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Two new recently proposed classes of topological phases, namely, fractons and higher order topological
insulators (HOT]ISs), share at least superficial similarities. The wide variety of proposals for these phases calls for
a universal field theory description that captures their key characteristic physical phenomena. In this work, we
construct topological multipolar response theories that capture the essential features of some classes of fractons
having subsystem symmetries and higher order topological insulators. Remarkably, we find that despite their
distinct symmetry structure, some classes of fractons and HOTIs can be connected through their essentially
identical topological response theories. More precisely, we propose a topological quadrupole response theory
that describes both a 2D symmetry-protected fracton phase and a related bosonic quadrupolar HOTI with strong
interactions. Such a topological quadrupole term encapsulates the protected corner charge modes and, for the
HOTI, also determines an anomalous edge with a fractional dipole moment. In 3D, we propose a dipolar
Chern-Simons theory with a quantized coefficient as a description of the response of both second-order HOTIs
harboring chiral hinge currents and of a related fracton phase. This theory correctly predicts chiral currents on
the hinges and anomalous dipole currents on the surfaces. We generalize these results to higher dimensions to
reveal a family of multipolar Chern-Simons terms and related 6-term actions that can be reached via dimensional
reduction or extension from the Chern-Simons theories.
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I. INTRODUCTION

A decade of intense effort has resulted in a thorough
classification and characterization of symmetry-protected
topological materials. For a refined classification of topologi-
cal insulators and superconductors, along with their bosonic
analogs, the concept of symmetry protection has been ex-
tended to include spatial symmetries [1—14]. In addition to
protected gapless boundary modes, some topological crys-
talline phases admit gapped edges or surfaces separated by
gapless corners or hinges. Exemplifying a much richer bulk-
boundary correspondence, insulators of this type are now
termed higher-order topological insulators (HOTIs) [15-19].
Realizations of quadrupole HOTIs have appeared in a variety
of meta-material contexts [20-22], and there is tantalizing
evidence for the existence of a 3D HOTI with hinge states
in bismuth as well [17].

While the classification and characterization of strongly
interacting higher order topological phases (or topological
crystalline phases, broadly defined) has been widely explored
[11,14,23-31], the connection between HOTIs and topolog-
ical response phenomena is still nebulous. In the prominent
examples of topological insulators, the 2D Chern-Simons re-
sponse predicts a quantized Hall conductivity in 7 -breaking
insulators, while 3D 7 -invariant TIs can exhibit quantized
axion electrodynamics [32,33], e.g., a topological magneto-
electric effect. These topological response coefficients are
quantized signatures of the symmetry-protected topology, and
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are thus robust to any perturbations as long as symmetry is
preserved and there are no phase transitions. Thus quantized
topological response coefficients can be treated as smoking-
gun experimental characteristics of TIs.

Remarkably, the topological field theory descriptions of
TIs in various dimensions, and in various symmetry classes,
are connected through a beautiful dimensional hierarchy, e.g.,
the boundary of a 3D TI with axion electrodynamics contains
a 2D Chern-Simons theory at level 1/2, suggesting the (previ-
ously known) existence a single Dirac cone at the boundary
[33]. Meanwhile, the 2D Chern-Simons response on a thin
torus can be viewed as the charge polarization response of
a 1D TI [33], and the Laughlin gauge argument [34] for the
2D Hall current maps onto Thouless charge pumping [35]
in the 1D system. It remains unclear to what extent such a
dimensional hierarchy can be generalized to HOTIs and their
interacting descendants.

In this work, we address these open issues by introducing
a set of topological multipole field theories that can be viewed
as the higher order generalization of the topological electro-
magnetic response in TIs. Parallel to the relationship between
the 1D charge polarization and 2D Chern-Simons theory, the
HOTIs we consider exhibit a topological 2D quadrupolar
response (polarization of dipoles) term [36-38], and a 3D
dipolar Chern-Simons term that can be interpreted as the topo-
logical response of a chiral hinge insulator. These topological
dipole responses exactly match the microscopic phenomenol-
ogy of the protected gapless modes at the corner/hinge, which
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exemplify the underlying bulk-boundary correspondence in
2D and 3D HOTIs respectively. Additionally, despite the fact
that the edge/surface of a HOTI is gappable, our field theory
implies that such gapped boundary regions are still anomalous
in certain symmetry classes. Finally, we complete the analogy
by briefly considering an analogy to a 4D axion dipole elec-
trodynamics.

To be more explicit, our 2D quadrupole response theory for
HOTISs describes fractionalized dipoles on the edges that are
anomalous under certain symmetry conditions (comparable
to fractional charge at the ends of a 1D system). Such an
anomalous edge carrying a fractional dipole moment is linked
to the existence of protected corner modes (or fractional cor-
ner charges depending on the symmetry), both of which are
characteristic signatures of the 2D HOTI, and can persist in
the presence of arbitrarily strong interactions.

Likewise, the dipolar Chern-Simons term in 3D predicts
a current anomaly on the hinges of a sample, which exactly
matches the phenomenology of the chiral hinge currents on
a 3D second-order HOTI with C,7 symmetry. The dipolar
Chern-Simons response theory produces a transverse charge
current (J;) in response to some configurations of electric field
gradients (d;Ey + d,Ey), as well as dipole currents J3 ,J;‘)
in the presence of an electric field (E,). We prove that the
level of the dipole Chern-Simons theory is quantized, thus
we expect the coefficient to be robust even in the presence of
strong interactions. Indeed, just as the 2D Hall conductance
is dimensionless, so is the 3D dipolar Chern-Simons coeffi-
cient, having units of & /h. Aside from the transverse current
response, our dipolar Chern-Simons term also predicts that a
3D HOTI will have a bulk magnetic quadrupole moment in
an electrostatic potential [39—41]. The magnetic quadrupole
moment manifests in the bound, circulating hinge currents,
and can be probed by placing the system in a magnetic field
gradient.

Interestingly, we can also make a connection between our
2D quadrupole response and our 3D dipolar Chern-Simons re-
sponse. In a thin-annulus limit, the 3D dipolar Chern-Simons
response dimensionally reduces to the 2D charge quadrupole
response, and the anomalous hinge currents when a flux is
threaded through the periodic direction correspond to a shift
of the 2D quadrupole moment, i.e., a they are the result of an
effective dipole current. Such a dimensional reduction struc-
ture stemming from the dipolar Chern-Simons theory sheds
light on the connection between the 2D quadrupole insulator
and the 3D HOTI with chiral hinge currents, that has already
been understood in free fermion systems[16].

In order to propose our topological response theories we
make a connection between HOTIs and parallel research in
fracton phases. Recently, distinct long-range entangled states,
transcending the conventional TQFT paradigm, and termed
fracton phases, have been discovered and intensively stud-
ied via exactly solvable models, including quantum stabilizer
codes and higher rank gauge theories [42-55]. Earlier litera-
ture shows that topological fracton order shares many features
of conventional topological order, including long-range entan-
gled ground states, and nontrivial braiding statistics. At the
same time, fracton phases have a subextensive ground-state
degeneracy depending on the system size and lattice topol-
ogy, which is beyond the paradigm of topological quantum

field theory. Fracton phases have quasiparticles with restricted
mobility such that they move only within lower-dimensional
manifolds [49,52,54,56-69]. The subdimensional nature of
fracton excitations is a consequence of subsystem conser-
vation laws whose associated charges are conserved on a
submanifold such as planes, lines, or fractals. Such strongly
constrained motion gives rise to unconventional features in-
cluding glassiness and subdiffusive dynamics [46,70].

The most salient, unifying property in fracton phases is the
immobility of individual charged particles. This immobility
results from requiring that the charge be conserved in some
set of subsystems, such as lines, fractals, or planes, rather
than in the system as a whole. Consequently, charge motion
is frozen in fracton models (at least in some directions), and
there is no charge conductivity. Instead, for phases with U(1)
subsystem symmetries the leading order transport responses
are necessarily dipolar. Similarly, in a HOTI, the topological
charge response in such insulators is absent—even though the
charge is not immobile. Instead, there appears to be a topo-
logical dipole response which describes the phenomenology
associated to gapped boundaries, and gapless corner or hinge
modes. Since the dipole response is most natural in a fracton
phase, we propose a response theory for 2D systems with U(1)
subsystem symmetry, and then connect the resulting theory
to HOTIs when the subsystem symmetry is broken down
to a global U(1) symmetry. In this sense, the HOTI can be
regarded as a trivial charge insulator but a topological dipole
insulator. We further show that a similar framework leads to
a topological dipolar response theory of the 3D HOTI with
chiral hinge modes.

The remainder of the paper is structured as follows. In
Sec. II, we discuss subsystem protected SPTs with a quan-
tized quadrupolar response and relate them to bosonic 2D
quadrupolar HOTTs. The quantized bulk quadrupole moment
engenders a protected corner mode and a fractional edge
dipole which is anomalous under C4 x 7. In particular, we
propose that the quadrupolar HOTI-type phenomenon can
exist in subsystem symmetric fracton systems where the cor-
ner mode is protected by subsystem U(l) symmetry. The
resultant field theory contains a topological quadrupole mo-
ment O-term constructed from a higher rank gauge field. In
Sec. III, we propose a dipolar Chern-Simons theory for 3D
HOTIs with gapless chiral hinge currents and compare it
with a related fracton theory described by a rank-2 tensor
gauge theory. Several experimental signatures including a
transverse topological dipole and current response and bulk
magnetic quadrupole moment can be explicitly obtained from
this dipolar Chern-Simons term. In Sec. IV, we study the gen-
eralization and extensions of the aforementioned topological
multipole responses including topological octupolarization
and multipolar Chern-Simons and axion electrodynamics in
higher dimensions. We also have several appendices contain-
ing some of the detailed calculations.

II. 2D QUADRUPOLAR RESPONSE

In this section, we introduce two classes of 2D gapped
bosonic models that each host protected corner modes. The
first class can be interpreted as a subsystem symmetry-
protected HOTI [69,71-73]. This phase has gapless corner
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modes that are protected by the combination of U(1) subsys-
tem symmetry, and time-reversal (7). The second class we
study was introduced in Refs. [24,74] and describes a crys-
talline bosonic HOTI protected by U(1) x T x C4 symmetry,
where here U(1) is global boson charge conservation, and Cy
is a discrete rotation symmetry. We will show that, despite
the difference in symmetry protection, both classes support
gapless corner modes. Furthermore, they both give rise to
a 2D charge response with a quantized quadrupole moment
qxy[15,36,37].

A. Subsystem symmetry-protected fracton phase
with corner modes

The most well-studied higher order topological phases re-
quire spatial symmetries such as spatial rotations or reflections
for protection. Without spatial symmetry one can typically
hybridize and remove the spatially separated corner(hinge)
modes through an edge(surface) phase transition without the
bulk gap closing. In this section, we introduce a new type
of interacting higher order topological phase that does not
require spatial symmetry, but instead relies on subsystem sym-
metry for protection (see more discussion of this model in
Ref. [75]).

In D spatial dimensions, a subsystem symmetry con-
sists of independent symmetry operations acting on a set
of d-dimensional subsystems with 0 <d < D. In D =2,
the subsystems in question can be lines (d = 1) or frac-
tals [44,53,71,73,76]. Here we will be interested in linear
subsystems consisting of all lines parallel to the * and J
axes on a square lattice. The corresponding d =1 sub-
system symmetry is associated with a quantum number
that is conserved separately on each line, leading to in-
teresting new possibilities for both symmetry-breaking [76]
and symmetry-protected topological [71-73,75,77] phases.
Typically subsystem symmetry-protected topological phases
contain gapless degrees of freedom along the edges of a 2D
lattice. However, here we describe a model for a new type
of subsystem SPT, which has protected gapless modes only
at the corners of the 2D square lattice. Though both types of
subsystem SPTs have connections to HOTI phases [71], the
example we present here is illuminating because it allows for
a direct field-theoretic connection between subsystem SPT’s
and HOTIs having U(1) and 7 symmetries.

The specific model we will consider is essentially a 2D
generalization of the 1D AKLT chain [78]—or more accu-
rately, a generalization of a dimerized spin-1/2 chain. In a 1D
chain of this type, neighboring spins are entangled between
unit cells such that, in the ground state, each boundary has an
effective free spin-1/2. Since quadratic spin interactions are
incompatible with 1D subsystem symmetry in a 2D system,
we instead use quartet interactions that entangle spin-1/2’s
between four different corners of a square plaquette. We will
see that, in the ground state, each corner of the lattice contains
an odd number of free spin-1/2 degrees of freedom that are
decoupled from the bulk. This leads to a higher-order topo-
logical phase whose gapless corner modes are protected by
a combination of U(1) subsystem, and global time reversal
symmetries.
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FIG. 1. There are four bosons/spins (red dots) in each unit cell
(shaded island), and each of them participates in one plaquette ring-
exchange term. Each ring-exchange term involves four bosons living
at the four corners of the plaquette interacting at the quartic level.
Bosons at the edges can also be gapped using quadratic terms, but
only within the unit cell. A single boson zero mode (alternatively
free spin-1/2) survives on each of the corners and is protected by 7
and U(1) subsystem symmetry.

More precisely, consider spins arranged on a square lattice
as shown in Fig. 1. There are four spins (red dots) per unit cell
(shaded island), and each spin independently interacts with
one of the four plaquette clusters adjacent to the site via a
ring-exchange coupling,

HQ = Z (SE,1Sl;“re;(,SSE+EX+6);,4Si+€y,2 + H‘C’)’ (1)
R

where S* = o* 4+ io”, R labels each unit cell, e,, ey represent
unit distances between cells in the x and y directions, and
1,2, 3,4 are the degrees of freedom in each cell as labeled
in Fig. 1.

This Hamiltonian has a global time-reversal symmetry 7
that flips each spin, and a subsystem U(1) symmetry for in-
plane spin rotations in each row or column

T = Kio”,
Uty T 5. )

Jjerow

The subsystem U(1l) symmetry acts only on the four spins
inside each unit cell in each row or column, and rotates the
spin around the S, axis. Hence, subsystem U(l) symmetry
preserves the total S, charge along any row or column, and
forbids any spin-bilinear coupling between unit cells. Further-
more, the global 7 symmetry forbids terms in the Hamiltonian
that polarize the spins, and would be spontaneously broken in
the presence of magnetic order.

To gain intuition for this model, we can interpret the Pauli
spin operators in terms of hardcore bosons:

o +icd=a', o —ic’=a, o‘=da-— 1/2. 3)
Each hardcore boson has a restricted filling ata=0,1, and
the states |[0) and |1) = a'|0) carry a U(1) charge Qf —1/2
and 1/2, respectively. The boson creation operator a' creates

an S, = 1 magnon excitation by changing S, — S, + 1. The
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Hamiltonian in Eq. (1) can be translated into the hardcore
boson language as,

_ il T
Hp = — Z (aR,1aR+ex,3aR+ex+ey,4aR+ev,2 + HC) “
R

In this language, the subsystem U(1) symmetry becomes a
phase rotation for the bosons on specific rows/columns,

U™(1):a; — e%aj, jerow. 5

Additionally, 7 acts as a particle-hole symmetry for the hard-
core bosons,

T (1) = 10), 10) > —[1), (6)

a— —d', a - —a. @)

We now investigate the properties of the ground state of (4).
This Hamiltonian generates a boson ring-exchange interaction
among 4 of the hardcore bosons around each plaquette, as
shown in in Fig. 1. The interaction term projects the four
bosons around the plaquette to a maximally entangled state
[0;151504) 4 ]1,0,0514). Since terms on different plaquettes
involve different boson flavors at each site, all plaquette op-
erators commute and can be simultaneously minimized. Thus
the system is gapped with periodic boundary conditions, with
a unique ground state given by

1Wo) = [ [ (101121504)p + [11050514) ), ®)
P

where the subscript P labels plaquettes on the square lattice
which are coupled by the ring exchange terms in Eq. (4).

It is straightforward to see that |\W,) preserves both sub-
system U(1) and 7. First, in each configuration that makes
up ground state, the net charge along any row or column of
the square lattice is exactly zero. In fact, the dipole moment
of each plaquette in this ground state is also exactly zero.
Second, since 7 interchanges the states |1) and |0), and in-
troduces a minus sign, the ground state of each plaquette is
invariant under 7 since there are an even number of empty
states that are flipped to filled states. Thus the 7 symmetry
(i.e., the particle-hole symmetry for the bosons) is manifest.

The quasiparticle excitations above this gapped ground
state are fractonic in the sense that they exhibit restricted
mobility. Since the U(1) charge is preserved on each row
and column, an isolated charge is immobile as long as the
subsystem symmetry is preserved. Additionally, while dipoles
can move, they are restricted to move only in the direction
transverse to their dipole moment. In contrast, quadrupolar
excitations can be fully mobile in 2D.

Now we can explore the properties of the edges and corners
of the ground state |Wy). If we have an edge termination as
shown in Fig. 1, we find that each edge contains two dangling
spins (or hardcore bosons) per unit cell. The two spins in the
same unit cell can be paired into a |01) — |10) state while
preserving subsystem U(1) and 7. Interestingly, pairing spins
between different unit cells with bilinear spin couplings along
the edge is forbidden by subsystem symmetry.

At the corner unit cell, there are three dangling spins.
Two of the spins can be gapped into a symmetric bilinear
state |01) — |10), which leaves one spin-1/2 as a zero mode

with twofold degeneracy. This corner spin-1/2 is protected by
subsystem U(1) and global 7 symmetry, and is robust under
any symmetry allowed perturbation. One typical way to gap
out the corner mode is to hybridize two corner spin-1/2’s
on neighboring corners via an edge phase transition (while
preserving the bulk gap)[24]. However, since total spin S, on
each row/column is conserved, such corner spin hybridization
violates the subsystem U(1) symmetry. Thus, unlike HO-
TIs, whose corner modes require some spatial symmetry to
be protected, the subsystem-SPT model in Eq. (4) only re-
quires subsystem U(1) and global 7 symmetry. However, as
subsystem symmetry implements a spatially dependent U(1)
transformation with charge conservation on submanifolds, it
is not exactly an internal symmetry. Instead the U(1) charge
conservation is intertwined with the spatial degrees of free-
dom. We note that because of the fracton-like nature of its
excitations, our subsystem protected HOTI can be viewed
as a symmetry enriched fracton model with protected corner
modes.

Now let us consider how the topology is destablized if we
remove symmetry. If we allow for 7 -breaking then we can
just polarize the corner spin to remove the degeneracy. On
the other hand, if we break the subsystem U(1) down to a
global U(1) symmetry, one can merge the two corner modes
along the edge and hybridize them via an edge transition. We
could prevent this if we required a spatial symmetry, e.g.,
a C4 rotation symmetry. Having C4 symmetry, the system
would have four identical quadrants, each containing an odd
number of spin-1/2s on the boundary (which includes the
corner). As each equivalent quadrant contains an odd number
of spin-1/2’s, it is impossible to have a unique 7 invariant
ground state due to Kramers’ degeneracy. Here the rotational
symmetry ensures that the unpaired spin-1/2’s are separated
by a distance on the order of the linear system size, and hence
cannot be coupled by any local interaction. Thus we find that
if we demote the U(1) subsystem symmetry to a conventional
global symmetry, we can retain protected modes if we require
C, symmetry. This would give rise to a bosonic HOTI with
C, x T x U(1) symmetry as discussed Refs. [24,74]. We will
describe this second type of HOTI in more detail in Sec. II C,
but for now we move on to the topological response properties
for our model with subsystem symmetry.

B. Topological quadrupolar response to external
higher rank fields

The robustness of the corner zero modes, and the
symmetry-protected topological phase in general, can be
made apparent using a low-energy effective response theory
exhibiting quantized quadrupole moment density (which we
denote quadrupolarization). Since the hardcore boson model
in Eq. (4) has subsystem U(1) symmetry, we can introduce
a higher rank (rank 2) background gauge field Ay, that mini-
mally couples to the ring exchange term [44,56,65,69]:

_ i iAo (R)
Hp = §:[aR,1aR+ex,4aR+ex+ey,3aR+ey,26 ® +Hel].

R
€))

We denote A,, as the gauge field living in the center of
each plaquette that couples with the dipole current J,,(R) =
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(ia;r{,1aRJrex’4a;+gr+ew3aR+eW2 + H.c.). The dipole current is
exactly the ring-exchange term on the plaquette, and can be
viewed as a dipole oriented along x hopping along y, or vice
versa. We also introduce a time component Ag of the gauge
field, that couples with the total charge density p = o* + 1/2.
These gauge fields transform under gauge transformations «
as

Ay = Ay + Oy, Ag — Ag + da. (10)

There is a single gauge-invariant combination of these fields,
Eyy = 0,0yA0 — 0;A,y. 11

In the gapped subsystem symmetry-protected phase, we
expect to find a generalization of the Goldstone-Wilczek (po-
larization) [79,80] response that is found in 1D SPTs with
protected end modes. The 1D polarization response is char-
acterized by

0 0
Lp = —(0A0 — 0A;) = —E,, (12)
2 21

where the polarization is P = %. Because 0 is periodic mod-
ulo 277, a term of the form (12) is allowed even in the presence
of spatial or internal symmetries under which the electric field
is odd, such as reflection or particle-hole symmetry. In the
presence of such symmetries, 6 is quantized, and can take
only the values & = 0, 7. A nontrivial 1D symmetry-protected
topological phase can be characterized by a background 6 =
7 configuration, and thus has a quantized polarization P =
1/2.

Our rank-2 gauge theory in 2D admits a generalization of
this topological response theory, described by the quadrupo-
larization 6 term,

0 0
Ly = g(axaon —0,Ay) = EEX“V' (13)

As we will show at the end of this section, 6 is defined modulo
27 . Hence even though the electric field Ey, = 9,0,A¢ — 0;A,
is odd under 7 symmetry

T :Ay) = —Ap, Ay = —Ayy, (X, 3, 1) = (X, ), 1)

(which here acts as a PH symmetry), such a term is symmetry-
allowed provided that 6 =0, . Hence, the action (13)
describes the response of a subsystem-SPT, with a coefficient
6 that is quantized in the presence of 7~ symmetry.

We now consider the nature of the charge response de-
scribed by (13). The action describes the following charge and
dipole current response:

1
jo = ——0,0,0, 14
Jo T 'y ( )
= 0,0 (15)
Jxy = b 10,
where jj is the charge density response % and j,, is a
dipole current response %(x dipoles carried in the y direc-

tion or equivalently y dipoles carried in the x direction). By
comparing these equations with the expected properties of

a quadrupole moment g,, [15,39], we can identify the bulk
quadrupole moment to be g, = %. Similar to the dipole
moment of the 1D topological insulator, we find that in the
rank-2 case, ¢,y is quantized in the presence of time-reversal
symmetry. Interestingly, no matter what the space-time depen-
dence of 6 is, our response theory does not predict any bulk
charge currents, i.e., no response terms for j;, and thus no
changes in the bulk polarization. The action (13) does predict
fractional charge on corners at the intersection between edges
with normal vectors X and . At such a corner, which we can
heuristically model as a product of step functions in the 6
field, we have jo = 9,0y = ++-8(x — x9)8(y — yo), where
(x0, yo) is the position of the corner. For & = m, this indicates
the presence of a half-charge localized to the corner. In the
spin language, the corner response with half the charge of
local bulk excitations corresponds to an unpaired spin-1/2
zero mode. The 7 symmetry, having effectively 72 = —1 for
the corner spin, ensures the Kramers’ spin degeneracy at the
corner cannot be lifted by a Zeeman field. These results all
match the expected phenomena from the microscopic model.

Finally, since j,, is a dipole current (i.e., it is the current
that minimally couples to the gauge field A,,), Eq. (13) indi-
cates that adiabatically changing 6 in a cycle from O to 27 as
a function of time creates a bulk dipole current. This process
has the net effect of pumping a dipole between two parallel
boundaries, i.e., an x-oriented dipole in between two y bound-
aries or vice versa. This is the dipole analog [16] of Thouless’
adiabatic charge pumping [35]; indeed, the charge pumping
effect is captured by the original Goldstone-Wilczek response.
From conventional electromagnetic arguments, a dipole cur-
rent is connected to a change in the quadrupole moment [36],
just as we find here, and it confirms our identification of the
quadrupole moment as g, = %.

We can also argue that this response is quadrupolar by care-
fully keeping track of the boundary responses arising from
Eq. (13) assuming that 6 can depend on position. By taking
the action Sp = [ d*xLy we can carefully integrate the first
term by parts until Ay is not acted upon by any derivatives.
Assuming the possibility of boundaries, we find that taking the
functional derivative of the action to obtain the charge density
yields a set of terms

1
-(2D)
]0 = E Bx 8V9 R

1
(1D
i = — - @0l +0,01,).
Oy
.(0D) — X,y 16
.]0 27_[ ’ ( )

where the notation |,, indicates evaluation on edges perpen-
dicular to x;, and [, , indicates evaluation on the corners. We
note that the superscript on the charge densities represents
the dimension, and thus the units, i.e., 2D indicates charge
per area, 1D is charge per length, and OD is just charge.
Let us consider a semi-infinite corner geometry where one
edge normal to X and one edge normal to § intersect at a
corner. If we take a configuration where € is uniform in the
bulk then the first line in Eq. (16) vanishes. The third line
represents a direct contribution to the corner charge, and there
are then two edge contributions on the second which we can
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interpret as arising from edge polarizations using the defini-
tions P)__ .. = 2 = P’ . Thus we can use the definition
y—edge 2 x—edge

of the quadrupole moment[15] to find

qxy = P;—edge + P)f—edge — Qcorner = (17

27’
as claimed.

Now let us return to the issue of the periodicity of & modulo
2m. First, we can give a physical argument by observing that
changing 6 by 27 does not change the low energy topolog-
ical properties of our response theory. Specifically, taking
0 — 6 + 2m corresponds to adding an integer S, charge to
the corner, which forms a representation under 7 that does
not support Kramers’ degeneracy. Such a representation can
always be gapped out while preserving symmetry, so we ex-
pect that shifting & by 27 does not change the nature of our
subsystem-SPT.

To see how the periodicity of 6 arises at the field theoretic
level, we first review the analogous situation in I1D. If 6 is a
constant in space-time, the 1D Goldstone-Wilczek action (12)
is a total derivative, so naively one expects the action to be
0 with periodic boundary conditions (PBCs) in space-time.
However, in a compact U(1) gauge theory the gauge fields
need not be strictly single-valued under PBC’s; rather, A, ()
and A, (t + T') (where T is the periodicity of the system in
the time direction) may differ by 2wn/L, for integer n. This
amounts to allowing a large gauge transformation (LGT) to
occur at some point in time. The LGT changes [ A.dx by
2m, and is thus a 27 flux insertion that leaves all physical
quantities single-valued in time. However, in the presence of
such large gauge transformations, the integral of the electric
field need not be zero; rather, we have

0 (L T
— dx/ dtE, = 0n. (18)
2 0 0
Thus shifting 6 by 27 shifts the action by 27, at most, and
this does not change the partition function of our theory.

A similar argument holds for our 2D response theory. Since
subsystem symmetry ensures that the charge is conserved on
each line, then LGTs for the rank-2 gauge field can change
the line integral of A,, along a specific row or column of
plaquettes, e.g.,

/ Ay (x. y)dx = 278 ()

or /Axy(x, V)dy = 2w 8(x;). (19)

Again, if such a LGT occurs at some point in time, the space-
time integral of the higher-rank electric field is not zero; rather
it is quantized in integer multiples of 2, such that

I} T
_ / dxdy [ dt(3,0,Ag — dA,) = 6On.  (20)
2 0

Thus shifting 6 by 27 does not affect the path integral, and as
such we have 0 = 6 + 27. In Appendix A, we provide more
discussion of this ambiguity/periodicity.

Analogous to the 1D TI, the periodicity of 6 implies that
in the presence of 7 symmetry (under which E,, is odd), 6
is quantized and must take one of the two values 0, 7. Hence

the associated quadrupole moment ¢, = % is quantized. We

have argued above that the nontrivial SSPT phase has 6 =,
while the trivial subsystem-symmetric insulator has 6 = 0.
Since the combination of U(1) subsystem and 7 symmetry
ensures that 6 cannot change continuously, the existence of
a term Eq. (13) in the response thus describes a many-body
property that cannot change without a phase transition in
the presence of these symmetries. Our response theory thus
characterizes features of the boson SSPT HOTI phase that
are robust to symmetric perturbations of the Hamiltonian in
Eq. (4) away from the exactly solvable limit.

C. Breakdown to global U(1) symmetry

So far we have discussed an unconventional SSPT HOTI
phase with a quadrupolar response. Now we will explore how
this model is connected to a more conventional quadrupole-
like model, which is essentially a bosonic version of the
original quadrupole model from Ref. [15]. Our starting point
will be the Hamiltonian of Eq. (4), which was introduced
in Refs. [24,74] as a model for a bosonic HOTI protected
by C4 x T x U(1)giopa Symmetry. Since the exactly solvable
Hamiltonian (4) is fine-tuned to a point with subsystem sym-
metry, we must understand the effect of perturbations that
break the subsystem symmetry to a global one, while preserv-
ing 7. As noted above, to ensure that the gapless corner modes
are robust, we will also require C,4 rotation symmetry. Thus,
for example, we now allow spin bilinear interactions to Eq. (4)
that break subsystem U(1), but still maintain C4 x 7 x U(1).
We will find that allowing such terms preserves the quantized
quadrupole moment and gapless corner modes—but that the
physical content of the two models differs in some subtle, but
interesting, ways.

A quadratic Hamiltonian with the correct symmetries is
given by

_ i +
Hp, =« 2 : (aR.laR+eX,3 t AR 2R e, 4
R

i +
T AR 19R 44 T AR 2R e, 4 T He). (1)

This Hamiltonian is a bosonic version of the quadrupole band
insulator described in Ref. [15], with global (but not sub-
system) U(1) symmetry, as well as C; and 7. If we add a
small Hy, to the Hamiltonian (4), and preserve both 7 and
C, rotations, the gapless corner modes remain robust, since
the combination of 7 and C4 symmetries prevents a boundary
phase transition, and the bulk remains gapped. The resulting
phase is a HOTI, which is closely related to the subsystem
SPT described in the previous section. Indeed, it was shown
in Ref. [81] that one can tune the parameter k until the system
is well-described by the quadratic Hamiltonian Hy, without
closing the bulk gap and while preserving the symmetries;
thus Hy, can be used as our basic model for the HOTI phase.
We note that since the model preserves C; symmetry the bulk
dipole moment of the system remains quantized throughout
this process, and since it starts with a vanishing value the
polarization remains vanishing.

We will now leverage the relationship between Hy, and Hyp
to derive a topological response theory describing the phase
realized by Hy... We know that this model has a quantized bulk
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quadrupole moment g,, = 1/2, and symmetry-protected gap-
less corner modes[24,74], but once the subsystem symmetry
is explicitly or spontaneously broken, the tensor gauge field
A,y in Eq. (13) no longer exists. Thus, in order to describe a
response theory, we must couple the hardcore bosons with a
rank-1 vector U(1) gauge field A,,. To understand how to do
this, it is useful first to ask how a rank-1 gauge field couples
to dipole currents of the type that occur in our subsystem
symmetric model. Such dipolar currents do not couple to the
gauge field itself, but rather to its gradients: for example, a
current of dipoles with dipole moment aX (a being the lattice
constant) moving parallel to the y-axis couples to §,A, =
Ay(x+a,y) —Ay(x,y), and similarly for a$ dipole moving
parallel to the x-axis which will couple to §,A,. Thus we
could in principle replace the rank-2 gauge field A,, in the
subsystem symmetric Hamiltonian (9) with a linear combi-
nation of §,A, and 6,A,. In the absence of magnetic fields,
all such combinations are equivalent, since on each lattice
plaquette

5,Ay = 8,A, + B. (22)

Moreover, the dipole currents allowed by subsystem symme-
try do not couple to magnetic fields, since processes in which
a single charge hops around a plaquette are prohibited. Thus
we expect a response theory describing subsystem symmetric
systems to be compatible with taking B = 0. We use this
liberty to choose a combination of gauge field gradients that
preserves C4 symmetry, i.e.,

Ay = (A + d,A), (23)
where
C4 : (x, y) - (_ys )C); (Axs Ay) - (_Ays Ar) (24)

Interestingly, making the substitution (23) into Ly, we
recover the standard coupling of the quadrupole moment to
a gradient of the electric field as proposed by Refs. [36,37] to
describe the quadrupole response of higher-order insulators:

0
Loy = E(BXByAO — 0,(8,Ay + 8,A,)/2)

0
= E(axEy + 8yE)c)’ (25)

where we have identified g, = %. Since Ly, is odd under
C4 rotations, requiring this symmetry will restrict 6 to take
on the values 0, w, as before, provided that we can show
that @ is periodic modulo 27. Such periodicity in this case
is more subtle than for the higher rank theory since, unlike
A,y, we expect the electric fields E, and E, to be single-
valued, such that for a closed system f dzxL'Q* = 0, rather
than an arbitrary integer. However, for neutral, unpolarized
systems, we argue in Appendix A that 0 is periodic mod-
ulo 27 in this case as well. Thus we identify the nontrivial
HOTT phase with the response for & = m, and the trivial one
with 6 = 0.

We note that since Ly, is also odd under 7 symme-
try (which acts as PH symmetry for hardcore boson), this
symmetry is also sufficient to restrict 6 to the values 0, 7,
and therefore to quantize the quadrupole moment. Thus one
might naively conclude that the HOTI requires either 7 or Cy

rotations for stability. However, it is easy to see that this can-
not be the case: On one hand, in the absence of C4 symmetry,
we can add 1D SPT chains only on, say, the two parallel
x boundaries. This adds a second free spin-1/2 degree of
freedom to each corner, which can hybridize with the existing
corner-bound spin-1/2, leading to fully gapped corner modes.
On the other hand, in the absence of 7 symmetry, the degener-
acy of the free spin-1/2 mode at the boundary can be lifted by
an external Zeeman field. In the hadrcore boson language, this
Zeeman field is akin to a background chemical potential that
breaks the PH symmetry. Thus both 7 and Cs symmetry are
essential to protecting the corner modes and HOTI phase. This
is consistent with the situation for noninteracting quadrupole
HOTIs where it is known that a quantized quadrupole moment
by itself does not require corner zero modes [15]. We will
return to this point shortly.

Let us take a moment to consider other possible topo-
logical response terms that are compatible with the physical
constraints and symmetries. First, in order for a system to
exhibit a well-defined quadrupole moment, its net dipole
moment must vanish—meaning that we must consider re-
sponse theories describing a system at energy scales below
its charge gap. In other words, our response must describe
dipole currents, and have vanishing bulk polarization, i.e.,
our response Lagrangian should not have any terms propor-
tional to the (rank 1) electric field, and instead should at
most have terms proportional to derivatives of the electric
fields. Of the possible leading-order terms of this type, two
are odd under C4 rotations (and thus may exhibit quantized
coefficients): Eq. (25) which we are already considering, and
Lo = %(&CEX — 0yE,). The latter term can be obtained
by rotating Lo, by 45 degrees and represents a quadrupole
component ¢g,>_,». Since we are considering response theories
motivated by lattice models with discrete rotation symmetry,
itis unlikely that both Ly, and Ly, would appear as response
terms in the same lattice action since a 45° rotation is not
an allowed lattice rotation symmetry. The remaining possible
actions at this order are either fixed to be 0 once we require
the total charge, dipole, and magnetic field to be zero, or do
not exhibit quantized coefficients.

Let us now review the phenomena associated with the
HOTI response Ly, at 6 =m. As in the subsystem sym-
metric case, at the edges of the HOTI the value of 6 jumps
from 7 to 0, and for a corner located at (xp,yg) we have
%Bxa)ﬁ = (£1/2)8(x — x0)8(y — ¥p), indicating a half U(1)
charge, or a free spin-1/2. In addition to the corner charge, and
unlike Ly, this response can exhibit charge currents when-
ever 9,0;0 # 0 (derived from the variation of the response
action with respect to A;), and bound polarization density
whenever 9;6 # 0 (derived from the variation of the response
action with respect to E;). These two properties are also
consistent with the interpretation of 6 as a 2D quadrupole
moment [39]. Thus this response has richer features than
the SSPT case because the conservation laws are much less
constraining.

It is interesting to contrast the response theory (25) with
that of just a trivial 2D bulk system with 1D SPTs glued on the
system’s boundary. Indeed, on a system with open boundaries,
f d3xL g, is a pure boundary term itself and can be decom-
posed into a Cy symmetric combination of 1D topological
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polarization 6 terms localized on the four edges:

6 6 6
BPx—E, + OE) = | dydt| —Ey|x—o — —Ey|x—
/ x4ﬂ_( J+ 'y ) / y |:47T )l 0 dr )| Li|

0 0
+ dxdt EEH),:O — EE)C'.V:L .
(26)

When the 6 = r, the globally C4 symmetric edge polarization
terms at each of the four boundaries carry a dipole moment
with magnitude 1/4 [cf. Eq. (12)]. In contrast, any 7 - invari-
ant 1D system we add to the boundary will have the response
f dldxedgei'—,’fEedge, where 6,p takes the discrete values 0, 7.
Hence, despite the fact that our response theory describes the
same type of boundary polarization response that a 1D SPT
would generate when added to the edge, the action in Eq. (26)
is incompatible with U(1) and 7 symmetry in a purely 1D
system, and the fractional edge dipole moment implied by
Eq. (26) can exist only at the boundary of a nontrivial bulk
SPT, e.g., our HOTI phase. Indeed, adding nontrivial SPT
chains on the four edges in a C, invariant way is equivalent to
shifting the bulk value of 6 by 27, and hence does not change
the phase. Correspondingly, the additional pair of zero modes
added at each corner in this process can be gapped out locally
in a symmetry preserving manner.

We can also revisit the topological symmetry protection
by using our response theory to understand why both 7 and
C, symmetry are necessary to protect gapless corner modes.
First, we observe that in the absence of 7 symmetry, the
polarization of any 1D SPTs added to the edges are no longer
required to be quantized. Hence, since the amount of 1D
polarization that can be added to the edge can take any value,
the 1/4 polarization on the edge induced according to Lo,
is no longer anomalous since it can be removed by a suitable
choice of 1D system. It follows that if T is broken at the edges
of our system, we may get rid of the P.goe = 1/4 polarization
response by decorating the boundary of our system with 7 -
broken 1D systems in a Cs-invariant way; hence neither the
boundary polarization nor the corner modes are robust in this
case.

Conversely, suppose that we do not require C4 symmetry,
but only reflection (R,, Ry) and 7 symmetries. We mentioned
above that one can remove the corner modes in this case by
adding 1D SPT chains along, say, the two x boundaries, in a
reflection symmetric manner, so that the additional end modes
of the SPT chains can hybridize and gap out the corner modes.
From the response theory perspective, the removal of the edge
polarization in one direction is equivalent to modifying the
bulk action to obtain

L="Z(E0,E, + (1 — £))E,), @7)

2
2
where £ € [0, 1]. Regardless of the value of &, one can still
apply the arguments in Appendix A to show that 6 is eqiu-
valent mod 2. In combination with the refection symmetries
R,, R, this requires 6 = 0, . Symmetry thus allows us to add
terms to our starting action to obtain an action with, e.g., an
edge polarization of Py eqee = 1/2,

1
L= EEyLr:O,L (28)

when & = 1. Since this boundary response can be produced by
a purely 1D system, the quadrupole term in Eq. (27) does not
describe an anomalous boundary polarization in the presence
of reflection symmetry. Thus our response theory shows that,
just as for free fermions [28], in interacting bosonic systems
a quantized quadrupole moment alone does not necessarily
predict a bulk HOTI with protected corner modes. Rather, a
HOTT occurs when the quantized quadrupole moment requires
a boundary theory that is anomalous under one or more sym-
metries, guaranteeing protected gapless corner modes.

In summary, the quadrupole responses described in
Egs. (13) and (25) illustrate the parallels between subsystem-
symmetry-protected and HOTI phases. Though their different
symmetries ensure that these are distinct phases of matter,
many key features of the associated topological response are
closely analogous. Essentially, this is because both describe
a topological dipole response with quantized quadrupolariza-
tion. In the SSPT phase, this is the only possibility, since
subsystem symmetry does not allow for mobile charges. For
the HOTI, a more conventional charge response is allowed
by symmetry; however, to obtain a well-defined quadrupole
moment we must assume a large bulk charge gap, and sym-
metries that quantize the polarization such that the bulk dipole
moment is exactly zero. This, in turn, leads to a low-energy
response best described in terms of dipole phenomena; we
find that the same type of topological dipole response associ-
ated with the SSPT uniquely characterizes the corresponding
possible HOTI phases in the presence of U(1),7, and Cy
symmetries. In addition, unlike the SSPT phase the HOTI
boundary displays fractional 1D polarization Pegee = 1/4 that
can never be manifested in a pure 1D system with 7 sym-
metry. Such an “anomalous edge dipole,” despite arising from
a gapped edge, must be accompanied by a nontrivial 2D bulk
quadrupole insulator with gy, = 1/2. The relation between the
bulk quadrupolarization and ‘“anomalous edge dipole” cap-
tures the intrinsic nature of the HOTI response and exemplifies
a bulk-edge correspondence. Finally, we note that despite
these differences both phases have a Z, classification sense
two copies of each will exhibit integer corner quadrupole
moments.

We will see in Sec. IV that a similar approach can be
applied to other higher order topological phases in various
dimensions. However, before we move to 3D, we will spend
the next two sections discussing additional descriptions of
the fracton SSPT and HOTI phases that provide alternative
perspectives of our models and topological responses.

D. Parton construction perspective

Our previous discussion has shown a clear relationship be-
tween SSPT HOTT and conventional HOTI quadrupole phases
that is established by breaking the subsystem symmetry down
to a global symmetry. Importantly the bosonic HOTT inherits
key topological features including protected corner modes and
a quadrupolar response. We also showed how this response
can be reduced to a boundary response theory exhibiting a
fractional polarization of 1/4 that is incompatible with 7T~
symmetry in a purely 1D system. This anomalous boundary
response characterizes the HOTI phase, and in this section we
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FIG. 2. Parton state for A(blue/left) and v(green/right) bosons.
The full system has these two layers superimposed. Each parton
resides in a 1D SPT chain. On the boundary rows, the dangling spins
are paired within the site so there is only one nontrivial SPT chain per
edge. Both parton types contribute a single protected corner mode on
each corner that eventually projects to a physical boson corner mode
a = hv.

will give an interpretation of this anomalous edge polarization
in terms of partons.

We begin with the SSPT HOTI and decompose the hard-
core boson into two partons as a = hv. The fields A, v are
quasi-one-dimensional, horizontal and vertical bosons that
only couple along the x or y directions, respectively. Both
partons carry half of the U(1) charge of the boson, and are op-
positely charged under an auxiliary U(1) gauge field b, which
emerges since taking v — e“v, h — e~®h does not change
the physical boson operator. Substituting @ = hv into our ring
exchange model, we obtain four /4 and four v partons per
unit cell, and the ring exchange term becomes an eight-parton
cluster interaction around a plaquette.

We choose a mean field ansatz by taking (v;vRJreX) =

(hI{hRﬁLe}.) = t. The ring exchange term becomes

3 + +
H=0Y" (v} VRte,3 + Vg 20R e
R

+hy (hRse 4+ g shRie, 4+ HC). (29)

This mean-field Hamiltonian describes a pair of decoupled 1D
SPT chains running through each unit cell along the x (y)
direction for the v (&) boson, as illustrated in Fig. 2. At the
mean-field level v (h) bosons are mobile only along the x
(y) direction, and thus couple only with b,(b,). Hence, our
mean-field ansatz breaks subsystem symmetry, since the par-
ton charge of v (h) is only conserved on each row (column)
(i.e., it couples to the a conventional rank-1 gauge field in
one direction). However, once we project onto the physical
Hilbert space, where the number of v and / partons on each
site must be equal, the physical boson charge is conserved in
all rows and columns, and we expect subsystem symmetry to
be restored.

Now let us consider the system with open boundaries as in
Fig. 2. On each edge unit cell there are four v partons and four
h partons. On vertical edges, two out of the four v partons are
paired to partons on adjacent boundary sites by the original
Hamiltonian (29), forming a single vertical 1D SPT chain of
the v partons. Similarly two of the four /4 partons are coupled
to adjacent bulk sites, forming a pair of horizontal 1D SPT
chains of & partons. Away from the corner, the remaining pair

of v and & partons may be paired up in an on-site fashion
without violating subsystem symmetry.

Similar considerations apply to the horizontal edges, with
the roles of v and 4 interchanged. Thus at the corners, where
the vertical and horizontal edges meet, both parton species
contribute only one unpaired zero mode.

At mean-field level, therefore, our system has the following
response theory that encodes the nontrivial edge polarization
in terms of the auxiliary gauge field b, and the external U(1)
gauge field A:

6,
Lpa= 5 (Blbo + A0/2) = 8 (s + Ac/2))s=0
0,
— 3 (@ulbo + Ao/2) = (b + Ac/2))yot
T
0
+ ﬁ(ay(—bo + Ag/2) — 0 (—by + Ay/2))s—0

0
- ﬁ(ay(_bO +A0/2) = 0 (=by + Ay/2))x=r, (30)

where we require 0, = ), to ensure C; symmetry. Equiva-
lently, in bulk form,

Oy
Epa = Ea\(ax(bO +A0/2) - at(bx +Ax/2))

+ 29—;;8)6(8),(—170 +Ag/2) — 0, (=by +A,/2)). (31)
Here 6, 6, = 7 in the bulk and are zero elsewhere. The first
two lines of Eq. (30) denote the charge polarization of the v
parton on the two x boundaries, and the last two lines denote
the charge polarization of the 4 parton on the y boundaries.
Since v, h carry =1 gauge charge for b, and half a U(1)
charge for A, this description provides a simple interpreta-
tion of the 1/4 polarization on the edge of the SSPT HOTI
phase. Namely, focusing on the electromagnetic response to
A,, we have a usual 1D SPT phase on the edge, but it is
made of half-charged partons. Thus the usual electromagnetic
boundary polarization of 1/2, combined with the half-charge
of each parton, leads to a net polarization of 1/4. Additionally,
at the corners 6y, 6, each contribute a charge of 1/4, yielding
a physical charge of 1/2 on each corner, as expected.

Going beyond mean field, we expect that including dy-
namics of the compact U(1) gauge field b [i.e., adding an
( fli’;))z] will lead to confinement due to instanton proliferation
in 2+1-D. Furthermore, since in the microscopic model we
know that the edges are gapped, and in general 141D gauge
theories do not have a gapless propagating excitation, we do
not expect this conclusion to be modified in the presence of
boundaries. In this event, the two partons v, & can appear only
as the bound state a = hv. Correspondingly, the two charge
1/4 corner modes from v and 4 individually are projected to a
single charge-1/2 corner mode of a.

Since C4 symmetry guarantees

0, =60,=6, (32)

the effective electromagnetic response is

0
L= g(ayaon — 0;(0:Ay + 0,A,)/2). (33)
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FIG. 3. 2D Topological quadrupole insulator with four spinless
fermion orbitals per-unit cell. Each intra- and intercell plaquette
contains a 7 flux. The fermion only hops along the blue bonds
within each plaquette. The dotted lines represent hopping terms with
a relative minus sign compared to the solid lines. The edges resemble
gapped SSH chains and the corners carry a fermion zero mode.

Since confinement effectively imposes subsystem charge con-
servation, there is no vector gauge field, and we can make
the replacement (9,A, + d,A,)/2 = A,,, which exactly repro-
duces the quadrupole response from Eq. (13).

E. Generating bosonic HOTI via fermionic topological
quadrupole insulator

To complete our discussion of bosonic quadrupolar re-
sponse theories in 2D, we show how the strongly interacting
bosonic HOTI with quantized quadrupole moment [24,74]
is connected to the noninteracting fermionic topological
quadrupole insulator from Refs. [15,16]. More precisely, we
will show how the bosonic HOTI Hamiltonian (21) arises by
coupling a pair of fermionic topological quadrupole insulators
to a layer of local bosonic degrees of freedom.

Let us begin with a bilayer of the topological quadrupole
insulator model proposed in Refs. [15,16]. Each layer is a
square lattice and consists of four spinless fermion orbitals
per unit cell as shown in Fig. 3. The tight binding lattice model
for the quadrupole insulator has dimerized couplings in the x
and y directions with an intracell coupling y, and an inter-cell
coupling A, where we take |A| > |y| to put each layer in a
HOTT phase. Another key feature of the model is a & flux in
every inter- and intracell plaquette. In Fig. 3, we have shown a
gauge choice were the dotted line represents a relative minus
sign compared to the other hopping terms. This model has
mirror symmetries M., M, and C; symmetries up to a gauge
transformation.

Let us take the fermions in the first (second) layers to have
spin up (spin down) respectively; we denote the corresponding
fermion operators as fTJf ( ff). Apart from the usual EM charge
that couples to A, the bilayer system contains an additional
U(1) symmetry associated with conservation of S%; the corre-
sponding charge is the difference in fermion number of the
up and down spins. We will associate a spin- U(l) gauge
field A® with this second U(1) symmetry. Provided both layers

are identical, the bilayer system is also invariant under the
usual time-reversal transformation that interchanges spin-up
and spin-down fermions having 72 = —1, as well as under a
second antiunitary symmetry that acts trivially on the spins.
Though the topological quadrupole insulator has a Z, clas-
sification, with this additional interlayer U(1) symmetry, the
interlayer coupling between two corner modes either breaks
U(l) or 7 symmetry.

Next, we couple the bilayer of fermions with a layer of
external Kondo spin degrees of freedom arranged on a square
lattice. We choose a setup like that illustrated in Fig. 1 with
four spins per unit cell, but without any interspin coupling.
The four onsite spins are labeled as 1, 2, 3, 4 in the same
way as the fermion labeling in Fig. 3. If we express the spin
operators in terms of hardcore bosons a’, then the we can
represent the coupling between these Kondo spins and the
itinerant electrons via the interaction:

8(f) 1 fraal + £l frad] + [l fr a0l + f] 4 fraal + He)),
(34)

in each unit cell. Since a' is electrically neutral, but raises
S? by 1, this induces an effective tunneling between the two
quadrupole insulator layers that conserves S°.

If we assume g is small and implement a perturbative ex-
pansion from a topological quadrupole insulator Hamiltonian
with y =0 (which represents the HOTI state with zero-
correlation length), the effective interaction between Kondo
spins is

_ il T
H=¢ Z(aR,laR-fex,S T AR 20R e, 4
R

+ “I{,laRJre),A + “I{,2“R+e,,4 +H.c.). (35)

This exactly reproduces the bosonic HOTI model in Eq. (21)
which has a topological phase protected by U(1) x T x Cy
symmetry, where here U(1) is conservation of S°. Based on
our previous discussions, this system will exhibit a quadrupo-
larization response

1
fom Lok~ a0 £04)/) 00

II1. 3D HOTI WITH HINGE MODES: A DIPOLAR
CHERN-SIMONS THEORY

In this section, we extend the scope of our concept of
a topological dipole response to 3D HOTIs with gapless
hinge modes. The first second-order TI in 3D with pro-
tected, gapless hinge states was proposed in noninteracting,
fermionic band theory [16—-19], and was later extended to
strongly interacting bosons and fermions [24,30]. While the
phenomenological understanding and mathematical classifi-
cation of HOTIs in 3D is rather complete, a topological
field theory description, and the associated quantized response
properties, is less explored [24]. In first-order topological
phases, such topological response theories have provided a
wealth of new theoretical avenues for discovery. Notably,
in many cases our theoretical understanding of these phases
can be connected with their characteristic experimental sig-
natures through a topological field theory, from which both
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bulk topology and the experimentally relevant topological re-
sponses can be derived. Among the most striking examples are
those where the bulk topology leads to quantized observable
properties, such as a quantized bulk or surface Hall conduc-
tance. In this section, our aim is to develop a topological
response theory describing for 3D, second-order HOTIs that
are protected by C; symmetry (i.e., the product of C; and
7).

Specifically, we describe a topological field theory that can
be viewed as a Chern-Simons-like topological response of
dipoles; we therefore refer to it as a dipolar Chern-Simons
theory. Similar to the situation in 2D discussed above for
the quadrupolarization response, the HOTI response can be
viewed as emerging from the topological response of a par-
ticular higher-rank gauge theory, upon relaxing subsystem
symmetry to global charge conservation, thus extending the
close relationship between HOTI phases and subsystem sym-
metric systems to three dimensions. In Sec. IV B, we show
that our theory is one member of a hierarchy of topological
multipole responses, of which the conventional 2D Chern-
Simons response for a Chern insulator is the lowest member.
To this end, we provide a family of multipole Chern-Simons
terms, one for each spatial dimension, that describe transport
of charge and multipole moments.

Our dipolar Chern-Simons theory predicts a number of
experimentally measurable responses that are characteristic of
a second-order 3D HOTI. In analogy with 2D Chern-Simons
theory, our 3D dipolar Chern Simons theory predicts a cur-
rent anomaly, but this time at the hinges. It also predicts
transverse charge and dipole currents in the presence of elec-
tric field gradients and uniform electric fields respectively.
Finally, it predicts a magnetic-quadrupole response to an ap-
plied scalar potential. While the derivation of our 3D dipolar
Chern Simons theory is proposed at a field theory level, its
physical consequences, including the quantized dipole cur-
rent response, can be sharply demonstrated at a microscopic
level in terms of the transport generated by the low-energy
modes of a free-fermion 3D, second-order HOTI. Thus our
response theory provides a set of straightforward experimental
signatures to verify and measure the salient features of the
second-order HOTI. Our discussion also highlights the rela-
tion between the 3D chiral hinge HOTT and the 2D quadrupole
insulator via a dimensional reduction and charge pumping
process [16]. More generally, these arguments can be ex-
tended to higher dimensions, and thus can be used to predict
the topological responses of higher dimensional HOTIs and to
connect to a multipolar version of axion electrodynamics that
we briefly discuss below in Sec. IV B.

A. Review of 2D Chern-Simons response

To set the stage for the hierarchy of Chern-Simons re-
sponses, let us begin with the first-order Chern-Simons term
that describes the quantum Hall response of a Chern insulator.
In 2D Chern insulators, the Chern-Simons response theory re-
veals both the nontrivial topological structure in the bulk, and
the corresponding gapless edge. The Chern-Simons response
theory is also at the crux of a variety of important topological
phenomena, not just in 2D, but also 1D and 3D as diagramed
in Fig. 4.

2D TI: Topological charge insulator

+ Hall conductance =+ Current anomaly on
Chern Simons boundary
theory

=+ Flux traps charge

Chemical potential Global flux = dipole
- Magnetic moment moment

Dimension reduction

+ Gapless edge

Dimension reduction

-+ 3D Magnetoelectric effect + Theta term in 1D
-+ Monopoles carry charge -+ Charge polarization

FIG. 4. Summary of 2D Chern-Simons response and related ef-
fects in 1D and 3D.

The 2D Chern-Simons response to a background electro-
magnetic field is given by

K
Lo= € ALA,, 37)

where K is an integer (as we will confirm below). Let us dis-
cuss some of the consequences of the Chern-Simons response
that we will find analogies for in the dipole version. First
and foremost, the Chern-Simons term indicates a charge Hall
response where a current is generated transverse to an applied
electric field [see Fig. 7(a)],

i Kig

Jj = 2716 E;. (38)
Furthermore, it is well-known that the Chern-Simons term
lacks gauge invariance for a system with boundary and re-
quires a chiral charge mode circulating along the edge to
restore invariance (see Appendices B and C). In addition, if
we change the background scalar potential AAy = U, a finite
change in magnetic dipole moment is induced according to
[see Fig. 7(c)]:

K
AM = —U, (39)
2
where the magnetization M is calculated by varying L., with
respect to the magnetic field B. Such a magnetic dipole mo-
ment is exemplified through the (bound) chiral edge current
circulating along the boundary. The latter effect can also be
connected to the Streda formula [82]

P =
bp K
L, (40)
0B 2m

Next, let us make a connection between the Chern-Simons
response and electric polarization. By expanding out all of the
terms, we can write

K
Lo = E(AXE), —AE, +A¢B). 41)
If we take variations with respect to the electric fields, we find
the polarization
K

Pl=——¢A;.

2 ! (“42)
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While these equations are not gauge invariant, we can identify
some physical predictions. First, if we take a time-derivative
of P! then we recover the expression for the Hall current in
Eq. (38), and if we take the spatial divergence of P, we should
find a bound charge density, and indeed we recover Eq. (40).

Furthermore, we can consider a 2D Chern insulator on a
torus and insert a flux ¢, = 27 into a cycle of the torus. In
terms of the gauge fields, the flux insertion is described by a
shift of the gauge field A, — A, + 27 /L,. Thus after such a
process, the bulk action is changed by

8|:/dxdydt£mi| :K/dxthx, (43)

which represents a shift of the x component of the 2D charge
polarization on the torus by K/L, (since the dipole couples to
the electric field in the action). If the Chern insulator contains
aunique gapped ground state on the torus, then the large gauge
transformation does not change the ground state manifold, so
the shift of the polarization K can only be an integer multiple
of 1/L,. This establishes the level quantization of the Hall
conductivity, and provides a robust signature for experimental
probes.

As a comparison, we could perform this experiment on a
thin cylinder. The effect would be to create a dipole moment
of KL, (hence a polarization P* = K/L,) on the cylinder, that
will lead to a bound charge of =K on each end of the cylinder
[see Fig. 7(b)]. If we only insert = flux (or an odd-multiple
of m) and shrink the radius of the cylinder in a dimensional
reduction procedure, then this system can represent a 1D
polarized SPT if we require additional symmetries to fix the
quantization of the polarization in the x-direction [33]. This
will produce charges of +K/2 on the boundaries as expected
for a 1D SPT. This effect is manifest in the Chern-Simons
response, which precisely reduces to the 1D 6 term L£p where
the Wilson loop of the vector potential in the compactified
direction plays the role of 6 after the dimensional reduction
[33] (see Appendix B).

Finally, one can make other connections between the
Chern-Simons response and 3D and 1D phenomena. Beyond
the dimensional reduction mentioned above, we can associate
the Chern-Simons response to the 3D axion response from a
dimensional extension point of view. Indeed, the 2D Chern-
Simons term appears at the boundary of a 3D topological
insulator with axion electrodynamics [33]. The interesting
feature is that the level of the surface Chern-Simons theory
is half that of which can be generated in an ordinary Chern
insulator in 2D. Additionally, starting from 1D we can also
imagine a dimensional extension where we take a 1D po-
larized topological insulator and generate an analogy to the
Chern Simons response via an adiabatic charge pumping pro-
cess [35], which makes an additional dimensional extension
connection from 1D to 2D. We will discuss analogies to some
of these properties in the rest of this section and in Sec. IV B.

B. 3D rank-2 dipolar Chern-Simons response

We will now proceed to formulate a dipolar Chern-Simons
term and describing the analogous features to many of the
2D Chern-Simons response phenomena mentioned above. We

FIG. 5. Surface 7 breaking patterns on a free-fermion chiral
hinge insulator. We show an example where the red-shaded area is
T -invariant and C,-invariant, and thus it harbors at gapless surface
Dirac cone. The solid green lines indicate a chiral charge mode with
a single quantum of conductance, the dashed lines effectively have
half of a conductance quantum. Different choices for the top surface
termination that are consistent with C,7 -symmetry yield the same
topological response.

expect this response theory to describe a second-order HOTI
in 3D that harbors chiral modes along the hinges parallel to,
say, the z direction. The HOTI we will consider is protected
by U(1l) x CI symmetry, where U(1) is global charge con-
servation, and C47 symmetry is the combination of a 7 /2
rotation around the z axis, together with a time-reversal trans-
formation 7. A free-fermion version of such a HOTI can be
generated starting from a strong, 7 -invariant TI in 3D, and
then breaking 7~ while keeping CZ— . The resulting system will
generically have gapped surface states on the side-facing xz
and yz planes. To preserve the symmetry, these surfaces are
gapped by a time-reversal breaking mass that is odd under
Cy. Such a pattern implies that the magnetic mass switches
sign on neighboring surfaces, hence generating 7 -breaking
mass domain walls on the z hinges between different side
faces. These domain walls naturally bind 1D chiral modes
(see Fig. 5). The top and bottom surfaces (xy planes) can
remain gapless, but at the very least, they must be able to
compensate the chiral hinge currents that flow between the top
and bottom surfaces. We will now develop a response theory
that describes these phenomena.

To establish a topological response theory for this type
of 3D HOTI, we adopt a phenomenological approach and
propose a dipolar Chern-Simons theory. Instead of deriving
a Chern-Simons response through the diagrammatic calcula-
tions of a microscopic model, we propose a response theory
based on a connection between the 3D SSPT (or alternatively
HOTI) and the 2D quadrupolar SSPT (or HOTI). We expect
that such an approach will be successful since topological
properties are essentially insensitive to details, and indeed we
show that the resulting theory phenomenologically matches
the microscopic behavior of the 3D, second-order phases of
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HOTI: Topological Dipole insulator
-+ Transverse dlpole + Current anomaly on
conductance D|pole Chern- Hlnge
Simons theory
+ Transverse charge
onductance in JE

Chemical potential Global flux >
-> Magnetic quadrupole quadrupole moment

+ Gapless hinge

Dimension reduction Dimension reduction

- Dipolar axion term ? -+ HOTI theta term in 2D
-+ Quadrupole moment

FIG. 6. Summary of 3D dipole Chern-Simons response and re-
lated effects in 2D and 4D.

interest. We illustrate a variety of consequences of our re-
sponse theory that are summarized in Figs. 6 and 7(d)-7(g)
and show how it fits into a natural dimensional hierarchy in
Sec. IV.

We begin by taking the same route to the HOTI that
we did for the 2D case, i.e., we first look into a higher
rank gauge theory response in a 3D subsystem symmetric
system, and then consider breaking the subsystem symme-
try down to a global symmetry. Let us consider a natural
3D generalization of our 2D SSPT to obtain a mixed-rank
theory with A,, associated with ring-exchange (i.e., dipole
hopping) terms in the xy planes, and A, associated with
charge hopping in the z direction. This describes a system
in which charge is conserved in each xz and yz planes but
not in each xy plane. Consequently, a charge can hop only
along the z axis, while an x(y) dipole can hop along the y(x)
direction.

(ayEx+axEy)

For such a theory, we can write down a Chern-Simons-like
response to the mixed-rank gauge fields,

1
L= E[AzExy + AxyEz — AoB],

A, —> A, + 0,0, Ag — Ap + da,
Ay — Ay + 00,0,
T : A() — Ao,Az,Axy — —Az, _Axy’
Ca:An, As = Ag, Az, Ay — —Ayy, (44)

where B is a gauge-invariant operator involving only spatial
derivatives of the gauge field,

B = 0,0,A; — 0;A,y. (45)
Such a Chern-Simons coupling breaks C4 and 7 symmetry,
but keeps the product C47 invariant. Despite not deriving this
action from a microscopic model, we claim that this is the
only set of terms that is gauge invariant in the bulk and, like
the usual Chern-Simons term, is bilinear in the gauge fields
Ag, Axy, A; and the physical fields E,,, E., and B. As such, it
is the most relevant physical term that we can write down for
this theory.

Interestingly, when the gauge fields are nonsingular this
term can be reduced to a total derivative in space-time. The
theory thus describes a boundary response, and does not
affect the bulk action (see Appendix E for a general dis-
cussion of why this must be the case). This is in sharp
contrast to both the usual 2D Chern-Simons term, and also to
the fracton Chern-Simons and BF theories of Refs. [59,83],
which do describe a bulk response and nontrivial braiding
statistics. It should also be contrasted with a conventional
f-term in 3D which is a total derivative, but is also fully
gauge invariant.

FIG. 7. Tllustration of Chern-Simons response phenomena for a 2D Chern insulator and a chiral hinge insulator. In (a), (¢), (e), (f), and (g),
the shaded red regions indicate the application of a scalar potential A,. For the Chern insulator in (a)—(c), the first two subfigures have periodic
boundary conditions in y and open in x while (c) is open in both. (a) is charge (Hall) current transverse to an applied electric field, (b) is the
generation of dipole moment when flux is threaded in the periodic y direction, and (c) is the change in magnetic moment when the scalar
potential is changed indicated by the bound chiral currents. For the hinge Chern insulator, (d)—(f) are periodic in z and open in x and y, while
(g) is open in all three directions. (d) generation of quadrupole moment as flux is threaded in periodic z direction, (e) J, current transverse to an
electric field gradient (3;Ey + 9,E;), (f) dipole current transverse to an applied electric field, and (g) change in magnetic quadrupole as scalar
potential is changed as indicated by the two pairs of circulating dipole currents.
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Specifically, Eq. (44) can be reduced to boundary actions
on the ¢, x, y, z, and boundaries, and the xy hinges:

1
£t - [AzAxy | t=T — AzAxy |t:0] P
47

Ly

1
E [Az ayAO |x:L - Az ayAO |x:0]7
1
['y = E[AzaxAOb/:L _AzaxA0|y:O]v
1
L, = E[AOA)W'Z:L — AoAyyl=0],

1
Ly = _E[AOAZ“X:L,)J:L) + AoAz|(x=0,y=0)
— ApA;|(x=0,y=1) — AoAz|(x=L,y=0)]. (46)

The responses in Eq. (46) do not appear manifestly gauge
invariant, and instead can be summarized through a set of
anomalous conservation laws on the surfaces and vertical
hinges:

1
+(x£) S(xE)
3 + 970 = +—0E;,
1
.(y%) » (y+
atfoy + aZ]z(} ) = :t47_[ 0E:,
1
+(z) xay (z£) _
8r]0 +0 3)1):; - :|:4JTEXy,
1
(1 xqy :(t£) __
azjz(t )49 angy ) — j;—4nB,
8tj(xy) + SZj(xy) - _ 1 E7 (47)
0 z 4%

where the superscript on the currents represents the surface
on which the current is localized, and the & indicates the di-
rection of the normal vector on that surface (for the hinge
term we have chosen to list only the response for the hinge
at (x =L,y = L) to avoid clutter, and the other hinges can
be obtained by adding a — sign for each 90° rotation). From
the form of these equations we see that there is an anomalous
dipole current on the top and bottom surfaces in the presence
of a rank-2 electric field, an anomalous current in the z direc-
tion on the side surfaces in the presence of an electric field
gradient, and a conventional chiral anomaly like response on
the hinges.

In fact, the anomalies in Eq. (47) are not the full story:
the action (44) is gauge invariant only up to boundary terms.
Thus to recover a fully gauge invariant theory, we must add
boundary degrees of freedom that couple to gauge fields in
such a way as to restore gauge invariance. This is equivalent
to letting Ay be a Lagrange multiplier imposing the constraint
that B = (0,0,A; — 9.A,;) = 0. One possible solution for this
constraint is A, = 9;¢, A, = 9,0,¢. Plugging these forms
into the dipolar Chern-Simons action, we find

1
S= - / d*x(—3,09,8,0,¢ — 3,0,63,0.6)
TT

= %/dﬁlx[ax(ayaz(pat(ﬁ) + 0,(0,0,¢0,¢)

—0:(0,0y¢01p) — 0x9,(9:09,$)]. (48)

This will lead to a hinge action at (x, y) = (L, L) of the form

1

SED =~ / dzd1,69.6, (49)
which is exactly the form for a chiral mode on the hinge. Thus
we see that the full anomalous current on the hinge itself is
contributed partly by the Chern-Simons response, and partly
by the consistent anomaly of the hinge degrees of freedom

yielding a total (covariant) hinge anomaly
1
-(xy) - (x
I jo 4+ 9% = —5-E: (50)

that alternates around the four hinges in a C47 -symmetric
pattern.

Interestingly, this action also generates terms on the sur-
faces. For example, on a z surface, we find

_ 1
S&t = e f dxdydtd,¢d,0:¢. (51

We show in Appendix C that such a bosonic theory has a
consistent anomaly given by exactly the form of the z-surface
anomaly in Eq. (47) bringing the full (covariant) anomalous
current response to

1
IS + 00 = — 5 Fo. (52)

Similarly, the other anomalous conservation laws are modi-
fied by the consistent anomalies of the boundary degrees of
freedom such that they all have a coefficient of %

To provide further intuition about this response action,
let us now connect this response to a dimensionally reduced
response action. We can perform dimensional reduction on
Eq. (46) by compactifying the z direction and threading 7
flux through the compact direction by taking A, = 7 /L.. The
7 flux is necessary so that the dimensionally reduced system
represents the nontrivial lower dimensional phase [33]. As we
take L, — 0 all fields get projected onto the modes with no
variation in z. In this limit, we find

1
S = 4-—n/d4x(AzEx)' _AxyatAZ _AoaxayAz)

1
== / dxdydt[0,(60,A0) + 8,(63,A0)
TT

- axay(AOQ) - at(Axye)]’ (53)

where in the last line we defined 0(x, y, 1) = [ dzA.(x, y, 1).
The ordinary 2D Chern-Simons action dimensionally re-
duces to the 6-term encoding charge polarization [33] (see
Appendix B), so let us compare this compactified dipole
Chern-Simons action with the quadrupole response

1
So = > / dxdydt 6(0,0,Ag — 0;Ayxy).
. )
We can rewrite this as
1
So = I / dxdydt[0,(60yA0) + 0,(F9:Ag) — 0x0,(FAp)
b1

— 3(0Ayy) + Agdedy0 + Aryd,0] (54)

where we have carefully separated bulk (last two terms) and
boundary (first four terms) pieces. In comparison, we find that
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there are two ways in which this response does not seem to
match the compactified dipolar Chern-Simons term: (i) there
are two terms that depend on derivatives of 6 and (ii) the over-
all coefficient of Sy is twice as big. For (i), since the associated
SPT is described by a constant value of 6 in the bulk, and we
have carefully treated all of the boundary response terms, then
we can drop the terms depending on derivatives of 6 and treat
the response as a purely boundary effect. Thus Sy and the
dimensionally reduced dipolar Chern-Simons have the same
form up to a factor of two. This second discrepancy is illusory,
but subtle, and arises because we are trying to obtain a lower
dimensional response action by dimensionally reducing the
boundary response of a Chern-Simons response theory. We
show in Appendix B that dimensionally reducing the bound-
ary currents of a Chern-Simons response will always produce
a lower dimensional response that is too small by a factor
of two because it does not include the consistent anomaly
of the degrees of freedom on the boundary (as we discussed
above). To recap, the underlying issue is that the bound-
ary response derived from Chern-Simons is only part of the
story, and boundary degrees of freedom provide an additional
contribution (the consistent anomaly) that combines with the
Chern-Simons piece to exactly compensate for the missing
factor of two (i.e., the combined form generates the covari-
ant anomaly). Thus our dipolar Chern-Simons theory, when
dimensionally reduced, should represent a lower-dimensional
quadrupole SPT response theory with, e.g., charges of 1/2
on the corners of a sample as expected from Sp when the
anomalies from the boundary degrees of freedom are ac-
counted for (see Appendix C).

C. 3D HOTI (rank-1) dipolar Chern-Simons response

As in the two-dimensional case discussed above, we can
connect our SSPT response theory to a related HOTI re-
sponse by breaking the subsystem symmetry down to a global
symmetry. Breaking subsystem symmetry demotes the rank-2
gauge field Ay, to the rank-1 combination %(B,CA_v + 0,A,).
Here, in order to study the HOTI version of this response, we
can make this same substitution to find the action:

1
Sues = / A5 [AOE, + D E) + (3uAy + BAVE.

_AO(axBx - 8yBy)]» (55)

which we call the HOTT dipolar Chern-Simons response. Let
us now evaluate the symmetry properties of this term. The C;/
symmetry acts on the gauge field as

T:t— —t,Ayg = Ay, A; — —A;,
Cy:(x,y) = (v, —x), (A, Ay, A) — (A, A AL, (56)

Hence the dipolar Chern-Simons term in Eq. (55) is invariant
under C; . Tt is also invariant under charge-conjugation (C :
A, — —A,) and G, rotation symmetry around the z axis. Ad-
ditionally it is odd under Cy, T, reflection of the z coordinate,
and full coordinate inversion, so these last four symmetries
must be broken for the response to be activated.

We will explore this 3D response further below where we
find that the physical consequences of the response theory are
anomalous dipole and charge currents in response to electric

fields and electric field gradients respectively, and additionally
a potential-induced magnetic quadrupole moment. We will
see below that these features result from the C; -symmetric
pattern of chiral hinge currents. Thus we will demonstrate
that our effective response theory generates the characteristic
response properties of a class of 3D chiral hinge insulators.
To gain some initial intuition about this response we can
again perform dimensional reduction by compactifying the z
direction and defining 6 = [ dzA.(x, y, t). After doing so, this
theory exactly reproduces the quadrupole moment response
in Eq. (25) up to the same caveats mentioned above for the
SSPT version (i.e., that we take 6 to be constant in the bulk
of our sample, and account for the consistent anomaly contri-
butions arising from boundary degrees of freedom to correct
for a factor of two). The connection between the 3D dipolar
Chern-Simons response and the 2D quadrupole response turns
out to be essential for the level quantization of the dipolar
Chern-Simons theory, as we will return to in Sec. III D.
Finally, before we move on to a more detailed discussion,
we would like to comment on another field theory description
of HOTIs with CI symmetry. In Ref. [24], a description of
interacting HOTIs was introduced in terms of a nonlinear
o model with Wess-Zumino-Witten terms. In particular, for
the HOTTI protected by CI symmetry, such a theory can be
reduced to an axion electrodynamic response with a spatially
dependent 6 term (such a theory was first introduced in the
context of noninteracting fermionic HOTIs in Ref. [17]):

0
T 1672

Here 6(F) is spatial-dependent, and transforms under C; as

Lo €09 9,A,0,A, . (57)

Cl 00, y,2) > —0(y, —x,2). (58)

Subsequently, 27 vortex lines of 6(7) mark the locations
of hinges and produce a current anomaly [84] that is com-
pensated by chiral hinge modes. Despite the distinct forms
of the two field theory descriptions, i.e., the dipolar Chern-
Simons in Eq. (55), and the axion electrodynamic response in
Eq. (57), they predict similar underlying physics generated by
chiral hinge modes. However, as 6(7) is a function of space,
and its vortex structure is essentially added by hand (un-
der the appropriate symmetry constraints), it can be affected
by microscopic interactions. On the other hand, the dipolar
Chern-Simons response has a constant, quantized (as we show
below) coefficient and is not sensitive to such continuous
deformations.

1. Surface and hinge responses

Let us now begin our detailed analysis of the physical phe-
nomena associated to the dipolar Chern-Simons response. The
dipolar Chern-Simons theory is a total derivative on a closed
manifold. As a result, it does not change the bulk constituent
relations, but it does affect the boundary physics, and yields an
interesting bulk-boundary correspondence as we indicated in
the SSPT case above. To simplify our discussion let us assume
the time direction is periodic so we can ignore total derivatives
in the time direction. Then, one can decompose the theory into
pieces that live on the spatial boundaries,

Sies = Se + Sy + 8. + S,y (59)
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For side surfaces normal to the x and y directions, the dipolar
Chern-Simons term will generate

1
Sx = E / dydzdt[AzayA0|x:L _AzayA0|x:0]v

1
8= / dxdzdt[A0:Aoly—p — A0, Agly—0].  (60)

As we will show below, these terms imply that the side sur-
faces exhibit dipole currents transverse to an applied electric
field, in addition to a charge response to a nonuniform electric
field. The action Sy, appears at the intersection of surfaces
normal to x and y, i.e., at hinges parallel to the z direction. On
the hinges this action yields

1
So ==~ / dzdt[A Aol y=w.1) +AAole =00

— A A0l (x,y)=0,) — AzA0l(x,y)=.0)]- (61)

This action predicts exactly the type of current anomaly that
one finds at the boundary of a system described by a 2D
Chern-Simons theory, and thus indicates the presence of chiral
hinge modes.

For top and bottom surfaces normal to the z direction, we
have the action

1
S. = 8 / dxdydt[Ao(dyAc + 0.A)|=1
b

_AO(ayAx + axAy)|z=0]- (62)

These terms represent the absorption/emission of the chiral
currents that flow along the z hinges and then split when they
hit the top and bottom surfaces. We will return to this issue in
more detail below. Interestingly, unlike the SSPT case, we can
integrate the terms in S; by parts to put them in the same form
as Sy, S. This generates hinge actions on xz and yz hinges:

1
Sy, = 3 / dydt[AyAol v 2=.1) + AyAol(x,2)=(0,0)
—AyAol(x,=0,) — AA0lx.0=.0)],
1
Sy, = 3 / dxdt[AAol =) + AxAol(y,2)=(0,0)

— A Aol (y,0)=0.0) — AxAoly0)=.0)]- (63)

These also appear to have a chiral anomaly, but with half the
size of the vertical hinges. As we will see below, this has to
do with the two-in-one-out chiral current flow on the hinges
of an open cube sample where the side surfaces meet the top
and bottom surfaces. Equivalently the hinge contribution can
appear because in the rank-1 case the x-oriented dipoles are
not equivalent to y-oriented dipoles, as would be the case for
rank-2 case, and the conversion between the two inequivalent
dipoles, which is necessary to satisfy C47 symmetry, gener-
ates currents localized between the side and top surfaces.

2. Anomalous quadrupole moment

In this section, we will show that the anomalous conserva-
tion laws on the side surfaces are a manifestation of a bulk
quadrupolarization g,, that is anomalous. Since anomalous
does not necessarily have a unique meaning in this context,

let us clarify that we are calling it anomalous in the follow-
ing sense: a monopole of chiral currents, i.e., a single chiral
current, has an anomalous current, and in particular p ~ A,.
For a dipole of chiral currents, as one would find at the edges
of a Chern insulator, one finds anomalous dipole currents
P. ~ A,. Finally, in our case, where we have a quadrupole of
chiral currents and we might expect to find g,, ~ A, which is
exactly what we will now show.

Let us start from Eq. (60) to analyze this result in more de-
tail. Similar to the 2D Chern-Simons action discussed above,
we can calculate two related responses by taking variations
with respect to the fields A;, Ao (to find current, charge) or
the gradients 9;A;, 9;A (to find dipole currents and densities).
From these data we show in Appendix D how we can derive
the following set of anomalous conservation laws for the
charge currents:

1
o' jg ™ + 0 = £ D E,

0 jg* + 070 = £5-0.E.,
N 2
Xy (xy 1
atj(()})-i-azji Y) — _gEz’ (64)

where again we have only included the result in the last equa-
tion for the hinge at (x,y) = (L, L). For the dipole currents,
we find

alj(()Xi)sy + BZj(Xi)v,V — :FLE

z 2
+£).x . X 1
atj(()}i)v + azjéyi)' = :FEEZ (65)

Now let us try to interpret these equations in a simple
square-cylinder geometry where the z direction is periodic and
the x and y directions are open [see Fig. 7(d)]. Consider the
application of a uniform electric field £, = —d,A,. We find
the equations

1
8, p"%) = JFE@@,VA@

! 1
3" = Foo 00,

3 p™) = ia,A . (66)
27 0 F

From these equations, we can determine an interesting rela-
tionship. Let us focus on the surfaces x = L and y = L that
intersect at the hinge where (x,y) = (L, L). From the first
equation, we find that the anomalous surface charge density is
just arising from a spatial variation of a surface polarization
defined through p = —d,P), ., where P . = 5¢|,—; (up to
a nonanomalous constant of integration). From the second
equation we find an analogous result with a surface polariza-
tion P ?—;{ ly,=z on the y surface. Finally, we find that the

surf —
corner charge density right at the hinge iS pcomer = ;—ﬂ Now
we can use the formula from Ref. [15] for the definition of the

quadrupole moment density

A
=. (67)

4xy = Psxurf + Psyl.u-f — Pcorner = o
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This result is remarkable as it establishes that, in anal-
ogy to the 2D Chern-Simons term [see Eq. (42)], where
threading a flux quantum generates a polarization (manifest
through opposite integer charges on the opposing boundaries
of a cylinder), here the flux quantum threading generates a
quadrupole moment g,, (manifest through alternating integer
charges localized on the hinges). Indeed, this is exactly what
one would expect in a chiral hinge insulator since some free-
fermion, microscopic models of the 3D chiral hinge insulator
can be viewed as 2D quadrupole insulators undergoing an
adiabatic, topological pumping process as a function of k.,
where g, changes by an integer during the process [16] (N.B.
k., — k, + A, in minimal coupling). Furthermore, we will ar-
gue that this response can be used to prove the quantization of
the dipolar Chern-Simons coefficient in Sec. IIID.

3. Transverse charge current in response to electric field gradient

In a related effect, we can also see that there is a transverse
charge current response if we impose a nonuniform electric
field that induces a potential imbalance between the four z
hinges [see Fig. 7(e)]. Let us assume all of the fields are static,
and we apply an electrostatic potential Ag(x,y). From our
response equations, on the xz surfaces, we find

A ! Ay =

=L = =—
Jzly oz 0

. 1
Joly=r = /dx Jely=t = E(A0|x=L,y:L — Apli=0,=1) (68)

and similarly

1
Jz|y=0 = _§(A0|x=1‘,y:0 _A()lx:O,y:O)’ (69)

where j; are surface current densities and J; are the total
current. Likewise, the response on the yz boundaries has a
similar form,

Joly=r = E(AOU:LJ:L — Aoly=1,y=0),

1
Jol=0 = _E(AOLV:O,y:L — Aplx=0,y=0)- (70

Finally we can take into account the current coming directly
from the hinges

1
Jz|x=L,y=L = _ZAOLVIL,_V:LV
1
Jz|x=0,y=L = EA()'X:OJ:L?
1
lex:L,y:O = EAObc:L,y:()a
1
Joly=0y=0 = _EAO|x=O,y=O' (71)

Now we can add up all the contributions and we find that
the total current in the z-direction is given by

1
J. = E(A0|X=L,y:L - A0|x:0,y:L - A0|x=L,y:0 + A0|x:0,y=0)
1
= —AAA. 72
o ya0 ( )

Thus, by applying an electric field gradient (9, E, + 0,E,), a
transverse charge current is generated in the z direction

1
T~ S (OB, + BEy).

If we apply a nonuniform potential as illustrated in Fig. 7(e)
that, for example, takes a value of o on the (x =L,y =1L)
hinge and is vanishing on the other three hinges, we find

L
ST o]

Now consider the same setup but with fully open boundary
conditions. To realize this potential we can take Ag|,—; =
ay/L, Aoly=r, = ax/L, Ao|.= = Aol,—o = axy/L?* on the sur-
faces. We have already calculated the full current flowing in
the z direction so we just need to know the responses on the
top and bottom surfaces. Starting from Eq. (62), we can derive
(see Appendix D) the anomalous conservation laws:

(73)

. 1
au];zi) _ ;E(axEy + 0,E,),

1
ix,(zk)
VI =% B

1
o1 = £ —Es, (74)

where the signs are correlated with the surface normal being
+Z, respectively. We note that these anomalies have a coeffi-
cient which is half that of the side surfaces; we will comment
on this further below.

For our field configuration we can calculate j, = —;%7
and j, = —% from the anomalous responses on the top
surface. Then we can take the divergence of the surface cur-
rents 0, jx + dyjy = — 5772 Thus, if we integrate this over the
top surface, we find that the total charge entering/exiting the
surface is 0;Q|.— = 5-. If we repeat the calculation for z = 0,
we find 9,0|.=; = —5_ which matches the total current flow
from the side surfaces. Thus, for the entire system, the total
charge is conserved, and in the presence of a nonuniform elec-
tric field, charge flows between the top and bottom surfaces
along the side surfaces and hinges.

For another helpful illustration let us revisit the free
fermion HOTT which harbors chiral hinge currents. A typical
xy surface state is illustrated in Fig. 5, where the top xy
surface contains a gapless Dirac cone. The four side faces
have a sign-alternating, 7 -breaking mass that gaps out the
Dirac cones on the side faces. This configuration has domain
walls at the hinges that bind gapless chiral fermion modes.
Due to the gapless nature of the top surface, there are no
generic, localized chiral fermion modes on the hinges parallel
to the x or y directions. However, Ref. [85] showed that for
this configuration of surface masses the gapless Dirac cone
on the top surface just acts as a “wide” domain wall, and
half of the chiral current itself will still be localized at each
of the hinges parallel to the x and y directions. When the
chiral mode traveling along the z hinge impinges on the top
or bottom surface, the current it carries splits in half to flow
evenly along the x and y hinges. Thus each x or y hinge
effectively exhibits half of the conductance as the z hinges,
which, in this case, is half of a conductance quantum. This
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phenomenology is exactly what is described by some pieces
of the dipolar Chern-Simons theory.

Before moving on let us also remark that the half-integer
value (1/47 in our units) for the coefficients of the anomalous
conservation laws for the z surfaces are a salient property of
the HOTI with CI symmetry. If one merely decorates the
four side surfaces of a trivial bulk with a Chern insulator
in a C4T symmetric way to generate chiral hinge currents,
the decoration always attaches full chiral fermion modes on
the hinges parallel to the x and y directions. Such a surface
decoration changes the top surface anomaly by

1
Z(axEy + ayEx)a (75)
which is twice the value found in Eq. (74). Subsequently, this
surface decoration can change the dipole anomaly in Eq. (74)
by an even number and therefore only an odd anomaly is an
intrinsic feature coming from the HOTT bulk.

o j, =

4. Transverse dipole current in an electric field

Now consider a simple experiment for a system that is
periodic in the z-direction, but open in the x and y direc-
tions. We want to apply an electric field, say E, = 9,Ap = «
and consider the response. We find a dipole current ji =
—5- at x = L, and the dipole currents at y = 0, L j|,—; =
—j2ly=o = —%*. The spatially dependent dipole currents gen-
erate a charge current j, = d,j; on the y surfaces. The net
current on each such surface is canceled by the J, currents
at the hinges (x=L,y=1L) and (x =L,y =0). Thus the
remaining response is just the surface dipole current [see

Fig. 7(1)]

= —ﬂ. (76)
' 2
One can find the related response
=22, an
2

by symmetry.

If we keep the same field configuration, but now have open
boundary conditions in all three directions, we find the dipole
currents j; = jy = 7= On the top surface, and in particular
iy = = 1= Where the x surface hits the z surface at x = L.
From this we see that the dipole current traveling up the
x-surface splits into two equal pieces on the top surface which
represents a quadrupolar-like charge flow on the top surface
where charges enter the z surface then split into the x and
y directions symmetrically. This provides one interpretation
for why the anomalous conservation laws on the top/bottom
surface have an extra factor of 1/2 when compared with the
side surfaces. Indeed, this matches the one-in,two-out pattern
expected for the chiral current flow from the side surfaces to
the top surface of the HOTI. An additional point of interest is
that as the dipole current flows up the side surface (say yz sur-
face) and then hits the top surface half of the flowing dipoles
that were pointing in y are converted to dipoles pointing along
x. This nonconservation of the dipole leaves a charge current
localized at the hinge with a magnitude equal to the amount
of converted dipole moment, i.e., |/ |ninge| = |f—7‘; ninge -

5. Magnetic quadrupole moment

In a 2D Chern insulator, changing the electrostatic potential
creates a nonzero magnetic moment which can couple with
an external magnetic field [see Fig. 7(c)]. As the potential
is increased, the gapless chiral boundary modes acquire mo-
mentum and generate circulating currents that are bound to
the edges; a signature that is indicative of a nonzero orbital
magnetic moment in the bulk:

AP M- Ao .

3B 2
Despite the right-hand side not being gauge invariant we can
use this response to predict the change in orbital magnetiza-
tion when a change in the scalar potential Ay is made.

For a 3D HOTI, the application of a chemical potential
gives rise to an analogous effect [see Fig. 7(g)]. In this case, a
finite potential does not generate a nonzero magnetic moment
in the xy plane since there is CI symmetry; instead, it induces
a magnetic quadrupole moment. Such a quadrupole moment
will naturally couple to a nonuniform magnetic field, e.g., a
magnetic field gradient, and it is essentially tied to the spa-
tially separated circulating hinge currents. One can calculate
the change in magnetic quadrupole moment in response to a
change in Ay by calculating the hinge current response and
relating them to a change in spatially separated magnetic
dipole moments. When we apply AAg, we find

(78)

AA
AMx|x:LX = _?L)Lz = _AMx|x:(),
AA
AM,|,—1, = ﬂLxLz = —AM,|,—o. (79)

To calculate the magnetic quadrupolarization, we can simply
weight these magnetic moments by their positions and divide
by the volume to find

AAy

4z’
where M;; represents opposite i magnetic moments separated
in the j direction. This result is analogous to the connection
between the scalar potential and magnetic dipole moment in
the 2D Chern-Simons theory.

Although we presented the discussion in terms of loops
of charge currents, we could have just as well explained it
is current loops of dipoles. Indeed, when A is changed for a
system with fully open boundary conditions there are dipole
currents circulating in the xz planes with dipoles pointing in
y and dipole currents circulating in the yz plane with dipoles
pointing in x as shown in Fig. 7(g). The magnitude of each of
the two circulating dipole current is Ag/4m and they clearly
generate the two magnetic quadrupole components.

We can also try to work out an analogy to the Streda
formula. Let us assume periodic boundary conditions along
the z direction and open boundary conditions in x and y. We
can calculate the density response from Eq. (60) and we find

= —AM,, = — (80)

1
px=0)+px=L;) = _sz_(ayAz)7
T

1
Py =0)+p0y=L,) = _Ayg(axAz)- (81)
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If we add these contributions, we find

1 1
=—A,—(3A,) — A,—(3,A,
P 2]T( WA;) y2n( )
1
= E(A},By — AB)), (82)

where we have used the fact that terms containing a 9, are
assumed to vanish because of periodic boundary conditions.
We can interpret this result using a Streda formula
ip ip 1
3(d,B,) 3By 27’

(83)

where the right-hand side is twice the coefficient of the
dipolar Chern-Simons term in analogy with the usual Streda
formula.

D. Dipole Laughlin argument, quantization, and dipole
pumping

At this stage, we have developed a dipolar Chern-Simons
theory description for the electromagnetic response of a
class of 3D HOTIs. This theory correctly captures the chiral
hinge currents separating side surfaces, and an anomalous
quadrupole moment g,,. While we have indicated that the
coefficient of the dipolar Chern-Simons term is dimensionless
and universal, we now answer the explicit question of whether
it must be quantized in a HOTI, independent of microscopic
details in the Hamiltonian.

To elucidate the quantization we borrow the Laughlin argu-
ment, and the charge pumping picture for the usual quantum
Hall quantization in 2D. One way to understand the quantiza-
tion of the Hall conductance in an ordinary 2D Chern-Simons
theory is to consider inserting 27 flux through a cylinder. This
flux insertion changes the charge polarization of the ground
state along the cylinder’s length by o,, [see Fig. 7(a) for
a cylinder geometry]. If the Chern insulator has a unique,
gapped ground state in the bulk, then this change in polar-
ization just results from a net transfer of charge from one
boundary to the other. The change in total charge at each
boundary is an integer only if o,, is an integer. Thus for
weakly interacting Chern insulators, K € Z.

This argument can be extended to a 3D HOTI with a
dipolar Chern-Simons response. We illustrate the basic idea
in Fig. 7(d) where we have shown that threading flux through
the periodic cycle of a 3D HOTI can generate a shift in
the quadrupole moment analogous to the shift of the dipole
moment mentioned above. Let us calculate the change in
quadrupole moment in terms of the dipolar Chern-Simons
response. First, let us parametrize the flux insertion by the
vector potential

0 t<0
A={1% 0<i<T (84)
% t>T

for some large time 7. We can obtain the change of
quadrupolarization based on Eq. (67), ie., gy, =K ;—;
where we have added an arbitrary coefficient K. Dur-
ing the flux threading process Ag,, = K, which also
indicates that AP = AP . = AQcomer = K. Thus by

sur]

inserting 2w flux into the hole of the cylinder, the local
charge on each hinge is shifted by 41 depending on its
chirality.

From this result, we can argue for the quantization of
K. For any HOTI with a unique gapped ground state,
any global 27 flux insertion should leave the infrared the-
ory invariant. We find that if K is an integer then the
quadrupolarization changes by an integer quantum, the sur-
face polarizations change by an integer quantum, and the
amount of charge on the hinges changes by an integer, in exact
analogy with the polarization and edge charges changing by
a quantum in the 2D Chern-Simons response. Such a quan-
tization of the coefficient of the dipolar Chern-Simons term
confirms a robust transport signature for experiments, and
represents a universal property that is insensitive to any mi-
croscopic details, and remains valid in the strong interacting
limit.

Finally, let us comment on the topological classification
of HOTIs described by our response theory. While we have
found that the coefficient of the dipolar Chern-Simons term
is quantized to an integer, this does not necessarily imply
a Z classification of the topological phases. In general, one
can always decorate the four side faces of a cubic sample
with integer quantum Hall states in a CZ— symmetric way.
Such a surface decoration changes the integer coefficient by
an even number. Since bulk properties should remain un-
affected by a change to the surface, only odd coefficients
of the dipolar Chern-Simons theory in Eq. (55) represent
nontrivial bulk topological classes, so the classification is
Z,. We should contrast this with the rank-2 dipole Chern-
Simons theory when the system has dipole-conservation due
to the subsystem symmetry. In this case we expect such
3D phases to be Z-classified since one is forbidden to add
Chern insulator layers to the surface because of the subsystem
symmetry. Hence, one is unable to flip the hinge state cur-
rent patterns by surface decoration which implies an integer
classification.

IV. GENERALIZATIONS AND EXTENSIONS OF
MULTIPOLE RESPONSE THEORIES

So far, we have developed response theories for a
quadrupolarization response and a dipolar Chern-Simons the-
ory for 2D and 3D HOTIs. From a fundamental point of view,
such theories can provide a phenomenological field theory
description for HOTTs at the interacting level. We now wrap
up the paper with a brief discussion of the extensions of
our topological response theories to other contexts and other
dimensions. We will leave a full discussion of these new
directions to future research.

A. Higher multipole polarization responses

In this section, we introduce a multipole polarization re-
sponse theory in higher dimensions, with a primary focus
on the topological octupole insulator. In Refs. [15,16], the
authors introduced a topological octupole insulator in 3D with
fractional corner charge and midgap fermion bound states
localized at the corners of a cubic sample. This model also ex-
hibits gapped bulk, surfaces, and hinges. Such a band insulator
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FIG. 8. 3D subsystem symmetry-protected model on a cubic lat-
tice. Each site has eight spin-1/2 and every eight spins in the cube
cluster is projected into a unique entangled state. The hinge and
surface free modes can be gapped out locally leaving the corner with
additional spin-1/2 zero mode.

with corner zero modes in 3D, termed as a “third-order TI,”
can be generalized to strongly interacting boson or fermion
systems whose corners contain zero modes forming projective
representations under certain symmetries [24-26,74].

As we have done throughout the draft, to motivate the
response of the topological octupole insulator, we can first
consider a fracton model with subsystem symmetry. We con-
sider a class of subsystem symmetric models on a 3D cubic
lattice where charge is conserved on each line. Due to this 1D
subsystem symmetry, the charges and dipoles are immobile
objects, and quadrupoles have their motion restricted to move
only along a direction k perpendicular to its quadrupole com-
ponent g;;. The resultant system couples to a rank-3 gauge
field and can support an octupole response,

9 0
Lo = E(axayazAO = 0Ayy) = EEX—"Z’

Ag — Ag+ 0, Ay, — Ay + 0x0,0.a, (85)

where A,,. is the rank-3 gauge field that couples to the
quadrupole current Jy,, and in the second line we have in-
dicated the relevant gauge transformation properties. Just as
in the dipole and quadrupole cases, one can argue that 6 has
a 27 ambiguity. Thus, if we enforce a symmetry under which
6 — —6, then the response has a quantized value for 6 (the
octupole moment density) 0 =0, 7 (0yy, = 60/27m =0, 1/2).
For the case when o,,, = 1/2, the response theory predicts
half-charges on the corners. Additionally, the subsystem sym-
metry protects the corner charges/modes from hybridizing
with each other via hinge/surface transitions.

A typical lattice model that produces a fracton octupole
response is illustrated in Fig. 8. This model is defined on a
cubic lattice where each unit cell of the lattice contains eight
spin-1/2 degrees of freedom. Each spin interacts with a spin in
each of the eight cubes adjacent to it with an eight-spin cluster
interaction,

— § + - + —
H = (SR,1SR+e_t,3SR+e.v+e,..4SR+e_v,2
R

- + - +
X SRte,55R4e. 4o T R et e, 6 R+e.4e,.8 T HC..
(86)

This Hamiltonian preserves global 7 symmetry and subsys-
tem U(1) symmetry, the latter of which preserves S, on each
line. The cluster interaction projects the eight interacting spins
in each bulk cluster into a unique state %(M MU

Y+ 11 I tL)). The surface unit cells and hinge unit
cells contain an even number of dangling spins (four and
two, respectively) that can be projected into a symmetry pre-
serving singlet state via intracell interactions. The S, number
conservation on each line prohibits spin interactions between
unit cells, or among plaquettes that span multiple unit cells,
on the hinges or surfaces, respectively. The corners have an
additional free spin-1/2 protected by global 7 and subsystem
U(1) symmetries. If we cast the spins into the hardcore boson
representation then we end up with a bosonic octupole insula-
tor with half charges localized on the corners of an open cubic
sample.

In analogy with the quadrupole case, we can now imagine
a scenario where the subsystem U(l) symmetry is broken
down to either a planar subsystem U(1) symmetry, or a global
U(1) symmetry. In the former case, the system will exhibit
mobile dipoles and quadrupoles, but the charges will still be
frozen. In the latter case, the system will represent a HOTI
having a response to a conventional U(1) gauge field. We
will leave a thorough discussion of these symmetry-breaking
possibilities to future work, and for now we will just consider
the HOTT octupole response that descends from the subsystem
symmetry-protected response when all subsystem symmetry
is broken.

The octupole response of a HOTI can thus be written
[36,37]

0
Low = 310 Viye = 8:8,0.A0],

1
Viye = g(axasz + 0y0yA; + 0y0;Ay). 87)
This can be rewritten in terms of electric fields as
0
Losw = g[axayEz + 0,0.E, + 0,0, E,], (88)

which represents the phenomenology of an octupole mo-
ment o,,,. One can argue for the 27 periodicity of 6, under
conditions for which the octupole moment is well-defined
(i.e., vanishing charge, dipole, and quadrupole moments) in
analogy with the discussion in Appendix A. Hence, any
symmetry under which the octupole moment is odd, e.g.,
charge-conjugation or cubic symmetry, enforces the quanti-
zation condition 6 = N.

Interestingly, even if the octupole moment takes nontrivial
values, i.e., 6 = (2N + 1)m, it does not guarantee protected
corner modes. To illustrate this subtlety, we note that since
there are three hinges that terminate at a corner, then, in
principle, one can always decorate the hinges with nontrivial
1D SPT chains on all hinges to cancel the corner modes.
Consequently, there is no “intrinsic topological octupole insu-
lator” protected by cubic symmetry with robust corner modes.
However, it is worth mentioning that there exist several 3D
bosonic HOSPT states whose protected corner mode is akin
to the edge of 1D SPT chain with a Zj classification [25,26],
though these examples are not likely described by our re-
sponse theory.
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B. Generalized multipole Chern-Simons and axion responses

In addition to higher polarization responses, our results
suggest a possible hierarchical generalization of Chern-
Simons theories to multipole Chern-Simons theories. Suppose
that in spatial dimension d, we have a system with subsystem
symmetry that couples to the background fields Ag, Ay,x,. x, -+
and A,,. Thenif d > 1 is even, we can write the Lagrangian

£58 = (A By~ AuEon s +AoB), (89)
while if d is odd, we can write
£5° = oy Eey + A Eag oy, — AB), (90
where
Evvyng ) = Oy Ao — 0 Axxyxg s

3, Oy, -
B =040 ...00 Ay — o Anm.xs -

The alternating signs in each spatial dimension are necessary
for these actions to be gauge invariant (up to boundary terms)
using the gauge transformation Ay, ., , = Aqun.x, , +
Oy, Oy, « . . Oy, L.

When d is odd the action is a total derivative and generates
boundary responses. The first nontrivial action appears when
d = 3, and we have already discussed this theory at length in
this paper so let us consider even values of d. When d is even,
the system has the bulk responses

K
p = EB’
. K
Ixq = _EEXIXZ---XJ—I’ (91)
. _ K
]xlxz...xd,l - E Xq*

Additionally, one can perform dimensional reduction by com-
pactifying the x; direction. When 7 flux is inserted in the
compactified direction, i.e., when A,, = Lid then the multi-
pole Chern-Simons action reduces

0
‘63_1 = ZEXIXZ---del’ 0 = /d-dix,p (92)

As an example, we can consider d = 4 having the La-
grangian

K
LS = 1 AocBu = AuEy: + AoB), 93)

where the spatial coordinates are (x,y, z,u). The bulk re-
sponse equations are

pP = P
. K
Ju = _EExyzs
. K
Jxyz = EEuv (94)

which represents a transverse charge current in the presence
of a higher-rank electric field, and a transverse quadrupole
current in the presence of rank-1 electric field. This is an

example of a mixed rank Hall effect. If we dimensionally
reduce this action, we find
0
L‘a = EExyZa

which is exactly the octupole response Lo in Eq. (85).
To find the response of the HOTI system, we can replace
the higher-rank field by a suitable symmetrized combi-
nation of rank-1 fields Ay, », , = 5(8)‘l Oy, ... 0x, Ay, | +
permutations). After doing this we would find Lo, in this
example.

If we consider even values of d we can make a clear
connection to a mixed-rank axion electrodynamics in d + 1
dimensions. We augment our theory by an additional rank-1
field A;4; and we can consider a Lagrangian

6 _ &
£d+1 — H(EXJJHBX]XQ...X”{ + Exlxz...xd,ledde
+ Ededer]xlxz“.xd,l )ﬂ (95)
where
Bxdxd+l = BXaAXd+1 - 8Xd+1AXd’
Bx]xz...xd = 8x| axz ce axd,led - adixlxz...xd,l s
Bxd+1X1X2---Xd—1 = axd+1Axlx2---Xd—l - axl aXz te ale—]szl+] ’ (96)

and ¢ is the scalar axion field (that will be quantized to
7 in the presence of, e.g., inversion or time-reversal sym-
metry). This action is a total derivative and on a w or u
surface one finds an action similar in form to £, whereas
on the two-dimensional, higher order surface intersection
of x1,x2,x3,...x4—1 surfaces one finds an ordinary d = 2
Chern-Simons theory £$5 that is a functional of Ay, Ay, A,,.,-
Let us conclude with a few important notes about this
generalized mixed-rank axion electrodynamics. First, we have
chosen the normalization constant such that the surface
Chern-Simons coefficients have half of the value they nor-
mally take in a lower-dimensional bulk system. We note that,
while this is natural, we have not proven this result, nor do
we have a microscopic model for which this is the response
action. Second, if a similar construction is formed for cases
where d is odd the resulting action vanishes, i.e., there is not
an analogous bulk action that reduces to £33 | on its surfaces.
This is perhaps not unexpected since we know that each Egns 1
is already a total derivative. Thus finding the axion extension
of LS3., is an open problem. Third, we have only treated the
response to one flavor of gauge field, and in principle we could
generalize our response actions to hydrodynamic field theories
where the coefficient K could become a matrix to allow for
more exotic SPTs as well as possible fractional states. Fourth,
we have primarily discussed the higher dimensional cases
for subsystem symmetric systems. We expect that lower-rank
field substitutions will provide new types of responses for
systems with less subsystem symmetry, all the way down to
the case of a HOTI with no subsystem symmetry. We leave
full discussions of these research directions for future work.

V. CONCLUSION AND OUTLOOK

In this work, we have proposed topological multipole field
theories for higher order topological insulators in 2D and 3D.
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Our theory predicts various topological dipole responses in
HOTI with measurable experiment signatures. Notably, our
dipole Chern-Simons description of the 3D HOTI creates a
complete connection between gapless hinge modes, dipole
Hall response and surface anomalies. It also yields the 2D
quadrupole insulator upon dimensional reduction.

While interest in HOTIs thus far has mainly focused on
the gapless hinge or corner modes, both our 2D and 3D
field theories highlight the previously overlooked fact that
the gapped boundaries in these systems are also anomalous.
These anomalies are reflected in important topological fea-
tures of the bulk, such as the quantized quadrupole moment
and magnetic quadrupole response in 3D. In 2D, our topolog-
ical response theory engenders a 7 and Cy invariant fractional
dipole moment on the edge which does not exist in pure 1D
systems.

An interesting corollary of our analysis is that some
subsystem-symmetry-protected phases can essentially be
viewed as examples of HOTI for which spatial symmetries
are not required to protect the gapless corner modes. Indeed,
the two are described by closely related quantized dipole
responses, with a straightforward substitution being largely
sufficient to pass from the subsystem symmetry-protected
phase to a more conventional model with spatial symmetries
and global charge conservation. This correspondence is rooted
in the fact that a HOTI by definition must have a trivial charge
response, so that in both cases the topological field theory
describes dipolar response.

Our results suggest various directions and open questions
for future study. (1) We have written down a multipolar axion-
type term in odd spatial dimension, but what about even
spatial dimensions? (2) Similar to the dipolar Chern-Simons
description of the HOTI, we expect there to be similar gravita-
tional responses for higher order topological superconductors
that will capture the chiral Majorana mode at the hinge. (3)
For C, symmetric crystalline insulators with vanishing polar-
ization, there exist corner-localized charges quantized as e/n.
The field theory and topological response of such fractional
corner charge still remains unclear and thus worth pursuing.
Finally we note that since the submission of this paper two
recent works based partially on these results have shown that
(i) a vector-charge version of the dipole Chern-Simons theory
can describe 3D Weyl semimetals where the Weyl nodes are
arranged in a quadrupole [86] and (ii) one can study interact-
ing fermion models that have the 2D and 3D response actions
shown in this paper [87].
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APPENDIX A: AMBIGUITY OF 6 ~ 2z IN PATH INTEGRAL

In this section, we focus on the 2w shift equivalency of
6 in the quadrupole response term. Let us first review the
2m equivalency of 6 for the dipole response in 1D. The 1D
polarization term
o /d dte"’d,A (A1)
~_ Xare )
2 .
is a total derivative in the action so naively one would expect
it to vanish if we impose PBCs in space-time. However, we
need to be careful when applying PBCs for gauge fields. If we
implement a large gauge transformation by inserting a global
flux f A,dx =2m attime t = T, the vector potential shifts so
the total path integral of the polarization term is changed by 6,

T %
/dx/ dt—09,A, = 0.
0 27

Since any 27 contribution in the path integral does not affect
the IR physics, 6 (the polarization) has a 27 (integer) ambi-
guity.

A physical interpretation of this LGT is a quench process
where we turn an electric field on and off by inserting global
flux during a time period 7 :

T
/dx/ E.dt = A =27.
0

The electric field couples directly with the dipole moment
P.E, so the quenched procedure changes the total action as

(A2)

(A3)

T
AS = /dx/ E.P.dt =27 P,. (A4)
0
A key constraint is that the system has vanishing charge den-
sity. The dipole moment is only well-defined when the system
is neutral. Furthermore, any charge density would couple with
the gauge potential Ay to generate an additional change in the
action during the quench process, and thus make it unable
to uniquely identify the contribution from the polarization.
When P, € Z, the process only changes the path integral by
2m 7., which has no effect. Thus the dipole moment has an
integer ambiguity, which implies 6 has a 27 ambiguity. Fi-
nally, we comment that the minimal value of the electric field
quench is imposed by maintaining PBCs after flux insertion.
We argued in the main text that the same 2w ambiguity
applies for quadrupole moments in subsystem symmetry-
protected fracton phases with the response action:
0 / dxdydt(0,0,Ay) — 0;Axy). (AS)
2 ’ ’
Since the charge is conserved on each line of the system, let
us apply a large gauge transformation for the rank-2 gauge
field by implementing a 27 global flux insertion during a
time-period T for the charges on a specific row:

f Ay = yiut = T)dx = 223(3)). (A6)
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Under this LGT, the path integral is changes by

T
0
fdxdy/ dt —(0,0,A9 — 9,Ayy) = 0. (A7)
0 21

Thus any shift of & by 27 does not affect the path integral and
the quadrupole moment ¢g,, = % has an integer ambiguity.

Now we turn to the quadrupole moment in a conven-
tional HOTT with a global U(1) charge symmetry, but without
subsystem symmetry. For a quadrupole moment to be well-
defined, it is essential to require that the ground state contains
no net charge density or dipole moment, otherwise the
quadrupole moment can change under arbitrary coordinate
shifts, and is ill-defined. To measure the total quadrupole
moment of a neutral, unpolarized many-body system, one can
add a nonuniform electric field, with a nonvanishing gradient.
The electric field gradient couples with the total quadrupole
moment as ¢, (0L, + 0,E,)/2. Thus we can imagine a pro-
cess where we turn on and off a uniform electric field gradient
(0xE, + 0,E,)/2 over a time period 7 and identify the change
of the action during this process:

1 T
AS =3 / dxdy f Qo (0E, + 0ENdt.  (AS)
0

As the system must respect PBCs after the quench, the flux
insertion for each row or column on the lattice must be an
integer multiple of 277. Based on these criteria, we can have a
gauge field configuration,

0 1<T
A= T g<r<T, (A9)
Zn(ri,vxf ¢ > T

where o,, = 0,, =1, L is the spatial length in the x and y
directions, and a is the lattice spacing. Since the theory is
defined on a square lattice, the coordinates x, y only take dis-
crete values, and thus, after a time 7' the system still respects
PBCs. This gauge field configuration includes both large and
small gauge transformations and creates a spatially nonuni-
form electric field during the quench process. It is chosen to
introduce a uniform electric field gradient in the system. Such
a process changes the action as

T 2n
AS = /dxdy/o quydt =2mwqylL/a. (A10)

The quantity L/a is the number of rows (or columns) which,
without loss of generality, can be chosen to be an odd number.
Thus, if g., is an integer, the change of the action due to
the process does not affect the path integral, and such a 27
ambiguity cannot be tracked.

Finally, we comment the validity of this quenched mea-
surement. The gauge field configuration in Eq. (A9) is not
equivalent to a large gauge transformation as it produces a
flux for both poloidal and toroidal directions after the process.
However, as we are trying to extract the quadrupole moment
in a gapped insulator with no net charge density, and no net
dipole moment, the spatially nonuniform electric field only
couples with the quadrupole moment so the change of the path
integral is attributed to only the quadrupolarization. During
the quench procedure, a nonuniform electric field is generated

that could potentially trigger a charge or dipole excitation
from the ground state. However, as long as the charge and
dipole gap are large compared to the electric field E, the
IR theory is unaffected. Indeed, our argument relies on the
fact that the ground state is fully gapped with no charge or
dipole moment. As long as the charge degree of freedom has
a large gap, the background potential A appearing during the
quench process will not trigger any free charge excitations.
Likewise, the E field appearing during the quench process can
potentially activate a free dipole excitation and generate extra
contributions to AS that would spoil the argument. Based on
these observations, the validity of this quenched measurement
requires that the system does not generate any free charges or
dipoles during the process. Subsequently, the nonuniform E
field during the quench only activates the quadrupole degree
of freedom, and thus changes the action by 27 ¢g,,. These cri-
teria must be met to have a well-defined quadrupolar value of
0 that is ambiguous under a 277 shift. We note that subsystem
symmetry automatically forbids any net dipole moment, so the
only requirement for the SSPT HOTI would be that the system
remain gapped. In the absence of subsystem symmetry, we can
have a fixed dipole moment if spatial symmetries, e.g., C4, C,
or mirror, remain unbroken during the quench process.

APPENDIX B: DIMENSIONAL REDUCTION OF
CHERN-SIMONS RESPONSE

In Ref. [33], the authors showed a connection between
topological insulators in a series of spatial dimensions. One
important example was a connection between the 2D Chern-
Simons response of a Chern insulator and a 1D topological
insulator with quantized charge polarization. The connection
between these two systems was illustrated using a dimen-
sional reduction procedure where one spatial direction is
compactified and shrunk down to form a quasi-1D system. Im-
portantly the compactified direction allows for flux threaded
through it, and the space-time profile of that flux becomes a
background field 6 in the 1D insulator.

Let us explicitly show how this works beginning with the
2D Chern-Simons response:

1
So = 1 [ AL (A0 — 9A,) — Ay (Ao — A,
~ , ) —A
+A0(8xAy - 3yAx)]’ (Bl)

which we will compactify in the y direction. As the compact-
ified direction is shrunk, all fields become independent of y
and we have

1
Ses = 4 / dxdt / dy[—Ad,Ay — AyE, + Agd.A,]
- :
1
== / dxdt / dy[2A,E, — ,(A(A,) + 0,(AoA,)]
T
1
= / dxdt[20E, — 8,(0A,) + 3,(0A0)]
T

= L/‘dxdt[eEX] + L/d)cdt(<‘9x(9A0) — 9,(6A))].
2 4

(B2)
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In the last line, we see we have arrived at the 1D O-term
response for the polarization. If we consider the system to be
a topological insulator then 6 = 7 is a constant background
field in the bulk of the system, and 6 = 0 outside of the
system.

Let us consider the resulting action carefully. The first term
is a “bulk”-response piece and it only generates something
nonvanishing when 6 depends on space or time. Indeed, we
find

1
T = Eeﬂ”ave. (B3)
However, for a TI, we are treating 6 as a constant in the bulk,
and the only response arises at a physical boundary, which we
have carefully kept track of in Eq. (B2). Thus, if we assume
that 6 only changes at a boundary in space or time we find the
response action

1 1
S= o / d16AZS — o~ / dx0A[;Z;. (B4

Hence, on an x boundary, say x = L, we find a charge of %,
which is actually half of the expected value, i.e., it predicts a
charge of 1/4 instead of 1/2 when 6 = 7 in the bulk.

While this factor of two may initially seem puzzling, it has
a well-known resolution. The 2D bulk Chern-Simons action
has a bulk current that flows into the edge, and a current
localized on the boundary. Indeed, terms representing both
of these processes appear in Eq. (B2). However, in order for
the boundary response to properly match the bulk inflow, we
need to add additional degrees of freedom on the boundary
that make up the difference. The boundary degrees of freedom
contribute the consistent anomaly, and when combined with
the boundary current of the reduced Chern-Simons response,
they form the covariant anomaly, which properly matches the
bulk inflow [88,89]. Thus, if we carefully perform dimen-
sional reduction starting from a Chern-Simons response, and
we treat 6 as a constant to yield a purely boundary response,
then we find the wrong answer by a factor of two as we
have just shown. There is an additional response contributed
by boundary degrees of freedom, and the sum of the Chern-
Simons boundary current, and the current from the auxiliary
edge degrees of freedom, gives the full response, which in this
case would be

1 x=L 1 t=T
Seov = 5 [ d16AZ — 5 — [ dxbALZ].  (BS)

To summarize, when dimensional reducing from a Chern-
Simons response, the boundary currents only indicates half
of the overall response, while any bulk currents would have
the correct, full coefficient. The same arguments apply to the
dimensional reduction of the dipolar Chern-Simons term.

APPENDIX C: ANOMALIES FROM A BOSONIC
PERSPECTIVE

1. Bosonization picture for chiral anomaly

In this section we review the well-known theory of the
1D chiral anomalies from a bosonic theory closely following
the calculations in Ref. [90], and then extend the ideas to
the new type of bosonic theory we find on the surfaces of

the dipolar Chern-Simons. In order to calculate the chiral
anomaly we can perform the calculation for a nonchiral theory
and use those results to determine the consistent anomaly for
a chiral theory [88]. The consistent anomaly can be added
to the boundary current response derived from our dipolar
Chern-Simons theory, and the combination will generate the
full response [88,89].

Let us begin with a free 1D bosonic field ¢ with the La-
grangian

1
La=; [ dxiria97 - @07 n
and satisfying the equal-time commutation relations
[p(x, 1), TI(X', )] = i8(x — x'), (€2)

with its canonical momentum IT(x, ) = 9,¢(x, t). We assume
that this scalar field has a Goldstone-Wilczek type current
response [79]

) 1
Jo—ﬁ

which is exactly conserved

ox, I, (C3)

1 1
Jx ﬁt ﬁ

1
JT
(note our convention in this Appendix is that the spatial
components of the diagonal Lorentz metric are negative). By

applying the canonical commutation relations, we can gener-
ate the U(1) Kac-Moody current algebra

" ju =01 jo — dcjx = —=(3,0:¢ — 0:0,9) =0 (C4

LjoGx, 1), ju(x', )] = iaﬁ(x —x'). (€5

Now let us consider the chiral current ji =enjt, le,
jg = —\%8,(]5, = \%&C(t). The conservation law for chiral
current is then

VT = =00 + 97 = —0"0,9. (C6)
Thus, since we have specified a free boson theory, the right-
hand side vanishes (at least on-shell), and the chiral current is
conserved.

However, this analysis does not capture all of the important
physics, for which we need to couple the scalar field to an
electromagnetic field A,,. The coupling term we add is

. 1 1
Liy = JuAM = —0= =

AL 3, PA”. C7
N PA” + N 20 (C7)
In the bosonic action, this term acts like a source for ¢
1 1
Sem = 7 dxdtp(3,A° + 9,A) = ~ 7 dxdtpE;.
(C8)

This modifies the equations of motion to —9*9,¢ = JLEEX.
Thus we arrive at the anomalous conservation law 9* ji =

%Ex. We derived this result for a nonchiral boson theory
(typically derived from bosonizing a Dirac fermion). To find
the result for the chiral theory we need to divide by a factor of
four (not two! [88]) to arrive at

1
" j> = —E,.

4 ©)
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2. Bosonization picture for chiral dipole anomaly

Now we will repeat the arguments above to argue for the
form of the anomaly for the bosonic theory we find at the
surface of the dipolar Chern-Simons theory. We will again
start with a nonchiral version of the 2D surface boson theory

1
Ly=3 / dxdyd1[(3,¢)° — (3:3,¢)]. (C10)
which has an equation of motion
37¢ + 8,9,0,0,¢ = 0. (C11)

The field ¢ satisfies the equal-time commutation relations

[pCx, y, 1), I, Y, O] = i8(x —x)8(y —y),  (Cl2)

with its canonical momentum I1(x, y, ) = 9;¢(x, y, ).

In the previous section, we assumed that the boson ex-
hibited a Goldstone-Wilczek response. That type of current
response is identical to that of charge polarization P, if we
identify P, = % In analogy, we can treat the 2D ¢ in this case
as a quadrupole moment ¢, and write an analogous response

1 1
0 = ——0,0,0, Joy = ——0; . Cl13
Jo ﬁ y¢ Jxy ﬁ 20 ( )

This current minimally couples to the gauge fields via
Loauge = JoA? + JoyAY, and from the gauge transformation
properties of A, Ay, we can derive the conservation law

=0 jo + axaijy =0, (C14)

which is indeed satisfied by the current above. Using the
canonical commutation relations we can write down a gen-
eralization of the U(1) Kac-Moody algebra as well

LioGe, 3, 1), juy (X, Y D] = %3):5()6 —x)3,8(y —y). (C15)

Now let us consider the chiral current

s 1 , 1
=724, Jy=-=hd¢. (C16)
It satisfies
. . 1
=3 jg + 0cdyjs, = —=(—07¢ — 0:d,0:0,¢),  (C17)

N

which vanishes if we apply the equation of motion. Just as in
the previous case, we can turn on the background gauge fields

Ag, A,y via Lgayee and they will act like a source for ¢ in the
action

1
Seauge = = / dxdydt$(9,9,A° — 9,A™)

1
= ﬁfdxdydt QE,,.

This serves to modify the equation of motion 8,242 +
0,0,0,0y¢ = \/%?Exw Thus we now have an anomalous con-
servation law. We have argued for this anomaly from the
nonchiral theory, and if we take the chiral theory alone we
expect the anomaly to be reduced by a factor of four [88]

(C18)

1
1 Eo (C19)

O jo — Oxdy, =
APPENDIX D: DERIVING THE ANOMALOUS
CONSERVATION LAWS FOR THE HOTI DIPOLAR
CHERN-SIMONS RESPONSE

1. Side surface conservation laws

Let us start from Eq. (60) to analyze this result in more de-
tail. Similar to the 2D Chern-Simons action discussed above,
we can calculate two related responses by taking variations
with respect to the fields A,, Ay (to find current, charge) or the
gradients 0;A;, 9;A¢ (to find dipole currents and densities).

For the first case, we find

. 1 .
]zly:L =——0,40 = _]z|y=09

4
p|y=L = _EBXAZ = _)0|y=0’ (D1)
for surfaces normal to y, and
. 1 .
Jel=r = _HayAO = —Jzlx=0s
1
Pli= = _anAz = —plr=0, (D2)

for surfaces normal to x. For a y surface, if we apply a po-
tential difference 0,A¢ in the x direction to create a uniform
electric field E,, then a current will flow in the z direction.
However, the two surfaces (y = 0, L) have opposite current
flows, and thus the total current is vanishing. We also find
currents on the hinges

; . Ao
Jel=Ly=0) = Jl=0y=0) = e
A;
Pla=Ly=L) = Plx=0,y=0) = e
: . Ao
Jelw=L,y=0) = Jelr=L,y=0) = e
A;
Plix=L,y=0) = Plax=0,y=1) = o (D3)
For the dipole currents and densities, we find
x 1 N
Joh=L = EAZ = —Jjly=0s
o 1 N
Fh=t = =A== jlh=o,
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y 1 .
]())|x=L = EAZ = _.]())]|x=0»

Ble=t = —=—A0 = = j|x=0, (D4)

4

where the notation jj is the current in the u-direction carrying
dipole moment pointing in the a direction. If we change the
potential Ay then dipole currents will flow in the z direction,
however we again find that if we account for each pair of
surfaces then the total dipole current flowing in the z direction
generated by a shift of the scalar potential vanishes.

These current/density responses for the charge and dipole
responses are not manifestly gauge invariant; indeed they are
anomalous. We find

.. 1
(0% ). 4+ 0" P)lx=r.0 = £ —0,E:lx-L0,

. 1
(az.]z + at10)|y=L,0 = :l:_asz|y=L,Os

i (DS)

for the charge response, and

.y . 1
(%70 + 9" J3) ’x:L,() = :FEEzh-:L,o,
(D6)

1
Z t - _
(a ]; +0 ]g)|y:L,0 = :FEEAy:L,O,
for the dipole response, where the signs are coordinated with

the choice of surface at x, y =0, L. As an example, on the
surface x = L, we have the equations

0"j, = —0,E., D7

Ju dp Ve (D7)
. 1

3”]i = —EEZ, (D8)

where u = 0, z. Interestingly, on the x or y surfaces, we find
a dipole current with an anomalous conservation law that
resembles the form of the usual chiral anomaly, i.e., it is pro-
portional to the electric field. We also find that the charge has
an anomalous conservation law in the presence of an electric
field gradient. Finally, on the hinges we find an anomalous
conservation law:
. . 1
3 jo+ ). =——E, (D9)
47
for the hinge at (x, y) = (L, L) and the others can be obtained
by multiplying the right hand side by -1 for each 90° rotation.
As discussed in the previous section for the SSPT, and
informed by the discussions in Appendix C, we need to add
the consistent anomaly coming from boundary degrees of
freedom to these anomalous conservation laws. In doing so,
we finally arrive at

_ 1
oo + 0 = £ —DE.,

0 L az iy 1
3" jO 4+ 970 = +—3,E,,

= (D10)
1
-(xy)  +(xy)
¥ jo + 07 = —5-E

for the charge currents where again we have only included the
result in the last equation for the hinge at (x, y) = (L, L). For

the dipole currents, we find

, 1
(k) s(b)y
e o Bz,

1 1
8,].((}:‘:),)6 + 3Zj§yi)»x = :F_EZ'

o (D11)

2. Top and bottom surface conservation laws

From Eq. (62), we find that the action localized on, say the

z = L surface, generated by the dipolar Chern-Simons term is
1
Sl—r = . / dxdydt[(0,Ay + 9,A)Ap]. (D12)
b1

We can extract the collection of charge and dipole densities
and currents. For the charge, we have

1
P = g(a)Ax + axAy),

. 1

Jx = —gaon,

. 1

Jy = —S—naon. (D13)

In addition, the density and currents of x dipoles on the surface
can be extracted as

LS A
0= 5040~ 8n
LS Ay
T 5@aA,) 81
58
- —0. D14
5 5040 1D

Similar definitions apply for the density and currents of
dipoles oriented in the y direction, and we find

A
Vo _ X
Jo = _87'[ s
Ay
v 20
= g
Y = 0. (D15)

y

Similar to the x and y surfaces, we find that these currents are
all anomalous

. 1
BMJIL = _g(axEy + ayEx),
1

8”]72 = gEyv
ot Y = LE
-]/L - 8]'[ X

where i = x, y, 1.

Using the same arguments we have applied earlier, we
know that we need to augment these anomalies by the con-
sistent anomalies of the boundary degrees of freedom, and we
ultimately find

. 1
all‘]“ = :FE(BXEy + ayEx)a

o 1
0 ‘]ﬂ = :I:EE),,
1
M =+ —E,. D16
T = (D16)
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APPENDIX E: ABSENCE OF DIPOLE CHERN-SIMONS
EFFECT IN THE BULK

In Sec. III B, we conclude that the dipole Chern-Simons
action is zero in the bulk so it does not produce any bulk
effects like the usual 2D Chern-Simons theory does. In this
Appendix, we provide a no-go theorem to demonstrate that
the mixed rank Chern-Simons cannot induce any bulk statis-
tical effects provided the gauge structure of the mixed rank
Chern-Simons theory is fixed as in Eq. (44). As discussed in
Sec. III B, the fracton charge current couples with the mixed
rank gauge field as

L = JoAg + JoAy + JA.. (E1)

This current obeys a special conservation law,
3%y — 8T,y + 85T, = 0, (E2)

where the sign on the second term arises from the two deriva-
tive gauge transformation of A,,.

We can further re-interpret this conserved current in terms
of derivatives of a dual gauge field,

Jo = —0.0,B; — 0.B,y,
ny = azBO - afBZa
J. = 0, Byy + 0.0,By. (E3)
The mixed rank gauge field B has the gauge transformations
By — By + 98,
Bxy i Bxy - 8xay,3a
B, — B.+ d.p. (E4)

Such a gauge field minimally couples with a vortex current
via

Lo=JB + 7

Xy

BY + B, (ES)

with corresponding conservation law

30y + 97T, + 5 = 0. (E6)

Xy

Interestingly we find that the vortex current has a different
conservation law compared to the original current in Eq. (E2).

If the mixed rank Chern-Simons term manifests a bulk
statistical effect, the mixed rank gauge flux should bind
mixed-rank gauge charge and the statistical effects would
arise from the flux-charge binding give rise to fractional statis-
tics as a consequence of an Aharonov-Bohm effect. However,
as the original matter and its dual vortex matter contain dis-
tinct current conservation laws, it is impossible to bind the
charge current with the gauge flux in a consistent way, thus a
statistical effect is absent.

The same argument can be extended to the rank-1 dipolar
Chern-Simons theory we explored in Eq. (55). As we empha-
sized, such a theory does not induce any bulk effect. Indeed,
we can show that no consistent bulk statistical effects can be
generated via a similar no-go theorem. As the magnetic flux
is a loop object in 3D, by symmetry and dimensional analysis,
a C47 invariant theory can only have a flux-dipole binding
effect along the lines of

1

p = 47 (0B 3yBy1),

P, = yp By, P, = yp By. (E7)
These equations would indicate that flux loops bind with a
“dipole charge” parallel to the flux loop. The binding can
be alternatively viewed as a charge polarization of the flux
line. However, as the flux in the bulk must form closed loops,
each bulk flux loop should be charge neutral so there is no
statistical effect between two fluxes. When the flux line hits
the boundary, the effective open flux end carries an isolated
charge living at the end of the dipole and this induces statistics
between charge and flux on the surfaces, thus indicating why
surface responses, but not bulk responses are viable in the
dipolar Chern-Simons response.
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