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We demonstrate a postquench dynamics simulation of a Heisenberg model on present-day IBM quantum
hardware that extends beyond the coherence time of the device. This is achieved using a hybrid quantum-
classical algorithm that propagates a state using Trotter evolution and then performs a classical optimization
that effectively compresses the time-evolved state into a variational form. When iterated, this procedure enables
simulations to arbitrary times with an error controlled by the compression fidelity and a fixed Trotter step size.
We show how to measure the required cost function, the overlap between the time-evolved and variational states,
on present-day hardware, making use of several error mitigation methods. In addition to carrying out simulations
on real hardware, we investigate the performance and scaling behavior of the algorithm with noiseless and noisy
classical simulations. We find the main bottleneck in going to larger system sizes to be the difficulty of carrying

out the optimization of the noisy cost function.
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I. INTRODUCTION

Simulating quantum dynamics of interacting many-body
systems is one of the main potential applications of quan-
tum computing, going back to Feynman’s visionary work on
simulating physics with quantum computers [1]. For quantum
many-body systems evolving under a generic nonintegrable
Hamiltonian H, such simulations are exponentially hard on
classical devices due to the growth of entanglement during
the simulation time [2,3]. Quantum processing units (QPUs),
on the other hand, can efficiently simulate quantum dynamics
with resources scaling polynomially in the number of particles
N and in the simulation time ¢. Since Lloyd’s original proposal
[4] to use a first-order Lie-Trotter product formula to de-
compose the unitary time-evolution operator into elementary
gates, several other methods have been discovered that exhibit
a more favorable asymptotic scaling of the required number of
gates at or near the optimal scaling of O(Nt) [5-12]. Concrete
resource estimates, however, show that this often comes at the
cost of requiring a large number of ancilla qubits or having a
large constant overhead of gates [9]. Therefore product formu-
las still remain a preferred choice on noisy intermediate-scale
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quantum (NISQ) hardware [13] due to their simplicity and
competitive performance for physically relevant (e.g., local)
Hamiltonians that fulfill additional properties [14].

Despite this progress, direct quantum simulation algo-
rithms face a critical drawback on NISQ QPUs: The limited
coherence time of the device imposes an upper bound on
the depth of the quantum circuits that can be implemented
with high fidelity. This in turn upper-bounds the simulation
time ¢ that can be reached before the output is overwhelmed
by errors—on current hardware, this timescale is roughly of
order 1 in the natural units imposed by the Hamiltonian being
simulated [15]. Quantum simulation beyond the coherence
time using “fast-forwarding” algorithms [16-22] is possible,
but only for nongeneric Hamiltonians, including those that can
be mapped to free fermions [23].

Variational quantum algorithms (VQAs) provide a promis-
ing route to overcome the coherence-time obstacle for
generic Hamiltonians [24,25]. Their starting point is to rep-
resent the wave function by a variational Ansatz | (¥)) =
I—[fi, e~ 4 ) with N real parameters # = (1, ..., D),
initial state [v), and Hermitian generators A ;, which are often
chosen to be single Pauli strings or sums of commuting Pauli
strings. To simulate quantum dynamics, the parameters 1; are
updated in a way that allows the variational state to follow
the exact dynamics; different algorithms to perform the update
have been proposed in the literature.

In one class of VQAs, one derives an equation of motion
for the variational parameters, »_ j M;;9;(t) =V [26-28], by
extremizing the distance between the variational state and the
exact time-evolved state at every (infinitesimally small) time
step in the evolution. Here, the matrix M;; and vector V; must
be obtained at every time step by performing measurements
on the QPU, and the main bottleneck of the algorithm is the
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large number of measurements. Since the number of compo-
nents M;; scales quadratically with the number of variational
parameters N, the number of measurements M scales as
M o N2

An alternative approach that reduces the number of
measurements is to determine the time dependence of the
variational parameters #(¢) by optimizing the state overlap
fidelity F = | (/(#)|¥(t)) |* between the variational state and
the exact time-evolved state | (¢)) [29-33]. In practice, the
exact state can be approximated with high fidelity, for exam-
ple, using Trotter evolution over a time interval 7 sufficiently
short to guarantee a desired high accuracy at finite gate depth.
Such a “variational Trotter compression” (VTC) approach
combines the desirable aspects of Trotter evolution with the
shallow gate depth requirements of variational methods. We
note that such circuit compression algorithms are not limited
to specific models and can be applied to both integrable and
nonintegrable systems.

Here, we expand on previous works that explored VTC
algorithms on classical computers [29—33] by performing the
first implementation and benchmarking of a VTC algorithm
on real quantum hardware. We explicitly demonstrate a sim-
ulation of quantum quench dynamics in a Heisenberg spin
chain beyond the coherence time on the IBM Santiago and
Quito QPUs. To achieve this goal, we employ several error
mitigation strategies: We combine zero-noise extrapolation
(ZNE) with Pauli twirling [26,34] and symmetry-based post-
selection. At the current levels of noise on the QPU, we find
it advantageous to avoid the gradient-based optimization used
in the variant of the VTC algorithm described in Ref. [31],
and instead choose the non-gradient-based genetic optimiza-
tion algorithm referred to as the covariance matrix adaptation
evolution strategy (CMA-ES) [35]. This has the additional
advantage of allowing quantum circuit executions for an entire
generation to be submitted in parallel, facilitating rapid com-
munication between the classical and the quantum computer.
We compare different ways to compute the overlap fidelity
on QPUs and find that a method based on a “double-time
contour” circuit that foregoes the use of ancilla qubits and
nonlocal SWAP gates [36—38] is most suited for current NISQ
hardware. Finally, we demonstrate the scalability of the VTC
algorithm both on noisy and noiseless quantum simulators up
to system sizes of M = 6 and M = 11 sites, respectively.

The remainder of the paper is organized as follows: In
Sec. II we present the general VTC algorithm and point out
differences from previous works [29,31]. We also discuss
different quantum circuit implementations of the optimization
cost function. Then, in Sec. III, we apply VTC to simulate
postquench dynamics in antiferromagnetic Heisenberg chains.
In Sec. IIT A, we introduce the model and describe the vari-
ational Ansatz we use, and in Sec. III B we benchmark the
capability of the Ansatz to capture the exact time-evolved
state. We then execute VTC on different classical simulators
and on real quantum hardware. In Sec. III C, we present results
obtained on a state-vector simulator. In Sec. IIID, we use
an ideal circuit simulator to consider sample noise due to a
finite number of quantum measurements, and in Sec. III E, we
show results from classical noisy circuit simulations, where
the noise model parameters correspond to the IBM Santiago
back end. Finally, in Sec. III F, we demonstrate our key result:

a quantum dynamics simulation beyond the qubit coherence
time on the real IBM Santiago and Quito devices. We con-
clude and discuss future research directions in Sec. IV.

II. ALGORITHM

In this section we describe the different parts of the varia-
tional Trotter compression (VTC) algorithm.

A. Choice of Ansatz

First, one needs to choose a particular way to build the
variational Ansatz |y (#)). The main part of the algorithm
is independent of the form of the Ansarz but requires that it
is able to faithfully represent the time-evolved state up to a
desired fidelity. Since the entanglement content of the state
increases during time evolution, the complexity of the Ansatz
and the number of required parameters grows with time ¢ (and
also with system size M). We characterize this growth in detail
for a specific model in Sec. III. A key insight from previous
works is that the growth with ¢ of the number of variational
parameters can be much slower (linear versus exponential)
than in purely classical algorithms based on matrix product
states (MPSs) [29], giving the VTC algorithm a potential
quantum advantage.

The variational Ansatz can be chosen either to have a fixed
form or to be adaptively modified during the computation
[28,39,40]. Here, we choose a fixed Ansatz that is inspired
by the Hamiltonian variational Ansatz (HVA) [41,42] and that
takes a layered form,

t N

@) =U@® o) =[[[Je ™ 1vo). D

=1 i=1

Here, ¢ denotes the number of layers, and N is the number
of variational parameters per layer. We choose the Hermi-
tian operators A; to be sums of commuting Pauli strings that
correspond to the terms in the Hamiltonian being simulated.
Finally, |v) is an initial state that can be chosen arbitrarily;
in particular, it does not need to correspond to the state of the
system at the initial time #;, which we denote by |v;).

B. Variational Trotter compression

The central part of the algorithm is the variational com-
pression step. The key idea is to accurately propagate the
variational state over a short, finite time interval t using
Trotter evolution and then to re-express the resulting state,
Utiot(T) | (#,)), in variational form via optimization of the
overlap cost function

C = (Y@ Una(DY (3,) . @

The cost function is measured on the QPU and feeds into
a classical optimization routine that determines the updated
variational parameters as #,,, = arg min, _C. The complete
compression step is then iterated until the final time 7.

The maximal value of 7 in a single compression step is
determined by the number of Trotter steps npm,x that can be
executed on the noisy QPU, and by the desired Trotter error
threshold ¢, which is a function of 7 /nga [4,43]. There exist
different methods to determine the overlap cost function on
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a QPU, which will be discussed in more detail below in
Sec. IIC. The simplest method concatenates the Trotter and
the variational Ansatz circuits and calculates the probability
that the system returns to the initial state, i.e.,

C = | (YolU (10 ) Ut (DU (31)%0) . 3

Here, Urit(7) is a (first-order) Trotter circuit using n steps.
We find this straightforward method to be robust under noise
and preferable on NISQ hardware with nearest-neighbor con-
nectivity compared with alternative methods that use ancilla
qubits or multiple SWAP operations [36-38]. Since the varia-
tional and Trotter circuits are applied consecutively in Eq. (3),
the depth of the Ansarz, which can be expressed as the number
of layers ¢, must be taken into account when choosing the
number of Trotter steps n. Loosely speaking, one must have
that 2¢ + n < npa, where npa is the maximal number of
Trotter steps that can be executed within the finite coherence
time of the device.

Different methods can be used for the classical optimiza-
tion of the overlap cost function C. Reference [31] proposes
a gradient-based optimizer, where the gradient is measured
directly using a quantum circuit, while Ref. [29] performs the
optimization purely classically using tensor-network-based
methods. Similar, tensor-network-based optimization meth-
ods are employed in Ref. [32], which proposes to update the
variational parameters for each term in the Trotter expansion.
Reference [33] proposes using a state-agnostic cost function
that is the operator distance between the variational and the
Trotter (or the classically computed exact) unitary opera-
tors. Translational symmetry is exploited to find approximate
expressions of the time-evolution operator for classically in-
tractable system sizes. Finally, Ref. [30] exploits translational
invariance using matrix product state (MPS) techniques. It
employs the SWAP test (see below) to compute state overlaps
on classical circuit simulators and the Rotosolve algorithm
[44] (also called “sequential minimal optimization” [45])
for the optimization. We have compared the performance of
gradient- and non-gradient-based methods and find that non-
gradient-based methods such as CMA-ES [35] are preferable
for noisy cost functions when considering realistic noise levels
present on current quantum hardware.

C. Quantum circuit implementation of cost function
measurement

As mentioned previously, when implementing the VTC
algorithm on a real quantum device, one needs to decide how
to evaluate the overlap cost function C in Eq. (2), since the
full wave function is not accessible. We consider two methods
to evaluate C that are physically realizable on current NISQ
devices, and we compare their resource scaling. Since the
fidelities of two-qubit entangling gates are much lower than
those of single-qubit gates on current hardware, we focus on
the scaling of the number of two-qubit gates.

1. SWAP-test circuit

One common method for computing the overlap of two
quantum states is the SWAP test [36,37,46], whose circuit im-
plementation is shown in Fig. 1. Here, the two crosses denote
SWAP operations between pairs of individual qubits in the two

|0) Hi—e—H A

)

¥)

FIG. 1. swAP-test circuit diagram for computing the overlap be-
tween two quantum states |W) and |®) via the expectation value
(Z) = | (¥|®) |? of an ancilla qubit.

quantum registers containing the states |®) and |¥). The SWAP
test thus requires 2M + 1 qubits for a system of size M. The
ancilla expectation value (Z) = | (¥|®) | is equal to the over-
lap of the states and thus serves as a cost function for VTC.
Specifically, we initialize the states |®) = Uryoi(7)U (¥) o)
and |W) = U (¥+.) [o) and find the optimal parameters @,
by maximizing (Z) for the ancilla.

Let us now estimate the number of two-qubit gates required
to implement this circuit on two quantum registers of length
M, each corresponding to a system of M qubits. Swapping
arbitrary M-qubit states |®) and |V) requires M controlled-
SWAP gate operations, each of which can be broken down
into two controlled-NOT (CNOT) gates and one Toffoli gate.
The Toffoli gate can be further decomposed into a circuit
containing six CNOTs. Therefore the SWAP test incurs a cost
of 8M CNOTs in total. One major drawback of using the
SWAP test on QPUs with local qubit connectivity, however, is
that the ancilla must be coupled to every other qubit during
the cascading controlled-SWAPs. As the current generation
of superconducting QPUs lacks such nonlocal connectivities,
one would need to compile a nonlocal SWAP into many lo-
cal CNOTs, which significantly increases the resource cost of
the SWAP test. Specifically, assuming a linear chain of qubits
like the IBM QPU Santiago we use here (see Sec. III F) and
placing the ancilla qubit in the middle of the chain, the SWAP
gates are between qubit pairs that are separated by a dis-
tance 1,2, 3, ... from the ancilla. This requires 224;01 2n =
M(M — 1) local nearest-neighbor SWAP gates, each of which
decomposes into three nearest-neighbor CNOTS, resulting in
S M 6n = 3M (M — 1) additional CNOT gates that add to the
8M CNOTs that occur for a local SWAP test. The total number
of CNOTs in the SWAP-test circuit for a linear qubit chain layout
is therefore M (3M + 5) CNOTs.

2. Double-time contour circuit

The simplest way to evaluate the overlap cost function,
which does not require any qubit overhead or ancillae, is
to implement a “double-time contour” circuit, corresponding
to the direct implementation of the overlap matrix element
in Fig. 2. The key idea is that the inverse of the updated
variational circuit U (#,, ) effectively unwinds the evolution
induced by Uryoi(7)U (¥;). The probability p|y, for the system
to end up in its initial state [1y) is maximal for the optimal
parameters f?tﬁ. We find this cost function to be robust to
noise under realistic conditions. The circuit is shown in Fig. 2
and consists of a consecutive application of three unitary
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o) 8 — U®¢) - Usrot(T) — Ut (Ds4r)

shown for M = 5.

circuits onto a fixed initial state |v). For convenience, we
choose the initial state |i) to be a Z-basis state. This method
to evaluate C does not require any additional overhead, and
the number of required qubits is equal to M, the number of
qubits in the system. Note, however, that the depth of the
circuit UT(#1 )Urit(T)U (%) is about 1.5 times larger than
that required for the SWAP test.

III. APPLICATION TO HEISENBERG SPIN CHAIN
DYNAMICS

In this section, we apply the variational Trotter com-
pression algorithm to investigate postquench dynamics in
antiferromagnetic Heisenberg chains. We first describe the
variational Ansatz we employ and then present results using a
state-vector simulator, ideal and noisy circuit simulators, and
real quantum hardware.

A. Model Hamiltonians and variational Ansatz

To benchmark the VTC algorithm and to study its robust-
ness with respect to noise, we apply it to investigate quantum
quench dynamics in integrable and nonintegrable Heisenberg
spin chains. The Hamiltonian of the pure Heisenberg chain,
which is integrable, is given by

M
J
Hy= 33 XiXip1 + Vi1 + ZiZi10), )

i=1

Here, X;, Y;, Z; are Pauli operators at site i, and M denotes
the total number of sites of the chain. For concreteness, we
will focus in the following on the antiferromagnetic model
with J > 0 and consider the quantum spin dynamics that
arises when initially preparing the system in the classical
Néel ground state |y;) = |0101 - --). The classical Néel state
is not an eigenstate of Hy, leading to nontrivial dynamics of
[y (2)) = e o' |y}, To study the difference between simu-
lations of integrable versus nonintegrable dynamics, we also
consider an integrability-breaking next-neighbor interaction
in the model,

g M
Hy = Hp + 1 ZZiZiJrz. (5)

i=1

Unless explicitly stated otherwise, we employ periodic bound-
ary conditions in the following.

0) A

0 Uodaa(01,1) I | Usad(62,1) I _
0 - | Ucven(1,2) I | Ueven (¢2,2) I
" Uoaa(61,3) | | Uoaa(b2,3) | )
0 | Ueven(¢1,4) | | Ueven(¢2,4) |
| Uodaa(61,5) Uoada(61,5)

FIG. 3. Quantum circuit implementing the brick-wall Ansatz
[ (#9)) in Eq. (6) for £ = 2 and M = 6. For simplicity, we show the
circuit for open boundary conditions (OBCs). For periodic bound-
ary conditions (PBCs), there exists an additional even layer gate
Ueven(¢7.11) between the first and the last qubit.

Let us now discuss our choice of variational Ansatz. For
the integrable case, we consider a brick-wall-type quantum
circuit with £ layers (shown in Fig. 3) that we apply to an
initial product state |) = |0101 - - -):

4
W (@) = [ | Ueven (1) Uoaa (81) [10) - (6)

=1

Here, #9 = 0,¢,,...,00 ¢,) are ML variational parame-

ters, and
Usaa(0)) = H e 10 (X/Xf+1+YiY/+l+Zij+l)’ (7a)
jodd
Ueven(¢1) = 1_[ e~ 191 XX +YiY1+ZZj 1) (7b)
jeven

are the unitary operators acting on the odd and the even bonds
of the chain, respectively. Here, 6, ; is the jth entry of the pa-
rameter vector ;, and ¢; ; is the jth entry of ¢,;. For M even, j
oddrunsover 1, 3, ..., M — 1. For M odd, however, there ex-
ists a boundary term Uboundary (01,p1) = €~ Ot KuXitXuu¥i+ZuZ)
that does not commute with every term in Uygq Or Ueyen and
needs to be included separately in the circuit. The quantum
circuit has depth 2¢, corresponding to the number of unitaries
applied to every qubit. Note that the length of the vector
(0;, ¢,) is equal to the number of sites M and #© has M¢
components. A compact quantum circuit representation of the
unitary operators in Egs. (7a) and (7b) has been given in Ref.
[47] and is shown in Fig. 4.

{RH AR o PR (O ——

FIG. 4. Quantum circuit implementing the unitary operator
U(a) = expl—ia(X;Xj11 + Y;Y;1 + Z;Zj11)], where 6 = 7 — 2«
and ¢ =20 — 3.
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For the nonintegrable model H;, we add an additional
unitary to each brick-wall layer /:

M
Uz(y)) = [ [ 5%, ®)
j=1
This doubles the number of parameters in the Ansarz, which
is given by 2M ¢ in the nonintegrable case.

B. Required number of layers £

To benchmark the ability of the variational Ansatz in
Eq. (6) to represent the exact wave function within a de-
sired accuracy €, we determine the minimal number of layers
Limin(t, €, M) needed such that the variational Ansatz can rep-
resent the exact time-evolved state | (¢)) at time ¢ up to an
infidelity 1 — F < €. To do this, for each t+ we numerically
minimize the infidelity

1—F(t,99) =1 - [(y @) |p@) ©)

over the parameters 9 to obtain the optimal parame-
NC . . .
ters 9. Repeating this for different values of ¢, we find

Lmin(t, €, M) as the smallest ¢ for which the minimal infi-

delity 1 — F(¢, 19(0) falls below the desired error threshold
€. Here, we obtain the exact state |W(¢)) = e ™ |y;) via
exact diagonalization with H = Hy (or H = H;) and initial
state |1;) = 0101 ---). The optimization is performed using
the gradient-based optimizer referred to as the box-constraint
variant of the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm (L-BFGS-B) [48].

We first study the time dependence of the minimal infi-
delity for a fixed number of layers £. As shown in Fig. 5,

1 - F(, 13(6)) first increases rapidly after the quench (unless
£ is sufficiently large) and then saturates at a value that de-
creases with increasing layer number. This can be understood
by comparison to the behavior of the entanglement entropy
when tracing out half the system’s degrees of freedom [see
inset of Fig. 5(b)]: It grows linearly over time until it reaches
saturation due to the finite system size. Since each layer of
the brick-wall quantum circuit couples only nearest-neighbor
qubits, the spread of entanglement across the system in the
variational state is limited by the total number of layers £. As
aresult, for a fixed layer number £, the infidelity 1 — F grows
as a function of time as the variational Ansatz is unable to
capture the entanglement that builds up in the system during
time evolution.

In Fig. 5(b), we show the growth with time of the layer
number £*(t) required to keep the infidelity at time ¢ be-
low a fixed threshold that we set to € = 1 x 10™* [see also
dashed line in Fig. 5(a)]. Like the entanglement entropy, the
required layer number grows linearly in time before it reaches
saturation. This linear growth in the number of layers and
variational parameters provides an opportunity for quantum
advantage, since one generically expects state-of-the-art clas-
sical techniques based on matrix product techniques to exhibit
an exponential scaling with time of the number of parameters
[2,29]. Finally, due to finite system size, the required layer
number saturates at long times. We denote the saturation value
of the layer number by £* = lim,_, o, £*(¢, €, M). In practice,
we choose a time #; much larger than the saturation timescale

00 05 1.0 1.5 2.0 25 3.0 35 40

(b)
o0 o
[ ° °
15 A
//
10 i 0 jts
* ) Vs
o e : ;
- . " o . 2
o, o =
5 oo S 11
(%)
/.’
[ 0=
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Jt

FIG. 5. (a) Minimal infidelity 1 — F(z, #*"') as a function of time
t for different values of £. Results are for the M = 8 pure Heisenberg
model Hy, Eq. (4), using PBCs. We obtain the infidelity by perform-
ing a numerical optimization of Eq. (9) every 0.1Jz. (b) Required
layer number £*(t) = £yin(t, € = 1 x 107*, M = 8) as a function of
time. The inset shows the dynamics of the half-chain entanglement
entropy for comparison.

and define £* = £*(¢7). Note that an Ansatz with £* layers is
able to represent the time-evolved state out to arbitrary times
[see also Fig. 5(a)].

We now systematically study the dependence of the satu-
ration layer number £* on system size M and desired error
threshold €. We therefore fix a final time ¢y = 50J —1 which
is larger than the saturation timescale of the entanglement
entropy for all system sizes we consider. In Fig. 6 we show

the minimal infidelity, 1 — F (¢, 19(0), as a function of layer
number ¢. We present results for the integrable Heisenberg
model Hy in Fig. 6(a) and for the nonintegrable model H,
in Fig. 6(b). As a function of ¢, the infidelity curves are first
relatively flat until a characteristic M-dependent value, where
they start to plunge to much smaller values. For definiteness,
we set the desired error threshold to € = 5 x 1073, which is
indicated by the black dashed line in Fig. 6. The insets show
the resulting £*(e = 5 x 1073, M) as a function of system size
M. We find that £* grows exponentially with M, which implies
an exponential growth of the number of variational parameters
N o« M¢ that are needed to describe the long-time dynam-
ics. For M = 10 we find £*(M = 10) =~ 40 in the integrable
model and £*(M = 10) & 20 in the nonintegrable one. In both
cases, the number of variational parameters N~ 350, since
the nonintegrable Ansafz has twice as many parameters per
layer as the integrable one. This exponential scaling behavior
at large times constitutes a bottleneck of the approach when
considering larger system sizes. Note, however, that at short
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(a) 10

100 4
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FIG. 6. Minimal infidelity 1 — F(;, #") at late time f; =
50J~" as a function of layer number £. Different curves are for differ-
ent system sizes M. (a) is for the pure Heisenberg model Hy, Eq. (4),
and (b) is for the nonintegrable model H;, Eq. (5). Both results
are for PBCs. The black dashed line shows a fixed error threshold
€ =5 x 1073, which defines ¢*. The insets show that ¢* exhibits
exponential scaling with system size M. Since we find that 1 — F
decays exponentially with increasing ¢, the values of £* denoted by
a cross are obtained by exponential extrapolation of 1 — F(£).

times we find a favorable linear scaling of ¢ and N with
time 7, which provides an opportunity for quantum advantage.
Such behavior was also reported previously using a sequential
quantum circuit Ansatz [29].

C. State-vector simulator results

We now discuss the performance of the VTC algorithm
in simulating postquench dynamics of the antiferromagnetic
Heisenberg chain. In the following we focus on the integrable
model Hy, since the results of Fig. 6 indicate that the al-
gorithm’s performance will not differ substantially between
the two cases. In this section, we discuss results obtained
using an exact state-vector simulator, where we have direct
access to the overlap cost function C in Eq. (2). Recall that
the VTC algorithm consists of two steps: a propagation step,
where we use a first-order Trotter product formula to evolve
the state from time 7 to ¢ + 7, and a compression step, where
the time-evolved state is compressed into variational form by
numerical optimization of the overlap cost function C.

In Fig. 7, we present results for the state overlap fidelity of
the VTC-evolved state with the exact state:

Ft, 8) = [{(y @)y @) 2, (10)

where |/ (1)) = e~ |y;) and 9, are the optimal variational
parameters maximizing the cost function C in Eq. (2) at time

1.0'?'-“___‘___§__3-__; D 4 x X x
———__x
——— ey

0.8 1
o> 0.6
- —e=- SVVTC
& 0.4 SV Trotter w/ fixed At

SV Trotter w/ n=3{
0.21 x Best Compression
x  VTC Overlap

0 20 40 60 80 100 120 140
Jt

FIG. 7. State-vector (SV) simulator results for the VTC state
overlap fidelity F = | (W(t)\w(rA?,)) |? (green dashed curve) with the
exact state | (¢)) during postquench dynamics in the M = 11 pure
Heisenberg chain Hy, Eq. (4). The system is initially prepared in
the classical Néel state |i;). We use £ = 76 layers in the vari-
ational Ansatz and n = 76 Trotter steps in the VTC propagation
step from ¢ — ¢ + t with t = 15.2J~". The error threshold during
compression is set to € =5 x 1073, and we employ the gradient-
based optimizer L-BFGS-B. The orange curve depicts the Trotter
simulation fidelity Fro, o, With fixed step size At = tv/n = 0.2J -1
corresponding to VTC with perfect compression. The gray curve
denotes fidelity from Trotter simulations with fixed number of steps
n = 3¢ = 228 such that the circuit depth is equal to the double-
time contour circuit used as the VTC cost function. In the region
highlighted in green, t > 60J~!, the state fidelity is larger for VTC
than for the fixed-step Trotter simulation, showing an advantage at
larger times. The black crosses denote the best compression fidelity
for a given VTC propagation step [see Eq. (11)], and the red crosses
denote the VTC overlap [see Eq. (12)].

t. Note that in this and the following sections, we drop the (¢)
superscript when referring to the variational parameters. In-
stead, we always use £* = lim,_, o, £*(¢, €, M) for a specified
€ and M.

In Fig. 7, we show results of a VTC simulation for a system
of size M = 11 over a long time t; = 140J~" using a varia-
tional Ansatz with £ = 76 layers that is able to represent the
exact time-evolved state over the full time interval. The VTC
fidelity F(t, #,)is shown as a green dashed curve in Fig. 7. We
find a sizable fidelity F(¢y) = 0.83 at the end of the simulation
after performing nine propagation and compression steps at
timest = mt witht = 15.2andm =1, ..., 9. Here, we have
chosen n = £ Trotter steps to propagate the state from time
t to t 4+ 7. If we were to measure the cost function C using
the double-time contour circuit in Fig. 2, the corresponding
quantum circuit would contain Neyor = IME = 7524 CNOT
gates, as a single brick-wall layer contains 3M CNOT gates (see
Figs. 3 and 4).

This value of F () should be contrasted with the fidelity
obtained by direct Trotter simulation using the same circuit
depth as the VTC circuits: The Trotter simulation fidelity
Frron=3e(t) = | (Yriar()|¥ (1)) |* for a fixed number of Trot-
ter steps n = 3¢ falls to zero already at time = 120J~! (gray
curve). We choose 3¢ Trotter steps because the double-time
contour circuit used to measure the VTC cost function C is of
length 3¢ if one uses n = £ during the VTC propagation step
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[see Eq. (3)]. The Trotter circuit with n = 3£ thus contains
Nenor = IM L = 7524 CNOT gates as well.

In Fig. 7, we also include the Trotter simulation fidelity
Frrotar(t) for fixed step size Ar =t/n= 0.2J°! (orange
curve). Then, the only source of error is the finite Trotter
step size At. The Trotter circuit depth thus grows with time,
and at the final time ¢ = 140J —1 it contains Nexor = 3M % =
23100 CNOT gates, i.e., about three times as many as the
VTC cost function circuit. The chosen fixed Trotter step size
At = t/n = 0.2J 7! equals the one used in the VTC propaga-
tion step, and the deviation of the VTC result (green curve)
from the Trotter with fixed At (orange) is due to imperfect
compression.

It is worth emphasizing that during the VTC algorithm
there are two independent sources of error that occur during
the propagation and the compression step, respectively. First,
a Trotter error occurs during state propagation that is con-
trolled by the Trotter step size t/n. Second, a compression
error arises that is given by the final (i.e., minimal) value of
1 —C at the end of the numerical optimization. This error
is controlled by the optimization parameter € that sets the
threshold for convergence. Of course, a smaller value of €
makes the optimization more difficult and time-consuming. In
the ideal case of perfect compression, the Trotter error could
be brought down arbitrarily by reducing . However, since we
have to perform more compression steps for smaller 7, this
will increase the compression error in practice. This leads to
our choice of parameters for the VTC simulation in Fig. 7,
where the two errors are comparable.

To further quantify the performance of the VTC algorithm,
we include in Fig. 7 also a “best compression” target fidelity
for a single VTC propagation step (black crosses). This is
defined as the overlap of the perfectly compressed state after
one VTC propagation step, using a Trotter circuit with n = ¢
steps, with the exact state:

best compression = | (¥ (¢)|Uror(n = £)|1p(1§,_,)) |2. (11)

Here, | (1)) = e~H' |y;) is the exact state. In other words,
after Trotter-evolving the compressed state obtained at the
previous time | (9,_.)), the black cross denotes the overlap
of the resulting state with the exact state. This can be regarded
as the target for the VTC algorithm at a given time step, and
we observe in Fig. 7 that the VTC fidelity closely follows
the black crosses during the evolution. Finally, in Fig. 7, we
also include as red crosses the value of the overlap between
the best possible compression state and the state to which
the algorithm converged during the compression optimization
step:

VTC overlap = | (¥ (3)|Unial ¥ (B—0)) >, (12)

We note that the VTC overlap is equal to the cost function C at
the end of the optimization. In Fig. 7, we find an average VTC
overlap of 0.990 over all compressions, which means that the
average error during compression was about twice as large as
the desired error threshold € = 0.005.

The main bottleneck of the algorithm in going to larger
system sizes is the time needed to perform the compression
optimization. Due to the large number of parameters, e.g.,
N = M{ =836 for M = 11 and £ = 76, the optimization of
the variational Ansatz to produce a single compression point

in Fig. 7 takes a few hours of CPU time, preventing long-time
simulations for larger systems. On the other hand, if one limits
the simulation to shorter times, one can reduce the number of
layers £ in the variational Ansatz while keeping the product
N = M constant, and thereby simulate larger systems. This
was demonstrated for a mixed-field Ising model using a dif-
ferent classical optimization method based on tensor network
techniques in Ref. [29].

D. Ideal quantum circuit simulator results

Next, we investigate the performance of the VTC algorithm
on a noiseless quantum circuit simulator, where we evaluate
the overlap cost function using either the SWAP-test (Fig. 1) or
the double-time contour circuit (Fig. 2) using a finite number
of quantum measurements, or “samples.” The fact that the
overlap cost function now exhibits sample noise increases the
difficulty of the numerical optimization during the compres-
sion step. In particular, we find that the non-gradient-based
optimizer CMA-ES is more reliable and converges much
faster to a minimum of the noisy overlap cost function com-
pared with a gradient-based optimizer such as L-BFGS-B.
While the sample noise can in principle be made arbitrarily
small by increasing the number of samples, we here focus on
a realistic number of samples, between 214 and 2!, that could
be executed on current NISQ hardware.

The presence of sample noise limits the largest system
size we are able to simulate using VIC to M = 6. We do
not observe any significant difference in the performance of
the algorithm depending on whether we use the SWAP-test or
the double-time contour circuit to measure the cost function.
As shown in Fig. 8(a), the fidelity for the VTC simulation
is consistently larger than that for the noiseless direct Trot-
ter simulation at large times. As expected, the VTC fidelity
increases with the number of circuit samples as the sample
noise is reduced. Specifically, we find a fidelity larger than
0.88 at times ¢ > 257!, where the fidelity using direct Trotter
simulation with 3¢ steps has already fallen to zero due to the
accumulation of Trotter error. Note that we use a state-vector
simulator for the direct Trotter calculations.

To further analyze the algorithm’s performance for the
maximal number (2!°) of samples, we include in Fig. 8(b)
the fidelity (with respect to the exact time-evolved state)
of the best possible compression during the next propa-
gation period 7. Explicitly, this is given by the overlap
| (W(t)|UTmt|w(1A7,,,)) |?; the data are represented as black
crosses in the figure. The red crosses indicate the overlap of
the best possible compression state, Uryor |1ﬂ(13‘,_,)), with the
state to which the algorithm converged; explicitly, this is given
by | (¥ ()| Uriot| ¥ (#,—¢)) |*. Note that this is equal to the
value of the cost function C at the end of the optimization.
An interesting feature relative to the noiseless simulation con-
sidered in Fig. 7 is that the VTC algorithm can converge to a
state whose fidelity with the exact time-evolved state exceeds
that of the “best compression” state Uryor |1/f(f9,_r))—this is
visible in the last data point in Fig. 8(b). This feature is a
result of the sample noise impacting the optimization during
the compression step. Indeed, for the noiseless state-vector
simulation, the actual fidelity of the converged VTC state is
upper bounded by the “best compression” value, as expected.
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FIG. 8. Optimal fidelity F(z, #,) for VTC simulations on an
ideal quantum circuit simulator. (a) Dependence of the fidelity on
the number of circuit samples. Dashed curves of different colors
correspond to executions of the algorithm using different numbers of
quantum measurements (samples) for each cost function evaluation,
as indicated by the color bar. Results are for M =6, £ =n =717,
T = 2.8/, and compression error threshold € = 5 x 107>. We use
CMA-ES for the compression optimization. For comparison, we plot
the results of noiseless state-vector (SV) Trotter simulations using
3¢ = 21 Trotter steps (gray) and using a variable number of Trotter
steps with fixed At =1/n =0.4J"" (orange). The orange curve
corresponds to the best possible VTC result using these parameters.
(b) Analysis of the fidelity data for 2'¢ samples in the vein of Fig. 7.
The black crosses denote the best compression fidelity for a given
VTC propagation step [see Eq. (11)], and the red crosses denote the
VTC overlap [see Eq. (12)]. We note that the shown VTC overlap
is computed using state-vector simulators, i.e., it corresponds to the
exact value of the cost function C at the end of the optimization, as
opposed to the value provided by the circuit simulator that is affected
by shot noise.

A single compression step for the parameters in Fig. 8
takes up to 10 h of CPU time. The difficulty of the noisy
optimization during the compression step constitutes the main
bottleneck of the circuit simulations in going to larger system
sizes. This bottleneck could be mitigated by parallelizing the
circuit evaluations across different CPUs (or indeed QPUs),
which would allow the accumulation of more samples to re-
duce the sample noise. Another possibility worth exploring is
to replace the overlap cost function by, e.g., a reduced density
matrix fidelity [49] defined only over a subset of the full
system where local quantities of interest are to be computed.

E. Noisy circuit simulator results

We now discuss VTC simulation results on a noisy quan-
tum circuit simulator that takes gate imperfections and finite

qubit coherence times into account. To connect with the
simulations on the real IBM QPU Santiago, which will be
discussed below, we choose a noise model with parameters
drawn from that chip, as implemented in QISKIT AER [50].
Due to the increased noise in the simulations arising from gate
errors, readout errors, and finite qubit coherence times 77 and
T5, the numerical optimization during the compression step is
even more challenging than for the ideal quantum circuit sim-
ulator. We use the non-gradient-based method CMA-ES for
the classical optimization, which we find to be more reliable
than gradient-based approaches.

To reduce the noise in the cost function, it is abso-
lutely essential to exploit a combination of standard and
specifically tailored error mitigation techniques. We employ
standard readout error mitigation as built into QISKIT IGNIS,
and zero-noise extrapolation (ZNE) with a linear fit, which we
implement using the software package MITIQ [51]. We also
apply a specific postselection protocol to the results: Since
the Heisenberg model preserves the magnetization operator
S = Zﬁ , Z;, only computational basis states with the same
expectation value of S° as the initial state are physically al-
lowed. We thus discard any counts of computational basis
states that do not fulfill the total S° conservation law after
performing readout error mitigation.

In Fig. 9(a) we present VTC results for the postquench dy-
namics in an M = 3 spin chain with open boundary conditions
using the noisy quantum circuit simulator. The noise param-
eters are drawn from the IBM QPU Santiago. We prepare
the system initially in the state |110) and time-evolve it with
the antiferromagnetic Heisenberg Hamiltonian. We use ¢ = 2
layers in the variational Ansatz, use n = 2 Trotter steps during
the VTC propagation step, and average over 8192 circuit
samples. Since the calculation of each compression point only
takes about a minute, we are able to run the noisy simulation
50 times and average over the resulting VTC fidelities (green
dashed curve). The error bars on the green dashed curve corre-
spond to the standard deviation over these 50 runs. We observe
that the noisy VTC simulations agree within error bars with
a Trotter simulation with fixed step size At =t/n=J""!
(orange curve). The Trotter simulation with fixed Az, chosen
to be identical to the step size used in VTC, corresponds
to noiseless VTC with perfect compression. Importantly, for
times larger than ¢ > 9J~! the VTC fidelity is larger than the
fidelity of a noiseless direct Trotter simulation with a fixed
number of Trotter steps n = 3¢ = 6. We chose n = 3¢ as this
corresponds to the circuit depth when evaluating the VTC
cost function. While the Trotter fidelity drops to zero around
t ~ 16J7!, the VTC fidelity remains above 0.9 throughout the
full simulation until # = 30J~".

F. Results on IBM QPUs

We now demonstrate quantum dynamics simulations be-
yond the qubit coherence time on real IBM quantum
hardware. This is achieved by running VTC simulations
on the IBM QPUs Santiago (ibmg_santiago) and Quito
(ibmg_quito) for a Heisenberg model with M = 3 spins. As
before, we prepare the system initially in the state |110) and
time-evolve it with the antiferromagnetic Heisenberg Hamil-
tonian. The results for the state fidelity overlap with the exact
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FIG. 9. (a) VTC results on a noisy circuit simulator using error
model parameters corresponding to the IBM fake_santiago back
end. Weuse M =3, ¢=n=2,t=2J"!,¢=5x1073, and 2"*
samples. The numerical optimization is done using CMA-ES. The
green dashed curve shows the mean fidelity found after 50 runs
of the VTC algorithm with the standard deviation shown as error
bars. The orange curve shows results of noiseless Trotter simulation
with fixed step size At =t/n =J"!, corresponding to noiseless
VTC with perfect compression. The gray curve is a noiseless Trotter
simulation with fixed number of n = 3¢ = 6 steps. The green shad-
ing highlights the region where the VTC fidelity exceeds the one
from Trotter simulation with fixed n. (b) VTC results on real IBM
QPUs ibmq_santiago and ibmq_quito for the same parameters
as in (a), except that we used 2 x 10* samples on ibmq_quito.
Each data point on the green VTC curve represents a single run of
the compression algorithm. The dashed orange curve is obtained by
running a Trotter evolution with fixed step size At = t/n=J"! on
a noisy simulator of the IBM fake_santiago back end and then
performing state tomography with respect to the exact state | (¢)).
The black crosses denote the best compression fidelity for a given
VTC propagation step [see Eq. (11)], and the red crosses denote the
VTC overlap [see Eq. (12)]. Note that the VTC overlap is the exact
value of the cost function C at the end of optimization, not the one
provided by the noisy QPU.

solution are shown in Fig. 9(b). The key result is that at times
t > 9J7! the overlap of the VTC state with the exact state
F(t, ) significantly exceeds the fidelity obtained from noise-
less direct Trotter simulations using the same circuit depth
(gray curve), i.e., n = 3¢ Trotter steps. The Trotter fidelity
quickly decays due to the accumulation of Trotter error. In
contrast, in VTC the time-evolved state is compressed at inter-
mediate times, and the VTC simulation can thus be extended
out to arbitrarily long times.

We use a variational Ansatz with ¢ = 2 layers that has in
total four variational parameters, since we use open boundary

conditions. We employ n = 2 Trotter steps during the state
propagation step of VTC and average over 2'3 = 8192 circuit
samples on ibmq_santiago and over 2 x 10* samples on
ibmq_quito. The complete algorithm is executed on real
quantum hardware, i.e., all circuits during the compression
optimizations are being executed on the QPU, and the ob-
tained fidelity is fed back into the classical optimizer to update
the variational parameters. The VTC results (green dashed
curve) for 0 < Jr < 20 were obtained on ibmg_santiago,
and results for Jt > 20 were obtained on ibmq_quito. These
results were collected over the course of 5 days, since the cal-
culation of each compression point takes about 2—3 h, which
includes waiting time in the IBM execution queue.

We choose a subset of three connected qubits on the de-
vices that experiences the smallest average CNOT gate error,
which was Errevor, santiago = 6.01 x 107 and Errexor, Quite =
6.30 x 1073, respectively. The average readout errors were
Errreadout, Santiago = 2.17 x 1072 and Errreadout, Quito — 3.05 x
1072, and the relaxation and dephasing timescales were given
by T} =94 us, T, = 100 pus for ibmq_santiago and 7T} =
98 us, T, = 125 us for ibmg_quito. The specifications of the
two devices we use in this simulation are thus comparable. To
obtain our results, we applied all error mitigation techniques
described in Sec. III E. In addition, we found it essential to use
a Pauli twirling technique, which dresses the two-qubit CNOT
gates with random Pauli gates [26]. This is important in order
to convert the noise on the real device into a stochastic form,
which is necessary to justify ZNE. Without the additional
Pauli twirling protocol, we found the ZNE error mitigation
method to be unreliable.

In Fig. 9(b) we analyze the data from the QPU using the
methodology of Figs. 7 and 8. We find that the fidelity of
the state to which the compression optimization converges
can again exceed that of the best possible compression. This
effect, which was also apparent in the results of Fig. 8, is much
more pronounced on the real QPU due to the presence of both
sample and gate noise. The red crosses again represent the
VTC overlap, which is defined as the fidelity between the best
possible compression and the state found by the algorithm. We
note that the VTC overlap is calculated using a state-vector
simulator and thus represents the actual final value of the
cost function C at the end of the optimization, as opposed
to the noisy value that was provided by the QPU. Over the
15 compression steps, the algorithm was able to re-create the
Trotter evolution of the state from the previous compression
step with a mean fidelity of 0.971.

To explicitly demonstrate that we have achieved simula-
tion beyond the device coherence time, we compare with
Trotter simulations with fixed At = t/n = J~!. In the noise-
less state-vector case, Trotter evolution with fixed At yields
the orange solid curve in Fig. 9(b), which corresponds to
VTC with perfect compression. In contrast, executing these
Trotter circuits on the fake_santiago back end and per-
forming quantum state tomography in the final state yields
the orange dashed curve, which decays over time. At the
final time 7, = 30J ~! the Trotter fidelity has decayed to a
value smaller than 0.4. This is in agreement with a simple
estimate of the final state fidelity based on the fact that the
Trotter circuit atz = 30J~' contains 180 CNOT gates: F(t;) ~
(1 — Errenor, sﬁmiago)lso = 0.34. Importantly, the VTC fidelity
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with the exact state consistently lies above the Trotter results
for times # > 5J~! and is equal to F[zy, 8(t;)] = 0.96 at the
final time ¢ = 30J~!. Even though the impact of noise on the
real QPU is more severe compared with the noisy simulator,
we are able to achieve quantum dynamics simulations beyond
the coherence of the device using the VTC algorithm.

Number of measurement circuits and comparison with VODS

Let us now compare the number of circuits that we had
to evaluate to obtain the results shown in Fig. 9, with the
number required for a variational quantum dynamics simu-
lation (VQDS) based on MacLachlan’s principle [26]. The
number of measurement circuits M; that are executed in VTC
at a single compression step i depends on the number of cost
function evaluations N (i) during the classical optimization.
The value of N.o(i) depends on the desired state infidelity
€ between the compressed variational state and the Trotter-
evolved state. Choosing a larger € yields faster convergence
of the classical optimization algorithm and thus smaller N .
This comes at the cost of acquiring a larger error during
compression. We choose € = 5 x 10~ for which on average
(Neost(i))i=1,...,15 = 380 for the data in Fig. 9(b). The total sim-
ulation until time ¢y = 30J ~1involved 15 compression steps
as T = 2J7!, and the total number of measurement circuits is
thus given by Mo vrc = 5700.

This can be compared to the number of circuits that need
to be evaluated within the VQDS approach [26,28]. To ob-
tain a meaningful and fair comparison, we consider a fixed
Ansatz that is identical to the one used in VTC. For the
results in Fig. 9, the Ansatz contains N' = (M — 1)¢ = 4 vari-
ational parameters. Within the VQDS method, the variational
parameters evolve according to a deterministic equation of
motion Af; = Zﬁl(M’l),-jVjSt, where M;; and V; are ob-
tained by evaluating in total Myqps = 49 circuits at each
time step §z. It is important to note that the step size in
VQDS, é¢, must typically be chosen to be much smaller than
the VTC Trotter step size At = t/n. This originates from
the typically large condition number of the matrix M;;, and
we find in practice that §t >~ At/N, with 1 <N, < 10 (for
details, see Sec. II.C.3 in Ref. [28]). The total number of
VQDS circuits that must be evaluated to obtain a compa-
rable final state fidelity as shown in Fig. 9(b) can thus be
estimated as Mtot,VQDS = MVQDS% = MVQDS@ =N, x
49 x 30 x % = 1470N,. Using the value of 1 < N, < 10 that
was reported in Ref. [28], one finds that VQDS requires
evaluating 1500 < Mo, vops S 15000 circuits. The two ap-
proaches, VTC and VQDS, therefore require execution of a
comparable number of measurement circuits for the parame-
ters used in Fig. 9.

IV. CONCLUSION

We have demonstrated a simulation of the postquench
dynamics in a three-site antiferromagnetic Heisenberg chain
beyond the qubit coherence time on real quantum hardware.
This was achieved by compressing the Trotter time-evolved
state at intermediate time steps into a variational form. The

state overlap served as a cost function for the compression
optimization step, which was executed on NISQ hardware
without any additional qubit overhead using a double-time
contour circuit. The VTC circuits require no ancilla qubits
and, for comparison, their depth is chosen to be identical (3¢)
to a direct first-order Trotter circuit with fixed number of steps,
which it clearly outperforms. The method yields an average
fidelity of 0.86 with the exact state and maintains a fidelity of
0.80 in a region where a first-order Trotter expansion using
the same circuit depth already vanishes.

We show that Trotter simulations with fixed step size,
which corresponds to VTC with perfect compression, require
the execution of deep circuits that are beyond the coherence
time on the device. This is demonstrated using quantum state
tomography on a noisy IBM “fake-device” back end. Explic-
itly, at the final time of the simulation, the Trotter circuit
contains 180 CNOT gates, whereas each VTC circuit only
contains 36 CNOTs. Since the time-evolved state is compressed
at intermediate times, the VTC simulation can be extended
out to arbitrarily long times, as long as the time-evolved state
can be accurately captured by the variational circuit. Since it
requires a noisy cost function optimization at every compres-
sion step, the time interval between compression points should
be chosen sufficiently large. Finally, we provide an explicit
gate count for M = 3 and find the total number of circuits
that need to be evaluated for VTC to be similar to the other
variational approaches such as VQDS based on MacLachlan’s
principle.

We have further benchmarked the VTC algorithm on larger
Heisenberg chains using state-vector as well as noiseless and
noisy circuit simulators. While most of our results were ob-
tained for an integrable model, we also tested the ability of a
variational Ansatz to capture the dynamics generated by the
Heisenberg Hamiltonian in the presence of an integrability-
breaking term. These tests revealed that the performance of
the VTC algorithm does not depend strongly on the presence
or absence of integrability—indeed, an Ansatz with the same
number of parameters captures the wave function to the same
accuracy in both cases.

The main goal moving forward is to increase the system
sizes accessible to VTC simulations, for which several key is-
sues need to be addressed. First, the noise level of the overlap
cost function needs to be reduced in order to accelerate the
classical optimization that is performed during the compres-
sion step. In addition to reducing device errors by hardware
improvements, one can devise several error mitigation strate-
gies [52] such as probabilistic error cancellation [34], virtual
distillation [53,54], Clifford data regression [55], or a com-
bination thereof [56—60]. Sample noise can be reduced by
increasing the number of circuit shots beyond the current limit
of 2'3 on the IBM back end we used. The fidelity of the Trotter
time evolution during the propagation step can be increased by
using pulse level control of the gates, which can often lead to
shorter gate times. Finally, other future directions would be
to explore alternative variational Ansdtze such as hardware-
efficient ones and to employ other classical optimizers for
noisy cost functions.

We provide all required programs as open-source software,
and we make the raw data of our results openly accessible
[61].
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