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Highly excited states of quantum many-body systems are central objects in the study of quantum dynamics and
thermalization that challenge classical computational methods due to their volume-law entanglement content. In
this work, we explore the potential of variational quantum algorithms to approximate such states. We propose
an adaptive variational quantum eigensolver (VQE) for excited states (X) that self-generates a variational ansatz
for arbitrary eigenstates of a many-body Hamiltonian H by attempting to minimize the energy variance with
respect to H . We benchmark the method by applying it to an Ising spin chain with integrable and nonintegrable
regimes, where we calculate various quantities of interest, including the total energy, magnetization density,
and entanglement entropy. We also compare the performance of adaptive VQE-X to an adaptive variant of the
folded-spectrum method. For both methods, we find a strong dependence of the algorithm’s performance on the
choice of operator pool used for the adaptive construction of the ansatz. In particular, an operator pool including
long-range two-body gates accelerates the convergence of both algorithms in the nonintegrable regime. We also
study the scaling of the number of variational parameters with system size, finding that an exponentially large
number of parameters may be necessary to approximate individual highly excited states. Nevertheless, we argue
that these methods lay a foundation for the use of quantum algorithms to study finite-energy-density properties
of many-body systems.
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I. INTRODUCTION

Quantum simulation is one of the most promising use
cases of near-term quantum computers, with applications
ranging from quantum chemistry to many-body quantum
dynamics. Despite substantial recent advances in quantum
hardware design and control, present-day noisy intermediate-
scale quantum (NISQ) devices can execute only mod-
estly deep quantum circuits with high fidelity [1,2]. In
order to achieve quantum simulation beyond classically
tractable regimes with NISQ hardware, it is thus neces-
sary to devise quantum algorithms that harness the power
of quantum mechanics while maintaining a limited circuit
depth.

Variational hybrid quantum-classical algorithms [3] aim
to achieve this by mapping a problem of interest to the
optimization of a cost function over a set of variational pa-
rameters θ = (θ1, . . . , θN ) in an ansatz state |ψ (θ)〉 that can
be prepared by a finite-depth circuit. These algorithms employ
feedback between quantum and classical hardware, using the
former to evaluate the cost function and the latter to update
the variational parameters for the next evaluation. A promis-
ing example of such an algorithm is the variational quantum
eigensolver (VQE) [4], which finds a variational approxi-
mation of the ground state of a quantum system by mini-
mizing the energy E (θ) = 〈ψ (θ)|H |ψ (θ)〉, where H is the
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Hamiltonian of the system of interest. The VQE has been used
in a variety of contexts from quantum chemistry [4–9] and
many-body physics [10–12] to lattice gauge theories [13,14].

Most applications of VQE-like algorithms to date have
focused on ground states and low-lying excited states, e.g.,
by preparing variational states that span the low-energy man-
ifold [15–18] or by adding penalty projector terms to the
Hamiltonian cost function that project out lower energy states
[19]. However, the ground and low-lying excited states gen-
erally have limited entanglement content and thus are more
amenable to classical simulation than generic quantum states.
For example, ground states of gapped local Hamiltonians
in 1D are known to exhibit area law entanglement [20],
a fact that underlies the success of the classical density
matrix renormalization group (DMRG) algorithm in such sys-
tems [21,22]. In contrast, highly excited eigenstates of such
Hamiltonians, i.e., ones near the middle of the many-body
spectrum, are generically believed to satisfy the eigenstate
thermalization hypothesis (ETH) [23–27]. Highly excited
states that obey the ETH exhibit extensive “volume-law” en-
tanglement [28,29] approaching that of a random state [30],
which limits classical computational studies of such states
to exact diagonalization (ED) of relatively small systems.
Properties of (highly) excited states play an important role in
finite-temperature and quantum-dynamical behavior. Probing
excited states as a function of energy density has been used to
study many-body mobility edges [31–35] and emulsions [36]
(also posing various fundamental open questions [37–39]),
as well as Hilbert-space fragmentation [40,41] and rare low-
entanglement “many-body scar” states [42–44]. Simulating
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FIG. 1. Application of adaptive VQE-X to the nonintegrable
mixed-field Ising model (MFIM) at system size N = 6, hx/J = 0.8,
and hz/J = 0.5. (a) Scatter plot of the energy expectation value
E = 〈ψ (θ)|H |ψ (θ)〉 of converged adaptive VQE-X trials against the
energy expectation value E0 of the initial product state |ψ0〉 [Eq. (2)].
Horizontal lines indicate the energies of exact eigenstates from ED.
(b) Scatter plot of E against the magnetization density MZ [Eq. (8)]
for exact eigenstates from ED (blue points) and adaptive VQE-X trial
eigenstates (red points). (c) Scatter plot of E against the half-chain
entanglement entropy SA [Eq. (9)]. Solid red and blue lines connect
energy-bin-averaged SA points as discussed below Eq. (9).

highly excited states using quantum algorithms thus offers a
promising venue for potential quantum advantage.

In this work, we study the capacity of VQE-like algo-
rithms to find generic eigenstates of local quantum many-body
Hamiltonians. A number of variational algorithms capable
of searching for arbitrary eigenstates have been proposed.
For example, the folded-spectrum method (FSM) applies the
VQE algorithm to the nonlocal Hamiltonian (H − λ)2 in or-
der to find the eigenstate with energy closest to λ, which is
a free parameter [4,5,45–47]. Another approach is to use a
cost function besides the energy, such as the energy variance
〈H〉2 − 〈H2〉, which vanishes only for eigenstates of H [48].
However, these algorithms have so far only been used to probe
low-lying excited states. Moreover, they have typically been
applied with fixed variational ansätze used for ground-state
problems, which may or may not be able to provide faithful
low-depth representations of highly excited states.

In Sec. II, we propose an algorithm, adaptive VQE-X,
that samples eigenstates from the whole spectrum of H in an
unbiased manner using the energy variance as a cost function.
Inspired by adaptive variational approaches to ground-state
[9,49–52] and time-evolution problems [53], the algorithm
avoids the pitfall of a fixed variational ansatz by adaptively
constructing its own ansatz using operators from a predefined
pool. The adaptive procedure is carried out alongside the vari-
ance optimization in such a way that new operators are added
to the ansatz only if they accelerate the algorithm toward con-
vergence. The algorithm is applied to an ensemble of random
product states and the set of converged trials yields a sampling
of approximate eigenstates from the whole spectrum, which
we envision can then be used to study finite-energy-density
properties of quantum many-body systems (see, e.g., Fig. 1).

In Sec. III, we test the adaptive VQE-X algorithm on a
benchmark quantum many-body system, the nonintegrable

mixed-field Ising model (MFIM), of which the integrable
transverse-field Ising model (TFIM) is a special case. We find
that the algorithm succeeds in producing uniform coverage
of the energy spectrum for small systems and that the main
performance bottleneck comes from the high-dimensional
classical optimization of the variational parameters. In-
triguingly, we find that the algorithm’s success in probing
eigenstates of integrable versus nonintegrable models depends
on the choice of operator pool for the adaptive ansatz, with
nonintegrable models benefiting substantially from the inclu-
sion of longer ranged two-body gates. We interpret this as a
practical manifestation of the increased complexity of highly
excited states in such systems relative to ground states and
low-lying excitations above them.

In Sec. IV, we introduce a variant of the FSM that uses
the adaptive procedure from VQE-X to approximate highly
excited states near a fixed target energy. We show that this
method results in variational circuits with a similar number
of parameters to those generated within adaptive VQE-X. We
close with a discussion in Sec. V, including a scaling analysis
of the complexity of adaptive VQE-X circuits, and use this to
motivate directions for future work.

II. ADAPTIVE VQE-X ALGORITHM

In order to prepare generic excited states |n〉 of a
Hamiltonian H for a system of N qubits, we use the energy
variance,

C(|ψ (θ〉) = 〈ψ (θ)|H2|ψ (θ)〉 − 〈ψ (θ)|H |ψ (θ)〉2 , (1)

as a cost function. Here, |ψ (θ)〉 = U (θ) |ψ0〉 is a variational
state obtained by applying the unitary circuit U (θ) with pa-
rameters θα ∈ [0, 2π ) to an initial state |ψ0〉. Importantly, this
cost function vanishes for any energy eigenstate. To construct
the unitary U (θ), we utilize an adaptive approach that starts
from a random initial product state

|ψ0〉 =
N⊗

i=1

(cos ϕi |0〉i + sin ϕi |1〉i ), (2)

where the angles ϕi are drawn uniformly from some distribu-
tion. We then iteratively build the ansatz as follows: At step
α ∈ [1,Nmax] we add an operator eiθαOα , where Oα is drawn
from a predefined pool P of Pauli string operators. We choose
to add the operator that results in the minimal cost function,
i.e.,

Oα = arg min{Oν } min
θν

C(eiθνOν |ψα−1〉), (3a)

where

|ψα〉 = |ψ (θα )〉 =
α∏

ν=1

eiθνOν |ψ0〉 (3b)

and we keep all parameters in |ψα−1〉 fixed in Eq. (3a). Since
we avoid evaluating the cost-function gradient throughout
the algorithm, the operator Oα is selected based on one-
parameter optimizations, which can be efficiently performed
using a Golden-section search algorithm. We then update
all parameter values θα = {θ1, . . . , θα} by optimizing the en-
larged ansatz: θα = arg minθα

C(|ψα〉). We proceed to the next
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step α → α + 1 unless we have reached the maximal num-
ber of steps α = Nmax or achieved the convergence criterion
F (|ψα〉) < δ, where

F (|ψ (θ)〉) = 1 − | 〈ψ (θ)|H |ψ (θ)〉 |
‖H |ψ (θ)〉 ‖ . (4)

In practice, we first calculate ‖H |ψ (θ)〉 ‖ to avoid the possi-
ble divergence of F (|ψ (θ)〉). The algorithm is terminated if
‖H |ψ (θ)〉 ‖ < δ, which indicates that |ψ (θ)〉 converges to an
eigenstate with E = 0. Otherwise, the convergence criterion
in Eq. (4) evaluates to 0 if and only if H |ψ (θ)〉 is collinear
with |ψ (θ)〉. Note that ‖H |ψ (θ)〉 ‖ =

√
〈ψ (θ)|H2|ψ (θ)〉, so

F (|ψ (θ)〉) can be computed using the same expectation values
that yield the cost function C(|ψ (θ)〉). Indeed, C and F are
closely related and vanish identically on the same set of states.
F is more natural as a convergence criterion because it is a
dimensionless and intensive quantity (i.e., it does not scale
with system size N), unlike the energy variance C. We denote
the step at which convergence is achieved by α = Nc, which
counts the number of variational parameters needed to achieve
convergence.

The adaptive VQE-X algorithm assumes that the variance
cost function C can be measured efficiently on a quantum
processing unit (QPU). If H is a sum of O(N ) Pauli strings,
measuring C requires the evaluation of O(N2) Pauli-string
expectation values. Each Pauli-string measurement can be
converted to a computational basis (CB) measurement using at
most N one-qubit gates. Thus, compared to a VQE calculation
using the same ansatz, which would require measuring O(N )
Pauli strings, cost-function evaluation in adaptive VQE-X re-
quires only a polynomial quantum-resource overhead.

Optimization calculations, e.g., for the ansatz parameters θ

and for determining the choice of Oα at each step, are carried
out on classical hardware. Any optimization algorithm can be
used, but we opt for the Nelder-Mead algorithm as it avoids
the need to measure gradients of the cost function with respect
to the ansatz parameters.

Before applying adaptive VQE-X to a specific model,
we point out a potential pitfall of the convergence criterion
F (|ψ (θ)〉) < δ, with F defined in Eq. (4). It is possible for
a state |
〉 that is a superposition of eigenstates nearby in
energy to satisfy F (|
〉) < δ. For example, if we write |
〉 =
a |E〉 + b |E + �〉, with |E〉 and |E + �〉 energy eigenstates
and |a|2 + |b|2 = 1, and work to lowest order in the energy
difference �, we find that

F (|
〉) ≈ |a|2|b|2
2E2

�2. (5)

Since the typical energy spacing between consecutive eigen-
states in the bulk of the many-body energy spectrum is � ∼
e−cN for some constant c > 0 and system size N , this means
that it is possible for a converged trial to yield a superposition
of nearby energy eigenstates. We will see consequences of
this fact in Sec. III. Given the exponential density of states
at finite energy density, this drawback is likely encountered by
any cost function capable of identifying individual eigenstates
(see, e.g., Sec. V). For certain applications, however—e.g., the
use of converged adaptive VQE-X trials to estimate micro-
canonical averages, as discussed in Sec. V—the fact that the

algorithm can converge to superpositions may not be detri-
mental.

III. APPLICATION: MIXED-FIELD ISING MODEL

We apply the adaptive VQE-X algorithm to finding highly
excited states of the mixed-field Ising model (MFIM),

H = J
N∑

i=1

ZiZi+1 +
N∑

i=1

(hx Xi + hz Zi ), (6)

which for generic parameter values is a paradigmatic example
of a Hamiltonian believed to satisfy the ETH [54,55]. A spe-
cial case of the model is the integrable transverse-field Ising
model (TFIM), which is often used as a benchmark for quan-
tum algorithms. We work with periodic boundary conditions
(PBC) such that N + 1 ≡ 1. We focus in this section on the
N = 6 case, and discuss the scaling with N of the algorithm’s
performance in Sec. V.

Since excited states of integrable models are believed to be
less complex than those of nonintegrable models, we will be
interested in comparing the performance of the adaptive VQE-
X algorithm in integrable and nonintegrable regimes. In units
where J = 1, parameter values that we take to represent the
integrable and nonintegrable cases are (hx, hz ) = (0.8, 0) and
(0.8,0.5), respectively. We will also examine the dependence
of the algorithm’s performance on the choice of operator pool
P from which the operators Oα are drawn at each step. We
make use of two operator pools: the “minimal” pool [49]

Pmin = {Yi}Ni=1 ∪ {YiZi+1}Ni=1 (7a)

and the “maximal” pool

Pmax = {Yi}Ni=1 ∪ {YiZ j}Ni, j=1 ∪ {YiXj}Ni, j=1, (7b)

which, like the Hamiltonian (6), are defined with PBC. For
a given system size N , we can divide our numerical tests into
four categories defined by whether integrable or nonintegrable
parameters and pools Pmin or Pmax are used.

For each choice of N, (hx, hz ), and P , our implementation
of the algorithm consists of many “trials,” each starting from
a different initial product state |ψ0〉. The distribution of initial
product states is not strictly uniform—rather, we generate
product states using uniform distributions for the angles ϕi and
then postselect to obtain an ensemble {|ψ0〉} with a roughly
uniformly distributed average energy {〈ψ0|H |ψ0〉}. As the
average energy of the initial and final states are (weakly)
correlated, see Fig. 1(a), this postselection helps to ensure a
more uniform coverage of the energy spectrum. We used an
ensemble of ∼1000 initial product states and kept only the
trials that converged in at most Nmax = 100 steps.

Our results for the integrable TFIM are shown in Fig. 2.
Each point in Figs. 2(a) and 2(b) represents a trial that con-
verged to an eigenstate to within a tolerance δ = 10−4 [see
Eq. (4)]. The x coordinate of each point represents the trial
number, with each trial corresponding to a different random
initial product state. The y coordinate represents the final
energy of the converged state. The color of each point denotes
the number Nc of variational parameters for that trial, with
lighter colors denoting more parameters. The minimal pool
Pmin produces more even coverage of the spectrum in this
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FIG. 2. Adaptive VQE-X results for the integrable TFIM at sys-
tem size N = 6, hx/J = 0.8 and hz = 0. [(a), (b)] Energy of the
converged variational state |ψNc 〉n versus trial number n labeling
different random initial states |ψ0(ϕ)〉n. Data points are colored
according to the length Nc(n) of the converged adaptive ansatz.
Horizontal lines indicate the energies of exact eigenstates from ED.
Panel (a) is for the minimal pool, and panel (b) is for the maximal
pool as described in the text. We observe that convergence is more
uniform over the spectrum for the minimal pool. On average, for
converged trials using the minimal pool, we find that Nc is 42 ± 12
for excited states, compared to 15 ± 1.5 for the ground and highest
excited states. [(c), (d)] Histogram of circuit lengths of the converged
adaptive ansätze, normalized to the total number of converged trials.
Panel (c) [(d)] is for minimal [maximal] pool. Green dashed line
denotes arithmetic average over all converged trials, which shows
that the minimal pool produces shorter ansätze by a factor of 1.6.

case. Trials making use of the maximal pool Pmax are much
less likely to converge to states in the middle of the spec-
trum. Moreover, trials using Pmax require more variational
parameters. The distribution of Nc over trials for the two pools
is shown in Figs. 2(c) and 2(d). For N = 6, the average Nc

value for Pmin trials is roughly half that of the Pmax trials.
We attribute the success of the Pmin trials in the inte-

grable case to the exact solvability of the TFIM. Since the
TFIM maps to a model of free fermions, all eigenstates are
product states in the momentum-space occupation number
basis. Intuitively, representing such states should not require
long-range two-body Hermitian generators of the type present
in Pmax. In this case, including such operators in the operator
pool simply generates more possible directions in which to
expand the ansatz, complicating the optimization procedure
and hindering convergence.

Intriguingly, we find that the scenario is reversed in the
nonintegrable case, the results for which are shown in Fig. 3.
In Figs. 3(a) and 3(b), we see that the maximal pool Pmax

generates both more converged trials and more even cover-
age of the full many-body spectrum than the minimal pool
Pmin. Evidently the long-range two-body generators present

FIG. 3. Adaptive VQE-X results for the nonintegrable MFIM at
N = 6, hx/J = 0.8, and hz/J = 0.5. Panels (a)–(d) are analogous to
the corresponding panels of Fig. 2. Comparing panels (a) and (b), we
see that the pool Pmax now outperforms Pmin in producing more
even coverage of the energy spectrum. In panel (d), we see that
the distribution of Nc, the number of variational parameters, for the
adaptive circuits drawn from Pmax, is unimodal with an arithmetic
average over all converged trials of approximately 65 (green dashed
line). In contrast, in panel (c), we see that the same distribution for
Pmin is bimodal, indicating that the minimal pool is unable to reach
certain excited states accessible with Pmax with the same number
of variational parameters. On average, for converged trials using
the maximal pool, we find that Nc is 75 ± 13 for excited states,
compared to 18 ± 2 for the ground and highest excited states.

in Pmax facilitate faster convergence of each trial. This is
consistent with the fact that the eigenstates of nonintegrable
Hamiltonians generally exhibit volume-law entanglement; our
results suggest that such complexity is more easily realized in
the variational context by longer range two-body gates.

While the coverage of exact eigenstates produced by adap-
tive VQE-X is generally quite uniform (if one uses the better
performing pool), there are a few states that our algorithm
did not converge to within the constraints of δ = 10−4 and
maximal operator number Nmax = 100 [see also Fig. 1(a)].
It is expected that by increasing the number of trials and
by increasing Nmax (which makes the classical optimization
more time intensive), one can obtain full coverage. Another
possibility is to soften the convergence criterion by increas-
ing δ, which, however, can result in a larger overlap of the
converged trial wave functions with nearby energy eigenstates
[see Eq. (5)].

The adaptive VQE-X algorithm produces variational states
whose energy expectation values are close to those of exact
eigenstates of H . It is natural to ask whether these variational
states also capture other properties of the energy eigen-
states, e.g., the expectation values of observables besides the
Hamiltonian. To this end, we plot in Fig. 1(b) the expectation
value in each converged variational state of the magnetization
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density

MZ = 1

N

N∑

i=1

Zi. (8)

Adaptive VQE-X data for the N = 6 nonintegrable case using
the pool Pmax are compared against ED. We find that the
variational states provide excellent agreement with the exact
results except near E ≈ −3 and E ≈ 5, where VQE-X states
for different trials provide a near continuum of magnetiza-
tion densities. We have checked explicitly that the algorithm
has converged to superpositions of a few nearby energy
eigenstates in these cases; the dependence of 〈MZ〉 on the
superposition amplitudes yields the continuum of observed
values near these energies.

Another probe of the variational excited states produced
by adaptive VQE-X is provided by the von Neumann entan-
glement entropy

SA = −tr(ρA ln ρA). (9)

SA is defined with respect to a bipartition of the system into
disjoint subsystems A and B, such that the reduced density
matrix ρA = trBρ. In Fig. 1(c), we calculate SA for both the
ED and VQE-X states in the N = 6 nonintegrable case with
pool Pmax, taking region A to consist of the first three sites
of the chain. The agreement between the exact and variational
results in this case is much poorer than for the magnetization
density MZ . This indicates that the majority of our adaptive
VQE-X trials actually converge to superpositions of eigen-
states that are nearby in energy. This is most prominent for
the quasidegenerate ground states, which resemble the antifer-
romagnetic cat states |±〉 = 1√

2
(| ↑↓↑ . . .〉 ± | ↓↑↓ . . .〉) and

therefore have SA ≈ ln 2. In contrast, the VQE-X algorithm
converges to product states formed by the superposition of
these two catlike eigenstates, for which SA vanishes. This
discrepancy could be remedied by restricting the variational
ansatz to have a definite spatial reflection eigenvalue. Nev-
ertheless, the results obtained upon averaging the values of
SA found within a fixed energy window for both the adap-
tive VQE-X and ED states agree relatively well. This can be
seen in Fig. 1(c), where the solid red and blue lines connect
points obtained by dividing the energy axis into bins of fixed
width and computing the average of E and SA over each bin
for the adaptive VQE-X and ED states, respectively. These
bin-averaged entanglement-versus-energy curves agree rea-
sonably well in the bulk of the spectrum, indicating that the
ensemble of adaptive VQE-X states can reproduce average
properties of exact eigenstates within an energy window.

To further investigate the nature of the converged adaptive
VQE-X states, we compute their overlap with the exact eigen-
states. As shown in Fig. 4, the converged VQE-X circuits
produce proper eigenstates over the full spectrum in the in-
tegrable case. For the nonintegrable model at hz/J = 0.5, we
find that some converged circuits produce states that are super-
positions of a few nearby energy eigenstates. By projecting the
variational states onto groups of nearby eigenstates within an
energy window �, we demonstrate that almost all the weight
comes from states within �/J < 0.12, which corresponds to
the small energy difference between the two catlike ground
states of the model. We note that in the nonintegrable model

FIG. 4. Overlap of adaptive VQE-X states with exact eigenstates
in N = 6 model for convergence threshold δ = 10−5. Panel (a) is
for integrable model and panels (b)–(d) are for nonintegrable model
with hz/J = 0.5. We consider exact states with energy difference
less than �/J as being degenerate and show the overlap onto such
defined “degenerate” subspaces. (a) Overlap close to one shows that
VQE-X produces proper eigenstates in the integrable model. [(b)–
(d)] While most converged VQE-X states have overlap with a single
energy eigenstate, some VQE-X states are superpositions of nearby
energy eigenstates. In panel (c), we choose �/J = 0.12, which cor-
responds to the small energy difference of the two catlike ground
states, to demonstrate that VQE-X states are composed of close-by
energy eigenstates [in agreement with Eq. (5)]. To emphasize that
the majority of trials converge to states having high overlap with a
small number of eigenstates, panel (d) shows the same data as panel
(b) resolved by trial number. Data points are color coded by their
overlap with exact eigenstates in an energy window of width �.

the exact degeneracies that are present in the integrable case
are split into nearby nondegenerate levels. The convergence to
nearby states is expected from Eq. (5) and leads to the discrep-
ancies between exact and VQE-X results in the magnetization
and entanglement entropy reported in Fig. 1.

IV. COMPARISON TO ADAPTIVE
FOLDED-SPECTRUMMETHOD

The adaptive VQE-X algorithm formulated in Sec. II
aims to provide uniform coverage of the energy spectrum by
employing a random ensemble of initial states with approx-
imately uniformly distributed energy expectation values. In
practice, however, one might desire a variant of this algorithm
that targets highly excited states near an arbitrary target energy
λ. To this end, we introduce a variant of the FSM that uses
the adaptive procedure outlined in Sec. II to self-generate a
variational ansatz for excited states with energy near λ. The
adaptive FSM is obtained from adaptive VQE-X by replacing
the cost function in Eq. (1) by

C(|ψ (θ〉) = 〈ψ (θ)|(H − λ)2|ψ (θ)〉 , (10)
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FIG. 5. Adaptive FSM results for the MFIM with N = 6 and
hx/J = 0.8 in integrable [(a), (c)] and nonintegrable [(b), (d)]
regimes. [(a), (b)] Energy of the converged variational state |ψNc 〉λ

versus shift parameter λ, with data points color coded by Nc. Results
for each λ start from the same random initial product state. Panel
(a) is for the minimal pool and hz = 0 and (b) is for the maximal
pool and hz/J = 0.5. [(c), (d)] Histogram of circuit lengths of the
converged adaptive ansätze, normalized to the total number of con-
verged runs. Panel (c) [(d)] is for minimal (hz/J = 0.0) [maximal
(hz/J = 0.5)] pool. Green dashed lines denote the arithmetic aver-
age, which shows that the average number of variational parameters
is similar to that of adaptive VQE-X.

and leaving the remainder of the algorithm unchanged. The
new cost function drives the variational method to converge
to the eigenstate with energy closest to the shift parameter λ.
Note that the quantum resource requirements for evaluating
the FSM cost function (10) and the VQE-X cost function (1)
on a QPU are comparable, since both cost functions require
the evaluation of 〈ψ (θ)|H2|ψ (θ)〉 and 〈ψ (θ)|H |ψ (θ)〉.

Eigenvalues and eigenvectors from throughout the many-
body spectrum are computed by scanning through a range of
λ values and running this adaptive variational algorithm. To
explore the full many-body spectrum, the range of λ can be
chosen to coincide with the bandwidth of H . In regimes where
classical simulations are tractable, the bandwidth can be ob-
tained using, e.g., the Lanczos method to obtain the lowest
and highest eigenvalues of H . Alternatively, the bandwidth
of H can be estimated by performing a “qubit mean-field”
calculation [51,56,57] wherein a set of variational parameters
ϕ = (ϕ1, . . . , ϕn) parametrizing a product state |φ(ϕ)〉 are
optimized to estimate the minimal and maximal values of the
energy cost function 〈φ(ϕ)|H |φ(ϕ)〉.

We have tested the adaptive FSM for both the integrable
TFIM (hz = 0) and the nonintegrable MFIM (hz = 0.5) using
the pools Pmin and Pmax for N � 7. Our results for the
integrable and nonintegrable regimes at N = 6 are shown in
Fig. 5. We focus on results obtained using the pools Pmin for
the integrable case and Pmax for the nonintegrable case, as

these cases were found to provide the most favorable results
for adaptive VQE-X in Sec. III. Figures 5(a) and 5(b) show
the dependence of the converged energy on λ. Each point
in Figs. 5(a) and 5(b) represents a converged solution to an
eigenstate to within a tolerance δ = 10−4 [see Eq. (4)]; we
choose “one” of the same random initial product states that
we used in the adaptive VQE-X method. We also tested the
algorithm using qubit mean-field initial states, where we first
minimize the FSM cost function over all possible N-qubit
product states before running the adaptive FSM algorithm.
We found the performance relative to a random initial state to
be equivalent for the nonintegrable model and slightly worse
for the integrable case. The color of each point denotes the
number Nc of variational parameters for the converged trial
at that λ. When λ is scanned over the full bandwidth of H ,
the pools Pmin and Pmax produce near-complete coverage
of the spectrum within a limited number of variational steps,
Nmax = 100, for the integrable and nonintegrable cases, re-
spectively.

The results shown in Figs. 5(a) and 5(b) demonstrate that
the adaptive FSM is capable of producing converged trials
throughout the many-body spectrum for N = 6 using the
same operator pools and algorithmic parameters as adaptive
VQE-X. To compare the resulting variational circuits to the
ones produced by adaptive VQE-X, we plot in Figs. 5(c) and
5(d) the distribution of the converged number of variational
parameters, Nc, for the integrable and nonintegrable cases,
respectively. The average value of Nc (shown as green dashed
lines) for each case are consistent with our adaptive VQE-X
results for the same parameters and operator pools; see Figs. 2
and 3. Moreover, we also observe the pool dependence noted
in our discussion in Sec. III of the adaptive VQE-X results for
the same models. For example, we find that the minimal pool
Pmin yields longer circuits and a reduced rate of convergence
in the nonintegrable case, resulting in less uniform coverage
of the spectrum (data not shown in Fig. 5).

V. DISCUSSION AND OUTLOOK

Our results indicate that the adaptive VQE-X algorithm
proposed in this work can be used to approximate highly
excited eigenstates of both integrable and nonintegrable
Hamiltonians. However, the ansätze generated by the adap-
tive procedure contain many variational parameters. In the
nonintegrable case at N = 6 (N = 7), the average number
of variational parameters for a converged trial is 〈Nc〉 ≈ 65
(〈Nc〉 ≈ 140), which is comparable to the Hilbert-space di-
mension. To investigate the system-size dependence of 〈Nc〉,
we performed adaptive VQE-X simulations for system sizes
N = 5–8 for both the integrable and nonintegrable cases. In
Fig. 6(a), we plot the scaling with N of 〈Nc〉, which is the
average of Nc over all converged trials at fixed N , on a semilog
scale. We present results using the minimal (maximal) pool
for the (non)integrable model. We find a clear trend toward
exponential scaling for both the integrable and nonintegrable
cases. Note that we only include data for N = 5–7 for the
nonintegrable case, due to an insufficient number of converged
trials at N = 8.

In Fig. 6(b), we show the scaling with N of the average
number of CNOT gates (NCNOT) in the converged VQE-X cir-
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FIG. 6. (a) Scaling of the average number of variational pa-
rameters 〈Nc〉 (on a logarithmic scale) with system size N for the
integrable TFIM (hz = 0) and nonintegrable MFIM (hz = 0.5). Error
bars indicate ±1 standard deviation around the mean of the dis-
tribution (the apparent asymmetry of the error bars is due to the
logarithmic scale). We find that 〈Nc〉 is larger and increases more
rapidly for the nonintegrable model, where the scaling is approxi-
mately exponential and 〈Nc〉 is close to the Hilbert space dimension
2N . (b) Average number of controlled-NOT (CNOT) gates in the con-
verged adaptive VQE-X circuits for excited states as a function of
system size N . Red (blue) lines denote the (non)integrable case with
hz = 0 (hz = 0.5) and minimal (maximal) pool. Since the CNOT gate
count depends on the connectivity of the qubits in the (hypothetical)
QPU, we consider three cases: nearest-neighbor connectivity (NN)
with open (OBC) or periodic (PBC) boundary conditions and all-to-
all connectivity, as indicated in the figure.

cuits. Different curves represent different (hypothetical) QPU
connectivities as described in the caption. The average is
performed over all trials that converged to excited states. It
follows from Fig. 6(a) that NCNOT also increases exponentially
with system size N . For the integrable model at N = 7 and
hz = 0, we find that the average number of CNOT gates is
about 65 for nearest-neighbor (NN) connectivity with periodic
boundary conditions (PBC) and about 200 for NN connectiv-
ity with open boundary conditions (OBC). Since the minimal
pool only contains products of NN spin operators, the results
are identical for NN PBC and all-to-all connectivity. In con-
trast, for the nonintegrable model at N = 7 and hz/J = 0.5,
where we employ the maximal pool, the average number of
CNOT gates is substantially lower for all-to-all connectivity
compared to NN PBC (NN OBC), specifically 280 versus
1300 (1900). This result suggests that a QPU platform that

FIG. 7. The number of cost function evaluations as a function of
the number of variational parameters N for the early iterations of
an application of adaptive VQE-X to the nonintegrable MFIM with
N = 8. The blue line is a quadratic fit to the data with a = 14.8.

natively implements longer range entangling gates (such as
ion trap quantum computers) provides an advantage.

Finally, we note that for comparison adaptive circuits for
ground-state preparation contain notably fewer CNOT opera-
tions, in particular at even N , where frustration due to the
antiferromagnetic nature of the ground state is absent. For
example, at N = 8, hz = 0 (N = 6, hz = 0.5) and PBC, we
find the circuits to contain only NCNOT = 20 (120) CNOT gates
for the ground state, in contrast to NCNOT = 100 (460) for ex-
cited states. This reflects the complexity of the wave function,
which has only area-law entanglement for ground states, but
follows a volume law for excited states in the nonintegrable
model.

The observed exponential scaling of Nc with N implies that
classical optimization over exponentially many variational
parameters is required. This is highly costly and poses the
primary bottleneck for reaching larger system sizes with adap-
tive VQE-X. In Fig. 7, we plot the number of cost function
evaluations needed to complete the Nelder-Mead optimization
as a function of the number of variational parameters during
the early iterations of an implementation of adaptive VQE-
X for the nonintegrable MFIM with N = 8. The red curve
is a quadratic fit to the data, indicating that the number of
cost function evaluations grows roughly as the square of the
number of parameters. As Nc scales exponentially with N ,
it takes ∼200 iterations and cumulatively ∼107 cost function
evaluations, each one of which is made of hundreds of matrix-
vector multiplications, in order to converge to an eigenstate.
To further demonstrate this, we compare in Fig. 8 the adaptive
VQE-X results for the integrable TFIM and nonintegrable
MFIM with N = 8. Within ∼120 iterations, nearly 80 trials
converged for the TFIM using Pmin, with a wide coverage of
the energy spectrum. On the other hand, only about 10 trials
converged to a few eigenstates using Pmax for the MFIM.

Indeed, the challenge of excessively many variational
parameters is likely to face any variational algorithm that at-
tempts to approximate individual finite-energy-density eigen-
states of generic local Hamiltonians. Indeed, generic quantum
states, of which such highly excited eigenstates are believed
to be representative examples, require exponentially many
gates to prepare [58]. Our results in Sec. IV corroborate this
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FIG. 8. Adaptive VQE-X results at N = 8 for (a) the integrable
TFIM using Pmin and (b) the nonintegrable MFIM using Pmax. The
data points represent converged trials and are color coded according
to Nc. There is a marked difference in the number of converged trials
between the integrable and nonintegrable cases.

intuition; they show that the adaptive FSM approach yields
circuits with a similar number of variational parameters on
average as those produced within adaptive VQE-X. It would
be interesting to see whether applying the same methodology
to other cost functions capable of identifying arbitrary eigen-
states, such as the “eigenstate witness” proposed in Ref. [47],
could potentially yield shorter circuits or an increased con-
vergence rate relative to the cost functions explored here. We
note, however, that this cost function is difficult to implement
for many-body systems on NISQ devices, as it involves an an-
cilla qubit, a controlled-e−iHt operation, and full tomography
of the ancilla. Additionally, an exponentially long evolution
time t is necessary to resolve the exponentially small gaps in
the middle of the spectrum. In any case, finding strategies to
reduce the number of variational parameters—e.g., by modi-
fying the operator pool or foregoing the adaptive strategy in
favor of a fixed family of ansätze—will be crucial for making
further progress on this problem.

While our results demonstrate that approximating indi-
vidual highly excited eigenstates is a challenging task, they
still provide some encouraging indications that quantum algo-
rithms could be used to study highly excited states of quantum
many-body systems. For example, Fig. 1(c) demonstrates that
adaptive VQE-X can be used to reproduce averages over an
energy window of quantities of interest such as the entangle-
ment entropy. This suggests that one could potentially modify
the adaptive VQE-X algorithm to provide states that serve
as estimators of microcanonical averages of observables and
entanglement measures at finite energy density. Such a strat-
egy should be feasible in systems obeying the strong ETH,

where expectation values of observables for any eigenstate
in a fixed energy window are expected to match averages
over a Gibbs ensemble at a corresponding temperature, up to
corrections that vanish in the thermodynamic limit [23–27].
Whether such an estimator can be constructed using, e.g., a
fixed variational ansatz with polynomially many parameters,
such as the Hamiltonian variational ansatz of Ref. [59], is
an interesting question for future work. Alternatively, con-
verged adaptive VQE-X trials can potentially serve as a basis
for computing microcanonical averages. For example, given
a converged variational state |
〉, one can construct a state
|
(θ )〉 = e−iθO |
〉, where O is some (local) Hermitian oper-
ator. For sufficiently small θ , the state |
(θ )〉 admixes |
〉
with states nearby in energy. Taking expectation values of
local operators in this state and averaging over θ and choices
of operators O may allow for a better approximation of mi-
crocanonical averages than the state |
〉 alone.

Another potential avenue for future work is to use (adap-
tive) VQE-X to study highly excited states of disordered
quantum many-body systems. When disorder is sufficiently
strong, such systems are believed to enter a many-body lo-
calized (MBL) phase [60] in which emergent local conserved
quantities render even highly excited states area-law entangled
[61–63]. The reduced entanglement of highly excited states
in such systems may make them more amenable to repre-
sentation by compact variational ansätze—indeed, this fact
also enables classical simulation of such systems using tensor
network approaches [64,65]. Highly excited states with low
entanglement also arise in models with quantum many-body
scars [42–44]. A variant of (adaptive) VQE-X (or the FSM)
can be envisioned in which the cost function also contains
an entanglement witness, such as the quantum Fisher infor-
mation [66], such that the algorithm seeks to minimize both
the entanglement and the energy variance of the variational
state, potentially providing circuit representations of (rare)
low-entanglement states in the spectrum.

The data and source code used for this work have been
made publicly available [67].

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2038010 (T.I. and
P.P.O.). F.Z., N.G., and Y.Y. were supported by the U.S. De-
partment of Energy (DOE), Office of Science, Basic Energy
Sciences, Division of Materials Sciences and Engineering,
and performed the research at the Ames Laboratory, which
is operated for the U.S. DOE by Iowa State University under
Contract No. DE-AC02-07CH11358.

[1] J. Preskill, Quantum 2, 79 (2018).
[2] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-

Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
arXiv:2101.08448.

[3] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,

L. Cincio, and P. J. Coles, Nat. Rev. Phys. 3, 625
(2021).

[4] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun.
5, 1 (2014).

[5] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
New J. Phys. 18, 023023 (2016).

075159-8

https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/arXiv:2101.08448
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023


ADAPTIVE VARIATIONAL QUANTUM EIGENSOLVERS FOR … PHYSICAL REVIEW B 104, 075159 (2021)

[6] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Nature (London) 549, 242
(2017).

[7] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G.
Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus et al.,
Phys. Rev. X 6, 031007 (2016).

[8] J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E.
Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and
I. Siddiqi, Phys. Rev. X 8, 011021 (2018).

[9] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
Nat. Commun. 10, 3007 (2019).

[10] D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 92,
042303 (2015).

[11] W. W. Ho and T. H. Hsieh, SciPost Phys. 6, 029 (2019).
[12] G. Matos, S. Johri, and Z. Papić, PRX Quantum 2, 010309
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[61] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 111,
127201 (2013).

[62] B. Bauer and C. Nayak, J. Stat. Mech.: Theory Exp. (2013)
P09005.

[63] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B
90, 174202 (2014).

[64] V. Khemani, F. Pollmann, and S. L. Sondhi, Phys. Rev. Lett.
116, 247204 (2016).

[65] F. Pollmann, V. Khemani, J. I. Cirac, and S. L. Sondhi, Phys.
Rev. B 94, 041116(R) (2016).

[66] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
[67] F. Zhang, N. Gomes, Y. Yao, P. P. Orth, and T. Iadecola, Adap-

tive variational quantum eigensolvers for highly excited states,
(2021), doi: 10.6084/m9.figshare.14916282.v3.

075159-9

https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevX.8.011021
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.1103/PRXQuantum.2.010309
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/PhysRevA.95.042308
https://doi.org/10.1021/acs.jctc.9b01125
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1088/1367-2630/12/7/075021
https://doi.org/10.1103/PhysRevX.8.021026
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.21468/SciPostPhys.1.1.010
https://doi.org/10.1103/PhysRevB.96.060203
https://doi.org/10.1103/PhysRevB.99.165137
https://doi.org/10.1103/PhysRevA.103.023323
https://doi.org/10.1103/PhysRevB.98.174201
https://doi.org/10.1103/PhysRevB.93.014203
https://doi.org/10.1103/PhysRevResearch.2.033262
https://doi.org/10.1103/PhysRevB.102.060202
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRev.46.828
https://doi.org/10.1063/1.466486
https://doi.org/10.1126/sciadv.aap9646
http://arxiv.org/abs/arXiv:2006.15781
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.3389/fchem.2020.606863
https://doi.org/10.1021/acs.jctc.9b01084
http://arxiv.org/abs/arXiv:2102.01544
https://doi.org/10.1103/PRXQuantum.2.030307
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1021/acs.jctc.8b00943
https://doi.org/10.1063/1.5055357
https://doi.org/10.1103/PRXQuantum.1.020319
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevLett.116.247204
https://doi.org/10.1103/PhysRevB.94.041116
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.6084/m9.figshare.14916282.v3

