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Life on the Earth was entirely microbial for almost 90% 
of its history. Microorganisms shaped the world we know 
and the biogeochemical processes they mediate main-
tain our planet in a state that is habitable for complex, 
multicellular life. Photosynthesis by cyanobacteria and 
algae produces most of the oxygen we breathe, nitrogen 
fixation by free-​living and symbiotic microorganisms 
provides an essential nutrient, organic matter remineral-
ization recycles what is no longer living, rock weathering 
delivers essential nutrients to aquatic environments and 
a myriad of other reactions cleanse those same waters 
and the atmosphere of toxic substances1. Still, the rock 
record holds surprisingly little direct evidence of this 
microbial world, especially during its earliest stages.

Considering the vastness of the continental land 
masses and sea-​floor sediments that record life’s early 
history, just a sliver can be dated to the Archaean aeon 
(4,000–2,500 million years ago (Ma)) and none, other 
than a few grains of the mineral zircon2, remain from the 
preceding Hadean aeon (~4,560–4,000 Ma). Although 
there are no direct records of when, where or how life 
originated, reconstructions that integrate genomic and 
fossil data place this process to within the Hadean aeon3 
and, possibly, as long as 1 billion years prior to the oldest 
signatures of life identified in the rock record. Widely 

accepted evidence for a biologically active Archaean 
Earth occurs in the ∼3,470–3,450 Ma Warrawoona Group4 
of the Pilbara Craton, Western Australia, and includes 
assemblages of carbonaceous microstructures5–7, 
stromatolites8–10 and chemical signals11 that confirm the 
existence of functioning ecosystems (Fig. 1). Unlike other 
ancient terranes, these comparatively well-​preserved 
rocks were deposited, close to sea level, on the oldest 
known block of emergent continental crust12. Carbon 
isotopic data for limestones and organic carbon phases, 
combined with modelling approaches, suggest the exist-
ence of a stable biogeochemical carbon cycle11, a temper-
ate climate and oceans of near neutral pH during this 
same time period. Isotopic data infer microbial cycling 
of sulfur13,14 and nitrogen15 as well. However, no fossils, 
physical or chemical, dating from these oldest of rocks 
preserve sufficient detail to reconstruct the specific iden-
tity of the earliest microorganisms, other than isotopic 
inferences for the existence of the physiologies of photo-
synthetic carbon fixation, respiration, nitrogen fixation 
and sulfate reduction.

Recognition of a radically different type of fos-
sil, distinct from traditional body fossils, came with 
the inception of the new field of molecular evolution 
largely flowing from the collaboration between Emile 
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Zuckerkandl and Linus Pauling in the 1960s (ref.16). 
In the initial concept, proteins by way of their amino 
acid sequences served as “documents of evolutionary 
history”17. As protein sequences changed at percep-
tible rates, the concept of a molecular clock was born 
and soon expanded to include the three informational 
macromolecules of protein, RNA and DNA18. However, 
all three biopolymers are easily hydrolysed, imposing 
severe limitations on their preservation and restricting 
study of ancient counterparts19 apart from the study of 
reconstructed analogues20,21. Although more limited in 
information content, the hydrocarbon cores of micro-
bial membrane lipids also serve as molecular fossils. 
Extremely recalcitrant once entombed in sedimentary 
rocks, these can be preserved on billion-​year timescales 
under ideal circumstances22. Such lipids, termed ‘bio-
markers’ as a contraction of ‘biological marker com-
pounds’23,24, are biosignatures for particular classes of 
organisms according to their taxonomic specificity. It is 
for this reason that studies of fossilized biomarkers have 
provided insight into a range of phenomena including 
the transitions in ocean phytoplankton through time25, 
exemplified by the apparent switch from oceans domi-
nated by bacteria to those where algae assumed major 
significance26. Biomarkers have also proved exception-
ally useful in revealing the redox structure of seas dur-
ing mass extinction events and other periods of biotic 

turnover27,28, extreme ocean temperature regimes in 
the past29,30 and the identity of otherwise enigmatic 
fossils31. Lipid biomarkers, because of their preserva-
tion in ancient sediments, can also serve as calibration 
points for molecular clocks. This is especially crucial for 
ancient microbial life where the record of recognizable 
body fossils is sparse and where the majority of forms 
are described as acritarchs, meaning organic microfossils 
with unknown biological affinities32.

Biomarker research was founded on observations 
from the field of natural products chemistry33 and 
was initially conducted by chemists endeavouring to 
understand the molecular character of petroleum and 
organic substances preserved in rocks and in fossils 
themselves34,35. As a result, molecules with previously 
uncharacterized structures were often identified in the 
geological record well before their biological precur-
sors were discovered in contemporary organisms. The 
prime example, hopanoids, were recognized in ancient 
sediments and petroleum well before their biological 
counterparts were identified in extant bacteria36,37. In 
another example, a C20 ‘highly branched isoprenoid’ 
hydrocarbon with a propeller-​like branching pattern 
was identified in a petroleum seep near the Great Salt 
Lake, USA, and its structure established by spectroscopy 
and chemical synthesis38. This soon led to discovery of 
analogous C25 and C30 hydrocarbons39–41 along with an 
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Fig. 1 | Geological timescale of the Earth’s fossil record in the context of planetary oxygenation. The bar at the top 
summarizes how sedimentary rocks record biological evolution: black represents time interval where there is no rock 
record, red where there are disputed records, light green where there are records of exclusively microbial life and dark 
green where there are records of complex animal and plant life. The areas shaded mauve and the dashed lines depict the 
progressive rise in atmospheric oxygen as presently understood from diverse geochemical proxies140,141. The area shaded 
pink depicts the time when there is a robust record of molecular fossils. Stars identify the oldest known occurrences of the 
named chemical and physical fossils. PAL, present atmospheric level; pO2, partial pressure of atmospheric oxygen.
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appreciation for their prevalence across different envi-
ronments. However, it was another decade before the 
source was revealed in cultures of diatoms42 and the geo-
logical, environmental and evolutionary significance of 
these unusual hydrocarbons, now known as haslenes and 
rhizenes, was appreciated43,44. These case studies revealed 
a pressing need for additional systematic approaches to 
characterize the lipids in extant organisms, to better 
inform interpretations of biomarker signals in the sed-
imentary rock record45–48. However, every success story 
raises new questions. For example, what physiological 
function do these highly branched C25 and C30 isopre-
noid hydrocarbons perform in diatoms? How are they 
biosynthesized and when did the pathway originate? Is 
it limited to diatoms and, if so, which species? Can they 
be used to track specific plankton communities or the 
conditions under which they thrive? In this Review, we 
explore recent work that has been done to link lipid bio-
markers to their biological sources and demonstrate how 
genomics has opened the way to address many remain-
ing questions, including those concerning the nature and 
history of early microbial life.

Lipids as biomarkers
Although lipids are ubiquitous in environmental and 
geological materials, only a fraction of them function as 
biomarkers. The term ‘lipid’ covers a large array of bio-
molecules that are operationally defined by their insolu
bility in water and solubility in non-​polar solvents, and 
which encompass a diverse suite of compound classes 
from simple hydrocarbons to fatty acids, alcohols and 
pigments. The fatty acids and alcohols can be ester or 
ether linked to glycerol, which can be further modified 
with polar head groups to form the amphiphilic lipid 
bilayer that surrounds most cells. Hydrocarbon chain 
lengths, how chains are linked to glycerol (ester versus 
ether), degrees and sites of unsaturation and classes of 
polar head group (phosphate, amino functions, sug-
ars and so on) all have relationships to phylogeny and 
microbial community structure49–51. However, much of 
this information is lost to hydrolysis or oxidation after 
an organism dies52,53. Rather, the non-​hydrolysable 
hydrocarbon cores of complex membrane lipids, as 
well as the structurally diverse polyisoprenoids, have 
the most secure connections to physiology, phylogeny 
and environmental conditions48,54. Commonly encoun-
tered lipid classes (Fig. 2) that have biomarker potential 
include acyclic isoprenoids, sterols, bacteriohopanep-
olyols, glycerol dialkyl glycerol tetraethers (GDGTs) and 
carotenoids55–57. So long as ancient sediments have not 
been excessively heated, the diagnostic structural fea-
tures of lipids are still recognizable, despite the changes 
wrought by diagenesis and catagenesis58.

Lipid biomarkers and genomics
The interpretation of lipid signatures preserved in 
ancient settings requires an understanding of the occur-
rence of their precursors in extant organisms, what their 
physiological roles might be and how their production, 
function and preservation might be influenced by envi-
ronmental factors. Rigorous lipid surveys over the past 
50 years have provided crucial information regarding the 

organisms that synthesize these lipids as well as the types 
of environments in which they are abundant47,59,60. These 
traditional lipid analysis studies have been foundational 
to the biomarker field and formed the solid ground from 
which all biomarker work has expanded — including 
recent molecular work combining comparative genomic 
analyses with genetic and biochemical studies. These 
genomic and biochemical approaches have revealed 
previously unknown proteins required for the synthesis 
of various biomarker lipids61–63 that have been used to 
search large genomic and metagenomic databases for 
the potential to produce these lipids in untested organ-
isms and directly in specific environments64–67. The first 
study to demonstrate the utility of this approach used 
the squalene–hopene cyclase sequence to identify novel 
hopanoid cyclases in environmental metagenomic data 
sets64, demonstrating that our knowledge of biomarker 
lipids in modern systems can be expanded through the 
application of genomic approaches60.

There are several benefits to the use of comparative 
genomics in addition to traditional lipid analyses in 
biomarker studies (Box 1). Firstly, genetic data are accu-
mulating at a rate far faster than lipid data. The num-
ber of nucleotide bases in GenBank (a DNA sequence 
repository run by the US National Institutes of Health) 
has doubled approximately every 18 months since 1982, 
with more than 1 billion sequences accessible for public 
research68. Scientists can leverage this massive data set 
to infer which organisms carry the genes necessary to 
synthesize lipids of interest. Metagenomic data sets —  
genetic data collected directly from environmental  
samples — have proven particularly valuable, as the 
genes and organisms responsible for biomarker synthesis  
can be inferred even when the species in question prove  
difficult to culture in the laboratory. A second benefit of 
genetic data is that a suite of tools and techniques exist to 
study how genes evolve over time. Although the presence 
or absence of lipids in living organisms provides clues  
into biomarker sources, such data are insufficient to 
determine when organisms evolved the ability to synthe-
size biomarkers, or whether such biomarkers were lost 
in some lineages in the past. By contrast, bioinformatic 
tools can be used to reconstruct histories of gene gain, 
loss and duplication, allowing scientists to infer the lipid 
repertoires of extinct lineages. Finally, understanding the 
geological significance of the new discoveries flowing 
from the revolution in genomics requires contextualiz-
ing biomarker genes in a phylogenetic (evolutionary) 
framework. Genes can have evolutionary histories dis-
tinct from the organisms that house them, meaning that  
the distribution of genes among living species can cre-
ate a false impression of a biomarker’s origin. Although 
‘gene trees’ may therefore diverge from species trees 
that are based on established phylogenetic markers  
(16S rRNA or concatenated protein sequences) (Box 2), 
they can provide a sense of the distribution of genes 
across taxa and snapshots of the evolution of biomarker 
biosynthesis. Molecular clock approaches, which uti-
lize fossil data to calibrate phylogenetic trees, can then 
be used to constrain the timing of important evolu-
tionary events (Box 2). In the following section, we 
explore a series of case studies where the methodology 
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described above has helped elucidate the origins of geo-
chemical biomarkers, as well as issues ripe for future 
investigations.

Genomics-​enabled advances in biomarkers
Fossilized carotenoid pigments as biomarkers. The satu
rated bicyclic hydrocarbon carotane was one of the 
earliest examples of a sedimentary biomarker charac
terized using combined gas chromatography–mass 
spectrometry69. The presumed precursor, β-carotene, 
occurs widely as an accessory pigment in plants, algae 
and cyanobacteria, rendering carotane a biomarker for 
chlorophototrophs but a relatively non-specific one.  

More limited in occurrence, and representing very 
specific ecological niches, are the aromatic carotenoids 
isorenieratene and chlorobactene of the green sulfur 
bacteria70, okenone derived from the purple sulfur bac-
teria71 and their fossilized counterparts72. Both classes of 
anaerobic bacteria require sulfide as an electron donor 
for photosynthesis but differ in the quality of light uti-
lized and tolerance of oxygen73. Different dispositions of 
methyl groups on the rings of these aromatic carotenoids 
(1-​alkyl-2,3,6-​trimethyl (ϕ-ring) in the case of the carot-
enoids isorenieratene and chlorobactene, and 1-alkyl-
2,3,4-​trimethyl (χ-​ring) for the carotenoid okenone) 
means that the two types of microbial phototroph can 
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be readily distinguished in gas chromatography–mass 
spectrometry analyses22,74,75.

Genomics and mutagenesis studies of carotenoid 
biosynthesis have revealed additional complexities while 
also revealing a clear path to decoding fossil carotenoid 
origins. Aromatic carotenoids form through dehydro-
genation of carotene rings accompanied by rearrange-
ment of the methyl substituents. In Chlorobium tepidum, 
this process is catalysed by a γ-​carotene-​desaturase/
methyltransferase denoted CrtU to form chlorobac-
tene, a monoaromatic76. In brown strains of the green 
sulfur bacteria such as Chlorobaculum limnaeum, the 
final product is the diaromatic isorenieratene77,78. In both  

processes, the result is aromatic carotenoids with the 
1-alkyl-2,3,6-​trimethyl ϕ-​ring. By contrast, the CrtU 
protein in Chromatiaceae affords carotenoids with 
the 1-alkyl-2,3,4-trimethyl χ-ring79. Further, genomics  
analyses revealed a homologous gene in some actino
bacteria consistent with their production of isorenier-
atene80,81 and in cyanobacteria. However, at the time, 
the function of CrtU in cyanobacteria was not known 
as cyanobacteria were not known to produce aromatic 
carotenoids76. Subsequently, culture studies and pig-
ment analyses revealed that a protein, now denoted 
CruE, converts β-​carotene to renierapurpurin, an 
aromatic carotene with dual χ-rings, and that this is 

Box 1 | Identifying lipid biomarker biosynthesis genes and proteins in extant organisms

The use of comparative genomics to identify candidate biomarker bio­
synthesis genes in extant organisms has proven to be one of the most  
effective approaches in narrowing down the biological sources of lipid 
biomarkers64,142. This approach entails identifying one or more organisms 
that produce a biomarker of interest and a set of organisms that do not. 
A comparative analysis of the genomes between these two sets of organisms 
(lipid producers versus non-​producers) will return a set of candidate genes 
that are targeted for further study. These gene sets can range in size from 
manageable (for example, 20 genes) to unmanageable (for example, 
2,000 genes). If gene sets are quite large, then a second set of comparisons 
can be executed to take advantage of any knowledge of the potential chem­
istry required to synthesize lipids of interest. For example, early experiments 
with labelled methionine suggested that the synthesis of 2-methylhopanoids 
involves S-​adenosylmethionine activity, a common cofactor in many  
biochemical reactions143. Thus, the candidate gene list for potential C-2 
hopanoid methylation could be further sifted to focus on proteins that were 
predicted to have an S-​adenosylmethionine-​binding motif142. Tools such as 
basic local alignment search tool (BLAST)144 or HMMER145 combined with  
the Pfam database146 can help determine whether predicted binding sites 
are present in a candidate gene set. One can then experimentally determine 
whether a candidate gene encodes for a lipid biosynthesis protein through 
either genetic or biochemical experimental approaches. The genetic 
approach requires the disruption of the candidate gene, either through a 
replacement of the gene locus with an antibiotic marker (‘gene disruption’) 

or a complete deletion of the gene locus (‘markerless gene deletion’). The 
biochemical approach requires the expression of the gene of interest in 
model laboratory systems, such as the bacterium Escherichia coli or the yeast 
Saccharomyces cerevisiae, and then carrying out biochemical assays with 
cell-​free extracts or purified protein to demonstrate that the candidate  
protein catalyses the lipid biosynthesis reaction of interest.

The identification of specific lipid biosynthesis genes opens other 
avenues for further research that can improve understanding of biomarker 
lipids. The identification of biosynthesis genes allows the monitoring of 
gene expression through in vivo transcriptional analyses both in cultured 
organisms and directly in different, contemporary ecosystems. These 
studies, coupled with biochemical characterization of the enzymes 
encoded by these lipid biosynthesis genes, would provide insight into  
how lipid production is influenced by specific environmental factors.  
In addition to the direct characterization of lipid biosynthesis enzymes,  
it is also possible to generate gene deletion mutants that are no longer 
capable of producing lipids of interest. Physiological studies of these 
mutants provide insight into the conditions under which synthesis of  
lipid biomarkers is essential and would reveal what functional role these 
lipids have in different cells147–150. The figure shows an example of how 
biosynthesis proteins, in this case the one associated with the formation  
of 2-​methylbacteriohopanepolyols, are identified in biomarker-​producing 
microorganisms through the use of comparative genomics, gene deletion 
analyses and heterologous expression.
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further transformed to synechoxanthin, a highly polar 
χ,χ-caroten-18,18′-​dioic acid82 in a series of oxidative 
processes thought to be catalysed by the enzyme CruH83. 
Thus, microorganisms that harbour both cruE/crtU and 
cruH are candidates for production of synechoxanthin 
and basic local alignment search tool (BLAST) searches 
reveal their simultaneous presence in diverse cyano
bacteria (Fig. 3). This series of observations, therefore, illu-
minates the reasons behind some previously enigmatic  
geochemical observations84,85.

The carotenoids renierapurpurin and renieratene, as 
their names imply, were first isolated and characterized in 
extracts of the sea sponge Reniera japonica86,87. However, 
those sponges whose genomes have been sequenced are 
not known to contain the genes necessary for biosynthe-
sis of aromatic carotenoids. By contrast, cyanobacteria are 
common amongst the ~30 clades of bacteria identified in 

sponge microbiomes88 and are likely a major source of the 
carotenoids found in sponges. Accordingly, cyanobacte-
ria are also candidate sources that account for the pres-
ence of renierapurpurane and renieratane in the oldest 
sedimentary rocks that have yielded fossil hydrocarbons22 
as well as in numerous more recent marine and 
non-​marine sediments where these carotenoids have 
been identified89,90. Lastly, lipids with aromatic carboxy
lic acid functional groups are prone to decarboxylation 
during the early stages of sedimentary diagenesis. This pre-
dicts that synechoxanthin and the monocarboxylic acid  
biosynthetic precursors should be transformed into  
C38 and C39 diagenetic product hydrocarbons upon 
reduction and burial90,91. Thus, cyanobacteria are now 
a valid source for carotenoids on the biosynthetic path-
way to synechoxanthin including compounds previously 
attributed to anoxygenic phototrophs85,92,93.

Sedimentary diagenesis
The processes by which 
sedimentary rocks and their 
components became modified 
over time during burial.

Box 2 | Gene trees versus taxon trees

Three processes cause gene trees to diverge from a species tree: gene gain — including de novo origination as well as 
horizontal gene transfer — gene loss and gene duplication (see the figure, part a). Some genes involved in lipid biosynthesis 
are rarely gained, lost or duplicated, but in others these processes are commonplace. For genes with complex evolutionary 
histories, typical tree-​building software is unlikely to produce an accurate topology. Gene duplications are particularly 
troublesome, as evolutionary constraint is often relaxed on one of the two paralogs (a process known as neofunctional­
ization), leading to increased rates of sequence mutation, poor node support and long branch artefacts151. Programs such 
as NOTUNG152 and TreeFix153 can help by using the known relationships between species to guide the production of a more 
accurate gene tree.

Once a gene tree has been constructed, molecular clock approaches can further elucidate the timing of important events 
(see the figure, part b). Molecular clocks are a suite of computational analyses that use variation in gene sequences to 
estimate divergence times in phylogenetic trees. In other words, they convert the relative time inherent in a phylogeny  
(for example, Methylobacter spp. did not obtain sterol biosynthesis genes until after green algae evolved) into absolute  
time (for example, Methylobacter spp. obtained sterol biosynthesis genes ~400 million years ago). The accuracy of a molecular 
clock is driven by the amount and quality of genetic data, as well as the proper use of fossil data to ‘calibrate’ the tree154. Both 
of these aspects can be problematic for microbial gene trees; the number of informative sites in a gene is limited by its size, 
and the microbial fossil record is limited and highly debated155,156. Because of these limitations, claims of exact dates or ages 
produced by molecular clocks should be treated with caution. Nevertheless, a molecular clock approach can be powerful for 
adjudicating between competing hypotheses of biomarker evolution.

The figure depicts relationships between gene trees and taxon trees. Part a is a hypothetical construction showing  
how an ancestral gene might become distributed in descendants by gain, loss or duplication. Part b is a simplified tree  
of the specific case of the gene coding for the squalene monooxygenase (SQMO) protein involved in sterol biosynthesis  
in eukaryotes and its distribution in two distinctly different clades of bacteria. The SAR supergroup is a clade of protists 
comprising the stramenopiles, alveolates and Rhizaria. Figure part b adapted from ref.101, Springer Nature Limited.
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Sterol origins, early eukaryotes and planetary oxygen­
ation. Steranes are an example of fossil biomarkers whose 
origins have been greatly informed by genomic data. 
Steranes are derived from sterols, a class of lipids produced 
by all major groups of eukaryotes. The oldest confirmed 
sterane occurrence is found in the ~1.65 billion-​year-​old 
Barney Creek Formation of Australia22. Unfortunately, 
conflicting lines of data make it difficult to interpret these 

biomarkers. Barney Creek steranes appear to be prim-
itive compared with the structurally diverse nature of 
contemporary eukaryotic sterols. They lack alkylation at 
C24 and include triaromatic 4-​methyl steranes in relatively 
high abundance, suggesting a truncated biosynthetic 
pathway85. More conventional sterane distributions pre-
dicted to represent eukaryotic sterols are not found until 
substantially later in the Neoproterozoic era, ~800 Ma, 
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with no confirmed occurrences in the interim94. But this 
too is problematic, as there are well-​accepted eukaryote 
fossils greater than 1 billion years old95,96. Further com-
plicating matters, a few bacteria have long been known 
to make simple sterols, and more recent molecular data 
demonstrated that sterol biosynthesis genes occur in 
diverse bacteria97,98. Determining when these various 
groups evolved the ability to synthesize sterols is there-
fore integral for interpreting the sterane fossil record and 
eukaryote origins.

To address these perplexing observations, one study 
used a molecular clock approach to test when differ-
ent species evolved the genes necessary to build basic 
sterols. Sterol biosynthesis begins with two enzymes — 
squalene monooxygenase (SQMO) and oxidosqualene 
cyclase (OSC). These two enzymes convert the acyclic 
polyisoprenoid lipid squalene into a tetracyclic protos-
terol, either lanosterol or cycloartenol. Querying genetic 
databases, the authors observed that both SQMO and 
OSC show almost identical evolutionary patterns, 
with bacterial sequences clustering into two groups. 
Because sqmo and osc are both members of larger gene 
families, out-​group genes could be used to polarize the 

evolutionary tree and determine when these bacterial 
clusters originated (Box 2). One group was nested within 
the eukaryotes, suggesting horizontal gene transfer from 
eukaryotes to bacteria, whereas the other group fell out-
side the eukaryotes, suggesting horizontal gene transfer 
between bacteria and the ancestor of living eukaryotes. 
Although there is substantial uncertainty in the timing 
of this first horizontal gene transfer event, the most 
likely timing for this event is around ~2.3 billion years 
ago, around the same time that the geological record 
shows convincing evidence for the irreversible atmos-
pheric oxygenation — The Great Oxygenation Event99,100 
(Fig. 1). This suggests that bacteria and proto-​eukaryotes 
were swapping genes necessary for sterol biosynthesis, 
an oxygen-​intensive process, around the same time that 
oxygen became a permanent gas in the atmosphere and 
shallow ocean. Importantly, one study101 also refutes the 
hypothesis that modern sterols have a Neoproterozoic 
(1,000–541 million years ago) origin but, rather, states 
that the observed patterns94 represent the ecological 
expansion of eukaryotic plankton.

Biomarkers for archaea and palaeotemperature assess­
ments using archaeal lipids. Although archaea, parti
cularly methanogenic and halophilic archaea, have been 
studied for almost 100 years102, it was only ~44 years ago 
that molecular phylogenetic analyses revealed that these 
microorganisms represent a domain of life separate from 
bacteria103. More recently, phylogenomics has revealed 
an evolutionary relationship between eukaryotes and 
archaea104. Initially, archaea were thought to be primar-
ily extremophilic and limited in ecosystem diversity, 
but environmental genomic studies indicate that these 
microorganisms inhabit diverse environments and can 
be metabolically flexible104. In addition, the biogeochem-
ical impacts of archaea are proposed to be quite signif-
icant both in modern environments and historically. 
However, the origins and evolution of archaea have been 
difficult to pinpoint as biomarker evidence for archaea 
in deep time is sparse105.

The sparsity of archaeal lipid biomarkers is partly a 
reflection of their membrane chemistry. To date, no poly-
cyclic triterpenoids such as sterols or hopanoids have 
been identified in archaeal cultures106. The lack of poly-
cyclic terpenoids, which function as rigidity modulators 
in bacterial and eukaryotic membranes, might indicate 
that archaea have alternative mechanisms for modulating 
membrane behaviour106. This would not be surprising, as 
one of the key features that distinguishes archaea from 
bacteria and eukaryotes is the chemical nature of their 
cellular membranes. Whereas bacterial and eukaryotic 
membranes are composed of fatty acid chains ester 
linked to glycerol-3-​phosphate (G3P), archaea mem-
branes are composed of isoprenoid-​based hydrocarbon 
chains ether linked to glycerol-1-​phosphate (G1P)107 
(Fig. 4). In addition, many, but not all, archaea generate 
a tetraether membrane-​spanning monolayer of GDGTs 
that can be further modified by the addition of cyclopen-
tane or cyclohexane rings. These unique archaeal diether 
and tetraether isoprenoid-​based membrane lipids can 
function as biomarkers indicating the occurrence of 
archaea in sedimentary records. Diagenetic products 
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of archaea membranes include regularly branched acy-
clic isoprenoids up to C25 from archaeols and extended 
archaeols, C40 biphytanes from GDGTs108 and C80 iso-
prenoids from glycerol monoalkyl glycerol tetraethers109. 
Acyclic isoprenoids with 25 carbon atoms have been 
identified in ancient sedimentary rocks dating as far back 
as 1.6 billion years110. However, these archaeal markers 
are typically not diagnostic beyond the domain level — 
they may indicate the occurrence of archaea but do not 
denote specific archaeal taxa or metabolism.

Whereas the acyclic phytanes and biphytanes may 
only serve as domain-​level biomarkers, the core GDGTs 
have the potential to be informative not as biomarkers 
for specific archaeal taxa but, rather, as indicators of  
past environmental conditions through their use as 
palaeotemperature proxies57. Palaeoclimatology is the 
reconstruction of past temperature changes through 
the use of various proxies including the chemical and 
isotopic make-​up of skeletal carbonates and the dis-
tribution of microbial lipid biomarkers preserved in 
ancient sediments111. Lipid-​based proxies are particu-
larly useful as they may be selectively preserved in some 
sedimentary environments, because they complement 
or supplement other indicators, or because they afford 
reconstructions of past temperature changes deeper 
in geological time111. Lipid-​based palaeotemperature 
proxies have been developed over the years based on 
the membrane lipids of microalgae29, bacteria112 and 
archaea30,113. The TEX86 (tetraether index of 86 carbons) 
palaeotemperature proxy was the first palaeotempera-
ture proxy that utilized a ratio of preserved membrane 
lipids specific to archaea — the core GDGTs114. Core 
GDGTs are subject to diagenetic degradation under high 
temperature and/or oxic conditions, and are unlikely to 
be well preserved in materials that have been exposed 
to high levels of geothermal heating115. However, they 

do occur in sedimentary rocks dating as far back as the 
middle Cretaceous (~100 million years ago) and are use-
ful to reconstruct changes in atmospheric and sea sur-
face temperatures (SSTs) over more recent geological 
timescales116,117.

The TEX86 SST proxy was first established as a ratio 
of the relative abundance of specific cyclized GDGTs that 
correlated with annual mean SST in surface sediment 
data114. Subsequent calibration of the TEX86 proxy with 
more extensive sediment data sets has demonstrated limi-
tations for the application of this proxy in certain environ-
ments (for example, polar oceans and large lakes)118–120. 
Nonetheless, various environmental studies continued 
to demonstrate that TEX86 and related proxies correlate 
well to SST in marine systems57,121,122. Yet there are some 
underlying assumptions that are made in the application 
of TEX86 that undermine its robustness. In particular, 
laboratory studies of pure archaeal cultures demonstrate 
that factors other than temperature, such as changes in 
pH, oxygen availability or nutrients, can impact GDGT 
cyclization123–125. It is also proposed that one group of 
archaea, the Marine Group I (MGI) Thaumarchaeota, 
are the dominant source of cyclized GDGTs in the sur-
face ocean111 whereas metagenomic studies have demon-
strated that uncultured MGII Euryarchaeota dominate 
the surface oceans and are, therefore, another poten-
tial source126,127. This is significant because changes in 
cyclized GDGTs observed in surface sediments may 
reflect changes in archaeal communities, rather than  
a response to temperature fluctuations, and this could 
distort TEX86 temperature assessments.

One obstacle to constraining these competing hypo
theses is that the biochemical mechanism of cyclization  
— and the proteins that carry out this biochemistry in the  
Thaumarchaeota — are largely unknown. A recent study 
identified two GDGT ring synthases, termed GrsA and 
GrsB, in the thermoacidophile Sulfolobus acidocaldar-
ius128. GrsA and GrsB are radical S-adenosylmethionine  
proteins that are responsible for adding cyclopentane 
rings at the C-3 and C-7 positions, respectively, in the 
core GDGT structure (Fig. 5). Using these two proteins 
as search queries, it was possible to mine metagenomic 
data from the North Pacific and confirm that the MGI 
Thaumarchaeota were the only potential source of 
cyclized GDGTs in the water column — directly con-
straining one uncertainty of the TEX86 proxy. A recent 
lipid study also concluded that MGII did not contribute 
significantly to the cyclized GDGT pools of the North 
Atlantic Ocean and the coastal North Sea129. These data 
suggest that MGII are not producing cyclized GDGTs 
and have led to the hypothesis that these archaea may 
harbour distinct membrane lipids. Future work can 
now focus on characterizing the biochemical details of 
GDGT ring formation by the Grs proteins130 and how 
their expression is affected by various environmental 
factors, including temperature.

Progress, pitfalls and future prospects
The field of biomarker genomics has seen tremen-
dous progress, yet many issues and questions remain. 
Contamination has been a persistent challenge in bio-
marker research, especially since the mass spectrometry 
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methods used to detect lipids have become exquisitely 
sensitive. Different types of contamination occur in geo-
logical versus biological samples. Biomarkers can leach 
into rocks from surrounding sediments or from petro-
leum seepage. Drilling cores into rocks can introduce 
hydrocarbons into freshly exposed samples, whereas 
aerosols contaminate museum specimens and other 
curated materials over time131,132. Techniques to iden-
tify authigenic biomarkers and limit anthropogenic 
contamination include comparing the surfaces with 
interiors of geological samples, checking out any anom-
alous signals or having the same sample tested in multi
ple independent laboratories. Biological samples can  
be compromised by biomarkers from elsewhere in the 
environment or from handling. Genome sequencing 
can also hint at contamination; if an organism lacks the 
candidate genes thought to synthesize the biomarker in 
question, it increases the probability that the biomarker 
in question is spurious. With awareness and vigilance, 
geochemists and molecular biologists can work together 
to identify and interpret authentic biomarker signatures.

The genomic record also has its limitations. Despite 
the exponential increase in genetic data, many clades 
most relevant to exotic biomarker production remain 
poorly represented. An example of this problem comes 
from the ‘sponge’ biomarker 24-​isopropylcholesterol. 
Although there is evidence that gene duplication events 
allow sponges to synthesize exotic (C30+) sterols, there 
is insufficient genetic coverage to determine when 
and how many times such duplication events have 
occurred. This is crucially important for interpreting 
whether putative sponge biomarkers indicate primitive 
proto-​sponges or representatives of advanced modern 
groups. In addition to limited taxon sampling, there is 
the ever-​present risk of unknown enzymes having a role 
in biomarker biosynthesis or unappreciated processes 
affecting their preservation. New enzymes are being 
discovered, even in well-​studied biosynthesis pathways; 
examples include sterol demethylase proteins that allow 
bacteria to demethylate sterols98,133, and the AltSQE 
enzyme that allows eukaryotes to oxidize squalene when 
they lack a canonical SQMO protein98,134.

An exciting conceivable future application of lipid 
biomarkers is understanding potential extraterrestrial 
microbial life. Hydrocarbons, because of their relative 

recalcitrance and resistance to chemical, hydrolytic and 
thermal degradation, have significant potential to serve as 
biomarkers for extraterrestrial life. Indeed, a form of life 
alien to that found on the Earth would still be recognizable 
as ‘life’ if it produced organic compounds that exhibited 
characteristics consistent with systematic construction as 
opposed to the ‘randomness’ evident in, say, the molecules 
that have been identified in carbonaceous chondrites135. 
The molecules of life, as we know it, are constructed from 
a limited set of universal precursors — the 20 amino acids 
of protein, the 4 nucleobases of DNA and the 2 build-
ing blocks of lipids, which are acetate and isoprene. The 
universality of terrestrial biochemistry, therefore, results 
in assemblages of molecules that exhibit patterns in their 
atomic ratios and chemical structures, constitutional 
isomers that are limited in number and with isotopic 
compositions that are systematic in nature136,137. This is 
a quite distinct feature of fossil molecules preserved in 
ancient sediments on the Earth and there is no reason to  
expect otherwise on another planetary body. Despite 
the fact that molecular fossils become altered over  
time, the patterning encoded by universal biosyn-
thetic pathways is a recognizable biosignature even for  
biochemistries that differ from those on the Earth138,139.

As with other sciences, interpretation of geochem-
ical biomarkers is continually undergoing refinement 
or revision. Some hypotheses — such as those based 
on the TEX86 SST proxy — rely on the principle of uni-
formitarianism, which may not fully extend to deep 
timescales. Similarly, there is always the possibility 
that exotic geological biomarkers were produced by a 
now-​extinct life form; a risk that increases the farther 
back in time we go. But identifying the genes that under-
lie biomarker production and contextualizing them in 
a phylogenetic framework is a means to test compet-
ing hypotheses and refute inaccurate interpretations. 
The combination of genomics and geology promises to 
substantially advance our understanding of the Earth’s 
chemical fossil record and, by extension, the nature of 
the ancient microbial life. This knowledge will grow 
along with the databases of organismic and environ
mental nucleic acids and improvements in the ways that 
this information can be queried and applied.

Published online 11 October 2021

Carbonaceous chondrites
Carbon-​rich meteorites 
composed of small mineral 
grains and representing some 
of the post-​primitive material 
in the solar system.
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