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30 diameters downstream of the nozzle. Finally, the occurrence of finite particle size
effects is investigated through consideration of acceleration-dependent quantities.

Key words: jets, mixing and dispersion, free shear layers

1. Introduction

Dispersion of particles from a point source in turbulent free jet flows plays an important
role in many industrial and natural systems, including for instance sprays, flames, volcanic
plumes and emission of pollutants at industrial chimneys. Depending on the particle
characteristics (size, density with respect to the carrier fluid, volume fraction, etc.), the
dynamics will follow that of the fluid (particles will then be considered as tracers) or it
may be affected by inertial effects, finite size effects and couplings between the phases in
highly seeded particle-laden flows (Berk & Coletti 2020).

In the simplest situations, where particles can be considered as tracers (which is
the framework of the present study), the turbulent diffusion process can be related to
simple Lagrangian statistical properties of the carrier flow. While this connection has
been extensively investigated for the case of homogeneous isotropic turbulence, in the
spirit of Taylor’s turbulent diffusion theory (Taylor 1922), the case of inhomogeneous
flows remains largely unexplored, in spite of an extension of Taylor’s theory proposed
by Batchelor (1957). A summary of Taylor’s diffusion and Batchelor’s extension to
self-similar flows are presented herein as incentive for the characterisation of several basic
Lagrangian statistics in free shear flows and, in turn, motivation of the present study.

1.1. Taylor’s theory of turbulent diffusion

The importance of the Lagrangian approach in modelling turbulent dispersion was first
evidenced by the early work of Taylor (1922). Taylor’s theory connects the mean square
displacement σ 2(τ ) of particles spreading from a point source in stationary homogeneous
isotropic turbulence to the Lagrangian two-point correlation function RL

uu(τ ) = 〈u(t +
τ)u(t)〉, where the average 〈·〉 is taken over an ensemble of particle trajectories. Here, u(t)

represents the velocity of individual particles along their trajectory (note that for simplicity
only one velocity component is considered) and τ is the time lag. This result is often called
the Taylor theorem and expressed as

d2σ 2

dτ 2
(τ ) = 2RL

uu(τ ). (1.1)

Taylor’s theory is of utmost practical importance, as it reduces the prediction of the
spreading of tracer particles (and therefore of any passive substance spread by turbulence
with negligible molecular diffusivity) to the knowledge of the Lagrangian two-point
correlation function RL

uu(τ ) at all times. Note that the correlation function RL
uu can be

equivalently replaced by the Lagrangian second-order structure function SL
2(τ ) = 〈[u(t +

τ) − u(t)]2〉 = 2(RL
uu(0) − RL

uu(τ )), which is a common statistical tool used to characterise
the multiscale dynamics of turbulence. The correlation at τ = 0, RL

uu(0), is the mean
square of the velocity fluctuations σ 2

u .
Interestingly, the asymptotic regimes of the short and long time scales of turbulent

diffusion do not depend on the details of the dynamics of turbulence. In the limit of very
short times, the spreading follows trends of the trivial (purely kinematic) ballistic regime,
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Lagrangian diffusion properties of a turbulent jet

where σ 2(τ ) � σ 2
u τ 2. This can be retrieved from a simple one-term Taylor expansion

of the particle displacement itself, or equivalently by applying (1.1) and considering
the limit at vanishing times for the Lagrangian correlation function, RL

uu(τ ) � σ 2
u for

small times. In the limit of very long time scales, (1.1) from Taylor’s theory predicts
that due to the finite Lagrangian correlation time of turbulence (TL = σ−2

u

∫ ∞
0 RL

uu(τ ) dτ )
the long-term turbulent diffusion process behaves as simple diffusion (where the mean
square displacement grows linearly with time, σ 2 ∝ 2KTτ , for long times) with a turbulent
diffusivity KT = σ 2

u TL.
Details of the diffusion process at intermediate time scales require a deeper knowledge

of the specific time dependence of RL
uu(τ ) at all times, particularly in the inertial range

of scales of turbulence. Such dependency can be inferred empirically from a Lagrangian
statistical description à la Kolmogorov (Toschi & Bodenschatz 2009), which predicts that
for homogeneous isotropic turbulence within the inertial range of time scales, τη � τ �

TL, SL
2(τ ) = C0ετ , with ε the turbulent energy dissipation rate and τη = (ν/ε)1/2 the

turbulent dissipation scale. The universal constant C0 plays a similar role in the Lagrangian
framework to the Kolmogorov constant in the Eulerian framework. As a consequence,
a detailed description of the turbulent diffusion process, including the inertial-scale
behaviour, relies on the knowledge of SL

2(τ ) (or equivalently of RL
uu(τ )) at all time scales

and specifically on the knowledge of C0 at inertial scales. Thereafter, stochastic models can
be built giving reasonable Lagrangian dynamics descriptions at all time scales (Sawford
1991; Viggiano et al. 2020).

The empirical determination of the constant C0 is therefore critical in describing the
turbulent diffusion process and to accurately model the particle dispersion occurring in
industrial applications and natural circumstances. Such a determination requires accessing
accurate inertial-range Lagrangian statistics and has received attention in the past two
decades in several experimental and numerical studies (Sawford 1991; Mordant et al. 2001;
Yeung 2002; Ouellette et al. 2006b; Toschi & Bodenschatz 2009) as well as some field
measurements in the ocean (Lien, D’Asaro & Dairiki 1998). This leads to a range of C0
estimates ranging from 2 to 7 (cf. Lien & D’Asaro (2002) and Toschi & Bodenschatz
(2009) for a complete comparison of theoretical, simulated and experimental results). The
variability of reported values in the literature has been in part attributed to the relatively
strong dependence of this constant on Reynolds number (Sawford 1991; Ouellette et al.

2006b) and to the existence of large-scale anisotropy and inhomogeneity (Ouellette et al.

2006b).

1.2. Batchelor’s extension of theory of turbulent diffusion

In spite of this variability of the tabulated values for C0, the connection between turbulent
diffusion and Lagrangian statistics in homogeneous isotropic and stationary turbulence is
now well circumscribed. The situation is more complex when it comes to inhomogeneous
and anisotropic flows. One strong hypothesis of Taylor’s turbulent diffusion theory relies
on the statistical Lagrangian stationarity of the particle dynamics, which requires not only
a global temporal stationarity of the flow, but also a statistical Eulerian homogeneity: a
particle travelling across an inhomogeneous field will indeed experience non-stationary
temporal dynamics along its trajectory. Besides, in inhomogeneous flows any Lagrangian
statistics will depend on the initial position of the particle (used to label trajectories). For
the sake of keeping formulas compact, explicit reference to initial position will be omitted
when exploring inhomogeneous Lagrangian statistics, but the reader should remember this
dependence.
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One such inhomogeneous flow field is a turbulent free round jet. Although limited
Lagrangian experimental campaigns have been carried out (Gervais, Baudet & Gagne
2007; Holzner et al. 2008; Wolf et al. 2012; Kim, Liberzon & Chamorro 2017), this type of
flow has received much attention in Eulerian studies as one of its most striking properties
is that turbulence is self-preserving (Corrsin 1943; Hinze & Van Der Hegge Zijnen 1949;
Hussein, Capp & George 1994; Weisgraber & Liepmann 1998). More specifically, as
the jet develops downstream of the nozzle, the turbulence properties (length, time and
velocity scales) evolve in such a way that the Reynolds number remains constant at all
downstream positions. Note that such self-similarity generally applies only at sufficiently
large downstream positions, typically z � 20D, with D the nozzle diameter (Pope 2000).
As a result of this axial Eulerian inhomogeneity, Lagrangian dynamics is non-stationary
and dependent on the initial position of considered trajectories.

In 1957, Batchelor proposed an extension of Taylor’s stationary diffusion theory to the
case of turbulent jets in a Lagrangian framework, exploiting the Eulerian self-similarity
property of these flows (Batchelor 1957). The approach by Batchelor uses the Eulerian
self-similarity to define a compensated time τ̃ and a compensated Lagrangian velocity
ũ(τ̃ ) which exhibits statistically stationary Lagrangian dynamics. It can be noted that the
Lagrangian stationarisation idea introduced by Batchelor is not limited to the case of the
jet, but can also be applied to other self-preserving flows such as wakes, mixing layers and
possibly other types of shear flows (Batchelor 1957; Cermak 1963).

The idea of this stationarisation is to compensate the effect of Eulerian inhomogeneity
on the Lagrangian variables to retrieve a Lagrangian dynamics which becomes
independent of the initial position and statistically stationary and, in turn, to generalise
results originally established for stationary situations (such as Taylor’s theory of turbulent
diffusion). Based on the Eulerian self-similarity properties, Batchelor considers the case
of the dispersion of particles released at the origin of a turbulent jet, whose Lagrangian
dynamics is stationarised by considering the just mentioned compensated variables.
Explicitly, through consideration of the velocity at the position x(τ ) reached by the particle
at a given time τ since it has been released (at τ = 0 and x = 0) as well as the time scales
of the flow properties at this position x(τ ):

ũ(τ ) =
u(τ ) − ūe(x(τ ))

σu(x(τ ))
and τ̃ =

τ

TE(x(τ ))
, (1.2a,b)

where ūe(x(τ )) represents the local (Eulerian) average velocity at the position x of the
particle at time τ and TE(x(τ )) the local Eulerian time scale (only one velocity component
is considered). Similarly, σu(x(τ )) is the local (Eulerian) standard deviation of the velocity
at the position x of the particle at time τ . The temporal transformation simply rescales
the time in order to account for the evolution of the Eulerian background properties as
the particle moves downstream in the jet. The transformation of the velocity intends to
stationarise the effective dynamics by: (i) subtracting the local average velocity, so that the
average of ũ is zero, and (ii) choosing the denominator σu(x(τ )) a general compensation
for the decay of the turbulent fluctuations of the background Eulerian field as the particles
move downstream. Note that the transformations, as they were presented by Batchelor
(1957), directly considered the Eulerian power-law dependencies (in space) of ūe, σu and
TE in the self-similar region of the jet near its centreline. The transformations as written in
(1.2a,b) are therefore more general, although Batchelor’s transformations are eventually
equivalent if such power-law dependencies are assumed. The more general expression
considered here allows one to explore the relevance of the stationarisation procedure not
only in the centreline of the jet (as done by Batchelor) but to also probe away from the
centreline.

918 A25-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Lagrangian diffusion properties of a turbulent jet

As a result of the stationarisation procedure, compensated Lagrangian statistics are
expected to no longer depend on the initial position and to exhibit similar properties
(time scales, correlations, etc.) at any position in the jet and hence at any time along
particle trajectories. Batchelor then demonstrates that Taylor’s theory can be extended to
the stationarised dynamics by connecting the mean square displacement of the particles to
RL

ũũ
(τ̃ ), the Lagrangian correlation function of ũ(τ̃ ).

Three important aspects arise regarding Batchelor’s diffusion theory: (i) it extends
the Eulerian self-similarity to the Lagrangian framework, in this respect being often
referred to as the Lagrangian self-similarity hypothesis (Cermak 1963), (ii) it connects
the turbulent diffusion process of particles in jets to the Lagrangian correlation function
(or equivalently to the second-order structure function) of the stationarised velocity
statistics and (iii) it proposes a systematic method of analysing the non-stationary data of
the jet.

1.3. Outline of the article

To the knowledge of the authors, only indirect evidence of the validity concerning
Batchelor’s self-similarity hypothesis in turbulent free jets exists in the literature, largely
based on measurements of the mean square displacements of particles (Kennedy &
Moody 1998). Direct Lagrangian measurements which show the stationarity of the
compensated velocity correlations are still lacking, as well as the full characterisation of
the inertial-scale Lagrangian dynamics in jets. Lagrangian correlation functions in free
shear jets have been reported in experiments by Gervais et al. (2007) (which use acoustic
Lagrangian velocimetry; Mordant et al. 2001), although the question of the Lagrangian
self-similarity has not been directly addressed. Further, a detailed characterisation of
the inertial-range dynamics, the estimation of the related fundamental constants such as
C0 and the relevance of simple Lagrangian stochastic models derived for homogeneous
isotropic conditions (Sawford 1991) are also currently lacking from the literature for this
flow configuration.

The aim of the present article is to address these unanswered questions through
examination of particle trajectories within a free jet. Three-component trajectories of a
turbulent water jet (Reλ � 230) are captured, with a measurement volume containing
up to 45 diameters downstream of the jet exit. Experimental methods provide sufficient
temporal details to analyse particle trajectories as well as adequate spatial resolution
and interrogation volume size to facilitate the application of basic Eulerian analysis. In
§ 2 the experimental set-up and methods are presented including the implementation of
the Lagrangian particle tracking and the stationarisation procedure that will be applied,
inspired by Batchelor’s Lagrangian self-similarity hypothesis. Section 3 is dedicated to
basic Eulerian statistics, which are not the main topic of this study but nevertheless allow
the characterisation of key turbulence properties (energy dissipation rate, Eulerian scales,
Reynolds number, etc.) and their self-similar behaviour. Section 4 includes results for
the Lagrangian dynamics. In the context of the previously discussed turbulent diffusion,
emphasis is placed on second-order Lagrangian statistics (velocity two-point correlation
and structure functions), for which the Lagrangian self-similarity compensation is tested
and an estimate of the constant C0 is given. The connections between Eulerian and
Lagrangian scales are also considered in the framework of classical stochastic modelling.
Section 5 extends the discussion of Lagrangian statistics to second-derivative dynamics
where comparisons between key acceleration quantities and the scaling constant C0 are
presented. Finally, main conclusions are summarised in § 6.
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2. Experimental methods

2.1. Hydraulic set-up

Experiments were performed in the Lagrangian Exploration Module (LEM) (Zimmermann
et al. 2010) at the École Normale Supérieure de Lyon. A vertically oriented jet of water
is injected into the LEM, a convex regular icosahedral (20-faced polyhedron) tank full of
water, as seen in figure 1(a). The LEM was originally designed to generate homogeneous
isotropic turbulence when the 12 propellers on 12 of its faces are activated; however, for
this experiment, the LEM is only used as a tank as the optical access makes it an ideal
apparatus for three-dimensional particle tracking of a jet.

A schematic of the hydraulic set-up is shown in figure 1(b). The vertical jet, injected with
a pump connected to a reservoir, is ejected upwards into the tank from a round nozzle with
a diameter D = 4 mm. At the nozzle exit, the flow rate is kept steady at Q � 10−4 m3 s−1,
generating an exit velocity UJ � 7 m s−1, and, in turn, a Reynolds number based on the
diameter ReD = UJD/ν � 2.8 × 104 with ν the water kinematic viscosity. An overflow
valve releases the excess water from the top of the tank at the same rate as injection from
the nozzle. Experiments are performed at ambient temperature. By moving the vertical
position of the nozzle, two locations are considered in order to study near-field (NF) and
far-field (FF) dynamics, with interrogation volumes spanning 0 mm ≤ z ≤ 120 mm (0 ≤

z/D ≤ 30) and 80 mm ≤ z ≤ 200 mm (20 ≤ z/D ≤ 50), respectively (the z axis is the jet
axis with z = 0 the nozzle exit position). For both regions, the jet is sufficiently far from
the walls of the tank to discount momentum effects from the LEM onto the jet (Hussein
et al. 1994), and thus a free jet is observed.

The particles, seeding the jet during injection, are neutrally buoyant spherical
polystyrene tracers with a density ρp = 1060 kg m−3 and a diameter dp = 250 µm.
The reservoir is seeded with a mass loading of 0.1 % (reasonable seeding to observe a
few hundred particles per image) and an external stirrer maintains homogeneity of the
particles. The quiescent water inside the LEM is not seeded; therefore tracked particles
are only those injected into the measurement volume by the jet (although some tracers
are always remaining in the tank). The inlet valve is open sufficiently long before the
recording, in such a way that the jet is stationary but minimal particle recirculation occurs.
The ratio of the particle diameter dp to the Taylor microscale λ is always smaller than
1 and ranges from 0.3 (in the FF) to 0.8 (in the NF). The particles are not expected to
deviate from tracer behaviour for velocity statistics within the inertial range (Mordant,
Lévêque & Pinton 2004a). The ratio of dp to the Kolmogorov length scale η remains,
however, larger than 1 and ranges from 9 (in the FF) to 25 (in the NF). Finite size effects
are therefore expected to influence small-scale Lagrangian dynamics and in particular
acceleration statistics (Qureshi et al. 2007), as further investigated in § 5.

2.2. Optical set-up

Three high-speed cameras (Phantom V12, Vision Research) mounted with 100 mm macro
lenses (Zeiss Milvus) are used to track the particles. The optical configuration is shown
in figure 2. The angles are related to the geometry of an icosahedron. The interrogation
volume is illuminated in a back-light configuration with three 30 cm square light-emitting
diode panels oriented opposite the three cameras. The spatial resolution of each camera
is 1280 × 800 pixels, creating a measurement volume of around 80 mm × 100 mm ×
130 mm, as seen in figure 3. Hence one pixel corresponds to roughly 0.1 mm. The three
cameras are synced via TTL triggering at a frequency of 6 kHz for 8000 snapshots,
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Lagrangian diffusion properties of a turbulent jet

(b)(a)
Filtration loop

Reservoir Stirrer
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Flowmeter40 cm

LEM

21

3

Q

Figure 1. (a) Three-dimensional CAD rendering of the LEM. (b) Schematic of the hydraulic set-up. Cameras
1, 2 and 3 are oriented orthogonal to the green faces labelled accordingly as 1, 2 and 3.

Camera 2

Camera 3

Camera 3

Camera 1/2

Camera 1

LEM

LEM

Jet

Jet

α

β

LED panels

LED panelsθ = 72°

β = 53°

α = 11°

θ

(b)(a)

Figure 2. Schematic of the optical set-up. (a) Top view and (b) profile view.

resulting in a total record of nearly 1.3 s per run. For each nozzle position (NF and FF), a
total of 50 runs are performed to ensure statistical convergence.

2.3. Particle tracking velocimetry

2.3.1. Particle detection

To create particle trajectories through particle tracking velocimetry, two-dimensional
images are first analysed to measure the positions of the centres of the particles.
The particle detection procedure used in this study is an ad hoc process which uses
classical methods of image analysis: non-uniform illumination correction, morphological
operations (opening), thresholding, binarisation and centroid detection. An example of a
camera image with detected particles is presented in figure 4.
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Figure 3. Measurement volume captured by the three-camera set-up for the NF measurements (same
measurement volume for the FF measurements).
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Figure 4. Detection of 705 particles on camera 2 in the NF configuration (nozzle in the top left-hand corner).
Inset: zoom on the boxed zone.

2.3.2. Stereoscopic reconstruction

After the particle centres for all images and all cameras have been determined, the
actual three-dimensional positions of the particles can be reconstructed, knowing that
each camera image is a two-dimensional projection of the measurement volume. More
typically, methods based on optical models are used to achieve real particle positions, but
for this study a geometric method developed by Machicoane et al. (2019) is used due to
its increased precision and ease of implementation. This method is based on an initial
polynomial calibration, where each position on a camera image corresponds to a line in
real space (a line of possible positions in three-dimensional space). The rays for each
detected centre in the two-dimensional images are computed based on the calibration, and
then those rays are matched in space for all three camera locations to create a volume
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n

n + 1

(n + 1)interp

n – 4

Figure 5. Predictive tracking schematic. The solid line signifies the real trajectory. The dotted line (linear fit
of the positions from frame n − 4 to n) indicates the position extrapolation.

of particles in real space. The matching algorithm employed was recently developed by
Bourgoin & Huisman (2020). To create the largest convex hull possible which is dictated
by the orientation of the cameras, matching of particle position based on the intercept of
only two rays (i.e. two of the three cameras) is accepted. The possibility of overlapping
of particles in one dimension, two matches per ray, is also admitted in this algorithm.
However, this allows the inclusion of non-existent ghost particles. Fortunately, these
ghost particles do not form persistent trajectories and therefore they are removed when
the trajectories are formed in the next step. The tolerance to allow a match is 50 µm
(calibration accuracy of around 1 µm).

2.3.3. Tracking

The stereoscopic reconstruction gives a cloud of points for every time step. The goal of
the tracking is to transform this cloud into trajectories by following particles through time.
To track the position of a considered particle as it moves among numerous other particles,
the simplest algorithm is to consider the nearest neighbour: if one considers a particle
in frame n, its position in frame n + 1 is the nearest particle in frame n + 1. But, for
increased mass loading of particles, the trajectories are tangled, as observed in this study.
Moreover, several points are ‘ghost’ particles and should not be tracked. Thus advanced
predictive tracking methods are generally employed (Ouellette, Xu & Bodenschatz 2006a).
The trajectories are assumed to be relatively smooth and self-consistent, i.e. there are
no severe variations in velocity and therefore past positions give accurate indications
of future positions (Guezennec et al. 1994). If one considers a particle at frame n, its
position in frame n + 1 can be extrapolated and finally the nearest-neighbour approach
is employed based on the extrapolated position. In the present study, the extrapolated
position is determined by fitting the previous five positions from frame n − 4 to n with
a simple linear relation (i.e. velocity), as indicated in figure 5. If there are fewer than
five positions, the available positions are used. A maximum distance of 1 mm between
extrapolated position and real position is applied to continue the trajectories in order to
avoid the tracking of absurd trajectories. If the same particle is the nearest neighbour for
two different tracks, the nearest trajectory is chosen and the other trajectory is stopped.

2.4. Post-processing of the trajectories

The tracking of particles results in a set of trajectories for each of the 50 experimental
runs. A minimum trajectory length of 10 frames is required to remove presumably false
trajectories. Some real trajectories are also removed, but their statistical value is negligible.
Finally, the coordinate basis is adapted by aligning the z axis with the jet axis and centring
it in x and y directions. Positions and velocities are computed in adapted cylindrical
coordinates (z, r, θ) with z the axial coordinate, r the radial one and θ the circumferential
one. A visualisation of tracks is shown in figure 6. It can be noted that most trajectories
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Figure 6. Near-field jet: 95 055 trajectories longer than or equal to 10 frames (one colour per trajectory, one
movie considered).

come from the nozzle (where they are injected) and very few come from the outside and
are entrained in the jet (visible in figure 6 as radial trajectories towards the jet). The full
dataset for the NF comprises 4.2 × 106 trajectories longer than or equal to 10 frames,
which corresponds to 1.0 × 108 particle positions. For the FF, it is comprised of 6.1 × 106

trajectories and 1.6 × 108 particle positions. Lagrangian-based analysis, when the length
of the trajectories becomes relevant, presents average trajectory lengths for the NF and FF
locations of 59 and 68 frames, respectively. Extraction methods of these data are described
in § 4.1.

The trajectories reconstructed by the tracking algorithm always exhibit some level of
noise due to errors eventually accumulated from particle detection, stereo-matching and
tracking. It is important to properly handle noise, in particular when it comes to evaluating
statistics associated with differentiated quantities (particle velocity and acceleration). Two
techniques are implemented to do so. For all Eulerian statistical analysis requiring the
estimate of local velocity, the trajectories are convolved with a first-order derivative
Gaussian kernel with a length of 6 time instances and a width of 2 (ad hoc smoothing
parameters) (Mordant, Crawford & Bodenschatz 2004b). For all two-time Lagrangian
statistical analysis (correlation and structure functions), an alternative noise reduction
method, presented by Machicoane et al. (2017a,b) is implemented to obtain unbiased
statistics based on an estimation from discrete temporal increments of position, without
requiring explicit calculation of individual trajectory derivatives. For example, to compute
the noiseless Lagrangian two-point correlation of velocity, RL

ûû
, the first-order increments

are considered as follows:

RL
dx dx(τ, dt) = RL

ûû
(τ ) dt2 + 〈db (t + τ) db(t)〉 + O(dt3), (2.1)

where dx is the temporal increment of the signal x over a time dt with dx = x(t +
dt) − x(t) = dx̂ + db. The circumflex signifies the real (noiseless) signal and the noise
is denoted as b (assumed to be a white noise). From the presented relationship, the
noiseless correlation function of velocity RL

ûû
(τ ) can be extracted from the correlation
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Figure 7. (a) Vector field of the ū
e field for the normalised locations, including the half-width of the jet (dashed

line, purple), r1/2, at all downstream locations for the NF. (b) Contour representations of the local standard
deviations σuz (left) and σur (right) for the axial and radial velocity components for NF locations.

of measured position increments dx, exploring its polynomial dependency with dt at the
lowest (quadratic) order and neglecting higher-order terms (i.e. O(dt3)), by applying a
simple polynomial fit of c1 dt2 + c2. This method, called the ‘dt-method’ in the following,
allows the estimation, with increased accuracy and less sensitivity to noise, of statistics of
differentiated quantities (and hence the exploration of small-scale mechanisms). Further,
this is done without actually requiring estimation of derivatives, but by simply considering
position increments at various temporal lags. More information is provided, including a
validation study of synthetic data, in Machicoane et al. (2017a,b).

2.5. Stationarisation techniques

To address the Lagrangian instationarity (related to the Eulerian inhomogeneity) of the
flow, methods are used according to the proposed self-similarity of a turbulent jet by
Batchelor (1957), i.e. based on the transformation of the Lagrangian velocity and time
scales of a particle at a given time τ after it has been released from a point source.
Equation (1.2a,b) provides a relationship to achieve proper stationarisation. For this
study, the fluctuating stationarised velocity is obtained by subtracting the local Eulerian
velocity (and assuming cylindrical symmetry of the jet, hence neglecting the θ dependence
on spatially averaged quantities), ūe

i (z, r), and scaling by the local standard deviation,
σui

(z, r). Explicitly,

ũi(τ ) =
ui(τ ) − ūe

i (x(τ ))

σui
(x(τ ))

=
ui(τ ) − ūe

i (z, r)

σui
(z, r)

. (2.2)

The local standard deviation is an optimal choice for compensation as it generalises the
methods presented in Batchelor (1957), where a specific decay rate (Batchelor assumed
a power law) is required for stationarisation. This velocity ũ takes the mean drift and
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B. Viggiano and others

decay into account although the term becomes dimensionless as a result. For this reason,
for all statistical calculations of dimensional quantities (such as the turbulent dissipation
rate) inferred from this analysis, velocity is redimensionalised through multiplication
with the average local standard deviation within the considered measurement region or
location. For transparency, the Eulerian mean and standard deviation velocity fields used
for the stationarisation are presented in figure 7 (figure 7a showing the mean velocity
as a vector field and figure 7b the standard deviation of the axial and radial velocity
components). The half-width of the jet, r1/2(z), where ūe

z(z, r = r1/2(z)) = 1
2 ūe

z(z, r = 0),
is included in the Eulerian mean velocity field as the dashed line to provide clarity to the
sampling methods based on this quantity, as discussed in §§ 3 and 4. Note that Lagrangian
velocity components are used for the Eulerian statistical characterisation; therefore the
stationarisation technique described is required for all analyses presented in the study. For
clarity, herein the tilde is omitted and the compensated Lagrangian velocity is denoted as
u(τ ) for the remainder of the article.

3. Eulerian velocity statistical analysis

This section aims to extract flow parameters such as length scales and energy dissipation
rate from various Eulerian statistics: second-order structure functions and two-point
correlation functions. The jet flow is inhomogeneous; therefore these quantities depend
on z and r. Focus is placed on centreline statistics for the Eulerian characterisation of the
jet, limited to radial distances up to r1/2 and consideration of only the z-axis evolution is
used to characterise the main property of the base turbulence.

3.1. Eulerian second-order structure functions

Structure functions are commonly used to describe multiscale properties of turbulence
through a statistical representation of a flow quantity with a given spatial or temporal
separation. In the Eulerian perspective, longitudinal velocity structure functions of order
n are defined as

SE
n−‖(x, ∆x) = 〈[δu‖(x, ∆x)]n〉 = 〈[u‖(x + ∆x) − u‖(x)]n〉, (3.1)

where δu‖ is computed over two points, one at x, the other at x + ∆x, with u‖ defined as the
single longitudinal component of Eulerian velocity along ∆x. The 〈·〉 denotes ensemble
averaging.

In homogeneous isotropic stationary turbulence (HIST), Kolmogorov phenomenology
K41 (Kolmogorov 1941) predicts for the second-order structure function in the inertial
range, scaling between the Kolmogorov scale η and the integral length scale L, that

SE
2−‖(∆) = 〈[δu‖(x, ∆)]2〉 = C2

(ε∆)2/3

σ 2
u‖

, (3.2)

with ε the average energy dissipation rate per unit mass and C2 � 2.0 (Pope 2000). The
σ 2

u‖
denominator (the variance of longitudinal velocity component) has been added here

in the right-hand term to account for the fact that the stationarised velocity according
to transformations (2.2) is considered. Alternatively, the transverse structure function
SE

2−⊥(∆) can be considered where increments are taken for the velocity components
perpendicular to the separation vector. In HIST, within the inertial range, SE

2−⊥(∆) follows

the same K41 scaling but with a constant C2⊥ = 4
3 C2. Previous studies have found that
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Lagrangian diffusion properties of a turbulent jet

these relations, a priori established for HIST, apply reasonably well to the inertial scales
of turbulent jets, in spite of the large-scale inhomogeneity and anisotropy (e.g. Romano &
Antonia 2001). In the sequel relation (3.2) is used together with the relation C2⊥ = 4

3 C2
to analyse longitudinal and transverse structure functions in the jet.

Within the jet (cylindrical coordinates), the longitudinal second-order structure function
is usually estimated, near the centreline, based on the axial component of the velocity:

SE
2−z,‖(z, δz) = 〈[uz(z + δz, r) − uz(z, r)]2〉, (3.3)

with uz the fluctuating axial velocity (recall that the stationarisation described in § 2.5
is applied) and δz the axial distance between the two considered points (the explicit z

dependency is kept here to emphasise the streamwise inhomogeneity of the jet centreline
statistics). This is, for instance, the quantity typically measured when using hot-wire
anemometry (sensitive to the streamwise velocity component) combined with the Taylor
frozen field hypothesis.

To explore the streamwise evolution of Eulerian properties of the jet, a set of data
(particle velocities) is considered for a given z position, which falls within a short cylinder
(disk), Dz, of limited height (0.5 mm in the z direction) and a radius of r1/2(z) for
statistical analysis. The disk radius is chosen to include sufficient particles for statistical
convergence but, in being limited to the half-width, the volume does not encompass
particles from the turbulent/non-turbulent interface. This gives a canonical description of
turbulent properties representative of the centreline of the jet. Consideration of statistics
in a thin disk allows the more detailed exploration of z dependence of statistical quantities;
however, this sampling technique forbids exploration of δz values over a range relevant
to estimate SE

2−z,‖(z, δz) at inertial scales. To overcome this issue, two strategies are

considered. (i) Still based on the axial z component of the velocity, SE
2−z,⊥(z, δr), the

transverse structure function of uz (with the separation vector δr taken within the plane
of the disk) is estimated in lieu of SE

2−z,‖(z, δz). (ii) For radial velocities, the longitudinal
structure function is considered through use of the velocity components perpendicular to
the z axis (i.e. within the sampling disk Dz), projected onto the increment vector δr within
the disk Dz. This is denoted as SE

2−rθ,‖(z, δr) (where the subscript rθ recalls that only
velocity components perpendicular to z are considered). For any redimensionalisation of
a Eulerian quantity, the averaged standard deviation within a respective disk, 〈σui

〉Dz , is
employed. For brevity this is herein denoted as σui

for all Eulerian calculations.
The discussions of this subsection (and in the two following) illustrate the extraction

of the main Eulerian turbulent properties (and of their streamwise evolution) based on
SE

2−z,⊥(z, δr). The same analysis was also repeated based on SE
2−rθ,‖(z, δr), the details

of which are not provided for brevity. Analysis follows the same recipe as is described
for SE

2−z,⊥(δr), and the main turbulent parameters extracted from these two estimates are
discussed and compared in § 3.3.

The transverse structure function based on uz at a given z position is estimated as

SE
2−z,⊥(z, δr) = 〈[uz(r + δr) − uz(r)]

2〉Dz, (3.4)

where the average is taken over a pair of particles within the disk Dz separated by a
vector δr. Note that, given the reduced height of the disk (not exceeding two particle
diameters), δr is within an acceptable approximation perpendicular to the z axis, ensuring
that (3.4) indeed corresponds to a transverse structure function (except maybe for the
smallest separations, comparable to the disk height).

918 A25-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



B. Viggiano and others

10–3
10–2 10–4

10–2

102

10–1

100

100

10–2 10–3 10–2

δr (m) δr (m)

S
E 2
–
z,
⊥

(z
, 
δr

)σ
2 u

z (
m

2
 s

–
2
)

(S
E 2
–
z,
⊥

(z
, 
δr

)σ
2 u

z/4 – 3
C

2
)3

/2
/δ

r 
(W

 k
g

–
1
)

z/D = 15 – NF

z/D = 25 – NF

z/D = 35 – FF

z/D = 45 – FF

(b)(a)

Figure 8. Eulerian second-order structure functions of the axial velocity on the axis, (a) uncompensated
SE

2−z,⊥(z, δr)σ 2
uz

and (b) compensated (SE
2−z,⊥(z, δr)σ 2

uz
/ 4

3 C2)
3/2/δr (the solid lines are the plateaus to extract

εz), for the four denoted downstream locations.

z/D σuz
εz ηz τηz

λz Reλ LEz
TEz

σur
εrθ LErθ

TErθ

(m s−1) (W kg−1) (µm) (ms) (µm) (mm) (ms) (m s−1) (W kg−1) (mm) (ms)

15 0.80 104.7 9.9 0.098 304 245 2.2 2.8 0.57 63.9 1.7 2.9
25 0.51 16.1 15.8 0.249 491 250 4.4 8.6 0.38 14.6 2.0 5.3
35 0.35 4.5 21.7 0.472 643 226 5.6 16.0 0.28 5.7 3.6 13.0
45 0.28 1.7 27.8 0.774 825 227 7.8 28.2 0.22 2.4 5.1 23.2

Table 1. Eulerian parameters of the jet on the axis for various z/D positions.

The structure function SE
2−z,⊥(z, δr) is computed for different z positions (in the NF and

FF of the jet) and shown in figure 8(a). As explained in § 2.5, while the stationarised
(hence dimensionless) velocity is used for all estimates, SE

2−z,⊥ is made dimensional
by multiplying it by the square of σuz , the standard deviation of uz within Dz (see
table 1). This redimensionalisation is required in order to extract the dimensional value
of ε, and the associated derived parameters (in particular the dissipation scales and
Taylor microscale). To this end, figure 8(b) includes the compensated structure function
(SE

2−z,⊥(z, δr)σ 2
uz

/4
3 C2)

3/2/δr (measurements by Romano & Antonia (2001) suggest that

in spite of the large-scale anisotropy, the isotropic relation C2⊥ = 4
3 C2 applies reasonably

well for the inertial-scale dynamics of the jet). Well-defined plateaus, corresponding to
inertial-range dynamics, are observed from which the dissipation rate εz can be extracted
according to (3.2). The subscript z in εz simply refers to the fact that this estimate is based
on the axial component of the velocity. It will be compared later with εrθ , the estimate
from SE

2−rθ,‖. It can be seen that, as the location downstream increases, the plateau of the
second-order structure function (and hence εz) decreases, due to the streamwise decay of
turbulence along the jet.

It is noted that small scales (typically for δr < 10−3 m) are not statistically well
converged. This is due to the lack of statistics for pairs of particles with very small
separation due to the moderate seeding of particles used for the Lagrangian tracking.
Furthermore, the noise at small scales, δr ∼ 1.5 × 10−3 m, could also be due to the use
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Lagrangian diffusion properties of a turbulent jet

of the total distance for the separation vector. This artefact is most easily observed in the
farthest downstream locations.

3.2. Eulerian two-point correlation functions

The second-order Eulerian statistics shown in the previous section from the structure
functions can be equivalently investigated in terms of the two-point correlation function.
The correlation of axial velocity can indeed be obtained via the non-dimensional
second-order structure function, RE

uu−z,⊥(z, δr) = 1 − SE
2−z,⊥(z, δr)/2, to depict the

evolution of the velocity interactions through space. The results from the NF and FF are
presented in figure 9. The curves are ordered depending on their downstream location
z. The location nearest the jet exit, z/D = 15, exhibits a rapid decorrelation. As the
flow advances downstream, the turbulent length scales grow, resulting in a dynamics
which remains correlated over longer distances, as seen by the z/D = 45 profile. This
trend can be investigated quantitatively using the Eulerian correlation length (or Eulerian
integral scale) LEz,⊥(z) =

∫ ∞
0 RE

uu−z,⊥(z, δr) dδr. Recall that transverse and longitudinal
correlation lengths are kinematically related in HIST by LEz,‖ = 2LEz,⊥ (Pope 2000). Since
most studies in the literature refer to the longitudinal length, the present study will then
consider LEz(z) = 2

∫ ∞
0 RE

uu−z,⊥(z, δr) dδr, avoiding the ⊥ or ‖ subscripts. However, it is
noted that measurements by Burattini, Antonia & Danaila (2005) suggest that the ratio may
actually be slightly lower than 2, and closer to 1.8 in free shearing jets due to large-scale
anisotropy.

3.3. Evolution of Eulerian parameters

The evolution of εz, estimated from the plateaus of the compensated second-order structure
functions (figure 8b), is represented in figure 10. There exists a tendency of 1/z4 (more
clearly visible in figure 11c), as expected for canonical self-similar jets. The observed
consistency in the values and shape of the profiles between the NF and FF experimental
locations validates the presented εz values from the independent measurements carried
over the overlapping region.

From the dissipation rate εz, other relevant parameters of the flow field can be extracted,
namely the Kolmogorov time scale τηz = (ν/εz)

1/2 and length scale ηz = (ν3/εz)
1/4, as

well as the Taylor microscale λz = (15νσ 2
uz

/εz)
1/2 and the Taylor-based Reynolds number

Reλ = σuzλz/ν, both of which assume HIST. Further, large length and time scales are
obtained from the two-point correlation profiles in figure 9. For a more accurate estimate
of the correlation length LEz(z) = 2

∫ ∞
0 RE

uu−z,⊥(z, δr) dδr, the integral of the correlation
functions is based on a fit of the curves shown in figure 9 using a Batchelor-type
parametrisation (Lohse & Müller-Groeling 1995). Recall that the factor 2 is the HIST
correction that relates the transverse correlation (given by the integral of RE

uu−z,⊥) to
the longitudinal one. The calculated LEz is therefore interpreted as the longitudinal
integral scale associated with the z component of velocity. The integral time scale is
then computed as TEz = LEz/σuz . All relevant quantities of the jet for the considered
streamwise locations are collected in table 1. The streamwise evolution for the velocity
standard deviation, dissipation rate and integral scale are also shown in figure 11, where
the well-known self-similar power-law profiles can be seen. Comparisons with known
self-similar quantities, namely the centreline decay B = 5.87 and the spreading rate
S = 0.099, compare well with values presented in Pope (2000).
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Figure 9. Normalised two-point spatial correlation of the Eulerian axial velocity on the axis,
RE

uu−z,⊥(z, δr) = 1 − SE
2−z,⊥(z, δr)/2.
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Figure 10. Evolution of εz along the jet axis.
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Figure 11. (a) The standard deviation averaged within the disk Dz, (b) the dissipation rate and (c) the integral
length scale for the axial component of velocity for all downstream locations. Power-law relations are given as
dashed lines.

This brief characterisation of basic Eulerian properties is concluded by reporting
the similarly employed analysis performed for SE

2−rθ,‖(z, δr) (where rather than uz,
components of velocity perpendicular to the z direction are considered). This leads to
estimates of the dissipation rate εrθ (and derived quantities) and of the integral length
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Lagrangian diffusion properties of a turbulent jet

scale and time scale, LErθ and TErθ . Results are included in table 1. The dissipation rate
for the radial velocity is lower than that for the axial component near the exit of the jet,
but declines more slowly as the jet develops, resulting in similar values for εrθ and εz at
z/D > 25. As a result, in this region dissipation scales are found almost identical with
both estimates. This supports the idea that small and inertial scales are nearly isotropic.
The large scales show, however, a certain degree of anisotropy, in particular regarding the
integral length scale and to a lesser degree the integral time scale which are found larger
for the z component than for the rθ components.

4. Lagrangian velocity statistical analysis

In this section, the Lagrangian statistics of the jet dynamics are investigated with
a particular focus on second-order statistics (namely velocity second-order structure
function and two-point correlation function), which are key ingredients for modelling
turbulent diffusion, as discussed in the introduction. In particular, the relevance of
Batchelor’s Lagrangian self-similar stationarisation idea is further assessed.

4.1. Lagrangian second-order structure functions

The application of the known Kolmogorov K41 phenomenology for HIST, generally
applied to Eulerian inertial scaling, can be extended to the Lagrangian framework
(Toschi & Bodenschatz 2009), where dynamics is investigated as a function of temporal
increments along particle trajectories (see figure 12). Namely, for the second-order
Lagrangian structure function, this reads (for the stationarised velocity defined by relation
(2.2))

SL
2,i(τ ) = 〈[ui(t + τ) − ui(t)]

2〉 = C0i

εiτ

σ 2
ui

, (4.1)

within the the inertial range (τη � τ � TL), where i is a velocity component (i = x, y

or z; by symmetry, statistics along x and y are identical and equivalent to statistics of the
radial r component of velocity) and TL is the Lagrangian integral time scale, which is
expected to be related to the Eulerian integral time (this point is discussed in greater depth
later). Note that while for the Eulerian structure functions, spatial velocity increments were
computed between pairs of particles and then averaged, now, for Lagrangian analysis,
temporal velocity increments are computed on each individual trajectory before being
averaged. In this study, the nature of this scaling is revisited as well as the value of the
constant C0 when the stationarised velocity presented in § 2.5 is considered. In order to
address the role of jet anisotropy (in particular regarding the value of C0z and C0r ), the
statistics for the axial and radial components of velocity are considered separately. Recall
also that in lieu of Gaussian filtering previously applied to the Eulerian structure functions,
the dt-method presented in § 2.4 is implemented, which has been shown to better handle
noise issues for Lagrangian velocity statistics estimates (Machicoane et al. 2017a).

Figure 13(a) presents the corresponding curves for SL
2,z(τ ) at the four different

downstream locations. For each location z, the ensemble selected for the Lagrangian
statistics consists of each trajectory, in its entirety (for long time lag convergences), which
passes through a small sphere Sz centred at downstream position z along the jet centreline,
with a radius of r1/2(z)/3. A minimum trajectory length of 30 frames is enforced. This
volume allows sufficient particles for convergence of statistics yet does not overlap in the
axial direction as the half-width increases. Similar to methods presented in the Eulerian
framework, the averaged standard deviation from within each respective sphere 〈σui

〉Sz is
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Velocity (a.u.)

Where ua(t) = ua,x(t)î  + ua,y(t) ĵ  + ua,z(t)k̂

ua(t)

ua(t + τ)

uc(t + τ)

ub(t + τ)

ub(t)

uc(t)

Figure 12. Schematic of the Lagrangian velocity increment in a Cartesian coordinate system for a given time
lag τ .
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Figure 13. Lagrangian second-order structure functions of the axial velocity on the axis, estimated at
four downstream locations (z/D = 15, 25, 35 and 45). (a) Non-dimensional SL

2,z(τ ) as a function of the

non-dimensional time τ/TEz (inset: dimensional SL
2,z(τ )σ 2

uz
as a function of time τ ) and (b) compensated

SL
2,z(τ )σ 2

uz
/(τεz), for the denoted downstream locations. The universal scaling constant C0z can be extracted

from the plateau of the compensated structure functions.

used for redimensionalisation of Lagrangian quantities when necessary (for calculation of
C0) and denoted simply as σui

. All curves exhibit a transition from a dissipative behaviour
at small time lags (where SL

2,z ∝ τ 2) to the inertial range (where SL
2,z ∝ τ ). The main figure

shows the structure function in stationarised variables, while the inset provides the same
data but non-stationarised. Several interesting points emerge.

(a) Effect of stationarisation at inertial scales. The non-stationarised statistics (inset of
figure 13a) are widely spread while the stationarised statistics (main figure) collapse
reasonably well, in particular in the FF (z/D > 25). Similarity between the curves
is improved for the inertial-range dynamics (which presents similar trends even at
distances z/D � 20), but is less adequate for the small-scale dissipative dynamics,
for which the collapse becomes reasonable only at far-downstream locations (z/D >

35). This suggests that the stationarisation procedure is efficient for retrieving
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Lagrangian diffusion properties of a turbulent jet

self-similar inertial-range Lagrangian statistics in the FF (in Batchelor’s sense,
meaning that Lagrangian statistics become independent of the downstream position
as particles travel along the jet), while discrepancies remain in the small scales until
the very FF.

(b) Small-scale dynamics discrepancies. In the Lagrangian framework, the small-scale
dynamics of structure functions is associated with particle acceleration statistics.
Figure 13(a) therefore suggests that stationarised acceleration statistics eventually
fall in line, but only in the very FF (curves at z/D = 40 and 45 almost perfectly
collapse). As discussed in § 5, acceleration statistics are strongly affected by the
finite size of the particles, which in our study remains much larger than the
dissipation scale of the flow (dp/η = 25 at z/D = 15 and 9 at z/D = 45). Although
further investigation focusing specifically on the small-scale dynamics would be
required (which is not in the scope of the present article, mostly motivated by
applications to diffusion which is primarily driven by inertial- and large-scale
behaviour), it is probable that the observed discrepancy at small scales reflects these
finite size effects. This is supported by the fact that as considered positions are
farther downstream (where dp/η gets smaller and hence finite particle size effects
disappear), the stationarised acceleration dynamics seems to better converge to a
single curve. Acceleration statistics and finite size effects are further discussed in
§ 5.

(c) Large-scale dynamics. By construction, the second-order structure function of the
stationarised velocity should reach, in large scales, an asymptotic constant value of
2 as the Lagrangian dynamics becomes fully decorrelated. This asymptotic regime
is not reached in our data, where SL

2 reaches at best values of order 1, without
exhibiting an asymptotic decorrelated plateau. This is due to the lack of statistics
for long trajectories. One of the well-known difficulties of Lagrangian diagnosis is
indeed the capacity to obtain sufficiently long trajectories allowing exploration of the
large-scale dynamics. In the present study, most trajectories are efficiently tracked
over a few tens of frames at most (very few are over hundreds of frames). At the
operating repetition rate of 6000 frames per second, this corresponds to trajectories
at most 10 ms long, which represents (according to table 1) a few Eulerian integral
time scales in the NF, and only a fraction of this integral scale in the FF, where only
a part of the inertial-range dynamics is accessible. In § 4.2, it is demonstrated that
large-scale behaviour (and the effect of stationarisation on it) can still be addressed
by estimating the Lagrangian correlation time scales.

(d) Estimate of C0 constant. Figure 13(b) shows the compensated structure functions
SL

2,z(τ )σ 2
uz

/(τεz) built with εz values found in the Eulerian analysis (for consistency
regarding possible anisotropy effects, the estimate of dissipation rate based on
Eulerian statistics of corresponding components is used). Based on relation (4.1),
within the inertial range the value of C0z can be extracted from the plateau of the
curves. The value of the plateau is observed to saturate, as considered positions
reach farther towards the FF, at a value of C0z � 3.2. The downstream evolution of
C0z is further discussed in the ensuing sections.

All observations also apply to estimates of SL
2,r, based on the radial component of

velocity. Quantitative comparison of the downstream evolution of C0z and C0r is detailed
in § 4.3.
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Figure 14. Normalised Lagrangian correlation of the axial velocity for the compensated time lag τ/TEz . Insets
provide the Lagrangian correlation as a function of the dimensional time lag τ for the same seven downstream
locations previously considered. Locations are (a) along the centreline (r = 0) and (b) at the jet half-width
(r = r1/2) for all downstream positions.

4.2. Lagrangian two-point correlation functions

The two-point correlation functions of the Lagrangian axial velocity as a function of
the compensated time lag τ/TEz are presented in figure 14(a) where RL

uu−z(τ ) = 〈uz(t +
τ)uz(t)〉. It can be seen that, as for the structure functions previously discussed, the
stationarisation results in a remarkable collapse of the correlation functions, in particular
at z/D > 20. Note that the small-scale discrepancy observed for SL

2,z is also expected to
be present for the correlation function, which carries essentially the same information;
it is, however, less emphasised due to the linear (rather than logarithmic) scale used
to represent the correlation function. The observed agreement between the two-point
correlation functions confirms again the Lagrangian self-similarity hypothesis at inertial
scales, resulting in two-point correlation functions of the stationarised variables which do
not depend on the downstream position of the particles as they evolve along the jet (beyond
z/D � 20).

Although the shortness of the trajectories does not allow direct exploration of the
large-scale, fully decorrelated, regime (where Ruu,i vanishes), the observed collapse at
intermediate scales allows speculation that the self-similarity hypothesis may also extend
to the large scales. This would lead, in particular, to a univocal relation between the
Lagrangian correlation time (defined as TLi

=
∫ ∞

0 RL
uu,i(τ ) dτ ) and the Eulerian time

scale at all positions along the jet (except in the very NF, where Lagrangian two-point
correlation clearly deviates). This point is further tested in § 4.3 where we estimate
TL based on appropriate fits (exponential or double exponential; Sawford 1991) of the
Lagrangian two-point correlation, supporting the validity of self-similarity in the large
scales and the univocal link between TL and TE.

The subsection is concluded by providing, in figure 14(b), a test of the
Lagrangian self-similarity hypothesis when off-axis dynamics is considered. The original
stationarisation proposed by Batchelor (1957) used centreline power laws for a self-similar
jet to compensate the Lagrangian velocity and time. As discussed in § 2.5, these formulas
have been generalised (compatible with Batchelor’s approach in the centreline) using
actual local measurements of Eulerian properties rather than prescribed centreline power
laws. The stationarisation transformations can therefore be applied at any arbitrary
position along particle trajectories. Figure 14(b) explores the application of the proposed
stationarisation considering trajectories passing through a ball centred off-axis, at a
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Lagrangian diffusion properties of a turbulent jet

z/D C0z TLz (ms) TEz/TLz C0r TLr (ms) TErθ /TLr

15 1.4 4.5 0.6 1.9 1.4 2.1
25 2.7 5.3 1.6 3.2 2.3 2.3
35 3.2 11.1 1.5 3.0 5.3 2.5
45 3.0 15.9 1.8 2.8 8.9 2.6

Table 2. Lagrangian parameters of the jet on the axis for various z/D positions.

radial location of r = r1/2(z), instead of r = 0. As for the centreline analysis, the
correlation functions of the stationarised variables collapse for all locations z/D >

20. This substantiates the generalised stationarisation technique, and its application to
locations beyond the centreline. Although the present study focuses on diffusion of
particles near the jet centreline, this result motivates future dedicated studies to explore
more deeply the generalised Lagrangian stationarisation for off-axis statistics as well as
for other inhomogeneous flows (such as von Kármán flows, which are widely used for
Lagrangian studies of turbulence).

4.3. Evolution of Lagrangian parameters

This subsection provides estimates of C0 and TL, their streamwise evolution along the
jet centreline, their connection to Eulerian properties of the jet and the reliability of
Lagrangian stochastic models derived for HIST (Sawford 1991) to address the stationarised
Lagrangian dynamics of the jet. Investigations are made into these quantities for both axial
and radial components of the velocity.

Table 2 presents these Lagrangian parameters of the jet for various z locations in the NF
and FF. The scaling constant C0z is observed in the compensated Lagrangian structure
functions (figure 13b). The Lagrangian integral time scale TLz is estimated based on
an exponential fit of the velocity correlation curves, due to the lack of experimental
data for large time lags (figure 14a). Lagrangian correlation functions are indeed known
(at least in HIST) to be well fitted by double-exponential functions, and even simple
exponential functions at sufficiently large Reynolds number, if the focus is on the estimate
of inertial- and large-scale behaviour (Sawford 1991). In the present case, the fit by a
simple exponential (e−τ/TLz ) leads to very similar estimates of TLz compared with a more
sophisticated double-exponential fit. Corresponding radial quantities are extracted in the
same way by considering SL

2−r(τ ) and RL
uu−r(τ ).

Constant C0z is found to converge to a constant value C0z � 3.2 at z/D > 30. This
is more easily observed in figure 15 which provides the evolution of the Lagrangian
parameters as a function of the downstream position z. The asymptotic FF value of C0z can
be compared with values reported in the literature for C0. A relationship presented by Lien
& D’Asaro (2002) accounting for finite-Reynolds-number effects on C0 suggests an altered
C∗

0(Reλ) = C∞
0 [1 − (0.1Reλ)

−1/2], where, according to Sawford (1991), C∞
0 � 7.0. This

gives an estimated C∗
0 of 5.6 for the Reynolds number corresponding to the present

study as a benchmark value. As previously mentioned, discrepancies of this parameter
exist between numerous studies. For example, a value of C∗

0 of 4.8 was extracted for
direct numerical simulation data with Reλ = 240 by Sawford & Yeung (2001), while
experimental data taken between two counter-rotating disks at Reλ = 740 produced a value
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Figure 15. Evolution of the scaling constant C0 (left-hand axis) and the ratio of the integral time scales
TE/TL (right-hand axis) as a function of downstream location within the jet centre. The axial (solid) and radial
(dot-dashed) components are both presented.

of C∗
0 of 2.9 (Mordant et al. 2001). Ouellette et al. (2006a) found in a similar flow at

Reλ � 200 an anisotropic behaviour, with C∗
0 � 3.5 for the velocity component aligned

with the axis of rotation of the disks and C∗
0 � 5.5 for the transverse components. It is

therefore difficult to be fully conclusive regarding the expected value of C0 in this case, as
it appears to be non-universal and not only dependent on the Reynolds number, but for a
given Reynolds number to also depend on specific geometrical properties of the considered
flow. It is observed, however, that the measured value of C0z in the jet is in the same range
of magnitude as other studies in different flows at similar Reynolds number. With regard to
anisotropy, table 2 and figure 15 suggest that C0z and C0r behave almost identically along
the jet, C0z converging to a value of 3.0 and C0r to a value of 2.8. This indicates, on the one
hand, that Lagrangian dynamics exhibits a level of isotropy and, on the other hand, that
at a specific location downstream, C0 becomes independent of axial location and hence
supports the idea that inertial Lagrangian statistics reach self-similarity.

Regarding the Lagrangian correlation time scale, both TLz and TLr increase with
increasing axial distance, with TLz being, however, significantly larger (about double)
than TLr (see table 2). Large-scale Lagrangian dynamics therefore exhibits a persistent
anisotropy, somehow more pronounced than the anisotropy previously reported for the
Eulerian integral time scales (see for instance TEz and TErθ in table 1). To further compare
Lagrangian and Eulerian large-scale properties, the ratios of the Eulerian to Lagrangian
integral time scales for both the axial and the radial components of velocity are provided in
table 2 and figure 15. For all locations, the Eulerian to Lagrangian time-scale ratio for the
radial component is notably larger (about double) than that for the axial component. The
axial component trends are consistent with similar results reported by Gervais et al. (2007),
wherein TEz/TLz was found to be less than 1 in the NF, and to evolve towards a value
greater than 1 (between 1.3 and 1.8) as the jet develops. Interestingly, in the well-developed
region, the Lagrangian dynamics decorrelates significantly faster compared with the
Eulerian dynamics, as originally intuited by Kraichnan (1964). This relation between
Eulerian and Lagrangian time scales has been examined numerically by Yeung (2002)
where a ratio of TE/TL = 1.28 was found for HIST. This value is slightly lower than the
value found in the present experiments, but is still consistent with the Lagrangian dynamics
decorrelating faster than the Eulerian dynamics.

Since the study of Kraichnan (1964) who suggested that TE/TL > 1, a similar prediction
has been made by Sawford (1991) based on simple Lagrangian stochastic modelling. In this
approach, Eulerian and Lagrangian time scales can be simply related to each other via the
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Lagrangian diffusion properties of a turbulent jet

scaling constant C0:
TE/TL = C0/2. (4.2)

As observed in figure 15, this relation is tested against the experimental results for the
axial and radial velocity components. Note that the limits of the right-hand axis for TE/TL

are half the limit of the left-hand axis for C0; therefore if TE/TL = C0/2 holds, the curves
for TE/TL and for C0 shall superimpose. For the axial component, the agreement is almost
perfect at all locations, including in the NF. This is not observed for the radial component;
while the two curves exhibit proportionality, the ratio of time scales is nearly equal to the
scaling constant C0 at all presented locations.

5. Lagrangian acceleration statistical analysis

This section explores the statistics of the Lagrangian acceleration, to further elucidate
small-scale dynamics and its evolution along the jet. Particularly, the role of finite particle
size effects (which evolve along the jet, and therefore may be to blame for preventing
self-similarity from being recovered until the very FF, as discussed in § 4.1) and the
associated dimensionless constant a0 (appearing in the Heisenberg–Yaglom relation;
Monin & Yaglom 1975) are addressed. At the same time, investigation into the connection
between Eulerian and Lagrangian dissipative time scales can be carried out to further
probe the applicability of stochastic models. All analysis is performed on trajectories that
pass through a sphere of radius r1/2(z)/3, as was done for the Lagrangian velocity analysis.
Only the axial component of velocity is considered for the acceleration discussion (the
radial component gives almost identical conclusions).

5.1. Acceleration variance

The variance of acceleration components is traditionally characterised by the scaling
constant a0 through the Heisenberg–Yaglom relation (Monin & Yaglom 1975):

〈a2
z 〉 = a0ν

−1/2ε3/2, (5.1)

where ν is the fluid viscosity and ε is the dissipation rate. The acceleration variance is
taken directly from the trajectories with the dt-method implemented to find the noiseless
values of 〈a2

z 〉 (Machicoane et al. 2017a). This is done for different z positions along the

jet. Parameter a0 is then deduced at the different positions as 〈a2
z 〉ν

1/2ε
−3/2
z , where εz is

the estimate of the dissipation rate at the considered position, based on the considered
acceleration component.

Acceleration variance, and therefore the dimensionless constant a0, is known to be
highly sensitive to finite particle size effects and to converge to the value expected for
actual tracers only when the normalised particle diameter dp/η � 5 (Voth et al. 2002;
Qureshi et al. 2007; Calzavarini et al. 2009; Volk et al. 2011), where η is the Kolmogorov
length scale (see table 1). In the present study, the ratio dp/η varies typically between 9
and 25 depending on the distance to the nozzle. Therefore, the constant a0, as a function
of the normalised particle size dp/η (bottom axis) and of the downstream normalised
location z/D (top axis), is provided in figure 16. Included is a power-law fit of −1.75 and
a red dashed line of the expected value (from numerical simulations of HIST), a

theory

0 �

4.2, calculated from Sawford (1991). The power-law fit of −1.75 provides the expected
atracer

0 value of a true tracer through extrapolating the trend as dp/η → 5, from which a
value of atracer

0 � 3.0 is found, in reasonable agreement with values reported in previous
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5 10 15 20
10–1

100a0

a0
theory

101

–1.75

45 40 35 30 25 20 15

z/D

dp/η

Figure 16. Evolution of the scaling constant of acceleration a0 along the centreline as a function of the finite
particle size dp/η.

experimental studies of von Kármán flows (Voth et al. 2002) and numerical simulations in
HIST (Sawford 1991; Vedula & Yeung 1999) for similar Reynolds number. Furthermore,
the power-law fit intersects with the theoretical value of a

theory

0 at dp/η � 5, which is
generally considered as the diameter for which finite size effects become noticeable. These
observations suggest that acceleration statistics in the jet should eventually behave for
tracers as in HIST, without a major influence of large-scale inhomogeneity of the jet. With
the present considered particles (with dp � 250 µm) the tracer behaviour is expected
to be reached at a downstream distance z/D � 65, which is out of reach of the present
dataset. To go into this question in more depth, it would be interesting to perform further
experiments specifically dedicated to acceleration measurements, by considering either
smaller particles or further downstream distances.

Regarding finite size effects, previous studies have reported in HIST a power-law
dependency of a0 on particle size, with a0 ∝ (dp/η)−2/3 (Qureshi et al. 2007; Brown,
Warhaft & Voth 2009), while a study by Volk et al. (2011) of von Kármán dynamics
reported a slightly steeper decay with an exponent −0.81. In the present study, an even
steeper decrease of constant a0 is observed with particle size, with an exponent −1.75,
about double the values reported previously. This stronger dependence of a0 on particle
size remains to be elucidated. It is likely due to a coupling between the finite size
effects and the streamwise dependence of turbulent properties in the jet, although further
investigation would be necessary to further explore this point.

5.2. Acceleration two-point correlation

Beyond the value of a0, acceleration statistics are also of great interest as they reflect the
Lagrangian dissipative dynamics of the particles. In particular, they give access to the
dissipative time scale of the Lagrangian dynamics, traditionally defined based on τ0, the
zero-crossing time of the acceleration two-point correlation function Raa,z(τ ) = 〈az(t +
τ)az(t)〉 with Raa,z(τ0) = 0. Acceleration two-point correlation is estimated with a variant
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Figure 17. Normalised axial acceleration correlation on the axis as a function of time lag normalised by the
Kolmogorov time scale.

of the dt-method (Machicoane et al. 2017a). Briefly, the acceleration two-point correlation
is obtained from second-order position increments d2x according to the relation

Rd2x d2x(τ, dt) = Rââ(τ ) dt4 + Rd2b d2b(τ, dt) + O(dt6), (5.2)

where Rd2b d2b represents the contribution of noise. A polynomial fit of dt4 is implemented
to extract the true correlation values of Rââ, eliminating the noise contribution. This
method is extended, herein, to more accurately describe the correlation of acceleration
of the given dataset.

The two-point correlation of acceleration is presented in figure 17 for four downstream
locations along the centreline, where the time lag has been normalised by τη. It has been
noted in previous studies that for tracers τ0 � 2.2τη (Yeung & Pope 1989; Volk et al.

2008; Calzavarini et al. 2009). For the current study, the the zero-crossing time is not
unequivocally close to τη and therefore the ratio τ0/τη depends on the location of the
measurement. The expected value of 2 is only approached in the farthest downstream
locations within the jet. The solid line in figure 18 shows the downstream evolution of the
zero-crossing time τ0. As for a0 the observed streamwise dependency of τ0/τη is likely due
to finite size effects, which have been reported in HIST to be affected by finite size effects
(Volk et al. 2008; Calzavarini et al. 2009). It should be noted, though, that τ0/τη seems to
eventually approach the expected value of nearly 2 for the farthest positions (and hence for
the smallest dp/η ratios), presented in the inset of figure 18. Following the considerations
previously discussed for the trends of a0, it could then be expected that the actual tracer
behaviour (free of finite size effects) would be fully recovered for τ0 near z/D � 65, with
a ratio τ0/τη of the same order as that usually reported for HIST.

Beyond the discussed finite size effects, acceleration correlation is also insightful
for shedding further light on the Lagrangian properties of the jet of relevance for the
application to diffusion problems, as motivated in the introduction.

First, the stationarisation of velocity à la Batchelor can be further tested by recalling
that for any random stationary signal ξ , the two-point correlation of the derivative of ξ ,
Rξ̇ ξ̇ , is simply related to the second derivative of the two-point correlation of ξ : Rξ̇ ξ̇ =

−R̈ξξ (derivatives are denoted in dot notation). In the present case, this relation gives
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Figure 18. The zero-crossing of the acceleration correlation normalised by the Kolmogorov time scale as a
function of the downstream location along the centre of the jet. Three estimations are presented based on the
acceleration correlation Raa, the derived second-order structure function dSL

2/dτ and the model-driven values
obtained from C0/a0.

that the zero-crossing of acceleration correlation corresponds to an inflection point of the
velocity two-point correlation. If Lagrangian stationarity holds, τ0 can therefore be simply
extracted from the peak of the derivative of the second-order structure function, dSL

2/dτ

(figure not included). The corresponding values are presented in figure 18 (dot-dashed line)
which exhibit a fair agreement with the direct estimate of τ0 from Raa. This observation
supports the validity of the proposed stationarisation procedure at each explored location
independently. However, finite size effects influence the streamwise dependence of τ0,
therefore impeding the validation of the small-scale Lagrangian self-similarity based on
streamwise evolution of τ0 (or a0).

Second, the relevance of stochastic models for characterising the Lagrangian dynamics
(and therefore for predicting diffusion properties) can be further tested from the
acceleration time scales. As presented in § 4.3, simple (Langevin) stochastic models
accurately predict large-scale properties, such as the connection between Lagrangian and
Eulerian integral time scales and C0. Two-time stochastic models (Sawford 1991) also
predict a similar relation for the small Eulerian and Lagrangian time scales, involving the
constant C0 and a0 (see Huck, Machicoane & Volk 2019). Namely, the prediction from
such models can be written as

τa =

∫ τ0

0
Raa(τ ) dτ =

C0

2a0
τη. (5.3)

Neglecting the curvature of Raa at the origin, the integral
∫ τ0

0 Raa(τ ) dτ can be
approximated as τa � 1

2τ0 (because of the curvature, it is actually slightly larger than
that). It is therefore expected from stochastic models that τ0/τη � C0/a0. The dashed
line in figure 18 represents the downstream evolution of the ratio C0z/a0z extracted from
the measurements. Neglecting the NF locations of z/D < 25, it can be seen that the
agreement is also adequate when compared with the two previously presented independent
estimations of τ0/τη.

6. Conclusion

Particle tracking velocimetry was implemented to create three-component jet trajectories
in three-dimensional space. Generation of such a large-scale database facilitates the study
of how fundamental Lagrangian parameters behave when exposed to a highly anisotropic
and inhomogeneous flow field. The Lagrangian self-similarity theory of turbulent
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Lagrangian diffusion properties of a turbulent jet

diffusion of Batchelor (1957) has been applied to account for the Lagrangian instationarity
of the flow field due to the spatial Eulerian inhomogeneity. The stationarisation technique
leading to Lagrangian self-similarity is validated in the FF of the jet for Lagrangian
inertial-scale dynamics by the collapse of the Lagrangian velocity structure functions and
correlation profiles (after a given location downstream) for the stationarised variables.
The Lagrangian self-similarity is also validated for the large scales, as the Lagrangian and
Eulerian time scales are found to be univocally tight in the FF of the jet. For the small-scale
Lagrangian dynamics, self-similarity is only observed in the farthest downstream locations
explored. This is attributed to the impact of finite particle size effects which evolve
along the jet axis and therefore influence the small-scale Lagrangian dynamics differently
depending on the downstream position, as confirmed by the acceleration statistics.
Further studies, with experiments specifically dedicated to small-scale (acceleration)
measurements of small tracers, would be required to draw final conclusions concerning
the small-scale Lagrangian self-similarity. In turn, this confirmation of the validity of the
Lagrangian self-similarity at inertial and large scales is an important element supporting
Batchelor’s extension of Taylor’s stationary theory of turbulent diffusion to the case of
self-similar jets and wakes where particles have a non-stationary Lagrangian dynamics.

Regarding the inertial scales of the Lagrangian dynamics, results indicate that the
Lagrangian scaling constant C0 is a function of downstream location in the NF and
eventually converges (around z/D = 30) to a value of the order of 3, with a small (∼10 %)
difference between axial and radial components, indicating a weak role of anisotropy in
inertial-scale Lagrangian dynamics in the jet. It is noted that this value may be dependent
on Reynolds number (its order of magnitude is consistent though with HIST simulations
and experiments carried in other flows at similar Reynolds number), and further studies
in a jet configuration at different Reynolds number will be required to explore this
dependency.

The evolution of the Eulerian to Lagrangian integral time-scale ratio shows convergence
towards TE/TL � 1.8 around z/D = 25 for the axial velocity time scales and TE/TL � 2.6
at the same location downstream for the radial-based time-scale ratio. This points towards
three interesting observations. (i) In the well-developed region of the jet, the Lagrangian
dynamics decorrelates faster (about twice faster) than the Eulerian dynamics (as predicted
for HIST by Kraichnan (1964)). (ii) The ratio between Lagrangian and Eulerian integral
scales is about 40 % larger for the radial component compared with the axial, which is
related to the large-scale anisotropy of the jet. (iii) In spite of this difference, sufficient
agreement is found between the measured ratio for these time scales and the prediction
from simple stochastic models for HIST, TE/TL � C0/2 (the agreement is favourable
between the axial-based parameters while the value predicted by the model underestimates
the actual time-scale ratio for the radial direction).

Considering the small-scale dynamics, the normalised acceleration variance shows a
strong dependence on the downstream location from the nozzle, presumably associated
with finite particle size effects, which are known to influence acceleration when dp/η > 5
typically. This presumably explains why self-similarity is not fully recovered at small
scales in the present study, as tracer-like behaviour for acceleration would only be
recovered around z/D � 65. Besides, the power-law slope of a0 as a function of dp/η

found in the current study is larger than in previous studies of HIST and von Kármán
flows, suggesting that the jet dynamics interplays with finite size effects. The zero-crossing
of the acceleration correlation also demonstrates a strong dependence on the downstream
location from the nozzle, converging towards typical values (τ0/τη � 2) only at the farthest
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position explored (z/D � 40). Although the actual value of τ0 is likely also to be altered
due to finite size effects, the agreement between several independent estimates of τ0
supports, on the one hand, the validity of the proposed stationarisation method and, on the
other hand, the relevance of simple stochastic approaches to link (in the FF) the Eulerian
and Lagrangian dissipative time scales to the experimentally determined constants C0 and
a0.

The ability of the implemented stationarisation technique provides adequate methods
for calculating the scaling constant, a non-trivial task within an inhomogeneous flow
field. Overall, after a proper stationarisation, the Lagrangian properties for the jet are
interestingly found to match reasonably well the behaviours previously reported for HIST.
From the perspective of building simple and practical diffusion models, the success of the
method validates Batchelor’s extension of Taylor’s theory, providing estimates of turbulent
diffusion properties based on the Lagrangian second-order structure function (or two-point
correlation function) of velocity. Further, the relations presented between the Eulerian
and Lagrangian time scales (both integral and dissipative) suggest that simple stochastic
modelling is well suited for finding reasonable estimates of such correlation functions.
Actually, based on these models, simple knowledge of the constants a0 and C0 may be
sufficient to build reasonable proxies (with exponential or double-exponential functions)
of these correlations to be used for estimating turbulent diffusion properties.

Funding. B.V., S.S. and R.B.C. are supported by a US National Science Foundation grant
(NSF-GEO-1756259). R.B.C. is also grateful for the support provided through the Fulbright Scholar Program.
B.V., L.C., R.V. and M.B. benefit from the financial support of the Project IDEXLYON of the University
of Lyon in the framework of the French Programme Investissements d’Avenir (ANR-16-IDEX-0005). L.C. is
supported by ANR grants Liouville ANR-15-CE40-0013 and by the Simons Foundation (award 651475).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.

Bianca Viggiano https://orcid.org/0000-0002-1599-7478;

Thomas Basset https://orcid.org/0000-0002-1780-9717;

Stephen Solovitz https://orcid.org/0000-0001-7019-2958;

Thomas Barois https://orcid.org/0000-0002-4523-5650;

Laurent Chevillard https://orcid.org/0000-0003-1970-4203;

Romain Volk https://orcid.org/0000-0002-2555-5905;

Mickaël Bourgoin https://orcid.org/0000-0001-9442-7694.

REFERENCES

BATCHELOR, G.K. 1957 Diffusion in free turbulent shear flows. J. Fluid Mech. 3 (1), 67–80.
BERK, T. & COLETTI, F. 2020 Transport of inertial particles in high-reynolds-number turbulent boundary

layers. J. Fluid Mech. 903, A18.
BOURGOIN, M. & HUISMAN, S.G. 2020 Using ray-traversal for 3D particle matching in the context of particle

tracking velocimetry in fluid mechanics. Rev. Sci. Instrum. 91 (8), 085105.
BROWN, R.D., WARHAFT, Z. & VOTH, G.A. 2009 Acceleration statistics of neutrally buoyant spherical

particles in intense turbulence. Phys. Rev. Lett. 103 (19), 194501.
BURATTINI, P., ANTONIA, R.A. & DANAILA, L. 2005 Similarity in the far field of a turbulent round jet.

Phys. Fluids 17 (2), 025101.
CALZAVARINI, E., VOLK, R., BOURGOIN, M., LÉVÊQUE, E., PINTON, J.-F. & TOSCHI, F. 2009

Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech.

630, 179–189.
CERMAK, J.E. 1963 Lagrangian similarity hypothesis applied to diffusion in turbulent shear flow. J. Fluid

Mech. 15 (1), 49–64.
CORRSIN, S. 1943 Investigation of flow in an axially symmetrical heated jet of air. NACA Rep. ACR 3L23.

918 A25-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Lagrangian diffusion properties of a turbulent jet

GERVAIS, P., BAUDET, C. & GAGNE, Y. 2007 Acoustic Lagrangian velocity measurement in a turbulent air
jet. Exp. Fluids 42 (3), 371–384.

GUEZENNEC, Y.G., BRODKEY, R.S., TRIGUI, N. & KENT, J.C. 1994 Algorithms for fully automated
three-dimensional particle tracking velocimetry. Exp. Fluids 17 (4), 209–219.

HINZE, J.O. & VAN DER HEGGE ZIJNEN, B.G. 1949 Transfer of heat and matter in the turbulent mixing
zone of an axially symmetrical jet. Flow Turbul. Combust. 1, 435–461.

HOLZNER, M., LIBERZON, A., NIKITIN, N., LÜTHI, B., KINZELBACH, W. & TSINOBER, A. 2008 A
Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and
direct numerical simulation. J. Fluid Mech. 598, 465–475.

HUCK, P.D., MACHICOANE, N. & VOLK, R. 2019 Lagrangian acceleration timescales in anisotropic
turbulence. Phys. Rev. Fluids 4 (6), 064606.

HUSSEIN, H.J., CAPP, S.P. & GEORGE, W.K. 1994 Velocity measurements in a high-Reynolds-number,
momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75.

KENNEDY, I.M. & MOODY, M.H. 1998 Particle dispersion in a turbulent round jet. Exp. Therm. Fluid Sci. 18

(1), 11–26.
KIM, J.-T., LIBERZON, A. & CHAMORRO, L.P. 2017 Characterisation of the Eulerian and Lagrangian

accelerations in the intermediate field of turbulent circular jets. J. Turbul. 18 (1), 87–102.
KOLMOGOROV, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large

Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 301–305.
KRAICHNAN, R.H. 1964 Relation between Lagrangian and Eulerian correlation times of a turbulent velocity

field. Phys. Fluids 7 (1), 142–143.
LIEN, R.-C. & D’ASARO, E.A. 2002 The Kolmogorov constant for the Lagrangian velocity spectrum and

structure function. Phys. Fluids 14 (12), 4456–4459.
LIEN, R.-C., D’ASARO, E.A. & DAIRIKI, G.T. 1998 Lagrangian frequency spectra of vertical velocity and

vorticity in high-Reynolds-number oceanic turbulence. J. Fluid Mech. 362, 177–198.
LOHSE, D. & MÜLLER-GROELING, A. 1995 Bottleneck effects in turbulence: scaling phenomena in r versus

p space. Phys. Rev. Lett. 74 (10), 1747–1750.
MACHICOANE, N., ALISEDA, A., VOLK, R. & BOURGOIN, M. 2019 A simplified and versatile calibration

method for multi-camera optical systems in 3D particle imaging. Rev. Sci. Instrum. 90 (3), 035112.
MACHICOANE, N., HUCK, P.D. & VOLK, R. 2017a Estimating two-point statistics from derivatives of a

signal containing noise: application to auto-correlation functions of turbulent Lagrangian tracks. Rev. Sci.

Instrum. 88 (6), 065113.
MACHICOANE, N., LÓPEZ-CABALLERO, M., BOURGOIN, M., ALISEDA, A. & VOLK, R. 2017b A

multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry.
Meas. Sci. Technol. 28 (10), 107002.

MONIN, A.S. & YAGLOM, A.M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT
Press.

MORDANT, M., LÉVÊQUE, E. & PINTON, J.-F. 2004a Experimental and numerical study of the Lagrangian
dynamics of high Reynolds turbulence. New J. Phys. 6 (1), 116.

MORDANT, N., CRAWFORD, A.M. & BODENSCHATZ, E. 2004b Experimental Lagrangian acceleration
probability density function measurement. Physica D 193 (1-4), 245–251.

MORDANT, N., METZ, P., MICHEL, O. & PINTON, J.-F. 2001 Measurement of Lagrangian velocity in fully
developed turbulence. Phys. Rev. Lett. 87 (21), 214501.

OUELLETTE, N.T., XU, H. & BODENSCHATZ, E. 2006a A quantitative study of three-dimensional
Lagrangian particle tracking algorithms. Exp. Fluids 40 (2), 301–313.

OUELLETTE, N.T., XU, H., BOURGOIN, M. & BODENSCHATZ, E. 2006b Small-scale anisotropy in
Lagrangian turbulence. New J. Phys. 8 (6), 102.

POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
QURESHI, N.M., BOURGOIN, M., BAUDET, C., CARTELLIER, A. & GAGNE, Y. 2007 Turbulent transport of

material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.
ROMANO, G.P. & ANTONIA, R.A. 2001 Longitudinal and transverse structure functions in a turbulent round

jet: effect of initial conditions and Reynolds number. J. Fluid Mech. 436, 231–248.
SAWFORD, B.L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys.

Fluids A 3 (6), 1577–1586.
SAWFORD, B.L. & YEUNG, P.K. 2001 Lagrangian statistics in uniform shear flow: direct numerical simulation

and Lagrangian stochastic models. Phys. Fluids 13 (9), 2627–2634.
TAYLOR, G.I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20 (1), 196–212.
TOSCHI, F. & BODENSCHATZ, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid

Mech. 41, 375–404.

918 A25-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



B. Viggiano and others

VEDULA, P. & YEUNG, P.K. 1999 Similarity scaling of acceleration and pressure statistics in numerical
simulations of isotropic turbulence. Phys. Fluids 11 (5), 1208–1220.

VIGGIANO, B., FRIEDRICH, J., VOLK, R., BOURGOIN, M., CAL, R.B. & CHEVILLARD, L. 2020 Modelling
Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes.
J. Fluid Mech. 900, A27.

VOLK, R., CALZAVARINI, E., LÉVÊQUE, E. & PINTON, J.-F. 2011 Dynamics of inertial particles in a
turbulent von Kármán flow. J. Fluid Mech. 668, 223–235.

VOLK, R., CALZAVARINI, E., VERHILLE, G., LOHSE, D., MORDANT, N., PINTON, J.-F. & TOSCHI, F.
2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct
numerical simulations. Physica D 237 (14–17), 2084–2089.

VOTH, G.A., LA PORTA, A., CRAWFORD, A.M., ALEXANDER, J. & BODENSCHATZ, E. 2002 Measurement
of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121–160.

WEISGRABER, T.H. & LIEPMANN, D. 1998 Turbulent structure during transition to self-similarity in a round
jet. Exp. Fluids 24 (3), 210–224.

WOLF, M., LÜTHI, B., HOLZNER, M., KRUG, D., KINZELBACH, W. & TSINOBER, A. 2012 Investigations
on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.

YEUNG, P.K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142.
YEUNG, P.K. & POPE, S.B. 1989 Lagrangian statistics from direct numerical simulations of isotropic

turbulence. J. Fluid Mech. 207, 531–586.
ZIMMERMANN, R., XU, H., GASTEUIL, Y., BOURGOIN, M., VOLK, R., PINTON, J.-F., BODENSCHATZ, E.

& INTERNATIONAL COLLABORATION FOR TURBULENCE RESEARCH 2010 The Lagrangian exploration
module: an apparatus for the study of statistically homogeneous and isotropic turbulence. Rev. Sci. Instrum.

81 (5), 055112.

918 A25-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss


	1 Introduction
	1.1 Taylor's theory of turbulent diffusion
	1.2 Batchelor's extension of theory of turbulent diffusion
	1.3 Outline of the article

	2 Experimental methods
	2.1 Hydraulic set-up
	2.2 Optical set-up
	2.3 Particle tracking velocimetry
	2.3.1 Particle detection
	2.3.2 Stereoscopic reconstruction
	2.3.3 Tracking

	2.4 Post-processing of the trajectories
	2.5 Stationarisation techniques

	3 Eulerian velocity statistical analysis
	3.1 Eulerian second-order structure functions
	3.2 Eulerian two-point correlation functions
	3.3 Evolution of Eulerian parameters

	4 Lagrangian velocity statistical analysis
	4.1 Lagrangian second-order structure functions
	4.2 Lagrangian two-point correlation functions
	4.3 Evolution of Lagrangian parameters

	5 Lagrangian acceleration statistical analysis
	5.1 Acceleration variance
	5.2 Acceleration two-point correlation

	6 Conclusion
	References

