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Recent advances in understanding horn formation in the 
Japanese rhinoceros beetle Trypoxylus dichotomus 
using next-generation sequencing technology 
Shinichi Morita1,2, Kazuki Sakura1, Hiroki Gotoh3,  
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The exaggerated horns of beetles are attractive models for 
studying the origin of novel traits and morphological evolution. 
Closely related species often differ profoundly in the size, 
number, and shape of their horns, and in the body region from 
which they extend. In addition, beetle horns exhibit exquisite 
nutrition-dependent phenotypic plasticity, leading to 
disproportionate growth of the horns in the largest, best- 
condition individuals and much smaller — even stunted — horn 
sizes in poor-condition individuals. These exciting phenomena 
in beetle horns have recently been revealed at the molecular 
level with the advent of next-generation sequencing. This 
section reviews the latest research on a horned beetle, the 
Japanese rhinoceros beetle Trypoxylus dichotomus, whose 
genome was recently sequenced. 
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Introduction 
Beetles (Insecta: Coleoptera) are the largest and most 
successful order, not only among insects but also among 
all animal species [1]. Beetles exhibit extraordinary 

morphological, ecological, and behavioral diversity [2], 
and many of their most charismatic character radiations 
involve the weapon trait of horns. Beetle horns have 
arisen multiple times independently within the Scarabs 
(e.g. dung beetles, Scarabaeinae; Dor beetles, Geo
trupinae; rhinoceros beetles, and Dynastinae), where 
they typically project from the head or prothorax of 
males [3]. Relative to body size, beetle horns surpass 
even the largest weapons of ungulates [4]. Darwin (1871)  
[5] proposed that the exaggerated sizes of beetle horns 
were the result of sexual selection, and beetle horns are 
now known to be used for intraspecific combat between 
males as they battle to defend feeding territories at
tractive to females [3,6,7]. Beetle horns are also con
sidered to be evolutionarily novel traits [8], making them 
exciting structures to study from the evo-devo per
spective. 

The Japanese rhinoceros beetle Trypoxylus dichotomus 
(Figure 1), one of the largest beetles in Japan, is popular 
as a pet with both children and adults [9] in part because 
of the large horn extending from the heads of males. 
This head horn can be up to 2/3 of the length of the 
body, and is bifurcated twice at the distal tip resulting in 
a distinct ‘pitchfork’ shaped morphology that is unique 
to this species. A smaller horn extending from the pro
thoracic region (thoracic horn) is bifurcated once at the 
distal tip. T. dichotomus horns are well adapted to the 
fighting style of these beetles, in which males attempt to 
place their head horn under the prothorax of an oppo
nent, scooping up the rival and flipping him off of a tree. 
Biomechanical simulations demonstrate that the trian
gular cross-sectional shape of this horn is unusually re
sistant to breakage under vertical bending and twisting 
loads [10]. 

T. dichotomus has many advantages as a research model. 
(1) T. dichotomus has been established as a pet. As such, 
thousands of larvae can be purchased for around $ 1/ 
animal. (2) Items necessary for breeding larvae to adults 
(breeding cages, food for larvae and adults, and artificial 
pupal chambers, etc.) can be purchased readily at a low 
cost. (3). Final instar larvae can be stored at low tem
peratures to delay development, permitting these ani
mals to be used for research throughout the year [11]. (4) 
Precise staging of development during the period when 
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horn formation occurs (prepupa to adult emergence) is 
possible because a system for breeding outside the soil 
has been established [12]. (5) Gene function analysis 
using larval RNAi is extremely efficient in T. dichotomus  
[11–16]. (6) Recently, an annotated genome has been 
published [17,18]. Due to these advantages, research 
using T. dichotomus has now been reported in fields as 
diverse as developmental biology, population genetics, 
genomics, animal behavior, evolution, biomechanics, 
and biochemistry [2–4,10–12,15,17–25]. In this review, 
we describe the developmental mechanism of horn for
mation, as recent genomics technologies have enabled 
genome-wide gene expression analysis in these ex
aggerated sexually dimorphic weapons. 

T. dichotomus genome information 
The T. dichotomus genome size is estimated to be 
773.1  ±  24.6 Mb by flow cytometry [17]. Recently, de
tailed T. dichotomus genomic information using the 10× 
Chromium platform has been reported [17]. This hap
loid genome assembly was named the TdicSN1.0 and 
yielded a de novo assembly of 615 Mb, representing 80% 
of the estimated genome size. The TdicSN1.0 consists 
of 15 609 scaffolds with an N50 of 8.02 Mb. Twenty- 
three thousand nine hundred eighty-seven protein- 
coding genes are predicted in the T. dichotomus genome. 
Assembly completeness measured using benchmarking 
universal single-copy orthologs (BUSCO) is 99.4 % 
(98.9% complete, 0.2% fragmented) of the Insecta data 
set (version 4.0.6, n = 1367). Repetitive sequences ac
counted for 49.54% of the TdicSN1.0 (305 Mb). In ad
dition, a different group recently reported the genome 
assembly of T. dichotomus generated from long-read data  
[18]. This genome assembly yielded a de novo assembly 
of 739 Mb, consisted of 2347 contigs and the BUSCO 
completeness was 99.6%. The difference in genome size 
between the two assemblies is probably due to repetitive 
sequences, because long-read technologies can capture 
more repetitive sequences than short-read-based plat
forms. 

Thus, genomic information for T. dichotomus is currently 
well established and the high completeness and ex
tensive annotations of this genome mean that it will be 
an excellent resource benefitting a variety of research 
areas. 

T. dichotomus horn formation 
T. dichotomus horns are sexually dimorphic (females do 
not develop horns). Sex differentiation in holometabo
lous insects is generally regulated by transformer (tra) — 
doublesex (dsx) in sex determination cascades. tra reg
ulates sex-specific splicing of dsx pre-mRNA and in
duces sexual differentiation. These cascades drive sex 
determination in T. dichotomus as well [11,12]. In T. di
chotomus, tra RNAi causes females to produce male- 
specific splice forms of dsx. This results in morphological 
sex transformation into males, including ectopic horn 
formation on both the head and prothorax [12], and 
implicates this pathway in the molecular mechanism of 
sexually dimorphic horn growth. 

Because beetle horns are considered to be ‘novel’ traits 
— arising de novo rather than through modification of an 
existing structure — they are especially exciting to study 
mechanistically. Often novel traits evolve through the 
co-option of existing developmental pathways in new 
regions of the epidermis, but if true in this case, which 
genes are responsible? We focused on the sexual dif
ferences that first appear in horn primordia during the 
prepupal period (Figure 2A) [12,15] by assembling four 
cDNA libraries comprising male head horn primordia 
(HH), male thoracic horn primordia (TH), and corre
sponding HH and TH epidermal regions from females, 
and then used RNA-seq analyses to look at the onset of 
sex differentiation (Figure 2B). We also performed larval 
RNAi experiments on 49 candidate horn formation 
genes identified from these analyses, focusing on genes 
encoding for transcription factors (TFs) or signaling 
molecules. These studies identified 11 TFs with clear 
functional roles in horn development. These 11 genes 

Figure 1  
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Sexual dimorphism and phenotypic plasticity in T. dichotomus. Male and female adults of T. dichotomus. T. dichotomus horns are a sexually 
dimorphic trait: horns are present only in males. T. dichotomus horns exhibit nutrition-dependent phenotypic plasticity and are considered to be 
dimorphic (major and minor) [21,41]. Scale bars are 10 mm.   
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are mostly categorized as embryonic head patterning 
genes and appendage patterning genes (Figure 2C) [15]. 

The mechanism of horn development has also been ana
lyzed in the beetle Onthophagus [26–28], a dung beetle likely 
to represent an independent evolutionary origin of horns 
from T. dichotomus. In both lineages, parts of the head-pat
terning and appendage-patterning gene networks are de
ployed in developing horns. This deep mechanistic parallel 
could mean that horns arose in the common ancestor of all 
scarabs, predating the divergence of these beetle families. 
Indeed, several clues suggest that the ancestral scarab bee
tles may have been horned [4]. However, a more likely 
possibility is that parallel origins of these extravagant struc
tures each involved co-option of the same underlying de
velopmental processes. Elucidating the molecular details of 
parallel evolution is an exciting theme in evo-devo. 

Horn development as folded primordia 
Beetle horns develop during the prepupal period as 
folded primordia under the larval head capsule (Figure 
2A). Epidermal folding is not unique to the horns of 

beetles; it also occurs generally in insects as the body 
grows through molting [29–32]. But several features of 
beetle horns — their large size, rapid growth, sex spe
cificity, and complex branched structure — all make 
these traits ideal for elucidating the developmental 
mechanisms of folding. In particular, structures that 
undergo significant changes in morphology via molting 
show dense folding and characteristic folding patterns  
[4,33–36]. The local density of folds and the orientation 
of the folded furrows combine to determine the size and 
shape of the structure after the molt. However, the de
velopmental mechanisms determining the density and 
direction of furrows are not well understood. 

T. dichotomus horns have now been used as a model to 
study how the 3D folding of epidermal primordia results 
in the morphogenesis of a large 3D structure [37]. These 
studies showed that extending, or unfurling the folded 
primordium is a surprisingly simple physical process, 
with little contribution of cytological factors such as cell 
proliferation or migration [23]. Taking advantage of the 
large size of the horn primordium, researchers were able 
to create virtual horn primordia from serial sections of 

Figure 2  
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Morphological change of horn primordia and RNAi-mediated loss-of-function phenotypes.(A) Micro-CT images of the male head horn primordium 
during development. T. dichotomus forms large horn primordia in only 5 days. The left panel shows 24 hours APF, the right panel shows 72 hours APF 
for the head horn primordium. The orange arrows and magenta lines indicate the horn primordium regions. The gray line indicates the head capsule. 
APF, after pupal-chamber formation. (B) MA-plots comparing RNA-seq datasets of male head horn versus male thoracic horn. Gray dots indicate 
transcripts. Tan dots show genes differentially expressed at an FDR of < 0.05. Orange dots show transcription factors. Blue dots show signaling 
molecules. FDR, false discovery rate. (C) Extreme horn phenotypes by RNAi. Lateral view of the adult from EGFP (a), Sp8 (b), and pnr (c) RNAi beetles. 
(b) The green arrow indicates an ectopic horn. (c) The blue arrow indicates a complete loss-of-horn phenotype. 
Adapted from Ohde et al., PLOS Genet., 14: e1007651, 2018 [15••].   
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actual primordia. These virtual primordia made it pos
sible to approach problems that are difficult to examine 
with actual organisms, such as understanding the posi
tional relationship between the primordium before and 
after its extension, and how the final form changes when 
a particular folding structure is removed [23,38]. 

T. dichotomus horns have also proven useful for studying 
the molecular mechanisms regulating epidermal folding, 
using results based on RNA-seq screening. In the case of 
the horn primordium, there are two types of folding 
structures: those that define final size of the entire pri
mordium, and those that are found on the surface of the 
primordium. Both types of folding structures likely con
tribute to the size and shape of the horn [16]. It is thought 
that each of these two is at least partially controlled by a 
different mechanism. For example, folds of the first type 
differ markedly from male to male, and are strongly cor
related with the overall body size of the animal. These 
folds likely determine the overall size of the horn. In 
contrast, the depth and interval of the second type of 
folding, the surface furrows, are largely invariant across 
male body sizes; these folds likely determine the ‘pitch
fork’ shape of the final horn [16]. 

Consistent with this, knockdown of dachsous (ds) by RNAi, 
a factor in the Fat-Hippo pathway that regulates cell po
larity and proliferation, alters the first type of folding and 
changes the size of the resulting horn, but it does not af
fect the pattern of surface furrows [39]. Conversely, 
knockdown of Notch, which is involved in intercellular 
signaling, and CyclinE, which is involved in the cell cycle, 
did not significantly change the folds contributing to horn 
size, but did affect the surface furrows and, consequently, 
the resulting horn shape. Interestingly, the surface furrows 
were similarly affected in both Notch and CyclinE knock
down individuals, but the specific parameters of the fur
rows that were changed varied between the knockdown 
genes. In the case of Notch knockdown, the furrow direc
tion and pattern were not affected, but the depth of the 
furrows became shallower [16]. On the other hand, in 
CyclinE knockdown, the furrow depth was not changed, 
but the furrow direction and pattern changed significantly  
[16]. Consequently, knockdown of ds, Notch, and CyclinE, 
all changed the final morphology of the horn, but the 
precise aspect of folding affected by each gene was dif
ferent. This suggests that there are various ‘develop
mental routes’ for changing horn shape and size. 

Differences among T. dichotomus males: 
extreme variation in horn length considered 
from the perspectives of morphology, 
ecology, and genomics 
The horns of T. dichotomus are extremely sensitive to the 
nutrient environment experienced by larvae (Figure 1). 
In fact, the horns are significantly more sensitive to larval 

nutrition than are other morphological body structures. 
For example, Johns et al. [40] manipulated the amount 
of food available to male larvae and then quantified the 
effect of this diet perturbation on the growth of various 
adult structures. The length of the head and thoracic 
horns responded more dramatically to altered larval diet 
than did the elytra, femur, eyes, and genitalia [40]. This 
‘heightened’ condition-sensitive expression in Trypoxylus 
horns has been studied from the aspect of molecular 
genetics. RNAi knockdown of the insulin receptor im
pacted the growth of the horns more than it did wings or 
genitalia, suggesting that tissue-specific increases in 
sensitivity to insulin or insulin-like growth factors might 
underlie the evolution of heightened condition sensi
tivity in weapons like beetle horns [13]. 

Zinna et al. [24] then investigated global changes in gene 
expression in developing horns, wings, and genitalia using 
RNA-seq. Specifically, they manipulated larval nutrition 
and compared expression levels in animals fed high-nu
trition and low-nutrition food amounts. Traits extra sen
sitive to nutrition (i.e. head and thoracic horns) displayed 
greater numbers of differentially expressed genes, and 
more kinds of differentially expressed genes than did the 
less plastic traits (i.e. wings and genitalia) [24]. Although 
the overall number of differentially expressed genes re
sponding to nutrition was small (fewer e.g. than differed 
between males and females), the number of differentially 
expressed genes varied according to the degree of nutri
tional dependence of the traits (head horn > thoracic 
horn > wings > genitalia). Furthermore, the authors iden
tified 13 genes whose nutrition-sensitive response was sex 
specific. Interestingly, some of these genes have not been 
reported as genes that function in weapon growth or to 
have nutritional sensitivity. This result shows a potentially 
novel function for these genes. 

The heightened condition sensitivity of T. dichotomus horns 
suggests that these structures may function as honest sig
nals, either to choosy females or rival males, of the body size 
and/or physiological condition of a male. There is no evi
dence that females use the horn as a basis for mate choice. 
However, whether males use horns to size up an opponent 
has yet to be investigated. Field studies by Hongo [21] and 
del Sol et al. [25] clearly show that horn length and body size 
contribute to fighting and mating success, although the 
strength of selection acting on horns differed among popu
lations. Thus, long-horned and large-bodied individuals do 
tend to win fights and these males are often likely to suc
ceed at mating with females, but additional studies will be 
needed to explore whether the exaggerated horns are used 
as signals at any stage in this process. 

Conclusions 
In this review, we described the developmental me
chanisms of horn formation based on genome-wide gene 
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expression analysis using next-generation sequencing 
technology. Recently reported high-quality T. dichotomus 
genomic resources will aid substantially in further clar
ification of the genetic mechanisms of horn formation. 
For example, it will be possible to analyze enhancer and 
promoter sequences on the horn-formation genes. In 
addition to the field of developmental biology, genomic 
resources for this species should enable rapid progress in 
diverse fields such as population genetics, genomics, 
ethology, evolution, biomechanics, and biochemistry. 
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