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Abstract:

We present a new, “FENE-mode”, constitutive model for conformation and stress dynamics of
dilute polymer chains in arbitrary flows, obtained by pre-averaging equations for the normal modes
using a “representative” spring constant that depends on the magnitudes of both the first and
second modes, accounting for both overall chain stretch and chain folds. Simulations with this
model are orders of magnitude faster than with multi-spring Brownian dynamics (BD) simulations,
and yet retain more of their accuracy than other pre-averaged models. This is demonstrated by
comparing the predictions of the FENE-mode model with those from BD simulations in start-up
of uniaxial extension, steady shear, and mixed flows. For all cases, we find that, even when few
modes are used, the transient and final steady-state conformations and stresses are in much better
agreement with BD predictions than those of the existing pre-averaged FENE-P and the FENE-
PM models. The possibility of extension of the approach to the more important case of entangled
polymers is also discussed. Because the model allows cost-accuracy trade-offs to be made through
choice of the number of modes used, the model should be ideal for multi-dimensional simulations

of polymer flows.

Introduction:

The dynamics of dilute polymer solutions have been thoroughly investigated over the last few
decades by various experimental and theoretical techniques under equilibrium (no-flow) and
flowing conditions [1-11]. The experimental studies include rheological measurements, light
scattering and, more recently, fluorescent microscopy of DNA chains that serve as model polymer
chains. The studies under no-flow conditions have yielded chain dimensions and segmental

dynamics that can be compared with analytical models. Under flow, the primary interest is in



determining the deformations of the ensemble of chains accurately enough to compute the
corresponding stresses and flow field with suitable accuracy. Ideally, one derives a constitutive
equation that, when combined with the momentum balance equations, yields the velocity and stress

fields, as well as the other quantities, such as chain orientation, that are of engineering interest.

Researchers have used a variety of methods to understand the physics of chain dynamics under the
influence of flow, the most detailed of which is DNA imaging [1-4, 8]. Theoretical models have
been inspired by the seminal work of Rouse [12], who described the chain dynamics through the
introduction of normal modes. The effect of hydrodynamic interactions (HI) was incorporated later
by Zimm in the linear viscoelastic regime [13], which yielded results that agreed well with
experimental measurements. The framework set by the Rouse and Zimm models was closely
followed by computational techniques, which also modeled the polymer chain by beads connected
by springs. While only a few beads and springs [14-22] and dumbbells [49-50] were used in the
early days when computational power was limited, in recent years the phenomenal rise in computer
power has allowed analysis of highly detailed models that retain hundreds or thousands of degrees
of freedom using Brownian dynamics (BD) or molecular dynamics (MD) simulations [23-27, 44-
45]. A summary of the findings of earlier work is given in various review articles [28, 41-43].
Most of those investigations were restricted to extensional and shear flows, while a few have
explored planar mixed flows ranging between extensional to purely rotational [20]. In a fast
extensional flow, the chain attains a nearly completely extended final state while in a fast shearing
flow, which contains equal amounts of extension and rotation, the long-time behavior consists of
incessant end-over-end tumbling events. Thus, in a shearing flow, the average chain stretch

plateaus at a value equal to around half of the contour length at high shear rates. A few earlier



observations also reported chain compression, or shrinkage of the chain dimension, relative to
equilibrium, at very high shear rates [23]. However, recent Brownian dynamics simulations have
revealed those to be artifacts of inadequate chain discretization, which must be made finer with
increasing shear rate to avoid spurious chain collapse [24]. The dynamics in planar mixed flows
have been found to be a combination of stretching and tumbling [20]. Further detailed

investigations of mixed flows can be found in some recent studies [46-47].

Brownian dynamics simulations, in which the polymer chain is modeled by a set of beads and
springs, have proven to be highly successful in describing the temporal evolution of chain
conformations. However, to arrive at the ensemble average of any time-dependent quantity from
Brownian dynamics simulations, one needs to simulate a large number of chains with different
initial configurations. This results in a very high computational cost for three-dimensional flow
simulations, even when the polymer chain is mimicked by modest numbers of springs. A purely
analytical ensemble-averaged constitutive model for multiple beads and springs, if available,
would be extremely valuable in reducing this cost. Several such one-mode models for dilute
polymer solutions have been developed, including the “FENE-P” and “FENE-PM” models by Bird
and coworkers, which, however, lack the desired accuracy in mimicking the time evolution
observed in BD simulations, particularly in shear flows [29]. Much more recently, Ghosh and
coworkers formulated the adaptive length scale (ALS) model [30]. However, much like the
previous models, the performance in shear flow was largely similar to that of the FENE-P model.
One can gain improved accuracy by expanding these models to multi-mode versions, allowing the
linear rheological behavior to be predicted with high accuracy when many modes are used.

However, in the nonlinear state, both single-mode and multi-mode models must employ closure



approximation such as pre-averaging or Gaussian averaging to cope with the nonlinearity of the
spring constant. In doing so, one is confronted with “molecular individualism” in which, at high
strain rates, different chains in the ensemble possess very different states of stretch and hence
different spring constants. In particular, high rates of strain yield various partially folded states, in
which chains that are far from being fully extended, nevertheless, because of their high local
stretch, exhibit high spring constants characteristic of the fully extended chain. While folded chain
configurations in extensional flow converge at high extension rate to nearly fully extended states
[2], in shear, even at steady state, the ensemble contains chains at various states of unraveling and
collapsing back into internally folded chains [1]. As we discuss below, simple pre-averaging of
the spring constant based on the overall stretch of the whole molecule fails to account for the effect
of internal folds. Such pre-averaging schemes only reflect the influence of the slowest polymer
mode on the spring constant, while in general all modes affect the spring constant, and each mode
has its own effective spring constant. Capturing these effects within a constitutive equation is
rather complex, but the consistent averaging technique by Ottinger and coworkers [31] of doing
so has been promising. More recently, a sophisticated Gaussian averaging method by Prabhakar
and Prakash [32] has shown success in capturing not only the effects of finite extensibility but also
of hydrodynamic interactions. Kishbaugh and McHugh [48] have also derived approximate normal
mode equations for bead-spring chain models with non-linear springs and hydrodynamic

interactions.

Here, to cope with this issue in a simpler, and more efficient, way, we formulate a new multi-mode
constitutive model for chains with multiple beads and springs that, by using a “representative”

spring constant that is a simple linear combination of the magnitudes of the first and second modes,



can predict the results of detailed BD simulations with surprisingly high accuracy in extensional,
shear, and mixed flows, indicating its applicability to any general flow. If the normal modes are
known at any instant, the chain conformational properties (and the corresponding stress) can be
easily computed. We show here that our new “Fene-mode” model is able to reproduce the average
temporal evolution of chain dynamics of the full BD simulations in both extensional and shear
flows, as well as in other planar mixed flows that range from purely extensional to purely
rotational. Since the stresses are also predicted fairly accurately, this model can potentially be
coupled with CFD solvers to predict multi-dimensional viscoelastic flow fields and stresses. To
illustrate the potential for this, we provide here a comparison of some predictions from our model
and of the FENE-P (developed by Bird and coworkers [33] and incorporated into CFD packages
like ANSYS POLYFLOW and COMSOL) that clearly highlights the superiority of our model in
reproducing the temporal evolution of stresses, especially in shear flow. We also compare the
speed and accuracy of the Fene-mode model with that of multi-mode preaveraged models. Since
theories for entangled polymers often involve decomposition of stress into a product of a chain
orientation tensor and a chain stretch prefactor [34], we hope that our development of a method of

handling chain stretch more accurately might also be applied to entangled solutions.

Methods and model:

Brownian dynamics (BD) simulations:

The BD simulations performed in this work follow the algorithms and equations described in
previous work [24], and we only provide a brief discussion here. The polymer chain is represented
by N + 1 beads (numbered 0 to N) that are connected by N (numbered 1 to N) springs. Note, the

effects of excluded volume and hydrodynamic interactions are beyond the scope of this work.



These will be incorporated in a future study. The equation of motion of any bead is therefore given

as:
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where { is the drag coefficient, 7 is the position vector of the i bead, F, ® is the Brownian force

on the i bead, Fiﬂow is the force on the bead due to the flow field, and 7° and F* represent the

forces exerted due to the i and (i+1)" springs, respectively. Here, the force due to flow is given

as:

F"flaw — Cle ’7; (2)
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where the tensor x is given as:
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K= (VV) (3)
where ¥ is the velocity field and V is the gradient operator. The Brownian force on the i’ bead is

iven by [k TEdW , where dW represents a Wiener process in three dimensions. For the
g y Vk,

implementation of the same in BD simulations, we used the following form in our algorithm [24]:

ok, T¢ = (4)
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where T is the absolute temperature, k is the Boltzmann constant and 7, is a vector whose

components are uniformly distributed within the interval [-1, 1]. We perform BD simulations using
the dimensionless forms of these equations given here. The procedure to obtain the non-

dimensional form is discussed in detail in the earlier study [24].



In this work, most of the simulations are performed using bead-spring models for polymer chains

with spring forces given by the Cohen-Padé approximation:

Fb, aF- B
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where 7 denotes the fractional spring extension, relative to the fully extended length, and o =3

and B=1. For comparison, a few simulations are performed using stiff Fraenkel springs, where

the spring forces are given by:
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where Q represents the spring vector, b, is the length of the Kuhn step and K is the spring

i)

constant. A high value of the Fraenkel spring constant creates a stiff spring, which mimics a rod

[24-25].

Now, we derive the equations needed to model the temporal evolution of the chain configuration
for various types of flow fields. As discussed in the next few sections, we obtain simplified
equations for the evolution of the modes of a polymer chain, using a “representative” spring
constant for the chain that also evolves with time, as set by the magnitudes of the two slowest

modes.

Temporal Evolution of modes

In our model, the dynamics of the polymer chain are analyzed through the temporal evolution of
the normal modes. For a polymer chain of N springs or (N+1) beads, numbered 0 to N, the p™"

normal mode is defined as [35]:
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where the position vectors of the beads are given as 7 . The temporal evolution of the correlations

of the components of the normal modes in any flow field is given by [35]:

%<5{p5{p>=gi[szTQ—2kp<)?p)?p>}+r€-<)?p)?p>+<)?p)?p>-ﬁ ®)

p

Note that, to arrive at Eq. (8), the spring constant £ has been assumed to be same for all springs.
Here, k = 27%kp* /N , where, at equilibrium, the spring constant is given as k,=H=3k,T / vb,’
(H is the entropic linear spring constant). Also, &, is the Boltzmann constant, T is the temperature,
v is the number of Kuhn steps mimicked by a single spring of the bead-spring model, and b, is
the length of one Kuhn step. In Eq. (8), { ,=2 N{ (as defined in the text by Doi and Edwards

[35]), where  is the bead drag coefficient mentioned earlier. The tensor k¥ is defined by Eq. (3).

One can integrate Eq. (8) numerically to obtain the temporal evolution of the normal modes for
any general flow field. However, in this article, we primarily consider standard shear and
extensional flows (and some planar mixed flows), for which one could obtain analytical solutions
for the evolution of the normal modes, if the spring constant and drag coefficient are constant.
Since we will here consider cases in which the spring constant evolves with time, we cannot obtain
fully analytical solutions. However, we can integrate analytically the differential mode equations
over a small time interval over which the spring constant does not change significantly. This yields
difference equations that can be solved numerically, allowing the spring constant to vary from one

time step to the next, to obtain the evolution of various correlations, including those needed to



compute stress. (Note that numerical integration of the general equation, Eq. (8), is necessary for
complicated flow fields that don’t yield simple analytical solutions.) These analytical normal mode
difference equations for the flow fields used in this study are provided in the appendix. It can also
be shown that these solutions satisfy the differential equation for the evolution of the correlations

of the components of the normal modes (given by Eq. (8)).

Spring constant:

The above solutions are exactly those of the well-known Rouse theory (with the addition of flow
fields), as long as the spring constant & 1is in fact constant, implying Hookean (i.e., linear) springs.
However, since the polymer chains are exposed to the flow field, the springs (and the entire chain)
are deformed from their equilibrium lengths and for realistic, finitely extensible springs, the force-
stretch behavior of the spring becomes nonlinear. At any given time during deformation, we

therefore denote the instantaneous spring constant as k = Hf', where f* represents the ratio of the

value of the spring constant to its value at equilibrium (i.e. /), which we pre-average over the
distribution of spring conformations at each instant in time. If we were working with a single
spring, or dumbbell model, our approach would be identical to that used to develop the “FENE-P”
or pre-averaged FENE dumbell model. However, the FENE dumbbell model leads to relatively
inaccurate predictions of stresses in shear flow and in transient stresses in start-up of extensional
flow, because of its neglect of internal polymer conformations that are only captured by using
multiple springs per molecule. In what follows, we retain use of a single pre-averaged spring
constant that is the same for every spring, as well as the use of normal modes, but apply this to a
polymer represented by multiple springs. The task then is to provide a simple approximate

relationship connecting this spring nonlinearity f to the magnitudes of the modal variables of the
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chain. Henceforth, the square root of ({ X* }+( X? )+ ( X? )| is referred to as the magnitude of
px pry pz g

the p" mode and denoted by X , in this manuscript.

Our approach is to express the effective spring constant (also called the “representative spring
constant”) as a function of the overall state of stretch in the chain. Note here, for a purely stretching
flow (i.e. extensional flow) without any rotation, the chain stretches out without any tumbling [2,
21]. Thus, the chain can be approximated as a stretched object with a few folds, although for long
chains in very fast flows, there is a stage of multiply-folded states through which the chain passes
(an example of such a temporary folded state is shown in Figure 1(a)) . In shear flow, it is well
established that chains undergo an incessant end-over-end tumbling even when the behavior of the
ensemble reaches steady state [8, 24-25]. For strong shear flows, this tumbling process is observed
even when the chain is in a highly stretched state. This is in contrast to extensional flows, where
the end-over-end tumbling, initiated at the chain end through folds, is absent. An end-over-end

tumbling event, initiated at one chain end through a fold, is shown in Figure 1(b).
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Figure 1: (a) Example of temporary folded states through which a chain evolves to a stretched state
in strong extensional flow, (b) an end-over-end tumbling event of a polymer chain in strong shear
flow, initiated by a fold at an end, (c) schematic of the fully stretched state of the polymer chain,
where the magnitudes of the first and second modes reach a maximum and minimum (zero),
respectively and (d) a schematic of a hairpin-like fold when the second mode attains a maximum

value, but first mode vanishes. The respective magnitudes are indicated in (c¢) and (d).

Thus, to estimate the effective spring constant in an extensional flow, we only need a measure of

the state of stretch of the chain relative to the maximum stretch that can be attained. In this context,

we note that the root-mean-square magnitude of first mode, )_(1 , attains a maximum value of

2 o . . .
N‘:bK when the chain is fully stretched, while the corresponding magnitude of the second mode

/A

X , vanishes for a fully stretched chain (a schematic is shown in Figure 1(c)). Thus, from this

12



observation, we can obtain the ensemble average end-to-end length of the chain at any time in the
later stages of extensional flow from the value of the first mode at that time, relative to its

maximum value. This implies that for chains that are nearly fully stretched, f can be assumed to

be a function of the normalized first mode, ——— , alone.
( 2NVb, j

71_2

Shear flows and mixed flows have both stretching and rotational components, where in shear the
extension and rotation are present in equal magnitudes [1]. For fast shear flows, at steady state, the
chain forms folds, typically initiated at the chains ends, leading to tumbling and the formation of
hairpin-like folds, with the chain nearly fully stretched every where except at the folds. These
hairpin-like folds also form as transients in start-up of fast extensional flows [4]. Thus, when a
locally highly stretched, folded, configuration forms, the effective spring constant should be
similar to that of a chain which is globally stretched in a strong extensional flow. However, owing

to the presence of folds, the end-to-end vector of the chain is much less than its maximum value

1
Nvb,

7[2

and so the normalized first-mode magnitude ( J is not close to unity. Thus, if the spring

constant were to depend only on this variable, one would predict a much lower value of the spring

constant. In fact, a chain that is locally almost fully stretched, but folded exactly in half, would

1
vaK

”2

show a zero value of [ j since the two ends of the chain lie on top of each other. If the

spring constant were to depend only on this normalized first-mode magnitude, it would not differ

from its value in the absence of flow.

13



Thus, a dependence on other modes is required to account for the effect of these internally folded

states, which occur when the polymer is locally, but not globally, highly stretched. At a minimum,

then, we need to include a dependence on the magnitude of the second mode X ,» hormalized by

. . Nvb . . . o
its maximum value of %, where the maximum value is attained when the chain is locally
T

fully stretched, but has a hairpin fold at its center (schematic shown in Figure 1(d)). For this

configuration, the first mode X 1 vanishes, as mentioned above. Thus, if we wish to model the

spring constant realistically for chains that can be either fully extended globally, or fully extended

locally but folded in the center, the spring constant must depend, at a minimum, on the two ratios

Here, we use only these two modes to determine the spring constant of the chain, although we will
use many modes to determine the stress. Since we are primarily using springs that follow the
Cohen-Padé spring model, the effective spring constant will also be calculated using these same

two modes, using an effective fractional stretch of the springs, designated here by 7, which we

X X
take to be a function of : and 2. Here, we use the simplest linear function
2Nvb, Nvb,
n’ n’

possible — a sum of the two factors with equal weighting. A simple justification of this is provided
by an estimate of the state of stretch in a chain in a fast flow field, where the chain is treated as a

one-dimensional object with one hairpin-like fold at one end. The chain consists of a total of N

14



springs, each stretched to a length - The fold occurs at the bead position N E (i.e. thelast N— N p

springs constitute the fold). The p” mode can be calculated as:
1Y prn 1 prn
X =\— | nl cos| — ldn|+|— | N, —|(n—N,);l cos| — ldn 9)
f )%
POINy 7 N N N A N

which integrates to yield:

2l N TN I N
X =—'—cos PR - 2|:1+(—1)p:| (10)
ropm N pr

Thus, we have the following expressions for the first two modes:

21 N TN,

X = 3 00s| — (11)
I N 27N, I[N ,[%N,

X, =—"=]cos ~ |=1|=—-"5-sin (12)
2r N V4 N

In this study, we use the magnitudes of the modes, denoted by X . and X , - The maximum values

of the magnitudes of the first and second modes are reached when the chain is fully stretched and

when there is a hairpin-like fold in the middle, respectively, and all the springs are stretched to

their limit of vb, , as discussed ecarlier. Let these maximum magnitudes be denoted as

_1 = 2Vb12< N and )_(2 = Vo N . Then, we have the following:
max T max T
X [ TN,
——L_=—" ¢cos : (13)
leax VbK N
X l N,
_X2 =—2 sin? ! (14)
2 max VbK N
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The state of stretch of the springs is given by 7 = Z’ . Combining Egs. (13) and (14), we get the
K

following quadratic equation for 7:

(] Q)
r leax r XZmaX

which gives the following solution for 7:

— — 2 — 2
pedl| Ko |a | K| 4o 2o (16)
2 X2 max X2 max Xl max

where we only consider the solution that is not negative. This solution can be rearranged as:

— — — 2 — —
PO N W (8 O N L CO (17)
2 X2max 2 X2max leax X2max leax

— — — — 2
X X 1 X X,
Thus, if ( = J( —! J<< (— — 4 j , we have a simple relationship:

X X 2 X

2max Imax 2max Imax

PO CE. ¢ (18)
X2max leax

Eq. (18) is the sum of the two normalized normal mode magnitudes with equal weighting that was
discussed earlier. In addition to being the simplest measure of deformation involving more than
one normal mode, this result arises as an approximation to Eq. (17) under some conditions. Since

both fractions are between 0 and 1, Eq. (18) will be a good approximation if one is much larger

than the other. Typically, when the chain is highly stretched, the fraction _Xl i1s much larger

Imax

than 2 while the reverse is true when the chain is folded near its middle. Near equilibrium,

2max

16



when the springs are not stretched, the fractions may be comparable. However, for such a case, the
predicted spring constant will be close to the value at equilibrium, and insensitive to the
approximation made. In fact, for all our simulations presented here, negligible difference is found

in results when using Eq. (18) instead of Eq. (17).

Surprisingly, our results, presented later, show that that Eq. (18) is sufficient to model the dynamics
quite accurately in all the flows considered here. The success of such a crude approach is
surprising, and suggests that the largest inaccuracy of using only the magnitude of first mode to
determine the spring constant is in its neglect of highly stretched chains with a single fold.
Multiply-folded chains presumably either have effective spring constants that are not so high, or,
even if the chain is highly stretched between the folds, the contribution of these configurations to
the stress is evidently not so large. This conclusion is supported by an analysis showing that the
contribution to the stress of locally stretched, but folded, polymer conformations, is proportional
to the cube of the length of a fully stretched segment between folds [36]. Thus, the contributions
to the stress of short folded regions, which would be captured by modes higher than the second,
contribute little to the stress compared to the contribution of long folded regions, the longest of

which constitutes around half the chain length.

Hence, to conclude, we have defined an effective fractional stretch at any given time:

b bd

s - (19)
(2vaKj [vaKj
’ T’

We insert this into the Cohen-Padé approximation to estimate the value of f':

13-7
=317 0
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The effective spring constant is then given as k= Hf', where, at equilibrium, H is the spring
constant and f =1. Thus, in this study, we consider the evolution of modes with an effective

spring constant that varies with the values of the magnitudes of the first and second modes. Hence,
our method reduces to an equation similar to the FENE-p approximation if: 1) we use only the
longest mode to obtain the fractional stretch 7, and 2) we obtain the stress from only one mode.
We obtain much better results by both using multiple modes to obtain the stress, thus including
the faster relaxing processes, and by obtaining the spring constant from the two longest modes, not
just the longest one. The latter innovation allows the spring constant to be influenced not only by
the overall chain conformation, captured by the longest mode, but also to some extent by the
internal conformation of the chain, captured by the second-longest mode, thus accounting for the
influence of local stretch, not just global stretch, on the spring constant. As in other pre-averaging
methods, we also average the spring constant over the ensemble of chains and moreover use the
same spring constant for all modes, thus maintaining a much faster computation than in Brownian
dynamics simulations, which requires simulating an entire ensemble of chains. It will soon become
clear how greatly these fairly simple changes to the constitutive equation improve the resulting
predictions. We note that here we include stress contributions from all modes allowed by the
resolution of the model (i.e., the number of modes equals the number of springs.) However, it is
possible to further speed the calculation by using only a limited number of slower modes, a

possibility we briefly discuss at the end of this work.

Evolution of normal modes:

Here, all normal mode evolution equations are solved numerically with a small time step size to

obtain the dynamic evolution of their magnitudes. For uniaxial extensional flow, equations (AS)

18



and (A10) in the Appendix are used to update the values of xx and yy components of all the normal
modes. For shear flow, equations (A14) and (A20), in conjuction with (A21), in the Appendix, are
used to solve for the temporal evolution of the yy, xx and xy components of all normal modes,
respectively. For planar mixed flows, the relevant equations are (A27), (A28) and (A29) in the
Appendix. These equations allow us to compute the values of mode variables at the next timestep,
using the value of the representative spring constant at the current time step. At any given time,
the spring constant is estimated using equations (19) and (20). Note that for a general flow field
where an analytical solution may not be possible, we can integrate Eq. (8) to obtain the time

evolution of the modes.

Thus, to summarize, the model presented in this article for any general flow field consists of the
evolution of the normal modes (Eq. (8)), the relation kp =2r’kp’ / N, and the expression for the

nonlinearity f in the spring constant, k = Hf , given in Egs. (19) and (20). Alternatively, the more

accurate Eq. (17) can be used instead of Eq. (19), but we have found little difference between the

two. In this study, we use an explicit Euler method for all time integrations of these equations.

Calculation of stress:

Using the magnitude of the normal modes, we calculate the components of the stress tensor using

the following relation [35]:

N -
T= nckBT[Z k é,— Né} 2D
p=1
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where k= 27%kp* /N and k = Hf , as defined earlier. 5 is the isotropic tensor, 7 . 18 the number

of polymer chains per unit volume and ¢, = < Xp X’p> . Incorporating all these, Eq. (21) can be

further written as:

6 2 N ~ -
1S e

K p=l

T=nk,T [
(The dimensionless stress values compared with BD simulations later in this article are normalized
by n, and k,T.) We assess in Appendix B the consistency of the formula Eq. (21) for the stress

tensor with the “virtual work™ argument, which is typically used to demonstrate the existence of
an elastic free energy function from which the stress tensor can be derived. We address the validity
of the virtual work argument in Appendix B in the limits of modest spring stretch where the spring
constant is not dependent on chain deformation, and provide an argument for consistency in the
limit of strongly stretched springs, forming folded or fully stretched states of the molecule. A more
complete assessment of thermodynamic consistency of the model awaits future work. However,
the success of the model shown under a wide variety of conditions in the following is strong
evidence that this limitation has little consequence on the model accuracy. In fact, as we discuss
near the end of this paper and in Appendix B, the construction of a spring constant that is valid in
the limit where the polymer is locally nearly fully stretched, and therefore highly dissipative under
flow, 1s likely a key to the success of the model in fast nonlinear flows. We show below that the
high rate of dissipation predicted by the model when the chain is highly stretched, is consistent
with the behavior of the Brownian dynamics simulations, and likely makes the need for an elastic

free energy at high chain stretch of relatively minor importance.

Results and discussion:

20



As discussed earlier, we will show detailed comparisons of our “FENE-mode” predictions with
BD simulations for a variety of flow fields, starting with uniaxial extension. For all cases, we will
consider a wide range of values of Weissenberg number (Wi) and two different chain contour
lengths (in terms of the number of Kuhn steps). The Weissenberg number is the product of the
strain rate and the longest stress relaxation time, as defined in previous work [24]. For all figures,
most of the predictions from the BD simulations are averaged over an ensemble of several hundred
chains. The exact numbers of chains used to compute the average behavior are given in the figure
captions. Most of the BD simulations are performed using the coarse-grained bead-spring
representation, whose details are provided elsewhere [24]. For a few BD simulations, we have
used a stiff Fraenkel spring, which mimics a single Kuhn step (or “rod”) that is nearly inextensible
[24-25]. These are denoted by “BR”, denoting “bead-rod”. The cases denoted as “CG” have used

the Cohen-Padé approximation for the spring law.
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Figure 2: Comparison of the predictions of BD simulations (dotted lines) and FENE-mode (solid
lines) for the strain dependence of the chain radius of gyration in the flow direction Rgx in startup
of uniaxial extensional flow for two different polymer chains — consisting of 500 and 5000 Kuhn
steps (denoted by Nk in the legends). For each run, the legend shows the value of Wi. The terms
“BD” and “FENE-mode” indicate results from BD simulations and predictions from the FENE-
mode models, respectively. For BD simulations, a bead-spring model, with the Cohen-Padé
approximation serving as the spring law, is used. The number of Kuhn steps encompassed by a
single spring is given by v. The number of chains over which the BD simulations are averaged
are: 400, 1200 and 1200 for Wi = 2.315, 4.63 and 19.29, respectively, for Nx = 500; 50 and 100

for Wi=4.22 and 21.1., respectively, for Nx = 5000.
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Figures 2-5 highlight the success of the FENE-mode model in predicting both overall chain
conformation and stress in uniaxial extensional flow. In Fig. 2, we compare results of the FENE-
mode model with “exact” BD simulation results for the temporal evolution of the chain radius of
gyration in the flow direction Rgx, defined precisely in earlier studies [24]. The results are plotted
against Hencky strain, which is the product of the strain rate and time. Clearly, the FENE-mode
predictions (solid lines) are in good agreement with those obtained from the BD simulations
(dotted lines), across a range of Wi and chain length. Figure 3 compares the transient extensional
stress in startup, again showing the success of the FENE-mode model. (Note that, owing to
computational limitations, for BD simulations, the results are somewhat noisy at small strains.)
Across all Wi considered, for two very different chain lengths, the predictions of the FENE-mode
model, including the final steady state values, are in excellent agreement with BD simulations.
Figures 4 and 5 show the steady-state values of the chain stretch (i.e. Rgx) and the thickness in the
transverse direction (i.e. Rgy), respectively. Again, we observe an excellent match between the
values obtained from the FENE-mode and BD simulations. Figures 2-5 show agreement between
FENE-mode and BD simulations that is usually within 20% or so, with larger deviations generally
confined to small regions of time or strain rate, such as the region of steeply increasing Rgx in

Figure 4. Similar agreement is shown in the other figures displayed in what follows.
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Figure 3: The same as Figure 2, except for the extensional stress given by the normal stress in the
flow direction minus that perpendicular to it. Here, x represents the extensional flow direction. The

inset shows results for a longer chain of 5000 Kuhn steps.
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Figure 4: Predictions of BD simulations and FENE-mode model for the final steady state values
of Rgx in uniaxial extensional flow for chain lengths of 500 and 5000 Kuhn steps, with v denoting
the number of Kuhn steps per spring. Here, the term “CG” denotes a bead-spring model, with the
Cohen-Padé approximation used as the spring law. The term “BR” indicates that stiff Fraenkel
springs are used, each of which represents a single Kuhn step, for BD simulations (details given
in earlier study [24]). Note that the legends are divided into two groups for the two different chain

lengths considered.
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Figure 5: Predictions of BD simulations and FENE-mode for the steady-state values of the chain
“thickness” Rgy in uniaxial extensional flow. The legends are the same as in Figure 4 (description

is provided in the caption of Figure 4).

Next, we test the FENE-mode for the polymer dynamics in steady shear flow, which has been
thoroughly investigated by BD simulations in earlier articles [8, 24-26]. Figure 6 shows the strain
dependence of Rgx at different values of Wi for two different chain lengths. Since the steady state
in shear flow is an ensemble average over chains undergoing incessant tumbling events, a large
number of chains are needed to obtain an accurate average, but even so, there is significant noise
in the BD results. However, within the limits of the noise, the FENE-mode predictions are in
excellent agreement with all the BD simulations considered for this study. Similar performance of

FENE-mode is observed for the two important rheological measurements — the first normal stress

26



difference and the shear stress, presented in Figs. 7 and 8, respectively. At high values of Wi, an
overshoot is visible in our data from BD simulations, consistent with observations reported in
earlier studies [7]. Remarkably, the predictions of the FENE-mode model are in outstanding
agreement with all the trends obtained from the BD simulations, including the magnitude and
position of the overshoot at higher Wi and the final steady state values. Further, the predictions of
the radius of gyration in both the flow direction Rg (Fig. 9) and flow gradient direction Rgy (Fig.
10) are in excellent agreement with BD results across all regimes reported earlier [24]. The FENE-
mode slightly under-predicts the values of Rgy but is consistent with the scaling law obtained for

the chain thickness in shear flow (marked in Fig. 10) for bead-spring chains.

In addition to these common flow fields, as a further check, we performed BD simulations for

planar mixed flows, where x is defined as [20]:

0 1 0
K=y| a,. 0 0 (25)
0 0 0

where the flow type is controlled by the parameter ¢, . The values ¢, =1, 0 and -1 denote

planar extension, simple shear, and pure rotational flow, respectively. For BD simulations with

mixed flows, we selected values of 0.5 and -0.5 for oy - The first of these denotes a flow half-

way between extension and shear ((x = 0_5) (and the other a flow half-way between shear and

flow

pure rotation (a = —0_5).

flow
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Figure 6: Predictions of BD simulations with v Kuhn steps per spring and FENE-mode model for
the strain dependence of Rgx in startup of shear flow. Other details are the same as in Figure 2. The
number of chains averaged over in the BD simulations are: 150, 200 and 100 for Wi = 10, 30 and

100, respectively, for Nx = 500; 150 and 100 for Wi = 30 and 100, respectively, for Nx = 5000.
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Figure 7: The same as Figure 6, but for the first normal stress difference. Here, x and y represent
the flow and gradient directions, respectively. The inset shows results for a longer chain of 5000
Kuhn steps. In the inset, the symbols and solid lines indicate results from BD simulations and

FENE-mode, respectively.
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Figure 8: The same as Figure 6, except for the shear stress. The inset shows results for a longer
chain of 5000 Kuhn steps. In the inset, the symbols and solid lines indicate results from BD

simulations and FENE-mode, respectively.
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Figure 9: Comparison of the predictions of coarse-grained (CG) and fine-grained bead-rod (BR)
BD simulations and FENE-mode for the steady state values of Rgx in steady shear. Other details

are the same as in Figure 5.
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Figure 10: The same as in Figure 9, except for the chain thickness Rgy. The scaling law of ;"3

for BD simulations using the bead-spring chains has been reported earlier in literature [24-25].

In Figures 11-13, we present the temporal evolution of the chain overall radius of gyration Rg, the

first normal stress difference T,=T, and the shear stress T, for various Wi, for two different

chain lengths, for ¢, = 0.5. The trends are qualitatively similar to those obtained for extensional

flow. As in the earlier cases with extension and shear, the agreement between the FENE-mode

predictions and BD simulations is exceptional for all cases considered. We also performed BD
simulations for a flow field that lies between shear and pure rotation (a o = —0,5). For this, we

only show the transient behavior of the chain size (Rg) in Fig. 14. Owing to the dominance of
rotation in this flow, the chain shows oscillations in the ensemble-averaged Ry with time, with

little stretch (i.e., the maximum value of Ry is within 8% of the equilibrium value). It is noteworthy
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that, even for this case, the FENE-mode predictions for the position and amplitude of the peaks
are in extremely good agreement with those obtained from BD simulations. Overall, these

observations further bolster our belief in the accuracy of the FENE-mode model for such

simulations.
10°} 1
NK = 5000
-—Wi=20, »=100
(o]
T i R < g
NK =500
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101 i —Wi=5, v=10
; —Wi=2.5, v=20
10_1 100 strain 101

Figure 11: Predictions of BD simulations and FENE-mode for the strain dependence of the overall

size of the chain R in startup of a planar mixed flow intermediate between extension and shear
((x dow = 0,5) . Other details are the same as in Figure 2. Here, the number of chains over which the

BD simulations are averaged are: 200, 100 and 100 for Wi = 2.5, 5 and 20, respectively, for Nx =

500 and 160 for Nx = 5000 (W1 = 20).
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Figure 12: The same as in Figure 11 except for the first normal stress difference.
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Figure 13: The same as in Figure 11, except for the shear stress.
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Figure 14: The same as in Figure 11, except for a planar mixed flow between shear and pure

rotation (a L= —0_5). Here, Rg is normalized with respect to Rgo, its value at equilibrium. The

flo
number of chains over which BD simulations are averaged are 2400, 1000 and 100 for Wi = 10,

100 and 1000, respectively.

Next, in Figures 15 and 16, we compare some rheological predictions obtained from the FENE-
mode model with those for FENE-P models. The FENE-P model is based on a dumbbell, and so
is expected to perform more poorly than the FENE-mode model, which contains information on
all the modes (even though the representative spring constant is estimated using only two modes).
Note that the FENE-P model is incorporated into commercially available computational fluid
dynamics (CFD) packages like ANSYS POLYFLOW and COMSOL, which can be used to study

any transport problem that involves polymer solutions. The results for the first normal stress
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difference for uniaxial extension in Figure 15 shows that the FENE-P model captures the trends
satisfactorily, but the FENE-mode model provides superior predictions at all strains. The
difference between the two models becomes even clearer for the shear stress in shear flow, shown
in Fig. 16, where the FENE-P shows the trends qualitatively, but the overall agreement with the
results of simulations is poor. For the same flow, the FENE-mode shows excellent agreement with

simulations, including the position and magnitude of the overshoot for higher values of Wi.

| Fosmrmaes -
10% e
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Figure 15: Predictions of BD simulations (dotted lines), FENE-P (dash-dotted lines) and FENE-
mode (solid lines) models for the strain dependence of the extensional stress in startup of uniaxial

extensional flow for polymer chains with 500 Kuhn steps. Other details are as in Figure 3.
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Figure 16: The same as Figure 15, except for shear stress in startup of shear flow. Note that the
results from the BD simulations are shown by dotted lines, FENE-P by dash-dotted lines and

FENE-mode by solid lines.

To explore this further, we compare the FENE-mode predictions, for varying number of modes,
with BD simulations and FENE-P in Figures 17 and 18. For the normal stress difference at a fixed
uniaxial extension flow rate (Fig. 17), the FENE-mode model shows a systematically increasing
deviation from BD simulation results at low strains, as the number of modes is lowered. For a
single mode FENE-mode model, the results are almost the same as for the FENE-P model. At
higher strains, all the models agree well with one another. The comparison for the shear stress at a
fixed shear rate is shown in Fig. 18. As in Fig. 17, systematic deviations increase at low strains as

the number of modes are decreased in the FENE-mode model. The single-mode FENE-mode
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prediction is almost the same as that of the FENE-P model, as is the case in uniaxial extension.
However, significantly, at high strains, the FENE-mode model with just two modes agrees
reasonably well with the BD simulations, whereas the FENE-P model shows significant
deviations. Thus, the FENE-mode with just two modes provides much better predictions than

FENE-P model, especially for shear flows.

Wi=2315 N =500

3L
107 ¢ ceee =20
- — =20
—v=100
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— =250

.IO—‘I_1 . . . ......0 ..1

10 107 strain 10
Figure 17: Predictions of the strain dependence of the extensional stress in startup of uniaxial
extensional flow (for Wi = 2.315) for polymer chains with 500 Kuhn steps from the FENE-mode
model, for varying number of modes (solid lines). BD simulations (dotted line) are performed for

v =20 Kuhn steps per spring. The FENE-P results are shown by the dash-dotted line.
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Figure 18: The same as Figure 17, except for shear stress in startup of shear flow (Wi = 100). Note
that the results from the BD simulations are shown by dotted line, FENE-P by dash-dotted lines

and FENE-mode (for varying v ) by solid lines.

Next, we show a few comparisons with the FENE-PM [38] and the multimode FENE-P [39]
models to highlight the superiority of the FENE-mode model. The FENE-PM is a pre-averaged
model that solves for the N normal modes at every timestep, similar to the FENE-mode, which
therefore will have similar computational cost. However, the multimode FENE-P has to solve for
N? equations at every timestep, and so for large numbers of modes will be much more expensive
than the FENE-mode. Figure 19 show the results for the “stress-conformation” hysteresis loop, of
stress cross-plotted against conformation, as defined in the caption of Figure 19, for extensional
flow that is stopped after 5 strain units, for two different values of Wi. Clearly, magnitude of the

hysteresis predicted by the FENE-mode predictions is in much better agreement with the BD
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simulations than is that of the multimode FENE-P and the FENE-PM models. The forward and
backward paths for the FENE-PM model are nearly identical, resulting in an almost non-existent
hysteresis loop, similar to the observations in an earlier study [40]. While the multi-mode FENE-
P model predicts some hysteresis, it predicts much less than in the BD simulations or the FENE-

mode model, and is much more expensive computationally than the FENE-mode model.

%10° . . . . I . I
30 .
----- Wi=19.29, »=10
25F —FENE-mode §
----multimode FENE-P
20F -- FENE-PM .

----- Wi=9, =10

Figure 19: Stress-conformation hysteresis loops for uniaxial extensional flows of Wi=9 and 19.29,
when the flow was stopped after 5 strains. The results from the BD simulations for a chain of Nk
= 500 and v =10 are shown by dotted lines. The predictions of the FENE-mode, multimode
FENE-P and FENE-PM models are shown by solid, dash-dot and dashed lines, respectively. The
results for Wi = 9 and 19.29 are shown in green and red colours, respectively. Note that

“conformation” here is taken to be the difference between the xx and yy components of the tensor
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N
n :z< #[Q_>, which is closely related to the birefringence measured experimentally. In the
i=1

N 2.2
FENE-mode model, 7 can be calculated as i = Z 27er <)? pf( p>.
p=1

Here, note that the multi-mode FENE-P, while approximate relative to BD simulations, allows
each spring its own spring constant, while FENE-PM uses a single spring constant for the whole
chain, obtained from all the modes. The FENE-mode model is similar to FENE-PM in that it uses
the same spring constant for each mode and uses only one equation per mode, but the FENE-mode
model only uses the longest two modes to extract the spring constant. Thus, it might seem
surprisingly, that, despite what appears to be a highly approximate treatment, the FENE-mode
model provides much better agreement with the BD simulations for the stress-conformation
hysteresis than does the FENE-PM model and even the multi-mode FENE-P model. This is likely
due to a better accounting in the FENE-mode model of the underlying physics for the transient
folded state, albeit the simplest possible one with a single fold in a one-dimensional chain, as

revealed in earlier studies [24-25].

To explain in more detail, as noted in the article by Wedgewood et al. [38], for the FENE-P force

law, we have

F=HZQ, (26)

Z=— = (27)
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where Q,=Vb,. For the FENE-PM chain, the index j is not needed, and Z is defined as

[ famafze]

N
Here, Z is related to the sum of mean squares of the magnitudes of all spring lengths, Z<Qi2> ,
i=1

which we here call the “configuration scalar”. Since the trace of the birefringence tensor n (or

configuration tensor) is proportional to i<QI,2> , and trace(%) is a function of i<Qi2> , there is a

i=1 i=1
functional relationship between trace( T ) and trace( ﬁ) which holds in any deformation history.
Since, in strong extensional flows, the extensional stress is dominated by a single stress component
and hence converges towards trace(%) , this choice for the dependence of the spring constant on

normal modes implies that there is a roughly a one-to-one functional relationship between
extensional stress and the conformation scalar, or birefringence. Hence one should expect little
hysteresis from the FENE-PM model, as indeed shown to be the case in Figure 19. The large
hysteresis predicted by the FENE-mode model thus arises from two sources: 1) the exclusion of
modes other than the first two from the estimation of the spring constant, and 2) the re-weighting
(or normalization) of the contributions of these two modes relative to that used in the FENE-PM
model so that the spring constant in both the singly-folded and the fully folded highly stretched
states are correctly calculated for these extreme configurations. These extreme conformations
evidently dominate both stress and birefringence when the molecule is locally highly stretched,
and when the molecule is not highly stretched locally, the FENE factor is near unity, and so
approximations to it matter do not matter much. This physical insight used in the development of

the FENE-mode model is evidently so successful that it not only out-performs the FENE-PM
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model, but also the much more expensive multi-mode FENE-P model in the challenging test of
the stress-conformation hysteresis. (Note that the multimode FENE-P model consists of N?
equations, and so, for any given algorithm, is a factor of N slower than either the FENE-mode or

FENE-PM models.)

In Fig. 20, we compare the predictions of the FENE-PM and the multimode FENE-P for varying
v with BD simulations, for the startup of shear flow (Wi = 100). Similar to the results for FENE-
mode (Fig. 18), the predictions show systematically increasing deviation from BD simulation
results at low strains, with decreasing number of modes. The single-mode FENE-PM converges to
the multimode FENE-P model with one spring (equivalent to the FENE-P model), similar to the
FENE-mode (Fig. 18). At high strains, the predictions agree well with one another. However, the
locations of the stress overshoot for FENE-PM and multimode FENE-P models do not agree well

with BD simulations, even for the finest resolution of the models.
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Figure 20: Same as Figure 18, except that the FENE-PM and the multimode FENE-P predictions
(for varying v ) are shown by dashed and solid lines, respectively. Lines of same colour correspond

to the same v for both models.

Further, in Figures 21 and 22, we compare the predictions of the first normal stress difference and
shear stress, respectively, for all the models — FENE-mode, FENE-PM and multimode FENE-P,
for startup shear with flow reversal, for two different flow rates (Wi = 30 and 100). Overall,
qualitative trends are similar across all models. However, the predictions of the FENE-mode model
are in better agreement with the BD results than for the other models. In particular, the location of
the shear stress overshoot for Wi = 100 in Figure 22 is well predicted by the FENE-mode model,
whereas a delayed overshoot is observed for both the FENE-PM and the multimode FENE-P

models. All three models under-predict the stress before the overshoot.
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Figure 21: Time variation of the first normal stress difference for shear flows of Wi =30 and 100,
where the direction of the flow is reversed after several strains. The results from the BD
simulations (Nk = 500) are shown by dotted lines, FENE-mode by solid lines, FENE-PM by
dashed lines and multimode FENE-P by dash-dot lines. The results of Wi =30 and 100 are shown

in green and red colours, respectively. The BD simulation results are averaged over 2000 cases.
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Figure 22: Same as Figure 21, except for the shear stress.

Thus, from the preceding discussion, it is clear that the FENE-mode model, even with two modes,
provides predictions that agree much better with BD simulations than do those of the FENE-P
model. The FENE-mode predictions are also a clear improvement to those of both the FENE-PM
and the multimode FENE-P models, for the same number of modes. Hence, a two-mode FENE-
mode model can possibly provide a cheap, but significant, enhancement over the FENE-P, which
has been incorporated into various CFD packages. Finally, we note for each of the results presented
in Fig. 15, a MATLAB code for the FENE-P calculations took approximately 0.1 seconds, using
a single core of a 2.9 GHz Intel core 15 processor on a Macbook Pro laptop (early 2015 model).
On the same laptop, a MATLAB code for the FENE-mode model took about 1.0-1.5 seconds to

reproduce any of the results in Fig. 15. Note that while this execution time is more than 10 times
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longer than for the FENE-P model, the computations are done for 25-50 modes for the FENE-
mode model, when v is taken to be 10-20, as in Fig. 15. In contrast, one BD simulation in uniaxial
extension takes about one hour on a single core of an Intel Xeon processor (8, core, 16 threads in
total; released in 2014) and about 30 minutes on a single core of an AMD Ryzen processor (8 core,
16 threads; released in 2018). Hence, on the same 15 processor that we used for testing the FENE-
mode and FENE-P models, one single BD simulation will take much more than an hour to be
executed. In addition, as mentioned in our figure captions, we have averaged over an ensemble of
several hundred simulations to obtain good averages of stress in BD simulations. Thus, there is a
difference in computational time of about 5-6 orders of magnitudes between the FENE-mode and
the corresponding BD simulations. The FENE-mode model, on the other hand, is only an order of
magnitude slower than the FENE-P model, while giving results much closer to the BD simulations.
Furthermore, the cost of the FENE-mode calculations is roughly proportional to the number of
modes used, and so can be brought down even closer to that of the (one-mode) FENE-P model, by
trading accuracy for speed, at the discretion of the user. This opens the door to the use of the
FENE-mode model in multi-dimensional polymer processing simulations, where the speed-
accuracy trade-off is of acute importance. The ability to improve accuracy as desired will enable
selective testing of numerical simulations for accuracy for limited special cases, and for
optimization of error/cost with respect to both mesh refinement and model refinement, where the
latter is carried out through changing the number of modes. In the future, the FENE-mode model
might also be applied to the “stretch relaxation equation” in a tube model of entangled polymers,
which would improve the accuracy of those models in fast flows, with limited increase in cost.

The approach might also be extended to dilute solutions that include the effects of with
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hydrodynamics interaction and/or excluded volume, by using methods pioneered by Ottinger [37]

and by Prabhakar and Prakash [32].

Summary:

We have developed a new closed-form constitutive model, the “FENE-mode” model, to predict
the time-dependent polymer conformation and stress of dilute polymer chains in solution more
accurately than do previous closed-form models. The FENE-mode model achieves accuracy in
conformational variables and in stress that is usually well within 20% of that from Brownian
dynamics simulations, at a vastly smaller computational load. The FENE-mode model uses pre-
averaged equations for the evolution of the conformation modes along with a representative spring
constant derived from the magnitudes of the first two modes. We observe that the simplest function
of the first two modes is able to capture the transient behavior of polymer chains in a variety of
flow fields, as demonstrated by comparison with BD simulations of bead-spring chains. The
magnitude of the first mode captures the effect of the end-to-end vector of the whole chain, while
the magnitude of the second mode captures the effect of a single fold near the center of the chain.
Evidently these two modes largely capture the effect of local stretch of the chain. If the chain is
nearly fully extended, the magnitude of the normalized first mode approaches unity, while if the
chain is highly stretched locally, but folded near the center, the magnitude of the first mode is
small but that of the second mode approaches unity. Thus, if either mode is near unity, the chain
is locally highly stretched, even if it is folded, and the spring constant is therefore large. Higher
modes are needed to describe more complex folding patterns, but these evidently have much less
impact on the stress and on the overall conformation of the chain. This is evidently because the

effect of finer scale chain structure on the spring constant, represented by these higher modes, is
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relatively small compared to the effects of the first two modes. The model is thus able to capture
both the conformational and the corresponding stress variations quite accurately for extensional,

shear and planar mixed flows between extension and shear, and between shear and pure rotation.

Acknowledgement:

ISD expresses his gratitude to the IIT Kanpur initiation grant for new faculties and the HPC center
at [IT Kanpur. RGL acknowledges support by the National Science Foundation under Grant No.
1707640. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of NSF.

Appendix A: FENE-mode Equations for Various Flow Fields

In this Appendix, we show the derivation of analytical difference equations for the evolution of

the normal modes for various flow fields used in this study.

Extensional flow:

The dynamics of the p™ normal mode is given as [35]:

dX, k= ~=
a ¢ ¢,
Here, fp is the random force as defined in chapter 4 of the text by Doi and Edwards [35].

A

In addition, x is the transpose of the gradient of the velocity. For uniaxial extensional flow, we

have
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e 0
K= 0 =% 0 (A2)
0 O

where ¢ is the extension rate. Then, from Eq. (A1), we obtain the following equation for the x-

component (direction of stretching) of the normal mode p:

AN ) f (A3)
P 15 sl =L
g, g

Integrating for a small time increment from ¢ to #+ A¢, we get the following:

) t+At )
X (t+Ar)=X (t)e{(k”/ el | g forefrean C:if © dr (A4)
t p

Using the definitions £ =|(k —¢|and = 17 , Eq. (A4) becomes
J5,)-¢] ad =L

p

t+At

X, (t+81)=X (™ + [ & dr (A5)

Using Eq. (AS5), we can estimate the average of Xix (t + At) over all realizations:

(32 (1 av))= (2, (1)) 252 | 00X (1)1 (x))de

t+At t+At

+ j dz’ e_E(ZHMH_T/)<f1;(7’)fp;(T)>dr

t

(A6)

Note that this quantity can be obtained using Brownian dynamics simulations by averaging over
multiple trajectories, each with a different initial starting state and each evolving due to a different

Brownian noise history.
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Using the fluctuation-dissipation theorem for the Brownian force correlations and the
corresponding expression used in the Brownian dynamics simulations, we can simplify Eq. (A6)

further to:

t+At
(X2, (1+a0))= (X3, (1)) + e 212‘3T { 622; } (A7)
P

t

Note that the second term on the RHS of Eq. (A6) vanishes due to a zero mean of the Brownian
force over multiple realizations. The third term on the RHS in Eq. (A6) simplifies due to the
fluctuation-dissipation theorem that says that the Brownian forces at different times are

uncorrelated so that we finally arrive at the most simplified form:

<X§X (t+ Az)> = <Xf) (t)> et 1;‘3—;(1 —e?™) (A8)

For a uniaxial extensional flow, the dynamics in the y- and z-directions are equivalent, so we only

analyze the evolution in the y-direction here. The equation of motion of the p" mode in the y-

direction is given as:

dt é’p 2 py—é‘p py

Using the definition E’ = [( k, /¢ . ) + (g/ 2)} , we arrive at the final expression:

(32 (1+40) = (3 (e + 2 (1-e) (A10)
P
Shear flow:

For a simple steady shear flow, x is given as:
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(A11)

A

I
o o o
S O X
o o O

where y is the shear rate. The equation of motion of a mode in the y-direction is relatively simple

for shear flow:

X ooy 1y (A12)
dt Cp py gp py

Proceeding as for uniaxial extension, we can integrate this to obtain the following:

X (t+A)=X_ (z)e_(k”/ Gy HJ-AZ ¢ /&) gif * dr (A13)
t p

Then, we evaluate the average of the square of Xpy(t+At) over all realizations, using similar

arguments as before:

O A = 0

P

Next, we analyze the motion in the x-direction. The equation of motion is given as:

.k , 1
: :—ipr+(yXpy+Zﬂ,xj (A15)

On integration, we arrive at:

px 4
P

t

t+At—-7 . 1
X (t+80)=X_(1)e 5 j o/t [yXpy+—f,,der (A16)

Here, we are integrating within a vanishingly small time interval (i.e. between ¢ and ¢+ A¢). Thus,

Xpy can be approximately taken to be a constant for evaluating this integral. Thus, we get:
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(kp/§p)f A

— ! +At — +At—7 1
X X(l‘-}-A[):X X(t)e (kp/gp)A +’}/X e ( p/gp)( A) e + e (kp/gp)( A )_fxdT(A17)
p p py (kp/é«p) t .!' é‘p p
Further simplifying yields
X (1+80)= X () P ppx Sefio o) T sl 1y (A18)
pX(H- t)— px(t)e +7y pyk_ —e + Ie g—fpx T
p t p

Squaring of this gives:

e - i R U R N U

k2 kp
oo —(kp/gp)(m-ZAt 7 A p/{ I+At 7) 1 . é/p —(kp/{p)m
2] e ; Lrx dr+2j = fpxprj/Xpy(t)k—(l—e )df
t p p p
+At AL
+ j dr’ J e‘(kp/é"p)(zwzm-r v é,—fpx( )fx( )dT

(A19)
Now, we proceed as before to take the average of the square over all realizations. Then, after
further simplifications, we arrive at the following final expression:

<X]2)x (e+ At)> = <X.2: (t)> A <Xiy (z)> & ( o 2o )

% (A20)
+2<prXpy (t)> 14 i_p(e—(k,,/g“,,)m - €_z(kp/§p)m ) + k}?—T(l — e_(Zk”/g”)At)

P P

Note that, an expression for <prXpy (t)> can be derived using Egs. (A13) and (A18), followed by

further simplifications:

(X, X, (t+A0))= <XpXXpy(t)>e_2(k"/ 2 +7<Xiy(t)>%(e_(k”/ e (A21)

P

Planar mixed flows:
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Apart from uniaxial extensional and shear flows, we also perform BD simulations for planar flows

in between extensional and shear flows, and between shear and purely rotational flows. For a

general planar mixed flow, x is given as:

0 7 0
k= ay 0 0 (A22)
0 0 O

where the parameter ¢ can assume values from -1 to 1 and controls the character of the flow. For

such a mixed flow, we arrive at the following equations of motion for the normal modes in the x-

and y-directions, respectively:

dX [k, ) 1
— | X =X =S (A23)

dt g, ¢,
pry kp X /X | = ! A24
at + é,— oy OV AT C_ fpy ( )
p p

Integrating Egs. (A23) and (A24) over a small time interval, as before, we obtain the following:

— At . —| A oy —| t+At—1 1
pr (t+At) — pr (Z)e (kp/gp) +7/Xpyi_17(l_e (kp/gp)A )+ J- e (kp/gﬂ)( A )é,_fpxdf (A25)
t P

p

Xpy (t + At) — Xpy (t)e_(kp/gp)m i aj‘/XpX i_p(l _ e_(kp/gp)Af ) 4 J. e_(kp/gp)(“'At—T) Cifpydf (A26)
t P

P

Then, the evolution of the average of the square of these quantities, over multiple realizations, is

given as:

2

<X§X (t+ At)> = <X§x (t)>ef(zkp/¢p)m Ly <X§y (1 )>%(1 - e(kp/gp)m)
’ (A27)

N 1 A B L T

p p
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<sz>y (t + At)> = <Xf,y (t)>e_(2k”/§p)m +o’y’ <X2 (;)>§_127(1 _ e—(’fp/év“p)At)2

px kZ
: (A28)
+2 <prXpy (t)> ay % (e_(kp/gp)m _ e—Z(kp/é’p)At ) + k]:;T(l _ e_(ka/gp)At)
p p

To arrive at these simplified equations, we have used the same arguments as before. Using Egs.

(A25) and (A26), we can get a simplified expression for <prXpy (t)> :

<prXpy (t + At)> - <prXpy (t)> eiz(kP/CP)At + 057<X129x (t)>i_p(e(kp/§p)m - ez(k”/g")m)

¢ 52 . (A29)
+}}<X§>y (t)>k—p(e‘(kp/§,z)At B e—z(k[)/C,,)At ) + 0672 <prXpy (t)> k—z(l _ e—(kp/gp)m)

Appendix B: Virtual Work and Derivation of the Stress Tensor

In bead-spring models, the stress tensor is derivable from the principle of virtual work, which
assures that simulations involving any deformation history will always result in non-decreasing
entropy, so that the second law of thermodynamics is satisfied. Under this principle, the elastic
work required to deform the polymer is given by the change in free energy, which must be a state
variable that depends only the “state” of the system and not the path to get to that state. The rate

of doing work when the stress tensor is symmetric, is

W=%:D (B1)
where D is the rate of strain tensor, or the symmetrized velocity gradient tensor, D = %(1& + 1€T) .

To apply the virtual work argument, one takes the deformation to be ideally fast enough to leave
no time for chain relaxation that would dissipate energy. Under these conditions, the work W must

be a state variable, independent of the history of deformation and only dependent on state
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quantities. Microscopically, the proper state variables are the elastic energy stored in the individual
springs, and for the linear Rouse model, one can show that I is just the sum of elastic energy in
all springs. However, for pre-averaged models, information about individual springs is lost, and
one must be content with using other, appropriate, state variables. The most obvious of these are

invariants of the stress tensor, and for the simple Rouse model, the elastic free energy is just one
half the trace of the stress tensor, i.e., W = %tr(f). When the spring is nonlinear and closure

approximations are used, to be safe, one needs a corresponding formula for the free energy. For a
multi-spring or multi-mode model, where the total stress is the sum of contributions from each
spring, or from each mode, one might show that each spring, or each mode, satisfies a modal
version of Eq. (B1) with W; depending only on a state variable, for spring i or mode i, which is
typically the trace of the partial stress tensor for that spring or mode. A weaker, but satisfactory,
satisfaction of this principle is to show that the sum of stress contributions from all springs, or
from all modes, satisfies Eq. (B1), using a state variable for the entire chain, typically the trace of

the overall stress tensor.

As we discuss below, the multi-spring FENE-P model and the multi-mode FENE-PM model both
satisty the principle of virtual work under all deformation histories, and are for that reason
thermodynamically “safe.” We will show here that our new, FENE-mode, model does not satisfy
this principle under all conditions, but appears to satisfy it in two different limits, namely the limit
in which the springs are only modestly stretched and therefore remain Hookean, and in the highly
stretched limit, where the springs are nearly completely stretched. We first discuss the

conventional virtual work argument applied to FENE-P, FENE-PM and FENE-mode models, and
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then show how to apply an appropriate version of it to the FENE-mode model at high spring

stretch.

Conventional virtual work argument and pre-averaged FENE models

For FENE-P type models, under a fast deformation with negligible relaxation term, the constitutive

equation can be written in terms of “conformational tensor” for each mode, such as <QQ> for

2p°n’
N

each spring i, or S‘p = < X , X p> , for each mode. Under fast flows, with negligible relaxation,

the dynamical equation for these has the form:

i<
I

S -&-85 -8 k'=0 (B2)

P

S

4
Where S is the upper-convected derivative of Sp. An equivalent equation applies to the tensor

<QQ> . Taking the trace of Eq. (B2) gives

<r(3,)=5,:D (B3)

Thus, the rate of doing work associated with mode p is given by multiplying each side of Eq. (B3)

by the pre-averaged spring constant for mode p, k:

%F;
ol
Il
ST
>
Il
S

k izr(ﬁ (B4)

(5=

P p : P : P
where the modal stress i-'p is taken as the product of its spring constant k, and the mode

conformation tensor §p . If k,, is a function of tr(gp) only, then W, is a function tr( §p) only, and

therefore is a function of a state variable. The total stress then is also a function of all the state
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variables, which are the tr(§p) values. The same argument applies to expressions written in terms

of spring conformation tensors <QQ> , with k; a function of ”<QQ>' In both cases, the total

work, which is sum of the partial work functions W, or W, is a function of the set of state variables,

one for each mode. This guarantees that the stress tensor satisfies a virtual work argument with

work a function of state variables only, and not deformation history.

For the multimode FENE-P model [39], the stress is a sum over contributions £, < Q_Q_> from each

spring, where each k; is a function only of tr<QQ_> and so this model satisfies the virtual work

argument. For the FENE-PM model [38], written in terms of modes, the spring constant is the

same for all modes, and is a function of Ztr(S’p) ; which is equal to Ztr<QQi>. Thus, Ztr(§p)
i p

P

is the state variable, upon which the total work W depends by integrating

i=:D=kY5,: D=kLY w35 )
IR ~r o dr > ’

where we have used Eq. (B3) to obtain the final expression. Since the spring constant k is a

function of Ztr(gp) we can integrate Eq. (BS), to obtain the total free energy W as a function of
p

the state variable Ztr(gp). This means that the stress tensor for the FENE-PM model satisfies
p

the virtual work principle with work a function of a state variable.

Now, our FENE-mode model uses a modal representation and we have taken our stress tensor to

be given by %p = k§,, , Where the spring constant k is the same for each mode, but k is a function
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of the trace of the first two modes only, tr(gl) and tr(§2 ) This means that we cannot in general

write a differential equation to obtain a partial work W, for each mode separately, because the
equation for mode p depends on the trace of at least one other modal variable. Neither can we

write a differential equation for the total work W, since the spring constant does not depend only

on the sum Ztr(gp) . Nevertheless, our constitutive equation predicts stress remarkably well for
p

all the deformation histories we have considered, including ones with reversing strain history, and

with relaxation. We believe that the reason for this success is that the FENE-mode model trivially

satisfies the virtual work argument in the limit of modest strains and also seems to satisfy it when

the chain is highly stretched in a folded or fully extended state, as we now show.

Virtual work aregument for the FENE-mode spring constant for highly deformed chains:

In FENE-mode, it is assumed that all springs in the chain are equally stretched, to a value pr. Now,

: : : : ! L
to obtain the spring constant, we have to calculate the fractional extension 7 =—2-, which is

vb,

shown to be

— — — 2 — —
X X X X X
lj.‘ — l _ 2 + l _ 2 i 1 _ _ 2 _ 1 (B6)
2 X2max 2 XZmax leax 2max leax

where the simple addition formula _X2 + _Xl in Eq. (18) of the two modes is just an

2max 1max

approximation of this general expression. However, since all springs are equally stretched, we

have tr(QQ.) =1/, forany i. This means that Ztr(Q_Q.) = lep . Thus, we have
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¥, X 1[ X j \/Ll X, X j [y ][ X J _Jxrlog)
_2 +_1 ~ _2 + __2 +_I _ _2 _I :r:l— (B7)
X o x_ 20X 2X, X X X JINvb,

2max 1max 2max 2 max 1max 2max 1max

So, the sum of these two modal variables in the form we are using in the FENE-mode model is

indeed a function of Etr(Q,Q,) in this limit, which is also equal to the sum of the traces of the

normal modes Ztr(gp). Also, note that the spring constant for the FENE-mode model is a
P

function of #*. Thus, Eq. (B5) applies to this situation, and W can be obtained by an integral over

the state variable Ztr(§p) . Hence, there is a free energy function from which our formula for the
p

stress can be derived by the virtual work argument. We note here that for the high stretch limit

considered here, since the spring constant approaches infinity as the inverse of the difference

between Ztr(S’p) and its maximum value, the free energy W will depend logarithmically on this
P

difference and thus will approach infinity as the stretch approaches its maximum value, similar to
the behavior of the simple FENE-P dumbbell. Thus, our stress formula is valid for both modest
and very high stresses. That it works so well over the whole range of conditions studied is
surprising, but at least can be rationalized by its accuracy in the two limits. The closure of the
multi-mode FENE-P model uses spring constants that are functions of the individual springs only
while the spring constant for the FENE-PM model is a function of only the entire chain
configuration, and thus both closures lack the strong dependence of the spring constants on both
the first and second mode in the limit of the folded chain with most individual springs highly
stretched. While our stress tensor in this limit is technically an “elastic” stress, this stress relaxes

so rapidly when straining stops that it can be considered virtually dissipative. The ability to capture
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this nearly dissipative limit before the chain is fully unraveled is likely at the heart of the success

of the FENE-mode model, especially in capturing the stress-conformation hysteresis.

Our FENE-mode model in the highly stretched limit thus encapsulates insights generated by the
“kink dynamics” simulations of Larson [36], wherein a folded chain that is nearly fully stretched
locally, unravels under deformation, with stress being essentially dissipative, as solvent flows past
inextensible chain segments. Thus, the innovation in the FENE-mode model is to recognize that
the nonlinearity of the spring is most needed when spring deformation is severe, and in flows that
produce such deformations, folded states occur which can be accounted for using a spring constant

that is a function of a simple linear combination of the two slowest modes.
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