FENE-P by dash-dotted lines 

and FENE-mode (for varying ) by solid lines. 

Next, we show a few comparisons with the FENE-PM [38] and the multimode FENE-P [39] 

models to highlight the superiority of the FENE-mode model. The FENE-PM is a pre-averaged 

model that solves for the N normal modes at every timestep, similar to the FENE-mode, which 

therefore will have similar computational cost. However, the multimode FENE-P has to solve for 

N2 equations at every timestep, and so for large numbers of modes will be much more expensive 

than the FENE-mode. Figure 19 show the results for the “stress-conformation” hysteresis loop, of 

stress cross-plotted against conformation, as defined in the caption of Figure 19, for extensional 

flow that is stopped after 5 strain units, for two different values of Wi. Clearly, magnitude of the 

hysteresis predicted by the FENE-mode predictions is in much better agreement with the BD 

ν
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simulations than is that of the multimode FENE-P and the FENE-PM models. The forward and 

backward paths for the FENE-PM model are nearly identical, resulting in an almost non-existent 

hysteresis loop, similar to the observations in an earlier study [40]. While the multi-mode FENE-

P model predicts some hysteresis, it predicts much less than in the BD simulations or the FENE-

mode model, and is much more expensive computationally than the FENE-mode model. 

 

Figure 19: Stress-conformation hysteresis loops for uniaxial extensional flows of Wi = 9 and 19.29, 

when the flow was stopped after 5 strains. The results from the BD simulations for a chain of NK 

= 500 and  are shown by dotted lines. The predictions of the FENE-mode, multimode 

FENE-P and FENE-PM models are shown by solid, dash-dot and dashed lines, respectively. The 

results for Wi = 9 and 19.29 are shown in green and red colours, respectively. Note that 

“conformation” here is taken to be the difference between the xx and yy components of the tensor 

ν = 10



 42 

, which is closely related to the birefringence measured experimentally. In the 

FENE-mode model,  can be calculated as .  

Here, note that the multi-mode FENE-P, while approximate relative to BD simulations, allows 

each spring its own spring constant, while FENE-PM uses a single spring constant for the whole 

chain, obtained from all the modes. The FENE-mode model is similar to FENE-PM in that it uses 

the same spring constant for each mode and uses only one equation per mode, but the FENE-mode 

model only uses the longest two modes to extract the spring constant. Thus, it might seem 

surprisingly, that, despite what appears to be a highly approximate treatment, the FENE-mode 

model provides much better agreement with the BD simulations for the stress-conformation 

hysteresis than does the FENE-PM model and even the multi-mode FENE-P model. This is likely 

due to a better accounting in the FENE-mode model of the underlying physics for the transient 

folded state, albeit the simplest possible one with a single fold in a one-dimensional chain, as 

revealed in earlier studies [24-25].  

 

To explain in more detail, as noted in the article by Wedgewood et al. [38], for the FENE-P force 

law, we have 

   (26) 

where the FENE factor for spring j, , is given by 

   (27) 

!n =
"
Qi
"
Qi

i=1

N

∑

!n !n = 2π 2 p2

N
"
X p

"
X p

p=1

N

∑

!
Fj = HZ j

!
Qj

Z j

Z j =
1

1−
Qj

Q0

⎛

⎝⎜
⎞

⎠⎟

2



 43 

where . For the FENE-PM chain, the index j is not needed, and  is defined as 

   (28) 

Here,  is related to the sum of mean squares of the magnitudes of all spring lengths, , 

which we here call the “configuration scalar”. Since the trace of the birefringence tensor n (or 

configuration tensor) is proportional to , and  is a function of , there is a 

functional relationship between  and  which holds in any deformation history. 

Since, in strong extensional flows, the extensional stress is dominated by a single stress component 

and hence converges towards ,  this choice for the dependence of the spring constant on 

normal modes implies that there is a roughly a one-to-one functional relationship between 

extensional stress and the conformation scalar, or birefringence.  Hence one should expect little 

hysteresis from the FENE-PM model, as indeed shown to be the case in Figure 19. The large 

hysteresis predicted by the FENE-mode model thus arises from two sources: 1) the exclusion of 

modes other than the first two from the estimation of the spring constant, and 2) the re-weighting 

(or normalization) of the contributions of these two modes relative to that used in the FENE-PM 

model so that the spring constant in both the singly-folded and the fully folded highly stretched 

states are correctly calculated for these extreme configurations. These extreme conformations 

evidently dominate both stress and birefringence when the molecule is locally highly stretched, 

and when the molecule is not highly stretched locally, the FENE factor is near unity, and so 

approximations to it matter do not matter much.  This physical insight used in the development of 

the FENE-mode model is evidently so successful that it not only out-performs the FENE-PM 
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model, but also the much more expensive multi-mode FENE-P model in the challenging test of 

the stress-conformation hysteresis. (Note that the multimode FENE-P model consists of N2 

equations, and so, for any given algorithm, is a factor of N slower than either the FENE-mode or 

FENE-PM models.) 

 

In Fig. 20, we compare the predictions of the FENE-PM and the multimode FENE-P for varying 

 with BD simulations, for the startup of shear flow (Wi = 100). Similar to the results for FENE-

mode (Fig. 18), the predictions show systematically increasing deviation from BD simulation 

results at low strains, with decreasing number of modes. The single-mode FENE-PM converges to 

the multimode FENE-P model with one spring (equivalent to the FENE-P model), similar to the 

FENE-mode (Fig. 18). At high strains, the predictions agree well with one another. However, the 

locations of the stress overshoot for FENE-PM and multimode FENE-P models do not agree well 

with BD simulations, even for the finest resolution of the models. 
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Figure 20: Same as Figure 18, except that the FENE-PM and the multimode FENE-P predictions 

(for varying ) are shown by dashed and solid lines, respectively. Lines of same colour correspond 

to the same  for both models. 

  

Further, in Figures 21 and 22, we compare the predictions of the first normal stress difference and 

shear stress, respectively, for all the models – FENE-mode, FENE-PM and multimode FENE-P, 

for startup shear with flow reversal, for two different flow rates (Wi = 30 and 100). Overall, 

qualitative trends are similar across all models. However, the predictions of the FENE-mode model 

are in better agreement with the BD results than for the other models. In particular, the location of 

the shear stress overshoot for Wi = 100 in Figure 22 is well predicted by the FENE-mode model, 

whereas a delayed overshoot is observed for both the FENE-PM and the multimode FENE-P 

models. All three models under-predict the stress before the overshoot. 

ν
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Figure 21: Time variation of the first normal stress difference for shear flows of Wi = 30 and 100, 

where the direction of the flow is reversed after several strains. The results from the BD 

simulations (NK = 500) are shown by dotted lines, FENE-mode by solid lines, FENE-PM by 

dashed lines and multimode FENE-P by dash-dot lines. The results of Wi = 30 and 100 are shown 

in green and red colours, respectively. The BD simulation results are averaged over 2000 cases. 
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Figure 22: Same as Figure 21, except for the shear stress. 

 
Thus, from the preceding discussion, it is clear that the FENE-mode model, even with two modes, 

provides predictions that agree much better with BD simulations than do those of the FENE-P 

model. The FENE-mode predictions are also a clear improvement to those of both the FENE-PM 

and the multimode FENE-P models, for the same number of modes. Hence, a two-mode FENE-

mode model can possibly provide a cheap, but significant, enhancement over the FENE-P, which 

has been incorporated into various CFD packages. Finally, we note for each of the results presented 

in Fig. 15, a MATLAB code for the FENE-P calculations took approximately 0.1 seconds, using 

a single core of a 2.9 GHz Intel core i5 processor on a Macbook Pro laptop (early 2015 model). 

On the same laptop, a MATLAB code for the FENE-mode model took about 1.0-1.5 seconds to 

reproduce any of the results in Fig. 15. Note that while this execution time is more than 10 times 
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longer than for the FENE-P model, the computations are done for 25-50 modes for the FENE-

mode model, when  is taken to be 10-20, as in Fig. 15. In contrast, one BD simulation in uniaxial 

extension takes about one hour on a single core of an Intel Xeon processor (8, core, 16 threads in 

total; released in 2014) and about 30 minutes on a single core of an AMD Ryzen processor (8 core, 

16 threads; released in 2018). Hence, on the same i5 processor that we used for testing the FENE-

mode and FENE-P models, one single BD simulation will take much more than an hour to be 

executed. In addition, as mentioned in our figure captions, we have averaged over an ensemble of 

several hundred simulations to obtain good averages of stress in BD simulations. Thus, there is a 

difference in computational time of about 5-6 orders of magnitudes between the FENE-mode and 

the corresponding BD simulations. The FENE-mode model, on the other hand, is only an order of 

magnitude slower than the FENE-P model, while giving results much closer to the BD simulations. 

Furthermore, the cost of the FENE-mode calculations is roughly proportional to the number of 

modes used, and so can be brought down even closer to that of the (one-mode) FENE-P model, by 

trading accuracy for speed, at the discretion of the user. This opens the door to the use of the 

FENE-mode model in multi-dimensional polymer processing simulations, where the speed-

accuracy trade-off is of acute importance. The ability to improve accuracy as desired will enable 

selective testing of numerical simulations for accuracy for limited special cases, and for 

optimization of error/cost with respect to both mesh refinement and model refinement, where the 

latter is carried out through changing the number of modes.  In the future, the FENE-mode model 

might also be applied to the “stretch relaxation equation” in a tube model of entangled polymers, 

which would improve the accuracy of those models in fast flows, with limited increase in cost. 

The approach might also be extended to dilute solutions that include the effects of with 

ν
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hydrodynamics interaction and/or excluded volume, by using methods pioneered by Öttinger [37] 

and by Prabhakar and Prakash [32]. 

 

Summary: 

We have developed a new closed-form constitutive model, the “FENE-mode” model, to predict 

the time-dependent polymer conformation and stress of dilute polymer chains in solution more 

accurately than do previous closed-form models. The FENE-mode model achieves accuracy in 

conformational variables and in stress that is usually well within 20% of that from Brownian 

dynamics simulations, at a vastly smaller computational load. The FENE-mode model uses pre-

averaged equations for the evolution of the conformation modes along with a representative spring 

constant derived from the magnitudes of the first two modes. We observe that the simplest function 

of the first two modes is able to capture the transient behavior of polymer chains in a variety of 

flow fields, as demonstrated by comparison with BD simulations of bead-spring chains. The 

magnitude of the first mode captures the effect of the end-to-end vector of the whole chain, while 

the magnitude of the second mode captures the effect of a single fold near the center of the chain. 

Evidently these two modes largely capture the effect of local stretch of the chain.  If the chain is 

nearly fully extended, the magnitude of the normalized first mode approaches unity, while if the 

chain is highly stretched locally, but folded near the center, the magnitude of the first mode is 

small but that of the second mode approaches unity. Thus, if either mode is near unity, the chain 

is locally highly stretched, even if it is folded, and the spring constant is therefore large. Higher 

modes are needed to describe more complex folding patterns, but these evidently have much less 

impact on the stress and on the overall conformation of the chain. This is evidently because the 

effect of finer scale chain structure on the spring constant, represented by these higher modes, is 
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relatively small compared to the effects of the first two modes.  The model is thus able to capture 

both the conformational and the corresponding stress variations quite accurately for extensional, 

shear and planar mixed flows between extension and shear, and between shear and pure rotation.  
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Appendix A: FENE-mode Equations for Various Flow Fields 

In this Appendix, we show the derivation of analytical difference equations for the evolution of 

the normal modes for various flow fields used in this study.  

 

Extensional flow: 

The dynamics of the pth normal mode is given as [35]: 

  (A1) 

Here,  is the random force as defined in chapter 4 of the text by Doi and Edwards [35]. 

In addition,  is the transpose of the gradient of the velocity. For uniaxial extensional flow, we 

have 
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  (A2) 

where  is the extension rate. Then, from Eq. (A1), we obtain the following equation for the x-

component (direction of stretching) of the normal mode p: 

   (A3) 

Integrating for a small time increment from  to , we get the following: 

 (A4) 

Using the definitions  and , Eq. (A4) becomes 

  (A5) 

Using Eq. (A5), we can estimate the average of  over all realizations: 

 (A6) 

Note that this quantity can be obtained using Brownian dynamics simulations by averaging over 

multiple trajectories, each with a different initial starting state and each evolving due to a different 

Brownian noise history. 
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Using the fluctuation-dissipation theorem for the Brownian force correlations and the 

corresponding expression used in the Brownian dynamics simulations, we can simplify Eq. (A6) 

further to: 

 (A7) 

Note that the second term on the RHS of Eq. (A6) vanishes due to a zero mean of the Brownian 

force over multiple realizations. The third term on the RHS in Eq. (A6) simplifies due to the 

fluctuation-dissipation theorem that says that the Brownian forces at different times are 

uncorrelated so that we finally arrive at the most simplified form: 

  (A8) 

For a uniaxial extensional flow, the dynamics in the y- and z-directions are equivalent, so we only 

analyze the evolution in the y-direction here. The equation of motion of the pth mode in the y-

direction is given as: 

   (A9) 

Using the definition , we arrive at the final expression: 
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  (A11) 

where  is the shear rate. The equation of motion of a mode in the y-direction is relatively simple 

for shear flow: 

  (A12) 

Proceeding as for uniaxial extension, we can integrate this to obtain the following: 

 (A13) 

Then, we evaluate the average of the square of  over all realizations, using similar 

arguments as before: 
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Next, we analyze the motion in the x-direction. The equation of motion is given as: 
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On integration, we arrive at: 
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(A17) 

Further simplifying yields 

 (A18) 

Squaring of this gives: 

  (A19) 

Now, we proceed as before to take the average of the square over all realizations. Then, after 

further simplifications, we arrive at the following final expression: 
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Apart from uniaxial extensional and shear flows, we also perform BD simulations for planar flows 

in between extensional and shear flows, and between shear and purely rotational flows. For a 

general planar mixed flow, is given as: 

  (A22) 

where the parameter  can assume values from -1 to 1 and controls the character of the flow. For 

such a mixed flow, we arrive at the following equations of motion for the normal modes in the x- 

and y-directions, respectively: 
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Integrating Eqs. (A23) and (A24) over a small time interval, as before, we obtain the following: 
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 (A28) 

To arrive at these simplified equations, we have used the same arguments as before. Using Eqs. 

(A25) and (A26), we can get a simplified expression for : 

 (A29) 

 

Appendix B: Virtual Work and Derivation of the Stress Tensor 
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quantities. Microscopically, the proper state variables are the elastic energy stored in the individual 

springs, and for the linear Rouse model, one can show that W is just the sum of elastic energy in 

all springs.  However, for pre-averaged models, information about individual springs is lost, and 

one must be content with using other, appropriate, state variables. The most obvious of these are 

invariants of the stress tensor, and for the simple Rouse model, the elastic free energy is just one 

half the trace of the stress tensor, i.e., . When the spring is nonlinear and closure 

approximations are used, to be safe, one needs a corresponding formula for the free energy. For a 

multi-spring or multi-mode model, where the total stress is the sum of contributions from each 

spring, or from each mode, one might show that each spring, or each mode, satisfies a modal 

version of Eq. (B1) with Wi depending only on a state variable, for spring i or mode i, which is 

typically the trace of the partial stress tensor for that spring or mode. A weaker, but satisfactory, 

satisfaction of this principle is to show that the sum of stress contributions from all springs, or 

from all modes, satisfies Eq. (B1), using a state variable for the entire chain, typically the trace of 

the overall stress tensor. 

 

As we discuss below, the multi-spring FENE-P model and the multi-mode FENE-PM model both 

satisfy the principle of virtual work under all deformation histories, and are for that reason 

thermodynamically “safe.”  We will show here that our new, FENE-mode, model does not satisfy 

this principle under all conditions, but appears to satisfy it in two different limits, namely the limit 

in which the springs are only modestly stretched and therefore remain Hookean, and in the highly 

stretched limit, where the springs are nearly completely stretched. We first discuss the 

conventional virtual work argument applied to FENE-P, FENE-PM and FENE-mode models, and 
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then show how to apply an appropriate version of it to the FENE-mode model at high spring 

stretch. 

 

Conventional virtual work argument and pre-averaged FENE models 

For FENE-P type models, under a fast deformation with negligible relaxation term, the constitutive 

equation can be written in terms of “conformational tensor” for each mode, such as  for 

each spring i, or , for each mode.  Under fast flows, with negligible relaxation, 

the dynamical equation for these has the form:   

   (B2) 

Where  is the upper-convected derivative of . An equivalent equation applies to the tensor 

. Taking the trace of Eq. (B2) gives 
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variables, which are the  values.  The same argument applies to expressions written in terms 

of spring conformation tensors , with 𝑘% a function of . In both cases, the total 

work, which is sum of the partial work functions 𝑊"  or 𝑊% , is a function of the set of state variables, 

one for each mode. This guarantees that the stress tensor satisfies a virtual work argument with 

work a function of state variables only, and not deformation history. 

 

For the multimode FENE-P model [39], the stress is a sum over contributions  from each 

spring, where each 𝑘% is a function only of  and so this model satisfies the virtual work 

argument.  For the FENE-PM model [38], written in terms of modes, the spring constant is the 

same for all modes, and is a function of ; which is equal to . Thus,  

is the state variable, upon which the total work 𝑊 depends by integrating 

       (B5) 
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of the trace of the first two modes only,  and . This means that we cannot in general 

write a differential equation to obtain a partial work 𝑊"  for each mode separately, because the 

equation for mode 𝑝 depends on the trace of at least one other modal variable.  Neither can we 

write a differential equation for the total work 𝑊, since the spring constant does not depend only 

on the sum . Nevertheless, our constitutive equation predicts stress remarkably well for 

all the deformation histories we have considered, including ones with reversing strain history, and 

with relaxation. We believe that the reason for this success is that the FENE-mode model trivially 

satisfies the virtual work argument in the limit of modest strains and also seems to satisfy it when 

the chain is highly stretched in a folded or fully extended state, as we now show. 

 

Virtual work argument for the FENE-mode spring constant for highly deformed chains: 

In FENE-mode, it is assumed that all springs in the chain are equally stretched, to a value . Now, 

to obtain the spring constant, we have to calculate the fractional extension , which is 

shown to be  

  (B6) 
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    (B7) 

So, the sum of these two modal variables in the form we are using in the FENE-mode model is 

indeed a function of  in this limit, which is also equal to the sum of the traces of the 

normal modes . Also, note that the spring constant for the FENE-mode model is a 

function of . Thus, Eq. (B5) applies to this situation, and W can be obtained by an integral over 

the state variable . Hence, there is a free energy function from which our formula for the 

stress can be derived by the virtual work argument.  We note here that for the high stretch limit 

considered here, since the spring constant approaches infinity as the inverse of the difference 

between  and its maximum value, the free energy W will depend logarithmically on this 

difference and thus will approach infinity as the stretch approaches its maximum value, similar to 

the behavior of the simple FENE-P dumbbell. Thus, our stress formula is valid for both modest 

and very high stresses. That it works so well over the whole range of conditions studied is 

surprising, but at least can be rationalized by its accuracy in the two limits. The closure of the 

multi-mode FENE-P model uses spring constants that are functions of the individual springs only 

while the spring constant for the FENE-PM model is a function of only the entire chain 

configuration, and thus both closures lack the strong dependence of the spring constants on both 

the first and second mode in the limit of the folded chain with most individual springs highly 

stretched. While our stress tensor in this limit is technically an “elastic” stress, this stress relaxes 

so rapidly when straining stops that it can be considered virtually dissipative.  The ability to capture 
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this nearly dissipative limit before the chain is fully unraveled is likely at the heart of the success 

of the FENE-mode model, especially in capturing the stress-conformation hysteresis. 

 

Our FENE-mode model in the highly stretched limit thus encapsulates insights generated by the 

“kink dynamics” simulations of Larson [36], wherein a folded chain that is nearly fully stretched 

locally, unravels under deformation, with stress being essentially dissipative, as solvent flows past 

inextensible chain segments. Thus, the innovation in the FENE-mode model is to recognize that 

the nonlinearity of the spring is most needed when spring deformation is severe, and in flows that 

produce such deformations,  folded states occur which can be accounted for using a spring constant 

that is a function of a simple linear combination of the two slowest modes. 
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