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ABSTRACT

k-means clustering is a well-studied problem due to its wide applicability. Unfor-
tunately, there exist strong theoretical limits on the performance of any algorithm
for the k-means problem on worst-case inputs. To overcome this barrier, we con-
sider a scenario where “advice” is provided to help perform clustering. Specif-
ically, we consider the k-means problem augmented with a predictor that, given
any point, returns its cluster label in an approximately optimal clustering up to
some, possibly adversarial, error. We present an algorithm whose performance
improves along with the accuracy of the predictor, even though naı̈vely following
the accurate predictor can still lead to a high clustering cost. Thus if the predictor
is sufficiently accurate, we can retrieve a close to optimal clustering with nearly
optimal runtime, breaking known computational barriers for algorithms that do
not have access to such advice. We evaluate our algorithms on real datasets and
show significant improvements in the quality of clustering.

1 INTRODUCTION

Clustering is a fundamental task in data analysis that is typically one of the first methods used to
understand the structure of large datasets. The most common formulation of clustering is the k-
means problem where given a set P ⊂ Rd of n points, the goal is to find a set of centers C ⊂ Rd of
k points to minimize the objective cost(P,C) =

∑
p∈P minc∈C ‖p− c‖22. (1)

Despite decades of work, there exist strong theoretical limitations about the performance of any al-
gorithm for the k-means problem. Finding the optimal set C is NP-hard even for the case of k = 2
(Dasgupta, 2008) and even finding an approximate solution with objective value that is within a
factor 1.07 of the optimal solution is NP-hard (Cohen-Addad & S., 2019; Lee et al., 2017). Fur-
thermore, the best-known practical polynomial time algorithms can only provably achieve a large
constant factor approximation to the optimal clustering, e.g., the 50-approximation in Song & Ra-
jasekaran (2010), or use techniques such as linear programming that do not scale, e.g., the 6.357-
approximation in Ahmadian et al. (2020).

A natural approach to overcome these computational barriers is to leverage the fact that in many
applications, the input is often not arbitrary and contains auxiliary information that can be used to
construct a good clustering, e.g., in many applications, the input can be similar to past instances.
Thus, it is reasonable to create a (possibly erroneous) predictor by using auxiliary information or
through clusterings of similar datasets, which can inform the proper label of an item in our current
dataset. Indeed, inspired by the developments in machine learning, many recent papers have stud-
ied algorithms augmented with predictions (Mitzenmacher & Vassilvitskii, 2020). Such algorithms
utilize a predictor that, when invoked, provides an (imperfect) prediction for future inputs. The
predictions are then used by the algorithm to improve performance (see references in Section 1.3).

Hence, we consider the problem of k-means clustering given additional access to a predictor that
outputs advice for which points should be clustered together, by outputting a label for each point.
The goal is to find k centers that minimize objective (1) and assign each point to one of these centers.
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The question is then whether one can utilize such predictions to boost the accuracy and runtime of
clustering of new datasets. Our results demonstrate the answer in the affirmative.

Formal learning-augmented problem definition. Given a set P ⊆ Rd of n points, the goal is to
find a set of k points C (called centers) to minimize objective (1). In the learning-augmented setting,
we assume we have access to a predictor Π that provides information about the label of each point
consistent with a (1+α)-approximately optimal clustering C. We say that a predictor has label error
rate λ ≤ α if for each label i ∈ [k] := {1, . . . , k}, Π errs on at most a λ ≤ α fraction of all points
in cluster i in C, and Π errs on at most a λ ≤ α fraction of all points given label i by Π. In other
words, Π has at least (1− λ) precision and recall for each label.

Our predictor model subsumes both random and adversarial errors by the predictor. For example if
the cluster sizes are somewhat well-balanced, then a special case of our model is when Π(p) outputs
the correct label of point p ∈ P with some probability 1 − λ and otherwise outputs a random label
in [k] with probability λ. The example where the predictor outputs an adversarial label instead of a
random label with probability λ also falls under our model. For more detail, see Theorems 2.1 and
3.4. We also adjust our algorithm to have better performance when the errors are random rather than
adversarial in the supplementary material.

1.1 MOTIVATION FOR OUR WORK

We first motivate studying k-means clustering under the learning-augmented algorithms framework.

Overcoming theoretical barriers. As stated above, no polynomial time algorithm can achieve
better than a constant factor approximation to the optimal clustering. In addition, the best provable
approximation guarantees by polynomial time algorithms have a large constant factor (for example
the 50 approximation in Song & Rajasekaran (2010)), or use methods which do not scale (such as the
linear programming based algorithm in Ahmadian et al. (2020) which gives a 6.357-approximation).
Therefore, it is of interest to study whether a natural assumption can overcome these complexity
barriers. In our work, we show that knowing the true labels up to some possibly adversarial noise can
give us arbitrarily good clusterings, depending on the noise level, which breaks these computational
barriers. Furthermore, we present an algorithm that runs in nearly linear time, rather than just
polynomial time. Lastly, we introduce tools from the robust statistics literature to study k-means
clustering rather than the distance-based sampling procedure that is commonly analyzed (this is the
basis of kmeans++). This new toolkit and connection could have further applications in other
learning-augmented clustering problems.

Practical considerations. In practice, good predictors can be learned for datasets with auxiliary
information. For a concrete example, we can take any dataset that has a train/test split and use a clus-
tering on the training dataset to help us cluster the testing portion of the dataset. Therefore, datasets
do not have to be specifically curated to fit our modelling assumption, which is a requirement in
other modelling formulations that leverage extra information such as the SSAC model discussed in
Section 1.3. A predictor can also be created from the natural class of datasets that vary over time,
such as Census data or spectral clustering for temporal graphs (graphs slowly varying over time).
For this class of datasets, a clustering from an earlier time step can function as a predictor for later
time steps. Lastly, we can simply use the labels given by another clustering algorithm (such as
kmeans++) or heuristic as a predictor. Therefore, predictors are readily and easily available for a
wide class of natural datasets.

Following the predictor alone is insufficient. Given a predictor that outputs noisy labels, it is
conceivable that its output alone can give us a good clustering relative to optimal. However, this
is not the case and naı̈vely using the label provided by the predictor for each point can result in an
arbitrarily bad solution, even when the predictor errs with low probability. For example, consider a
cluster of n2 points at the origin and a cluster of n2 points at x = 1. Then for k = 2, choosing centers
at the origin and at x = 1 induces a k-means clustering cost of zero. However, even for a predictor
that errs with probability 1

n , some point will be mislabeled with constant probability, which results
in a positive k-means clustering cost, and so does not provide a relative error approximation. Thus,
using the provided labels by the predictor can induce an arbitrarily bad clustering, even as the label
error rate of the predictor tends to zero. This subtlety makes the model rich and interesting, and
requires us to create non-trivial clustering algorithms.
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Predictors with adversarial errors. Since the predictor is separate from the clustering algorithm,
interference with the output of the predictor following the clustering algorithm’s query can be a
source of non-random noise. Thus any scenario in which communication is performed over a noisy
channel (for example, if the predictor is hosted at one server and the algorithm is hosted at another
server) is susceptible to such errors. Another source of adversarial failure by the predictor is when
the predictor is trained on a dataset that can be generated by an adversary, such as in the context of
adversarial machine learning. Moreover, our algorithms have better guarantees when the predictor
does not fail adversarially, e.g., see the supplementary material).

1.2 OUR RESULTS

In this paper we study “learning-augmented” methods for efficient k-means clustering. Our con-
tributions are both theoretical and empirical. On the theoretical side, we introduce an algorithm
that provably solves the k-means problem almost optimally, given access to a predictor that out-
puts a label for each point p ∈ P according to a (1 + α)-approximately optimal clustering, up to
some noise. Specifically, suppose we have access to a predictor Π with label error rate λ upper
bounded by a parameter α. Then, Algorithm 1 outputs a set of centers C̃ in Õ(knd) time1, such
that cost(P, C̃) ≤ (1 +O(α)) · cost(P,Copt), where Copt is an optimal set of centers. We improve
the runtime in Section 3 by introducing Algorithm 3, which has the same error guarantees, but uses
Õ(nd) runtime, which is nearly optimal since one needs at least nd time to read the points for dense
inputs (Theorem 3.4, and Remark A.14).

To output labels for all points, Algorithm 3 requires n queries to the predictor. However, if the goal
is to just output centers for each cluster, then we only require Õ(k/α) queries. This is essentially
optimal; we show in Theorem 3.5 that any polynomial time algorithm must perform approximately
Ω̃(k/α) queries to output a 1+α-approximate solution assuming the Exponential Time Hypothesis,
a well known complexity-theoretic assumption (Impagliazzo & Paturi, 2001). Note that one could
ignore the oracle entirely, but then one is limited by the constant factor hardness for polynomial time
algorithms, which we bypass with a small number of queries.

Surprisingly, we do not require assumptions that the input is well-separated or approximation-stable
(Braverman et al., 2011; Balcan et al., 2013), which are assumed in other works. Finally in the
supplementary material, we also give a learning-augmented algorithm for the related problem of
k-median clustering, which has less algebraic structure than that of k-means clustering. We also
consider a deletion predictor, which either outputs a correct label or a failure symbol ⊥ and give a
(1 + α)-approximation algorithm even when the “deletion rate” is 1− 1/poly(k).

On the empirical side, we evaluate our algorithms on real and synthetic datasets. We experimentally
show that good predictors can be learned for all of our varied datasets, which can aid in clustering.
We also show our methodology is more robust than other heuristics such as random sampling.

1.3 RELATED WORK

Learning-augmented algorithms. Our paper adds to the growing body of work on learning-
augmented algorithms. In this framework, additional “advice” from a possibly erroneous predic-
tor is used to improve performance of classical algorithms. For example, a common predictor is a
“heaviness” predictor that outputs how “important” a given input point is. It has been shown that
such predictors can be learned using modern machine learning techniques or other methods on train-
ing datasets and can be successfully applied to similar testing datasets. This methodology has found
applications in improving data structures (Kraska et al., 2018; Mitzenmacher, 2018), streaming al-
gorithms (Hsu et al., 2019; Jiang et al., 2020), online algorithms (Lykouris & Vassilvtiskii, 2018;
Purohit et al., 2018), graph algorithms (Dai et al., 2017), and many other domains (Mousavi et al.,
2015; Wang et al., 2016; Bora et al., 2017; Sablayrolles et al., 2019; Dong et al., 2020; Sanchez et al.,
2020; Eden et al., 2021). See Mitzenmacher & Vassilvitskii (2020) for an overview and applications.

Clustering with additional information. There have been numerous works that study clustering in
a semi-supervised setting where extra information is given. Basu et al. (2004) gave an active learning
framework of clustering with “must-link”/“cannot-link” constraints, where an algorithm is allowed

1The notation Õ hides logarithmic factors.
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to interact with a predictor that determines if two points must or cannot belong to the same cluster.
Their objective function is different than that of k-means and they do not give theoretical bounds on
the quality of their solution. Balcan & Blum (2008) and Awasthi et al. (2017) studied an interactive
framework for clustering, where a predictor interactively provides feedback about whether or not
to split a current cluster or merge two clusters. Vikram & Dasgupta (2016) also worked with an
interactive oracle but for the Bayesian hierarchical clustering problem. These works differ from
ours in their assumptions since their predictors must answer different questions about partitions of
the input points. In contrast, Howe (2017) used logistic regression to aid k-means clustering but do
not give any theoretical guarantees.

The framework closest in spirit to ours is the semi-supervised active clustering framework (SSAC)
introduced by Ashtiani et al. (2016) and further studied by Kim & Ghosh (2017); Mazumdar & Saha
(2017); Gamlath et al. (2018); Ailon et al. (2018); Chien et al. (2018); Huleihel et al. (2019). The
goal of this framework is also to produce a (1 + α)-approximate clustering while minimizing the
number of queries to a predictor that instead answers queries of the form “same-cluster(u, v)”, which
returns 1 if points u, v ∈ P are in the same cluster in a particular optimal clustering and 0 otherwise.
Our work differs from the SSAC framework in terms of both runtime guarantees, techniques used,
and model assumptions, as detailed below.

We briefly compare to the most relevant works in the SSAC framework, which are Ailon et al.
(2018) and Mazumdar & Saha (2017). First, the runtime of Ailon et al. (2018) is O(ndk9/α4) even
for a perfectly accurate predictor, while the algorithm of Mazumdar & Saha (2017) uses O(nk2)

queries and runtime Õ(ndk2). By comparison, we use significantly fewer queries, with near linear
runtime Õ(nd) even for an erroneous predictor. Moreover, a predictor of Mazumdar & Saha (2017)
independently fails each query with probability p so that repeating with pairs containing the same
point can determine the correct label of a point whereas our oracle will always repeatedly fail with
the same query, so that repeated queries do not help.

The SSAC framework uses the predictor to perform importance sampling to obtain a sufficient num-
ber of points from each cluster whereas we use techniques from robust mean estimation, dimension-
ality reduction, and approximate nearest neighbor data structures. Moreover, it is unclear how the
SSAC predictor can be implemented in practice to handle adversarial corruptions. One may consider
simulating the SSAC predictor using information from individual points by simply checking if the
labels of the two input points are the same. However, if a particular input is mislabeled, then all
of the pairs containing this input can also be reported incorrectly, which violates their independent
noise assumption. Finally, the noisy predictor algorithm in Ailon et al. (2018) invokes a step of
recovering a hidden clique in a stochastic block model, making it prohibitively costly to implement.

Lastly, in the SSAC framework, datasets need to be specifically created to fit into their model since
one requires pairwise information. In contrast, our predictor requires information about individual
points, which can be learned from either a training dataset, from past similar datasets, or from
another approximate or heuristic clustering and is able to handle adversarial corruptions. Thus, we
obtain significantly faster algorithms while using an arguably more realistic predictor.

Approximation stability. Another approach to overcome the NP-hardness of approximation for
k-means clustering is the assumption that the underlying dataset follows certain distributional prop-
erties. Introduced by Balcan et al. (2013), the notion of (c, α)-approximate stability (Agarwal et al.,
2015; Awasthi et al., 2019; Balcan et al., 2020) requires that every c-approximation is α-close to
the optimal solution in terms of the fraction of incorrectly clustered points. In contrast, we allow
inputs so that an arbitrarily small fraction of incorrectly clustered points can induce arbitrarily bad
approximations, as previously discussed, e.g., in Section 1.1.

2 LEARNING-AUGMENTED k-MEANS ALGORITHM

Preliminaries. We use [n] to denote the set {1, . . . , n}. Given the set of cluster centers C, we
can partition the input points P into k clusters {C1, . . . , Ck} according to the closest center to each
point. If a point is grouped in Ci in the clustering, we refer to its label as i. Note that labels can
be arbitrarily permuted as long as the labeling across the points of each cluster is consistent. It is
well-known that in k-means clustering, the i-th center is given by the coordinate-wise mean of the
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Algorithm 1 Learning-augmented k-means clustering

Input: A point set X with labels given by a predictor
Π with label error rate λ

Output: (1 + O(α))-approximate k-means clustering
of X

1: for i = 1 to i = k do
2: Let Yi be the set of points with label i.
3: Run CRDEST for each of the d coordinates of Yi.

4: Let C ′i be the coordinate-wise outputs of
CRDEST.

5: end for
6: Return clustering with centers C ′1, . . . , C

′
k.

Algorithm 2 Coordinate-wise estimation
CRDEST

Input: Points x1, . . . , x2m ∈ R, corrup-
tion level λ ≤ α

1: Randomly partition the points into
two groups X1, X2 of size m.

2: Let I = [a, b] be the shortest interval
containing m(1− 5α) points of X1.

3: Z ← X2 ∩ I
4: z ← 1

|Z|
∑
x∈Z x

5: Return z

points in Ci. Given x ∈ Rd and a set C ⊂ Rd, we define d(x,C) = minc∈C ‖x − c‖2. Note that
there may be many approximately optimal clusterings but we consider a fixed one for our analysis.

2.1 OUR ALGORITHM

Our main result is an algorithm for outputting a clustering that achieves a (1 + 20α) approximation
2 to the optimal objective cost when given access to approximations of the correct labeling of the
points in P . We first present a suboptimal algorithm in Algorithm 1 for intuition and then optimize
the runtime in Algorithm 3, which is provided in Section 3.

The intuition for Algorithm 1 is as follows. We first address the problem of identifying an approxi-
mate center for each cluster. Let Copt1 , · · · , Coptk be an optimal grouping of the points and consider
all the points labeled i by our predictor for some fixed 1 ≤ i ≤ k. Since our predictor can err, a
large number of points that are not in Copti may also be labeled i. This is especially problematic
when points that are “significantly far” from cluster Copti are given the label i, which may increase
the objective function arbitrarily if we simply take the mean of the points labeled i by the predictor.

To filter out such outliers, we consider a two step view from the robust statistics literature,
e.g., Prasad et al. (2019); these two steps can respectively be interpreted as a “training” phase and
a “testing” phase that removes “bad” outliers. We first randomly partition the points that are given
label i into two groups, X1 and X2, of equal size. We then estimate the mean of Copti using a
coordinate-wise approach through Algorithm 2 (CRDEST), decomposing the total cost as the sum
of the costs in each dimension.

For each coordinate, we find the smallest interval I that contains a (1 − 4α) fraction of the points
in X1. We show that for label error rate λ ≤ α, this “training” phase removes any outliers and
thus provides a rough estimation to the location of the “true” points that are labeled i. To remove
dependency issues, we then “test” X2 on I by computing the mean of X2 ∩ I . This allows us to get
empirical centers that are a sufficiently good approximation to the coordinates of the true center for
each coordinate. We then repeat on the other labels. The key insight is that the error from mean-
estimation can be directly charged to the approximation error due to the special structure of the
k-means problem. Our main theoretical result considers predictors that err on at most a λ-fraction
of all cluster labels. Note that all omitted proofs appear in the supplementary material.
Theorem 2.1. Let α ∈ (10 log n/

√
n, 1/7), Π be a predictor with label error rate λ ≤ α, and

γ ≥ 1 a sufficiently large constant. If each cluster in the (1 + α)-approximately optimal k-means
clustering of the predictor has at least γηk/α points, then Algorithm 1 can be used to output a
(1 + 20α)-approximation to the k-means objective with prob. 1− 1/η, using O(kdn log n) runtime.

We improve the running time to O(nd log n+ poly(k, log n)) in Theorem 3.4 in Section 3. Our al-
gorithms can also tolerate similar error rates when failures correspond to random labels, adversarial
labels, or a special failure symbol.

2Note that we have not attempted to optimize the constant 20.
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Error rate λ vs. accuracy parameter α. We emphasize that λ is the error rate of the predictor
and α is only some loose upper bound on λ. It is reasonable that some algorithms can provide lossy
guarantees on their outputs, which translates to the desired loose upper bound α on the accuracy
of the predictor. Even if is not known, multiple instances of the algorithm can be run in parallel
with separate exponentially decreasing “guesses” for the value α. We can simply return the best
clustering among these algorithms, which will provide the same theoretical guarantees as if we set
α = 1.01λ , for example. Thus α does not need to be known in advance and it does not need to be
tuned as a hyperparameter.

3 NEARLY OPTIMAL RUNTIME ALGORITHM

We now describe Algorithm 3, which is an optimized runtime version of Algorithm 1 and whose
guarantees we present in Theorem 3.4. The bottleneck for Algorithm 1 is that after selecting k
empirical centers, it must still assign each of the n points to the closest empirical center. The main
intuition for Algorithm 3 is that although reading all points usesO(nd) time, we do not need to spend
O(dk) time per point to find its closest empirical center, if we set up the correct data structures. In
fact, as long as we assign each point to a “relatively good” center, the assigned clustering is still a
“good” approximation to the optimal solution. Thus we proceed in a similar manner as before to
sample a number of input points and find the optimal k centers for the sampled points.

We use dimensionality reduction and an approximate nearest neighbor (ANN) data structure to ef-
ficiently assign each point to a “sufficiently close” center. Namely if a point p ∈ P should be
assigned to its closest empirical Ci then p must be assigned to some empirical center Cj such that
‖p − Cj‖2 ≤ 2‖p − Ci‖2. Hence, points that are not assigned to their optimal centers only incur
a “small” penalty due to the ANN data structure and so the cost of the clustering does not increase
“too much” in expectation. Formally, we need the following definitions.

Theorem 3.1 (JL transform). Johnson & Lindenstrauss (1984) Let d(·, ·) be the standard Euclidean
norm. There exists a family of linear maps A : Rd → Rk and an absolute constant C > 0 such that
for any x, y ∈ Rd, Pr [φ ∈ A, d(φ(x), φ(y)) ∈ (1± α)d(x, y)] ≥ 1− e−Cα2k.

Definition 3.2 (Terminal dimension reduction). Given a set of points called terminals C ⊂ Rd, we
call a map f : Rd → Rk a terminal dimension reduction with distortion D if for every terminal
c ∈ C and point p ∈ Rd, we have d(p, c) ≤ d(f(p), f(c)) ≤ D · d(p, c).

Definition 3.3 (Approximate nearest neighbor search). Given a set P of n points in a metric space
(X, d), a (c, r)-approximate nearest neighbor search (ANN) data structure takes any query point q ∈
X with non-empty {p ∈ P : 0 < d(p, q) ≤ r} and outputs a point in {p ∈ P : 0 < d(p, q) ≤ cr}.

To justify the guarantees of Algorithm 3, we need runtime guarantees on creating a suitable dimen-
sionality reduction map and an ANN data structure. These are from Makarychev et al. (2019) and
Indyk & Motwani (1998); Har-Peled et al. (2012); Andoni et al. (2018) respectively, and are stated
in Theorems A.12 and A.13 in the supplementary section. They ensure that each point is mapped to
a “good” center. Thus, we obtain our main result describing the guarantees of Algorithm 3.

Theorem 3.4. Let α ∈ (10 log n/
√
n, 1/7), Π be a predictor with label error rate λ ≤ α, and γ ≥ 1

be a sufficiently large constant. If each cluster in the optimal k-means clustering of the predictor
has at least γk log k/α points, then Algorithm 3 outputs a (1 + 20α)-approximation to the k-means
objective with probability at least 3/4, using O(nd log n+ poly(k, log n)) total time.

Note that if we wish to only output the k centers rather than labeling all of the input points, then the
query complexity of Algorithm 3 is Õ(k/α) (see Step 1 of Algorithm 3) with high probability. We
show in the supplementary material that this is nearly optimal.

Theorem 3.5. For any δ ∈ (0, 1], any algorithm that makes O
(
k1−δ

α logn

)
queries to the predictor

with label error rate α cannot output a (1 + Cα)-approximation to the optimal k-means clustering
cost in time 2O(n1−δ) time, assuming the Exponential Time Hypothesis.
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Algorithm 3 Fast learning-augmented algorithm for k-means clustering.

Input: A point set X , a predictor Π with label error rate λ ≤ α, and a tradeoff parameter ζ
Output: A (1 + α)-approximate k-means clustering of X

1: Form S by sampling each point of X with probability 100 log k
α|Ax| where Ax is the set of points

with the same label as x according to Π.
2: Let C1, . . . , Ck be the output of Algorithm 1 on S.
3: Let φ2 be a random JL linear map with distortion 5

4 , i.e., dimension O(log n).
4: Let φ1 be a terminal dimension reduction with distortion 5

4 .
5: Let φ := φ1 ◦ φ2 be the composition map.
6: Let A be a (2, r)-ANN data structure on the points φ(C1), . . . , φ(Ck).
7: for x ∈ X do
8: Let `x be the label of x from Π.
9: %← d(x,C`x)

10: Query A to find the closest center φ(Cpx) to x with r = %
2 .

11: if d(x,Cpx) < 2d(x,C`x) then
12: Assign label px to x.
13: else
14: Assign label `x to x.
15: end if
16: end for

4 EXPERIMENTS

In this section we evaluate Algorithm 1 empirically on real datasets. We choose to implement
Algorithm 1, as opposed to the runtime optimal Algorithm 3, for simplicity and because the goal
of our experiments is to highlight the error guarantees of our methodology, which both algorithms
share. Further, we will see that Algorithm 1 is already very fast compared to alternatives. Thus,
we implement the simpler of the two algorithms. We primarily fix the number of clusters to be
k = 10 and k = 25 throughout our experiments for all datasets. Note that our predictors can readily
generalize to other values of k but we focus on these two values for clarity. All of our experiments
were done on a CPU with i5 2.7 GHz dual core and 8 GB RAM. Furthermore, all our experimental
results are averaged over 20 independent trials and ± one standard deviation error is shaded when
applicable. We give the full details of our datasets below.

1) Oregon: Dataset of 9 graph snapshots sampled across 3 months from an internet router commu-
nication network (Leskovec et al., 2005). We then use the top two eigenvectors of the normalized
Laplacian matrix to give us node embeddings into R2 for each graph which gives us 9 datasets, one
for each graph. Each dataset has roughly n ∼ 104 points. This is an instance of spectral clustering.
2) PHY: Dataset from KDD cup 2004 (kdd, 2004). We take 104 random samples to form our dataset.
3) CIFAR10: Testing portion of CIFAR-10 (n = 104, dimension 3072) (Krizhevsky, 2009).

Baselines. We compare against the following algorithms. Additional experimental results on
Lloyd’s heuristic are given in Section E.3 in the supplementary material.

1) kmeans++: We measure the performance of our algorithm in comparison to the kmeans++
seeding algorithm. Since kmeans++ is a randomized algorithm, we take the average clustering
cost after running kmeans++ seeding on 20 independent trials. We then standardize this value
to have cost 1.0 and report all other costs in terms of this normalization. For example, the cost
2.0 means that the clustering cost is twice that of the average kmeans++ clustering cost. We
also use the labels of kmeans++ as the predictor in the input for Algorithm 1 (denoted as “Alg
+ kmeans++”) which serves to highlight the fact that one can use any heuristic or approximate
clustering algorithm as a predictor.

2) Random sampling: For this algorithm, we subsample the predictor labels with probability q
ranging from 1% to 50%. We then construct the k-means centers using the labels of the sampled
points and measure the clustering cost using the whole dataset. We use the best value of q in our
range every time to give this baseline as much power as possible. We emphasize that random
sampling cannot have theoretical guarantees since the random sample can be corrupted (similarly

7



Published as a conference paper at ICLR 2022

as in the example in Section 1.1). Thus some outlier detection steps (such as our algorithms) are
required.

Predictor Description. We use the following predictors in our experiments.

1) Nearest neighbor: We use this predictor for the Oregon dataset. We find the best clustering of
the node embeddings in Graph #1. In practice, this means running many steps of Lloyd’s algorithm
until convergence after initial seeding by kmeans++. Our predictor takes as input a point in R2

representing a node embedding of any of the later 8 graphs and outputs the label of the closest node
in Graph #1.

2) Noisy predictor. This is the main predictor for PHY. We form this predictor by first finding the
best k-means solution on our datasets. This again means initial seeding by kmeans++ and then
many steps of Lloyd’s algorithm until convergence. We then randomly corrupt the resulting labels
by changing them to a uniformly random label independently with error probability ranging from 0
to 1. We report the cost of clustering using only these noisy labels versus processing these labels
using Algorithm 1.

3) Neural network. We use a standard neural network architecture (ResNet18) trained on the train-
ing portion of the CIFAR-10 dataset as the oracle for the testing portion which we use in our ex-
periments. We used a pretrained model obtained from Huy (2020). Note that the neural network
is predicting the class of the input image. However, the class value is highly correlated with the
optimal k-means cluster group.

Summary of results. Our experiments show that our algorithm can leverage predictors to signifi-
cantly improve the cost of k-means clustering and that good predictors can be easily tailored to the
data at hand. The cost of k-means clustering reduces significantly after applying our algorithm com-
pared to just using the predictor labels for two of our predictors. Lastly, the quality of the predictor
remains high for the Oregon dataset even though the later graphs have changed and “moved away”
from Graph #1.

Selecting α in Algorithm 2. In practice, the choice of α to use in our algorithm depends on the
given predictor whose properties may be unknown. Since our goal is to minimize the k-means
clustering objective (1), we can simply pick the ‘best’ value. To do so, we iterate over a small range
of possible α from .01 to .15 in Algorithm 2 with a step size of 0.01 and select the clustering that
results in the lowest objective cost. The range is fixed for all of our experiments. (See Paragraph 2.1

4.1 RESULTS
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Figure 1: Performance of Algorithm 1 on later graph embeddings using Graph #1 as predictor.

Oregon. We first compare our algorithm with Graph #1 as the predictor against various base-
lines. This is shown in Figures 1(a) and Figure 1(b). In the k = 10 case, Figure 1(a) shows that
the predictor returns a clustering better than using just the kmeans++ seeding, which is normalized
to have cost 1.0. This is to be expected since the subsequent graphs represent a similar network as
Graph #1, just sampled later in time. However, the clustering improves significantly after using
our algorithm on the predictor labels as the average cost drops by 55%. We also see that using our
algorithm after kmeans++ is also sufficient to give significant decrease in clustering cost. Lastly,
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Figure 2: Our algorithm is able to recover a good clustering even for very high levels of noise.

random sampling also gives comparable results. This can be explained because we are iterating over
a large range of subsampling probabilities for random sampling.

In the k = 25 case, Figure 1(b) shows that the oracle performance degrades and is worse than the
baseline in 5 of the 8 graphs. However our algorithm again improves the quality of the clustering
over the oracle across all graphs. Using kmeans++ as the predictor in our algorithm also improves
the cost of clustering. The performance of random sampling is also worse. For example in Graph
#3 for k = 25, it performed the worst out of all the tested algorithms.

Our algorithm also remains competitive with kmeans++ seeding even if the predictor for the Ore-
gon dataset is highly corrupted. We consider a later graph, Graph #5, and corrupt the labels of
the predictor randomly with probability q ranging from 1% to 25% for the k = 10 case in Figure
1(c). While the cost of clustering using just the predictor labels can become increasingly worse, our
algorithm is able to sufficiently “clean” the predictions. In addition, the cost of random sampling
also gets worse as the corruptions increase, implying that it is much more sensitive to noise than our
algorithm. The qualitatively similar plot for k = 25 is given in the supplementary section. Note that
in spectral clustering, one may wish to get a mapping to Rd for d > 2. We envision that our results
translate to those settings as well since having higher order spectral information only results in a
stronger predictor. We continue the discussion on the PHY and CIFAR-10 datasets in Section E.

Comparison to Lloyd’s Heuristic. In Section E.3, we provide additional results on experiments
using Lloyd’s heuristic. In summary, we give both theoretical and empirical justifications for why
our algorithms are superior to blindly following a predictor and then running Lloyd’s heuristic.
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A APPENDIX

Theorem A.1 (Chernoff Bounds). Let X1, . . . , Xn be independent random variables taking values
in {0, 1}. Let X =

∑n
i=1Xi denote their sum and let µ = E[X] denote the sum’s expected value.

Then for any δ ∈ (0, 1) and t > 0,

Pr [X ≤ (1− δ)µ] ≤ e−
δ2µ
2 .

For any δ > 0,

Pr [X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 .

Furthermore,

Pr [|X − µ| ≥ t] ≤ e− t2

4n .

A.1 PROOF OF THEOREM 2.1

We first prove Theorem 2.1, which shows that Algorithm 1 provides a (1 +α)-approximation to the
optimal k-means clustering, but uses suboptimal time compared to a faster algorithm we present in
Section 3. All omitted proofs of lemmas appear in Section A.2.

We first show that for each coordinate, the empirical center for any (1 − α)-fraction of the input
points provides a good approximation to the optimal k-means clustering cost.

Lemma A.2. Let P,Q ⊆ R be sets of points on the real line such that |P | ≥ (1 − α)n and
|Q| ≤ αn. Let X = P ∪Q, CP be the mean of P and CX be the mean of X . Then cost(X,CP ) ≤(

1 + α
1−α2

)
cost(X,CX).

We now show that a conceptual interval I∗ ⊂ R with “small” length contains a significant fraction
of the true points. Ultimately, we will show that the interval I computed in the “training” phase
in CRDEST has smaller length than I∗ with high probability and yet I also contains a significant
fraction of the true points. The main purpose of I∗ (and eventually I) is to filter out extreme outliers
because the “testing” phase only considers points in I ∩X2.

Lemma A.3. For a fixed set X ⊆ R, let C be the mean of X and σ2 = 1
2|X|

∑
x∈X(x−C)2 be the

variance. Then the interval I∗ =
[
C − σ√

α
, C + σ√

α

]
contains at least a (1 − 4α) fraction of the

points in X .

Using Lemma A.3, we show that the interval I that is computed in the “training” phase contains a
significant fraction of the true points.

Lemma A.4. Let m be a sufficiently large consatnt. We have that I := [a, b] contains at least a
1− 6α fraction of points of X2 and b− a ≤ 2σ/

√
α, with high probability, i.e., 1− 1/poly(m).

We next show that the optimal clustering on a subset obtained by independently sampling each
input point provides a rough approximation of the optimal clustering. That is, the optimal center is
well-approximated by the empirical center of the sampled points.

Lemma A.5. Let S be a set of points obtained by independently sampling each point of X ⊆ Rd
with probability p = 1

2 . Let C be the optimal center of these points and CS be the empirical center
of these points. Conditioned on |S| ≥ 1, then E[CS ] = x and there exists a constant γ such that for
η ≥ 1 and |X| > ηγk

α ,

E
[
‖CS − x‖22

]
≤ γ

|X|2
·

(∑
x∈X
‖x− x‖22

)
Pr [cost(X,CS) > (1 + α) cost(X,C)] < 1/(ηk).

Using Lemma A.2, Lemma A.4, and Lemma A.5, we justify the correctness of the subroutine
CRDEST.
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Lemma A.6. Let α ∈ (10 log n/
√
n, 1/7). Let P,Q ⊆ R be sets of points on the real line such that

|P | ≥ (1 − α)2m and |Q| ≤ 2αm, and X = P ∪ Q. Let C be the center of P . Then CRDEST
on input set X outputs a point C ′ such that with probability at least 1 − 1/(ηk), cost(P,C ′) ≤
(1 + 18α)(1 + α)

(
1 + α

(1−α)2

)
cost(P,C).

Using CRDEST as a subroutine for each coordinate, we now prove Theorem 2.1, justifying the
correctness of Algorithm 1 by generalizing to all coordinates and centers and analyzing the runtime
of Algorithm 1.

Proof of Theorem 2.1. Since Π has label error rate λ ≤ α, then by definition of label error rate,
at least a (1 − α) fraction of the points in each cluster are correctly labeled. Note that the k-
means clustering cost can be decomposed into the sum of the costs induced by the centers in each
dimension. Specifically, for a set C = {C1, . . . , Ck} of optimal centers,

cost(X, C) :=
∑
x∈X

d(x, C)2 =

k∑
i=1

∑
x∈Si

d(x,Ci)
2,

where Si is the set of points in X that are assigned to center Ci. For a particular i ∈ [k], we have

∑
x∈Si

d(x,Ci)
2 =

∑
x∈Si

d∑
j=1

d(xj , (Ci)j)
2,

where xj and (Ci)j are the j-th coordinate of x and Ci, respectively.

By Lemma A.6, the cost induced by CRDEST for each dimension in each center C ′i is a (1 + α)-
approximation of the total clustering cost for the optimal centerCi in that dimension with probability
1− 1/(ηk). That is,∑

x∈Si

d(xj , (C
′
i)j)

2 ≤ (1 + 18α)(1 + α)(1 + α/(1− α)2)
∑
x∈Si

d(xj , (Ci)j)
2

for each j ∈ [d]. Thus, taking a sum over all dimensions j ∈ [d] and union bounding over all centers
i ∈ [k], we have that the total cost induced by Algorithm 1 is a (1 + 20α)-approximation to the
optimal k-means clustering cost with probability at least 1− 1/η.

To analyze the time complexity of Algorithm 1, first consider the subroutine CRDEST. It takes
O(kdn) time to first split each of the points in each cluster and dimension into two disjoint groups.
Finding the smallest interval that contains a certain number of points can be done by first sorting
the points and then iterating from the smallest point to the largest point and taking the smallest
interval that contains enough points. This requires O(n log n) time for each dimension and each
center, which results in O(kdn log n) total time. Once each of the intervals is found, computing the
approximate center then takes O(kdn) total time. Hence, the total running time of Algorithm 1 is
O(kdn log n).

A.2 PROOF OF AUXILIARY LEMMAS

Lemma A.2. Let P,Q ⊆ R be sets of points on the real line such that |P | ≥ (1 − α)n and
|Q| ≤ αn. Let X = P ∪Q, CP be the mean of P and CX be the mean of X . Then cost(X,CP ) ≤(

1 + α
1−α2

)
cost(X,CX).

Proof. Suppose without loss of generality, that CX = 0 and CP ≤ 0, so that CQ ≥ 0, where CQ is
the mean of Q. Then it is well-known, e.g., see Inaba et al. (1994), that

cost(X,CP ) = cost(X,CX) + |X| · |CP − CX |2.

Hence, it suffices to show that |X| · |CP − CX |2 ≤ α
(1−α)2 cost(X,CX).
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SinceCX = 0 we have |P |·CP = −|Q|·CQ, with |P | ≥ (1−α)n and |Q| ≤ αn. Let |P | = (1−%)n

and |Q| = %n for some % ≤ α. Thus, CQ = − 1−%
% · CP . By convexity, we thus have that

cost(Q,CX) ≥ |Q| · (1− %)2

%2
· |CP |2

=
n(1− %)2

%
· |CP |2

≥ n(1− α)2

α
· |CP |2.

Therefore, we have

|CP − CX |2 = |CP |2 ≤
α

n(1− α)2
cost(Q,CX) ≤ α

n(1− α)2
cost(X,CX).

Thus,
|X| · |CP − CX |2 ≤

α

(1− α)2
cost(X,CX),

as desired.

Lemma A.3. For a fixed set X ⊆ R, let C be the mean of X and σ2 = 1
2|X|

∑
x∈X(x−C)2 be the

variance. Then the interval I∗ =
[
C − σ√

α
, C + σ√

α

]
contains at least a (1 − 4α) fraction of the

points in X .

Proof. Note that any point x ∈ X \ I∗ satisfies |x − C|2 > σ2/(4α). Thus, if more than a 4α
fraction of the points of X are outside of I∗, then the total variance is larger than σ2, which is a
contradiction.

For ease of presentation, we analyze λ = 1
2 and we note that the analysis extends easily to general

λ. We now prove the technical lemma that we will use in the proof of Lemma A.8.
Lemma A.7. We have

m∑
j=1

(
m
j

)
j · 2m

= Θ

(
1

m

)
.

Proof. Let m be sufficiently large. A Chernoff bound implies that for a sufficiently large constant
C, ∑

|j−m/2|≥C
√
m

(
m
j

)
2m
≤ 1

m2
.

Furthermore, ∑
j≥C′m

(
m
j

)
j · 2m

= O

(
1

m

)
·
∑
j≥1

(
m
j

)
2m

= O

(
1

m

)
so the upper bound on the desired relation holds. A similar analysis provides a lower bound.

Lemma A.4. Let m be a sufficiently large consatnt. We have that I := [a, b] contains at least a
1− 6α fraction of points of X2 and b− a ≤ 2σ/

√
α, with high probability, i.e., 1− 1/poly(m).

Proof. By Lemma A.3, I∗ contains at least 2m(1 − 4α) of the points in X . Hence, by applying
an additive Chernoff bound for t = O(

√
m logm) and for sufficiently large m, we have that the

number of points in I∗ ∩ X1 is at least m(1 − 5α) with high probability. Since I is the interval
of minimal length with at least m(1 − 5α) points, then the length of I is at most the length of I∗.
Moreover, again applying Chernoff bounds, we have that the number of points in I ∩X2 is at least
m(1− 6α).

More formally, suppose we have a set of 2m points that we randomly partition into two sets X1

and X2. Consider any fixed interval J that has at least 2cm total points for c ≥ 1 − 5α (note there
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are at most O(m2) intervals in total since our points are in one dimension). Let J1 and J2 denote
the number of points in J that are in X1 and X2 respectively. By a Chernoff bound, we have that
both J1 and J2 are at least mc(1 − α) with high probability. In particular, |J1 − J2| ≤ αmc with
high probability. Thus by using a union bound, all intervals with at least cm total points satisfy
the property that the number of points partitioned to X1 and the number of points partitioned to
X2 differ by at most αmc with high probability. Conditioning on this event, I must also contain
m(1− 6α) points in X2 since it contains at least m(1− 5α) points in X1, as desired.

Lemma A.8. Let S be a set of points obtained by independently sampling each point of X ⊆ Rd
with probability 1

2 , and let CS be the centroid of S. Let x be the centroid of X . Conditioned on
|S| ≥ 1, we have E[CS ] = x, and there exists a constant γ such that

E
[
‖CS − x‖22

]
≤ γ

|X|2
·

(∑
x∈X
‖x− x‖22

)
.

Proof. We first prove that E[CS ] = x. Note that by the law of iterated expectations,

E[CS ] = E|S|E[CS | |S| ].

Let xi1 , . . . , xi|S| be a random permutation of the elements in S, so that for each 1 ≤ j ≤ |S|, we
have E[xij ] = x. Now conditioning on the size of S, we can write

CS =
xi1 + · · ·+ xi|S|

|S|
.

Therefore,

E[CS | |S| ] =
x · |S|
|S|

= x

and it follows that E[CS ] = x.

To prove that

E
[
‖CS − x‖2

]
≤ γ

|X|2
·

(∑
x∈X
‖x− x‖2

)
,

we again condition on |S|. Suppose that |S| = j. Then,

CS − x =
(xi1 − x) + · · ·+ (xij − x)

j

Now let yit = xit − x for all 1 ≤ t ≤ j. Therefore,

E
|S|=j

[
‖CS − x‖2

]
=

1

j2
· E
[
‖yi1 + · · ·+ yij‖2

]
=

1

j
· E[‖yi1‖2] +

j − 1

j
· E[yTi1yi2 ].

Note that xi1 is uniform over elements in X , so it follows that

E[‖yi1‖2] =
1

|X|
∑
x∈X
‖x− x‖2.

Now if j ≥ 2, we have that

E[yTi1yi2 ] =

∑
a<b y

T
a yb(|X|

2

) =
‖
∑
i yi‖2 −

∑
i ‖yi‖2

|X|(|X| − 1)
≤ 0

since
∑
i yi = 0 by definition. Hence,

E
|S|≥2

[
‖CS − x‖2

]
≤ 1

j · |X|
∑
x∈X
‖x− x‖2.
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Now the probability that |S| = j for j ≥ 2 is precisely
(|X|
j

)
/2|X|, so we have

Pr [|S| ≥ 2] · E
|S|≥2

[
‖CS − x‖2

]
≤ 1

|X|
·

(∑
x∈X
‖x− x‖2

)
·
|X|∑
j=1

(|X|
j

)
j · 2|X|

.

From Lemma A.7, we have that
|X|∑
j=1

(|X|
j

)
j · 2|X|

≤ c

|X|

for some constant c so it follows that

E‖CS − x‖2 ≤
c′

|X|2
·

(∑
x∈X
‖x− x‖2

)
for some constant c′.

For j = 1, note that

E
|S|=j=1

[
‖CS − x‖2

]
=

1

|X|
∑
x∈X
‖x− x‖2.

Moreover, we have Pr [|S| = 1] = |X|
2|X|

and Pr [|S| = 0] = 1
2|X|

. Thus from the law of total
expectation, we have

E
[
‖CS − x‖2

]
= Pr [|S| < 2] · E

|S|<2

[
‖CS − x‖2

]
+ Pr [|S| ≥ 2] · E

|S|≥2

[
‖CS − x‖2

]
≤ |X|

2|X|
· 1

|X|
∑
x∈X

(
‖x− x‖2

)
+

c′

|X|2
·

(∑
x∈X
‖x− x‖2

)

≤ γ

|X|2
·

(∑
x∈X
‖x− x‖2

)
for some constant γ, as desired.

Lemma A.9. Let S be a set of points obtained by independently sampling each point of X ⊆ Rd
with probability p = 1

2 . Let C be the optimal center of X and CS be the empirical center of S. Let
γ ≥ 1 be the constant from Lemma A.8. Then for η ≥ 1 and |X| > ηγk

α ,

Pr [cost(X,CS) > (1 + α) cost(X,C)] < 1/(ηk).

Proof. By Lemma A.8 and Markov’s inequality, we have

Pr

[
‖CS − C‖22 ≥

ηγk

|X|2
∑
x∈X

x2

]
≤ 1

ηk
.

We have ∑
x∈X
‖x− CS‖22 =

∑
x∈X
‖x− C‖22 + |X| · ‖C − CS‖22,

so that by Lemma A.8 ∑
x∈X
‖x− CS‖22 ≤

(
1 +

ηγk

|X|

)∑
x∈X
‖x− C‖22

=

(
1 +

ηγk

|X|

)
cost(X,C),
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with probability at least 1 − 1
ηk . Hence for |X| ≥ ηγk

α , the approximate centroid of each cluster
induces a (1 + α)-approximation to the cost of the corresponding cluster.

Lemma A.5. Let S be a set of points obtained by independently sampling each point of X ⊆ Rd
with probability p = 1

2 . Let C be the optimal center of these points and CS be the empirical center
of these points. Conditioned on |S| ≥ 1, then E[CS ] = x and there exists a constant γ such that for
η ≥ 1 and |X| > ηγk

α ,

E
[
‖CS − x‖22

]
≤ γ

|X|2
·

(∑
x∈X
‖x− x‖22

)
Pr [cost(X,CS) > (1 + α) cost(X,C)] < 1/(ηk).

Proof. Lemma A.5 follows immediately from Lemma A.8 and Lemma A.9.

Lemma A.6. Let α ∈ (10 log n/
√
n, 1/7). Let P,Q ⊆ R be sets of points on the real line such that

|P | ≥ (1 − α)2m and |Q| ≤ 2αm, and X = P ∪ Q. Let C be the center of P . Then CRDEST
on input set X outputs a point C ′ such that with probability at least 1 − 1/(ηk), cost(P,C ′) ≤
(1 + 18α)(1 + α)

(
1 + α

(1−α)2

)
cost(P,C).

Proof. Let α ∈ (10 log n/
√
n, 1/7). Then from Lemma A.4, we have that I ∩X contains at least

(1− 6α)m points of P ∩X2 and at most 2αm points of Q in an interval of length 2σ/
√
α, where

σ2 =
1

2|P |
∑
p∈p

(p− C)2 =
1

2|P |
· cost(P,C).

From Lemma A.2, we have that

cost(P,C0) ≤
(

1 +
α

(1− α)2

)
cost(P,C1),

where C0 is the center of I ∩ P ∩X2 and C1 is the center of P ∩X2.

For sufficiently large m and from Lemma A.9, we have that
cost(P,C1) ≤ (1 + α) cost(P,C),

with probability at least 1 − 1/(ηk). Thus, it remains to show that cost(P,C ′) ≤ (1 +
O(α)) cost(P,C0).

Since C0 is the center of I ∩ P ∩X2 and C ′ is the center of I ∩X2, then we have

|I ∩ P ∩X2|C0 +
∑

q∈I∩Q∩X2

q = |I ∩X2|C ′.

Since I has length 2σ/
√
α, then q ∈

[
C0 − 2σ√

α
, C0 + 2σ√

α

]
. Because |I ∩ P ∩X2| ≥ (1 − 6α)m

and |Q| = 2αm, then for sufficiently small α, we have that
|C ′ − C0| ≤ 6

√
ασ.

Note that we have cost(P,C ′) = cost(P,C0) + |P | · |C0 − C ′|2, so that
cost(P,C ′) ≤ cost(P,C0) + |P | · 36ασ2.

Finally, σ2 = 1
2|P | · cost(P,C) and cost(P,C) ≤ cost(P,C0) due to the optimality of C. This

implies
cost(P,C ′) ≤ cost(P,C0) + |P | · 36ασ2

≤ cost(P,C0) + |P | · 36α · 1

2|P |
· cost(P,C)

≤ cost(P,C0) + 18α cost(P,C0)

= (1 + 18α) cost(P,C0),

as desired. Thus putting things together, we have

cost(P,C ′) ≤ (1 + 18α)(1 + α)

(
1 +

α

(1− α)2

)
cost(P,C).
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A.3 PROOF OF THEOREM 3.4

We now give the proofs for optimal query complexity and runtime. We first require the following
analogue to Lemma A.5:

Lemma A.10. Let S be a set of points obtained by independently sampling each point of X ⊆ Rd

with probability p = min
(

1, 100 log k
α|S|

)
. Let C be the optimal center of these points and CS be the

empirical center of these points. Conditioned on |S| ≥ 1, then E[CS ] = x and for |X| > γk
α ,

E
[
‖CS − x‖22

]
≤ γ

p|X|2
·

(∑
x∈X
‖x− x‖22

)
for some constant γ.

Lemma A.11. For α ∈ (10 log n/
√
n, 1/7), let Π be a predictor with error rate λ ≤ α/2. If each

cluster has at least γk log k/α points, then Algorithm 3 outputs a (1 + 20α)-approximation to the
k-means objective value with probability at least 3/4.

Proof. Since S samples each of points independently with probability proportional to cluster sizes
given by Π, for a fixed i ∈ [k] at least 90 log k

α points with label i are sampled, with probability at
least 1− 1

k4 from Chernoff bounds. Let γ1, . . . , γk be the empirical means corresponding to each of
the sampled points with labels 1, . . . , k, respectively, and let Γ0 = {γ1, . . . , γk}. Let C1, . . . , Ck be
centers of a (1 + α)-approximate optimal solution C with corresponding clusters X1, . . . , Xk. By
Lemma A.10, we have that

E
[
‖Ci − γi‖22

]
≤ γ

p|Xi|2
·

(∑
x∈Xi

‖x− Ci‖22

)
,

where p = min
(

1, 100 log k
α|S|

)
. By Markov’s inequality, we have that

∑
i∈[k]

‖Ci − γi‖22 ≤ 100
∑
i∈[k]

γ

p|Xi|2
·

(∑
x∈Xi

‖x− Ci‖22

)

with probability at least 0.99. Similar to the proof of Lemma A.9, we use the identity∑
x∈Xi

‖x− γi‖22 =
∑
x∈Xi

‖x− Ci‖22 + |Xi| · ‖Ci − γi‖22.

Hence, we have that
cost(X,Γ0) ≤ (1 + α) · cost(X,C),

with probability at least 0.99.

Suppose Π has error rate λ ≤ α and each error chooses a label uniformly at random from the k
possible labels. Then by definition of error rate, at most α/2 fraction of the points are erroneously
labeled for each cluster. Each cluster in the optimal k-means clustering of the predictor Π has at least
n/(ζk) points, so that at least a (1 − α) fraction of the points in each cluster are correctly labeled.
Thus, by the same argument as in the proof of Lemma A.6, we have that Algorithm 1 outputs a set
of centers C1, . . . , Ck such that for Γ = {C1, . . . , Ck}, we have

cost(X,Γ) ≤ (1 + 18α)

(
1− α

(1− α)2

)
· cost(X,Γ0),

with sufficiently large probability.

Let E be the event that cost(X,Γ) ≤ (1 +α)(1 + 18α)
(

1− α
(1−α)2

)
· cost(X, C), so that Pr [E ] ≥

1 − 1/poly(k). Conditioned on E , let X1 be the subset of X that is assigned the correct label by
Π, and let X2 be the subset of X assigned the incorrect label. For each point x ∈ X1 assigned the
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correct label `x by Π, the closest center to x in Γ is C`x , so Algorithm 3 will always label x with `x.
Thus,

cost(X1,Γ) ≤ cost(X,Γ) ≤ (1 + α)(1 + 18α)

(
1− α

(1− α)2

)
· cost(X, C),

conditioned on E . On the other hand, if x ∈ X2 is assigned an incorrect label `x by Π, then the
(2, r)-approximate nearest neighbor data assigns the label px to x, where φ(Cpx) is the closest center
to φ(x) in the projected space. Recall that φ is the composition map φ1◦φ2, where φ1 has a terminal
dimension reduction with distortion 5/4, and φ2 is a random JL linear map with distortion 5/4. Thus
the distance between x and Cpx is a 2-approximation between x and its closest center Ci. Hence,
by assigning all points x to their respective centers Cpx , we have d(x,Cpx) ≤ 2 cost(x,Γ). Since
each point x ∈ X is assigned the incorrect label with probability λ ≤ α/2, the expected cost of the
labels assigned to X2 is α cost(X,Γ). By Markov’s inequality, the cost of the labels assigned to X2

is at most
10α cost(X,Γ) < 10α(1 + α) cost(X, C),

with probability at least 1− 1
5 , conditioned on E .

Therefore by a union bound, the total cost is at most (1 + 20α) · cost(X, C), with probability at least
3/4.

We need the following theorems on the quality of the data structures utilized in Algorithm 3.
Theorem A.12. Makarychev et al. (2019) For every set C ⊂ Rd of size k, a parameter 0 < α < 1

2

and the standard Euclidean norm d(·, ·), there exists a terminal dimension reduction f : C → Rd′

with distortion (1 + α), where d′ = O
(

log k
α2

)
. The dimension reduction can be computed in

polynomial time.
Theorem A.13. Indyk & Motwani (1998); Har-Peled et al. (2012); Andoni et al. (2018) For α > 0,
there exists a (1+α, r)-ANN data structure over R equipped with the standard Euclidean norm that

achieves query time O
(
d · lognα2

)
and space S := O

(
1
α2 log 1

α + d(n+ q)
)
, where q := logn

α2 . The

runtime of building the data structure is O(S + ndq).

We now prove Theorem 3.4.
Theorem 3.4. Let α ∈ (10 log n/

√
n, 1/7), Π be a predictor with label error rate λ ≤ α, and γ ≥ 1

be a sufficiently large constant. If each cluster in the optimal k-means clustering of the predictor
has at least γk log k/α points, then Algorithm 3 outputs a (1 + 20α)-approximation to the k-means
objective with probability at least 3/4, using O(nd log n+ poly(k, log n)) total time.

Proof. The approximation guarantee of the algorithm follows from Lemma A.11. To analyze the
running time, we first note that we apply a JL matrix with dimensionO(log n) to each of the n points
in Rd, which usesO(nd log n) time. As a result of the JL embedding, each of the n points has dimen-
sion O(log n). Thus, by Theorem A.12, constructing the terminal embedding uses poly(k, log n)
time. As a result of the terminal embedding, each of the k possible centers has dimension O(log k).
Hence, by Theorem A.13, constructing the (2, r)-ANN data structure for the k possible centers uses
O(k log2 k) time. Subsequently, each query to the data structure uses O(log2 k) time. Therefore,
the overall runtime is O(nd log n+ poly(k, log n)).

A.4 REMARK ON TRULY-POLYNOMIAL TIME ALGORITHMS VS. PTAS/PRAS.

Remark A.14. We emphasize that the runtime of our algorithm in Theorem 2.1 is truly polynomial
in all input parameters n, d, k and 1/α (and even near-linear in the input size nd). Although there
exist polynomial-time randomized approximation schemes for k-means clustering, e.g., Inaba et al.
(1994); Feldman et al. (2007); Kumar et al. (2004), their runtimes all have exponential dependency
on k and 1/α, i.e., 2poly(k,1/α). However, this does not suffice for many applications, since k and
1/α should be treated as input parameters rather than constants. For example, it is undesirable to
pay an exponential amount of time to linearly improve the accuracy α of the algorithm. Similarly,
if the number of desired clusters k = O(log2 n), then the runtime would be exponential. Thus we
believe the exponential improvement of Theorem 2.1 over existing PRAS in terms of k and 1/α is
significant.
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A.5 REMARK ON POSSIBLE INSTANTIATIONS OF PREDICTOR

Remark A.15. We can instantiate Theorem 2.1 with various versions of the predictor. Assume
each cluster in the (1 + α)-approximately optimal k-means clustering of the predictor has size at
least n/(ζk) for some tradeoff parameter ζ ∈ [1, (

√
n)/(8k log n)]. Then the clustering quality and

runtime guarantees of Theorem 2.1 hold if the predictor Π is such that

1. Π outputs the right label for each point independently with probability 1−λ and otherwise
outputs a random label for λ ≤ O(α/ζ),

2. Π outputs the right label for each point independently with probability 1−λ and otherwise
outputs an adversarial label for λ ≤ O(α/(kζ)).

In addition, if the predictor Π outputs a failure symbol when it fails, then for constant ζ > 0, there
exists an algorithm (see supplementary material) that outputs a (1+α)-approximation to the k-means
objective with probability at least 2/3, even when Π has failure rate λ = 1− 1/ poly(k). Note that
this remark (but not Theorem 2.1) assumes that each of the k clusters in the (1 + α)-approximately
optimal clustering has at least n

ζk points. This is a natural assumption that the clusters are “roughly
balanced” which often holds in practice, e.g., for Zipfian distributions.

B DELETION PREDICTOR

In this section, we present a fast and simple algorithm for k-means clustering, given access to a label
predictor Π with deletion rate λ. That is, for each point, the predictor Π either outputs a label for the
point consistent with an optimal k-means clustering algorithm with probability λ, or outputs nothing
at all (or a failure symbol ⊥) with probability 1− λ. Since the deletion predictor fails explicitly, we
can actually achieve a (1 + α)-approximation even when λ = 1− 1

poly(k) .

Our algorithm first queries all points in the inputX . Although the predictor does not output the label
for each point, for each cluster Ci with a sufficiently large number of points, with high probability,
the predictor assigns at least λ2 |Ci| points of Ci to the correct label. We show that if |Ci| = Ω

(
k
α

)
,

then with high probability, the empirical center is a good estimator for the true center. That is, the k-
means objective using the centroid of the points labeled i is a (1 +α)-approximation to the k-means
objective using the true center of Ci. We give the full details in Algorithm 4.

To show that the empirical center is a good estimator for the true center, recall that a common
approach for mean estimation is to sample roughly anO

(
1
α2

)
number of points uniformly at random

with replacement. The argument follows from observing that each sample is an unbiased estimator
of the true mean, and repeating O

(
1
α2

)
times sufficiently upper bounds the variance.

Observe that the predictor can be viewed as sampling the points from each cluster without replace-
ment. Thus, for sufficiently large cluster sizes, we actually have a huge number of samples, which
intuitively should sufficiently upper bound the variance. Moreover, the empirical mean is again an
unbiased estimator of the true mean. Thus, although the above analysis does not quite hold due to
dependencies between the number of samples and the resulting averaging term, we show that the
above intuition does hold.

Algorithm 4 Linear time k-means algorithm with access to a label predictor Π with deletion rate λ.

Input: A point set x ∈ X with labels given by a label predictor Π with deletion rate λ.
Output: A (1 + α)-approximate k-means clustering of X .

1: for each label i ∈ [k] do
2: Let Si be the set of points labeled i.
3: ci ← 1

|Si| ·
∑
x∈Si x

4: end for
5: for all points x ∈ X do
6: if x is unlabeled then
7: `x ← arg min d(x, ci)
8: Assign label `x to x.
9: end if

10: end for
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We first show that independently sampling points uniformly at random from a sufficiently large point
set guarantees a (1 +α)-approximation to the objective cost. Inaba et al. (1994); Ailon et al. (2018)
proved a similar statement for sampling with replacement.

It remains to justify the correctness of Algorithm 4 by arguing that with high probability, the overall
k-means cost is preserved up to a (1+α)-factor by the empirical means. We also analyze the running
time of Algorithm 4.

Theorem B.1. If each cluster in the optimal k-means clustering of the predictor Π has at least 3k
α

points, then Algorithm 4 outputs a (1 +α)-approximation to the k-means objective with probability
at least 2

3 , using O(kdn) total time.

Proof. We first justify the correctness of Algorithm 4. Suppose each cluster in the optimal k-means
clustering of the predictor Π has at least 3k

α points. Let C = {c1, . . . , ck} be the optimal centers
selected by Π and let CS = {c′1, . . . , c′k} be the empirical centers chosen by Algorithm 4. For each
i ∈ [k], let Ci be the points of X that are assigned to Ci by the predictor Π. By Lemma A.9 with
η = 3, the approximate centroid of a cluster induces a (1 + α)-approximation to the cost of the
corresponding cluster so that

cost(Ci, c
′
i) ≤ (1 + α) cost(Ci, ci),

with probability at least 1− 1
3k . Taking a union bound over all k clusters, we have that∑

i∈[k]

cost(Ci, c
′
i) ≤

∑
i∈[k]

(1 + α) cost(Ci, ci),

with probability at least 2
3 . Equivalently, cost(X,C) ≤ (1 + α) cost(X,CS).

To analyze the running time of Algorithm 4, observe that the estimated centroids for all labels can
be computed in O(dn) time. Subsequently, assigning each unlabeled point to the closest estimated
centroid uses O(kd) time for each unlabeled point. Thus, the total running time is O(kdn).

C k-MEDIAN CLUSTERING

We first recall that a well-known result states that the geometric median that results from uniformly
sampling a number of points from the input is a “good” approximation to the actual geometric
median for the 1-median problem.

Theorem C.1. Krauthgamer (2019) Given a set P of n points in Rd, the geometric median of a
sample of O

(
d
α2 log d

α

)
points of P provides a (1 + α)-approximation to the 1-median clustering

problem with probability at least 1− 1/poly(d).

Note that we can first apply Theorem A.12 to project all points to a space with dimension
O
(

1
α2 log k

α

)
before applying Theorem C.1. Instead of computing the geometric median, we re-

call the following procedure that produces a (1 + α)-approximation to the geometric median.

Theorem C.2. Cohen et al. (2016) There exists an algorithm that outputs a (1 + α)-approximation
to the geometric median in O

(
nd log3 n

α

)
time.

We give our algorithm in full in Algorithm 5.

Theorem C.3. For α ∈ (0, 1), let Π be a predictor with error rate λ = O
(

α4

k log k
α log log k

α

)
. If each

cluster in the optimal k-median clustering of the predictor has at least n/(ζk) points, then there
exists an algorithm that outputs a (1 +α)-approximation to the k-median objective with probability
at least 1− 1/ poly(k), using O(nd log3 n+ poly(k, log n)) total time.

Proof. Observe that Algorithm 5 samples O
(

1
α4 log2 k

α

)
points for each of the clusters labeled i,

with i ∈ [k]. Thus Algorithm 5 samples O
(
k
α4 log2 k

α

)
points in total. For λ = O

(
α4

k log k
α log log k

α

)
with a sufficiently small constant, the expected number of incorrectly labeled points sampled by
Algorithm 5 is less than 1

32 . Thus, by Markov’s inequality, the probability that no incorrectly labeled
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Algorithm 5 Learning-Augmented k-median Clustering

Input: A point set x ∈ X with labels given by a predictor Π with error rate λ.
Output: A (1 + α)-approximate k-median clustering of X .

1: Use a terminal embedding to project all points into a space with dimension O
(

1
α2 log k

α

)
.

2: for i = 1 to i = k do
3: Let `i be the most common remaining label.
4: Sample O

(
1
α4 log2 k

α

)
points with label `i.

5: Let C ′i be a
(
1 + α

4

)
-approximation to the geometric median of the sampled points.

6: end for
7: Return C ′1, . . . , C ′k.

points are sampled by Algorithm 5 is at least 3
4 . Conditioned on the event that no incorrectly labeled

points are sampled by Algorithm 5, then by Theorem C.1, the empirical geometric median for each
cluster induces a

(
1 + α

4

)
-approximation to the optimal geometric median in the projected space.

Hence the set of k empirical geometric medians induces a
(
1 + α

4

)
-approximation to the optimal

k-median clustering cost in the projected space. Since the projected space is the result of a terminal
embedding, the set of k empirical geometric medians for the sampled points in the projected space
induces a k-median clustering cost that is a

(
1 + α

4

)
-approximation to the k-median clustering cost

induced by the set of k empirical geometric medians for the sampled points in the original space.
Taking the set of k empirical geometric medians for the sampled points in the original space induces
a
(
1 + α

4

)2
-approximation to the k-median clustering cost. We take a

(
1 + α

4

)
-approximation to

each of the geometric medians. Thus for sufficiently small α, Algorithm 5 outputs a (1 + α)-
approximation to the k-median clustering problem.

To embed the points into the space of dimension O
(

1
α2 log k

α

)
, Algorithm 5 spends O(nd log n)

total time. By Theorem C.2, it takes O(nd log3 n) total time to compute the approximate geometric
medians.

D LOWER BOUNDS

MAX-E3-LIN-2 is the optimization problem of maximizing the number of equations satisfied by a
system of linear equations of Z2 with exactly 3 distinct variables in each equation. EK-MAX-E3-
LIN-2 is the problem of MAX-E3-LIN-2 when each variable appears in exactly k equations. Fotakis
et al. (2016) showed that assuming the exponential time hypothesis (ETH) (Impagliazzo & Paturi,
2001), there exists an absolute constant C1 such that MAX k-SAT (and thus MAX k-CSP) instances
with fewer than O(nk−1) clauses cannot be approximated within a factor of C1 in time 2O(n1−δ)

for any δ > 0. As a consequence, the reduction by Håstad (2001) shows that there exist absolute
constants C2, C3 such that EK-MAX-E3-LIN-2 with k ≥ C2 cannot be approximated within a
factor of C3 in time 2O(n1−δ) for any δ > 0. Hence, the reduction by Chlebı́k & Chlebı́ková (2006)
shows that there exists a constantC4 such that approximating the minimum vertex cover of 4-regular
graphs within a factor of C4 cannot be done in time 2O(n1−δ) for any δ > 0. Thus the reduction by
Lee et al. (2017) shows that there exists a constant C5 such that approximating k-means within a
factor ofC5 cannot be done in time 2O(n1−δ) for any δ > 0, assuming ETH. Namely, the reduction of
Lee et al. (2017) shows that an algorithm that provides a C5-approximation to the optimal k-means
clustering can be used to compute a C4-approximation to the minimum vertex cover.

Theorem D.1. If ETH is true, then there does not exist an algorithm A that takes a set S of n
1−δ

logn

vertices and finds a C4-approximation to the minimum vertex cover that contains S on a 4-regular
graph G, using 2O(n1−δ) time for some constant δ ∈ (0, 1].

Proof. Suppose by way of contradiction that there exists an algorithm A that takes a set S of n
1−δ

logn

vertices and finds a C4-approximation to the minimum vertex cover that contains S on a 4-regular
graph G, using 2O(n1−δ) time for some constant δ ∈ (0, 1]. We claim that we can use A to cre-
ate an overall algorithm that violates ETH. Indeed, suppose we guess each subset of n1−δ

logn ver-
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tices and which vertices of the subset are in the cover. There are
(

n
n1−δ/ logn

)
· 2n

1−δ/ logn ≤
(enδ log n)n

1−δ/ logn · 2n/ logn such combinations of vertices. For each guess, we then run the
purported algorithm A that uses 2O(n1−δ) time. Thus we can identify a C4-approximation to the
minimum vertex cover in time

(enδ log n)n
1−δ/ logn · 2n/ logn · 2O(n1−δ) = 2O(n1−δ) · 2O(n1−δ) = 2O(n1−δ),

which would contradict ETH.

Finally, we show the query complexity of Algorithm 3 is nearly optimal. Lee et al. (2017) con-
structed an instance of k-means that cannot be approximated within a factor of 1.0013 in polynomial
time. The reduction of Lee et al. (2017) creates 4n points in R3n that must be clustered by O(n)
centers and an algorithm that provides a C5-approximation to the optimal k-means clustering can
be used to compute a C4-approximation to the minimum vertex cover. Thus, there exists a constant
C5 such that approximating k-means within a factor of C5 cannot be done in time 2O(n1−δ) for any
δ > 0, assuming ETH.

Theorem 3.5. For any δ ∈ (0, 1], any algorithm that makes O
(
k1−δ

α logn

)
queries to the predictor

with label error rate α cannot output a (1 + Cα)-approximation to the optimal k-means clustering
cost in time 2O(n1−δ) time, assuming the Exponential Time Hypothesis.

Proof. Let α be a fixed constant such that α < C5. Given an instance I of a k-means clustering con-
structed from the reduction of Lee et al. (2017), the optimal clustering cost is Ω(n) and k1 = Ω(n).
We embed this instance into a k-means clustering by adding an additional Ω(n) points arbitrarily
far from I, so that the additional points contribute Ω(n/α) cost upon partitioning into k2 = Ω(n)
clusters. We set k = k1 + k2.

In summary, the resulting instance has O(n) points and k = Ω(n). The optimal solution has cost
O(n/α) cost so that I contributes an Ω(α) fraction of the cost. By queryingO

(
k1−δ

α logn

)
points with

sufficiently small constant, at most O
(
k1−δ

α logn

)
of the cluster centers in I will be revealed by the

construction of I. Each center corresponds to a selected vertex in the corresponding vertex cover in
the reduction from minimum vertex cover on 4-regular graphs. Hence, in the corresponding vertex
cover instance, at most O

(
k1−δ

α logn

)
vertices are revealed. Thus by Theorem D.1, any algorithm

running in 2O(n1−δ) time cannot determine a C5-approximation to the optimal k-means clustering
cost on I, as it would correspond to a C4-approximation to the optimal vertex cover, assuming ETH.
Since I induces an Ω(α) fraction of the total clustering cost, it follows that any algorithm that makes
O
(
k1−δ

α logn

)
queries cannot output a (1 +Cα)-approximation to the optimal k-means clustering cost

in time 2O(n1−δ) time, assuming ETH.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 OMITTED DISCUSSION

In this section we continue the discussion from the experimental section of the main body. In Figure
3(a), we show the qualitatively similar version of Figure 2(c) of the main body for the case of
k = 25. In Figure 3(b), we display the qualitatively similar version of Figure 3(a) of the main body
for the k = 25 case of dataset PHY.

PHY. We use the noisy predictor for this dataset. We see in Figure 2(a) that as the corruption
percentage rises, the clustering given by just the predictor labels can have increasingly large cost.
Nevertheless, even if the clustering cost of the corrupted labels is rising, the cost decreases signifi-
cantly after applying Algorithm 1 by roughly a factor of 3x. Indeed, we see that our algorithm can
beat the kmeans++ seeding baseline for q as high as 50%. Just as in Figure 1(c), random sampling
is sensitive to noise. Lastly, we also remain competitive with the purple line which uses the labels
output by kmeans++ as the predictor in our algorithm (no corruptions added). The qualitatively
similar plot for k = 25 is given in the supplementary material.
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CIFAR-10. The cost of clustering on CIFAR-10 using only the predictor, the predictor with our
algorithm, random sampling, and kmeans++ as the predictor for our algorithm were 0.733, 0.697,
0.721, and 0.640, respectively, where 1.0 represents the cost of kmeans++. The neural network
was very accurate (∼ 93%) in predicting the class of the input points which is highly correlated
with the optimal k-means clusters. Nevertheless, our algorithm improved upon this highly precise
predictor.

Note that using kmeans++ as the predictor for our algorithm resulted in a clustering that was 13%
better than the one given by the neural network predictor. This highlights the fact that an approxi-
mate clustering combined with our algorithm can be competitive against a highly precise predictor,
such as a neural network, even though creating the highly accurate predictor can be expensive. In-
deed, obtaining a neural network predictor requires prior training data and also the time to train the
network. On the other hand, using a heuristic clustering as a predictor is extremely flexible and
can be applied to any dataset even if no prior training dataset is available (50, 000 test images were
required to train the neural network predictor but kmeans++ as a predictor requires no test images),
in addition to considerable savings in computation.

For example, the time taken to train the particular neural network we used was approximately 18
minutes using the optimized PyTorch library (see training details under the “Details Report” section
in Huy (2020)). In general, the time can be much longer for more complicated datasets. On the
other hand, our unoptimized algorithm implementation which used the labels of a sample run of
kmeans++ was still able to achieve a better clustering than the neural network predictor with α =
0.01 in Algorithm 2 in 4.4 seconds. In conclusion, we can achieve a better clustering by combining
a much weaker predictor with our algorithm with the additional benefit of using a more flexible and
computationally inexpensive methodology.

We also conducted an experiment where we only use a small fraction of the predictor labels in our
algorithm. We select a p fraction of the images, query their labels, and run our algorithm on only
these points. We then report the cost of clustering on the entire dataset as p ranges from 1% to 100%.
Figure 2(b) shows the percentage increase in clustering cost relative to querying the whole dataset is
quite low for moderate values of p but increasingly worse as p becomes smaller. This suggests that
the quality of our algorithm does not suffer drastically by querying a smaller fraction of the dataset.
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Figure 3: Our algorithm is able to recover a good clustering even for very high levels of noise.

E.2 SYNTHETIC DATASET

We use a dataset of 10010 points in Rd for d = 103 created using the kmeans++ lower bound
construction presented in Arthur & Vassilvitskii (2007). The dataset consists of 10 well separated
clusters in Rd: let ei denote the basis vectors. Our dataset is {1000ei} ∪ {1000ei + ej} for all
1 ≤ i ≤ 10, 1 ≤ j ≤ 1000.

From the description of the dataset, we can explicitly calculate the optimal clustering and its cost.
Our predictor for this dataset was to take the optimal clustering and randomly change each label
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with probability 1/2 to another uniformly random label. Empirically, kmeans++ seeding returned
a clustering that had cost at least 1.9x the optimal clustering. Furthermore, using just the predictor
labels naı̈vely resulted in a clustering with cost up to five orders of magnitude larger than the op-
timal clustering. In contrast, our algorithm was able to precisely recover the true clustering after
processing the predictor outputs. In addition, applying our algorithm using the labels of a sample
run of kmeans++ was also able to precisely recover the true clustering.

E.3 COMPARISON TO LLOYD’S HEURISTIC

We give both theoretical and empiricial justifications for why our algorithms could be superior to
blindly following a predictor and then running Lloyd’s heuristic.

(a) (b) (c)

Figure 4: Additional experimental results for comparison to Lloyd’s heuristic.

Empirical Comparison. We first compared Lloyd’s algorithm on kmeans++ seeding to our al-
gorithm with the predictor on the PHY dataset. The predictor is a noisy predictor that has corruption
level 50% as described in Section 4 so that outputting the clustering from the predictor alone has
cost 1.9x the average kmeans++ cost. Hence, it is clear that the predictor is much worse than
kmeans++, yet our algorithm using the predictor (horizontal line in Figure 4(a)) is much better
than kmeans++ and Lloyd’s algorithm (orange line in Figure 4(a)).

Next, we took the noisy predictor for the PHY dataset with corruption level 50% and repeatedly
applied Lloyd’s algorithm. We observe that even with ∼ 5 Lloyd’s iterations (Figure 4(b)), the
clustering cost does not seem to improve upon kmeans++, much less the clustering output by
simply applying our algorithm to the noisy predictions (Figure 4(a)).

Finally, we compared Lloyd’s algorithm on kmeans++ seeding to Lloyd’s algorithm on the seed-
ing output by our algorithm (with kmeans++ as the predictor) on the CIFAR-10 dataset, similar to
the experiments you suggested by Lattanzi & Sohler (2019). Lloyd’s algorithm on the seeding out-
put by our algorithm exhibits superior performance than Lloyd’s algorithm on kmeans++ (Figure
4(c)), which is consistent with our previous experiments showing that our algorithm improves upon
kmeans++. This further strengthens our claim that our algorithm and methodology with provable
worst-case guarantees can be applied in conjunction with heuristics such as Lloyd’s that do not have
provable worst-case guarantees. Moreover, Figure 4(c) indicates that our approach may be more
advantageous than just running kmeans++ with heuristics. Note that a naı̈ve implementation of
Lloyd’s algorithm is O(ndk) time while our algorithm can be implemented in nearly linear time.

We emphasize that all of our above experiments use a noisy predictor with corruption level 50% as
input to our algorithm. Our experiments exhibit even better behavior when a clustering produced by
kmeans++ is used for a predictor as input to our algorithm. Combined with our other experiments
in Section 4, this gives empirical evidence that there exist many scenarios in which running our
algorithm with an erroneous predictor is advantageous.

Theoretical Comparison. We now provide an example that demonstrates why blindly following
the predictor and then running Lloyd’s heuristic would run into issues. We emphasize that it is well-
known e.g., see Dasgupta (2003); Har-Peled & Sadri (2005); Arthur & Vassilvitskii (2006); Vattani
(2011), that Lloyd’s algorithm can take a large number of steps to converge. In particular, Vattani
(2011) shows that an exponential number of Lloyd iterations can be required for the algorithm to
converge to the optimal solution. Nevertheless, we offer the following concrete answer:
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We describe a simple set of points that guarantees Lloyd’s algorithm will fail. This is based on the
example given in Har-Peled & Sadri (2005) and is also conceptually similar to the example given
in 1.1. Consider 4n points on the real line x1, . . . , x2n, y1, . . . , y2n so that y1 ≤ . . . ≤ y2n ≤
A < B ≤ x1 ≤ . . . ≤ x2n where B − A is large. Suppose k = 2 in which case the optimal
clustering groups all the yi points together and all the xi points together as two separate clusters.
Suppose the predictor initially gives label “1” to points y1, . . . , yn and gives label “2” to points
yn+1, . . . , x1, . . . , x2n, so that the predictor has corruption level λ = 1/2. Then our algorithm that
uses this predictor will get a constant-factor approximation in only one iteration. However, since
B − A can be arbitrarily large without affecting the optimal clustering cost, blindly listening to
the predictor will give a worse clustering. Furthermore, Theorem 2.1 in Har-Peled & Sadri (2005)
implies that Lloyd’s will take Θ(n) iterations to converge if initialized using this predictor. Note that
even a single (naı̈ve) iteration of Lloyd’s algorithm already uses O(ndk) time while our algorithm
only uses O(nd) + poly(k, 1/α) time. Note that there are also more complex examples in higher-
dimensional spaces in the literature which provably have even worse convergence rates for Lloyd’s
method.

E.4 CONCLUSION

Although 1.07-approximation for k-means clustering in polynomial time is NP-hard and a clustering
consistent with the labels of any predictor with nonzero error can be arbitrarily bad, we give a
(1 + α)-approximation algorithm that uses the labels output by the predictor as “advice” and runs
in nearly linear time. We use a linear number of queries to the predictor, which can be improved to
nearly optimal under natural assumptions about the cluster sizes. Our results are well-supported by
empirical evaluations and are an important step in demonstrating the power of learning-augmented
algorithms beyond the limitations of classical algorithms for clustering-based applications.

F LEARNABILITY RESULTS

In this section, we present formal learning bounds for learning a good predictor for the learning-
augmented k-means problem. Namely, we show that a good predictor can be learned efficiently if
the problem instances are drawn from a particular distribution. Our result is inspired by derived
from data-driven algorithm design and utilizes the PAC learning framework. Formally, our setting
is the following.

Suppose there exists an underlying distribution D that generates independent k-means clustering
instances, representing the case where similar instances of the k-means clustering problem are being
solved. Note that this setting also mirrors some of our experiments in Section 4, specifically in the
case of our spectral clustering datasets which are derived from snapshots of a dynamic graph across
time.

Our goal is to efficiently learn a good predictor f among some family of functions F . The input
to each predictor f is a clustering instance C and the output is a feature vector. We assume that
the each input instance C is encoded as a vector in Rnd, that is, we think of nd as the size of the
description of the input. We also assume that the output of f is in n dimensions, which represents
the prediction of the oracle. For example in the case of k-means clustering, the output can be an
integer in [k] for each point in C.

To select the “best” f , we need to formally define what we mean by best. In most learning settings,
a loss function is used to measure the quality of a solution. Indeed, suppose we have a loss function
L : f ×C → R which represents how well a predictor f performs on some input C. For example, f
can represent the cluster labels of a points inC andL outputs the cost of the clustering. Alternatively,
L can represent an algorithm which uses the hints given by f and performs a clustering algorithm
such as some number of steps of Lloyd’s heuristic.

Our goal is to learn the best function f ∈ F that minimizes the following objective:

EC∼D[L(f, C)]. (2)

We define f∗ to be an optimal function f ∈ F , so that f∗ = arg minEC∼D[L(f, C)]. We also
assume that for each clustering instance C and each f ∈ F , f(C) and L(f, C) can be computed in
time T (n, d) that should be interpreted as a (small) polynomial in n and d.
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Our main result is the following.

Theorem F.1. There exists an algorithm that uses poly(T (n, d), 1/ε) samples and returns a f̂ that
satisfies

EC∼D[L(f̂ , C)] ≤ EC∼D[L(f∗, C)] + ε

with probability at least 9/10.

The above theorem is a PAC-style bound that shows only a small number of samples are needed in
order to have a good probability of learning an approximately-optimal function f̂ . The algorithm to
compute f̂ is the following: we simply minimize the empirical loss after an appropriate number of
samples are drawn, i.e., we perform empirical risk minimization. This result is proven by Theorem
F.3. Before introducing it, we need to define the concept of pseudo-dimension for a function class,
which is the more familiar VC dimension, generalized to real functions.
Definition F.2 (Pseudo-Dimension, e.g., Definition 9 in Lucic et al. (2018)). Let X be a ground set
and F be a set of functions from X to the interval [0, 1]. Fix a set S = {x1, · · · , xn} ⊂ X , a set of
reals numbers R = {r1, · · · , rn} with ri ∈ [0, 1] and a function f ∈ F . The set Sf = {xi ∈ S |
f(xi) ≥ ri} is called the induced subset of S formed by f and R. The set S with associated values
R is shattered by F if |{Sf | f ∈ F}| = 2n. The pseudo-dimension of F is the cardinality of the
largest shattered subset of X (or∞).

The following theorem relates the performance of empirical risk minimization and the number of
samples needed, to pseudo-dimension. We specialize the theorem statement to our situation at hand.
For notational simplicity, we define G be the class of functions in F composed with L:

G := {L ◦ f : f ∈ F}.
Furthermore, by normalizing, we can assume that the range of L is equal to [0, 1].
Theorem F.3 (Anthony & Bartlett (1999)). Let D be a distribution over problem instances C and
G be a class of functions g : C → [0, 1] with pseudo-dimension dG . Consider t i.i.d. samples
C1, C2, . . . , Ct from D. There is a universal constant c0, such that for any ε > 0, if t ≥ c0 · dG/ε2,
then we have ∣∣∣∣∣1t

t∑
i=1

g (Ci)− EC∼D g(C)

∣∣∣∣∣ ≤ ε
for all g ∈ G with probability at least 9/10.

The following corollary follows from the triangle inequality.
Corollary F.4. Consider a set of t independent samples C1, . . . , Ct from D and let ĝ be a function
in G that minimizes 1

t

∑t
i=1 g(Ci). If the number of samples t is chosen as in Theorem F.3, then

EC∼D[ĝ(C)] ≤ EC∼D[g∗(C)] + 2ε

holds with probability at least 9/10.

Therefore, the main challenge at hand is to bound the pseudo-dimension of our given function class
G. To do so, we first relate the pseudo-dimension to the VC dimension of a related class of threshold
functions. This relationship has been fruitful in obtaining learning bounds in a variety of works such
as Lucic et al. (2018); Izzo et al. (2021).
Lemma F.5 (Pseudo-dimension to VC dimension, Lemma 10 in Lucic et al. (2018)). For any g ∈
G, let Bg be the indicator function of the region on or below the graph of g, i.e., Bg(x, y) =
sgn(g(x)− y). The pseudo-dimension of G is equivalent to the VC-dimension of the subgraph class
BG = {Bg | g ∈ G}.

Finally, the following theorem relates the VC dimension of a given function class to its computa-
tional complexity, i.e., the time complexity of computing a function in the class.
Lemma F.6 (Theorem 8.14 in Anthony & Bartlett (1999)). Let h : Ra ×Rb → {0, 1}, determining
the class

H = {x→ h(θ, x) : θ ∈ Ra}.
Suppose that any h can be computed by an algorithm that takes as input the pair (θ, x) ∈ Ra × Rb
and returns h(θ, x) after no more than t of the following operations:

29



Published as a conference paper at ICLR 2022

• arithmetic operations +,−,×, and / on real numbers,

• jumps conditioned on >,≥, <,≤,=, and = comparisons of real numbers, and

• output 0, 1,

then the VC dimension ofH is O(a2t2 + t2a log a).

Combining the previous results allows us prove Theorem F.1. At a high level, we are instantiating
Lemma F.6 with the complexity of computing any function in the function class G.

Proof of Theorem F.1. First by Theorem F.3 and Corollary F.4, it suffices to bound the pseudo-
dimension of the class G = L ◦ F . Then from Lemmas F.5, the pseudo-dimension of G is the VC
dimension of threshold functions defined by G. Finally from Lemma F.6, the VC dimension of the
appropriate class of threshold functions is polynomial in the complexity of computing a member
of the function class. In other words, Lemma F.6 tells us that the VC dimension of BG defined in
Lemma F.5 is polynomial in the number of arithmetic operations needed to compute the threshold
function associated to some g ∈ G. By our definition, this quantity is polynomial in T (n, d). Hence,
the pseudo-dimension of G is also polynomial in T (n, d) and our desired result follows.

Note that we can consider initializing Theorem F.1 with specific predictions. If each function in the
family of oracles we are interested can be computed efficiently, which is the case of the predictors
we employ in our experiments, then Theorem F.1 assures us that we only require polynomially many
samples to be able to learn a nearly optimal oracle.

Note that our result is in similar in spirit to the recent paper Dinitz et al. (2021). They derive
sample complexity learning bounds for a different algorithmic problem of computing matchings in a
graph. Since they specialize their analysis to a specific function class and loss function, their bounds
are possibly tighter rather than the possibly loose polynomial bounds we have stated. However,
our analysis above is more general as it allows for a variety of predictors, as we employ in our
experiments, and loss functions to measure the quality of the predictions.
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