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The exaggerated horns of beetles are attractive models for
studying the origin of novel traits and morphological evolution.
Closely related species often differ profoundly in the size,
number, and shape of their horns, and in the body region from
which they extend. In addition, beetle horns exhibit exquisite
nutrition-dependent phenotypic plasticity, leading to
disproportionate growth of the horns in the largest, best-
condition individuals and much smaller — even stunted — horn
sizes in poor-condition individuals. These exciting phenomena
in beetle horns have recently been revealed at the molecular
level with the advent of next-generation sequencing. This
section reviews the latest research on a horned beetle, the
Japanese rhinoceros beetle Trypoxylus dichotomus, whose
genome was recently sequenced.
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Introduction

Beetles (Insecta: Coleoptera) are the largest and most
successful order, not only among insects but also among
all animal species [1]. Beetles exhibit extraordinary

Check for

morphological, ecological, and behavioral diversity [2],
and many of their most charismatic character radiations
involve the weapon trait of horns. Beetle horns have
arisen multiple times independently within the Scarabs
(e.g. dung beetles, Scarabacinae; Dor beetles, Geo-
trupinae; rhinoceros beetles, and Dynastinae), where
they typically project from the head or prothorax of
males [3]. Relative to body size, beetle horns surpass
even the largest weapons of ungulates [4]. Darwin (1871)
[5] proposed that the exaggerated sizes of beetle horns
were the result of sexual selection, and beetle horns are
now known to be used for intraspecific combat between
males as they battle to defend feeding territories at-
tractive to females [3,6,7]. Beetle horns are also con-
sidered to be evolutionarily novel traits [8], making them
exciting structures to study from the evo-devo per-
spective.

The Japanese rhinoceros beetle Trypoxylus dichotomus
(Figure 1), one of the largest beetles in Japan, is popular
as a pet with both children and adults [9] in part because
of the large horn extending from the heads of males.
This head horn can be up to 2/3 of the length of the
body, and is bifurcated twice at the distal tip resulting in
a distinct ‘pitchfork’ shaped morphology that is unique
to this species. A smaller horn extending from the pro-
thoracic region (thoracic horn) is bifurcated once at the
distal tip. 7. dichotomus horns are well adapted to the
fighting style of these beetles, in which males attempt to
place their head horn under the prothorax of an oppo-
nent, scooping up the rival and flipping him off of a tree.
Biomechanical simulations demonstrate that the trian-
gular cross-sectional shape of this horn is unusually re-
sistant to breakage under vertical bending and twisting
loads [10].

T. dichotomus has many advantages as a research model.
(1) T. dichotomus has been established as a pet. As such,
thousands of larvae can be purchased for around $ 1/
animal. (2) Items necessary for breeding larvae to adults
(breeding cages, food for larvae and adults, and artificial
pupal chambers, etc.) can be purchased readily at a low
cost. (3). Final instar larvae can be stored at low tem-
peratures to delay development, permitting these ani-
mals to be used for research throughout the year [11]. (4)
Precise staging of development during the period when
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Figure 1
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Sexual dimorphism and phenotypic plasticity in T. dichotomus. Male and female adults of T. dichotomus. T. dichotomus horns are a sexually
dimorphic trait: horns are present only in males. T. dichotomus horns exhibit nutrition-dependent phenotypic plasticity and are considered to be

dimorphic (major and minor) [21,41]. Scale bars are 10 mm.

horn formation occurs (prepupa to adult emergence) is
possible because a system for breeding outside the soil
has been established [12]. (5) Gene function analysis
using larval RNAI is extremely efficient in 7. dichotomus
[11-16]. (6) Recently, an annotated genome has been
published [17,18]. Due to these advantages, research
using 7. dichotomus has now been reported in fields as
diverse as developmental biology, population genetics,
genomics, animal behavior, evolution, biomechanics,
and biochemistry [2-4,10-12,15,17-25]. In this review,
we describe the developmental mechanism of horn for-
mation, as recent genomics technologies have enabled
genome-wide gene expression analysis in these ex-
aggerated sexually dimorphic weapons.

T. dichotomus genome information

The 7. dichotomus genome size is estimated to be
773.1 = 24.6 Mb by flow cytometry [17]. Recently, de-
tailed 7. dichotomus genomic information using the 10x
Chromium platform has been reported [17]. This hap-
loid genome assembly was named the T'dicSN1.0 and
yielded a de novo assembly of 615 Mb, representing 80%
of the estimated genome size. The TdicSN1.0 consists
of 15609 scaffolds with an N50 of 8.02 Mb. Twenty-
three thousand nine hundred eighty-seven protein-
coding genes are predicted in the 7. dichotomus genome.
Assembly completeness measured using benchmarking
universal single-copy orthologs (BUSCO) is 994 %
(98.9% complete, 0.2% fragmented) of the Insecta data
set (version 4.0.6, n=1367). Repetitive sequences ac-
counted for 49.54% of the T'dicSN1.0 (305 Mb). In ad-
dition, a different group recently reported the genome
assembly of 7. dichotomus generated from long-read data
[18]. This genome assembly yielded a de #ovo assembly
of 739 Mb, consisted of 2347 contigs and the BUSCO
completeness was 99.6%. The difference in genome size
between the two assemblies is probably due to repetitive
sequences, because long-read technologies can capture
more repetitive sequences than short-read-based plat-
forms.

Thus, genomic information for 7. dichotomus is currently
well established and the high completeness and ex-
tensive annotations of this genome mean that it will be
an excellent resource benefitting a variety of research
areas.

T. dichotomus horn formation

T. dichotomus horns are sexually dimorphic (females do
not develop horns). Sex differentiation in holometabo-
lous insects is generally regulated by fransformer (tra) —
doublesex (dsx) in sex determination cascades. fra reg-
ulates sex-specific splicing of dsx pre-mRNA and in-
duces sexual differentiation. These cascades drive sex
determination in 1. dichotomus as well [11,12]. In T. di-
chotomus, tra RNAI1 causes females to produce male-
specific splice forms of dsx. 'This results in morphological
sex transformation into males, including ectopic horn
formation on both the head and prothorax [12], and
implicates this pathway in the molecular mechanism of
sexually dimorphic horn growth.

Because beetle horns are considered to be ‘novel’ traits
— arising de novo rather than through modification of an
existing structure — they are especially exciting to study
mechanistically. Often novel traits evolve through the
co-option of existing developmental pathways in new
regions of the epidermis, but if true in this case, which
genes are responsible? We focused on the sexual dif-
ferences that first appear in horn primordia during the
prepupal period (Figure 2A) [12,15] by assembling four
cDNA libraries comprising male head horn primordia
(HH), male thoracic horn primordia (TH), and corre-
sponding HH and TH epidermal regions from females,
and then used RNA-seq analyses to look at the onset of
sex differentiation (Figure 2B). We also performed larval
RNAi experiments on 49 candidate horn formation
genes identified from these analyses, focusing on genes
encoding for transcription factors (TFs) or signaling
molecules. These studies identified 11 TFs with clear
functional roles in horn development. These 11 genes
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Morphological change of horn primordia and RNAi-mediated loss-of-function phenotypes.(A) Micro-CT images of the male head horn primordium
during development. T. dichotomus forms large horn primordia in only 5 days. The left panel shows 24 hours APF, the right panel shows 72 hours APF
for the head horn primordium. The orange arrows and magenta lines indicate the horn primordium regions. The gray line indicates the head capsule.
APF, after pupal-chamber formation. (B) MA-plots comparing RNA-seq datasets of male head horn versus male thoracic horn. Gray dots indicate
transcripts. Tan dots show genes differentially expressed at an FDR of < 0.05. Orange dots show transcription factors. Blue dots show signaling
molecules. FDR, false discovery rate. (C) Extreme horn phenotypes by RNAI. Lateral view of the adult from EGFP (a), Sp8 (b), and pnr (c) RNAI beetles.
(b) The green arrow indicates an ectopic horn. (c) The blue arrow indicates a complete loss-of-horn phenotype.

Adapted from Ohde et al., PLOS Genet., 14: e1007651, 2018 [15e¢].

are mostly categorized as embryonic head patterning
genes and appendage patterning genes (Figure 2C) [15].

The mechanism of horn development has also been ana-
lyzed in the beetle Onthophagus [26-28], a dung beetle likely
to represent an independent evolutionary origin of horns
from 7. dichotomus. In both lineages, parts of the head-pat-
terning and appendage-patterning gene networks are de-
ployed in developing horns. This deep mechanistic parallel
could mean that horns arose in the common ancestor of all
scarabs, predating the divergence of these beetle families.
Indeed, several clues suggest that the ancestral scarab bee-
tles may have been horned [4]. However, a more likely
possibility is that parallel origins of these extravagant struc-
tures each involved co-option of the same underlying de-
velopmental processes. Elucidating the molecular details of
parallel evolution is an exciting theme in evo-devo.

Horn development as folded primordia

Beetle horns develop during the prepupal period as
folded primordia under the larval head capsule (Figure
2A). Epidermal folding is not unique to the horns of

beetles; it also occurs generally in insects as the body
grows through molting [29-32]. But several features of
beetle horns — their large size, rapid growth, sex spe-
cificity, and complex branched structure — all make
these traits ideal for elucidating the developmental
mechanisms of folding. In particular, structures that
undergo significant changes in morphology via molting
show dense folding and characteristic folding patterns
[4,33-36]. The local density of folds and the orientation
of the folded furrows combine to determine the size and
shape of the structure after the molt. However, the de-
velopmental mechanisms determining the density and
direction of furrows are not well understood.

T. dichotomus horns have now been used as a model to
study how the 3D folding of epidermal primordia results
in the morphogenesis of a large 3D structure [37]. These
studies showed that extending, or unfurling the folded
primordium is a surprisingly simple physical process,
with little contribution of cytological factors such as cell
proliferation or migration [23]. Taking advantage of the
large size of the horn primordium, researchers were able
to create virtual horn primordia from serial sections of
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actual primordia. These virtual primordia made it pos-
sible to approach problems that are difficult to examine
with actual organisms, such as understanding the posi-
tional relationship between the primordium before and
after its extension, and how the final form changes when
a particular folding structure is removed [23,38].

T. dichotomus horns have also proven useful for studying
the molecular mechanisms regulating epidermal folding,
using results based on RNA-seq screening. In the case of
the horn primordium, there are two types of folding
structures: those that define final size of the entire pri-
mordium, and those that are found on the surface of the
primordium. Both types of folding structures likely con-
tribute to the size and shape of the horn [16]. It is thought
that each of these two is at least partially controlled by a
different mechanism. For example, folds of the first type
differ markedly from male to male, and are strongly cor-
related with the overall body size of the animal. These
folds likely determine the overall size of the horn. In
contrast, the depth and interval of the second type of
folding, the surface furrows, are largely invariant across
male body sizes; these folds likely determine the ‘pitch-
fork’” shape of the final horn [16].

Consistent with this, knockdown of dachsous (ds) by RNAI,
a factor in the Fat-Hippo pathway that regulates cell po-
larity and proliferation, alters the first type of folding and
changes the size of the resulting horn, but it does not af-
fect the pattern of surface furrows [39]. Conversely,
knockdown of Notch, which is involved in intercellular
signaling, and Cyc/inE., which is involved in the cell cycle,
did not significantly change the folds contributing to horn
size, but did affect the surface furrows and, consequently,
the resulting horn shape. Interestingly, the surface furrows
were similarly affected in both Notek and CyclinE knock-
down individuals, but the specific parameters of the fur-
rows that were changed varied between the knockdown
genes. In the case of Nozch knockdown, the furrow direc-
tion and pattern were not affected, but the depth of the
furrows became shallower [16]. On the other hand, in
CyclinE knockdown, the furrow depth was not changed,
but the furrow direction and pattern changed significantly
[16]. Consequently, knockdown of d&s, Nozch, and Cyclink,
all changed the final morphology of the horn, but the
precise aspect of folding affected by each gene was dif-
ferent. This suggests that there are various ‘develop-
mental routes’ for changing horn shape and size.

Differences among T. dichotomus males:
extreme variation in horn length considered
from the perspectives of morphology,
ecology, and genomics

The horns of T. dichotomus are extremely sensitive to the
nutrient environment experienced by larvae (Figure 1).
In fact, the horns are significantly more sensitive to larval

nutrition than are other morphological body structures.
For example, Johns et al. [40] manipulated the amount
of food available to male larvae and then quantified the
effect of this diet perturbation on the growth of various
adulc structures. The length of the head and thoracic
horns responded more dramatically to altered larval diet
than did the elytra, femur, eyes, and genitalia [40]. This
‘heightened’ condition-sensitive expression in 17ypoxylus
horns has been studied from the aspect of molecular
genetics. RNAi knockdown of the insulin receptor im-
pacted the growth of the horns more than it did wings or
genitalia, suggesting that tissue-specific increases in
sensitivity to insulin or insulin-like growth factors might
underlie the evolution of heightened condition sensi-
tivity in weapons like beetle horns [13].

Zinna et al. [24] then investigated global changes in gene
expression in developing horns, wings, and genitalia using
RNA-seq. Specifically, they manipulated larval nutrition
and compared expression levels in animals fed high-nu-
trition and low-nutrition food amounts. Traits extra sen-
sitive to nutrition (i.e. head and thoracic horns) displayed
greater numbers of differentially expressed genes, and
more kinds of differentially expressed genes than did the
less plastic traits (i.e. wings and genitalia) [24]. Although
the overall number of differentially expressed genes re-
sponding to nutrition was small (fewer e.g. than differed
between males and females), the number of differentially
expressed genes varied according to the degree of nutri-
tional dependence of the traits (head horn > thoracic
horn > wings > genitalia). Furthermore, the authors iden-
tified 13 genes whose nutrition-sensitive response was sex
specific. Interestingly, some of these genes have not been
reported as genes that function in weapon growth or to
have nutritional sensitivity. This result shows a potentially
novel function for these genes.

"The heightened condition sensitivity of 7. dichotomus horns
suggests that these structures may function as honest sig-
nals, either to choosy females or rival males, of the body size
and/or physiological condition of a male. There is no evi-
dence that females use the horn as a basis for mate choice.
However, whether males use horns to size up an opponent
has yet to be investigated. Field studies by Hongo [21] and
del Sol et al. [25] clearly show that horn length and body size
contribute to fighting and mating success, although the
strength of selection acting on horns differed among popu-
lations. Thus, long-horned and large-bodied individuals do
tend to win fights and these males are often likely to suc-
ceed at mating with females, but additional studies will be
needed to explore whether the exaggerated horns are used
as signals at any stage in this process.

Conclusions
In this review, we described the developmental me-
chanisms of horn formation based on genome-wide gene
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expression analysis using next-generation sequencing
technology. Recently reported high-quality 7. dichotomus
genomic resources will aid substantially in further clar-
ification of the genetic mechanisms of horn formation.
For example, it will be possible to analyze enhancer and
promoter sequences on the horn-formation genes. In
addition to the field of developmental biology, genomic
resources for this species should enable rapid progress in
diverse fields such as population genetics, genomics,
ethology, evolution, biomechanics, and biochemistry.
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