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Abstract— An active region design based on InGaN / delta-InN
quantum well (QW) with AlGaN interlayer (IL) and
GaN barriers (delta-structure) is investigated for potential
high-efficiency visible light emitters. Numerical simulations
demonstrate a large wavelength redshift with a simultaneous
increase of the electron-hole wavefunction overlap for the delta-
structure as compared to the conventional InGaN QW with
AlGaN IL and GaN barriers. Proof of concept experimental
growths via the metalorganic chemical vapor deposition demon-
strate the effect of the delta-InN insertion into the conventional
InGaN-based QW.
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I. INTRODUCTION

IN RECENT years, the pursuit of high-efficiency InGaN-
based quantum well (QW) light emitters towards the red

spectral regime has proved challenging. The need for higher
In-content in the InGaN active region to achieve longer
wavelength emission results in phase separation of the InGaN
alloy, defect formation due to lattice mismatch with the GaN
substrates, and higher polarization fields which reduce the
wavefunction overlap (�e-h) between electrons and holes
inside the QW. These factors are detrimental to the internal
quantum efficiency (IQE) of the emitter and have resulted in
the well-known “green-gap” problem [1]–[5]. The challenges
for high In-content InGaN have hindered the development of
relatively high-efficiency visible light emitters - without the
need of phosphor down conversion - that could exploit a full-
color gamut and enable LED devices for solid-state lighting
and display applications [6].

Several theoretical and experimental approaches have been
proposed to overcome these issues including, staggered InGaN
QWs, strain compensated InGaN QWs, semipolar and non-
polar InGaN QWs, ternary substrates and buffer layers, and
high bandgap thin interlayers that cap the InGaN QW [7]–[23].
Recently, special research interest has been given for the
latter, since the use of AlGaN and AInN inter-layers has
resulted in the highest efficiencies in the red and green spectral
regime [23]. In addition to the above solutions, a different
approach that eliminates the need for high In-content has been
proposed. In particular, theoretical studies have shown that
inserting an ultra-thin layer [delta(δ)-like] of InN (∼6 nm)
in the middle of a conventional 3.0 nm In0.25Ga0.75N QW
with GaN barriers results in a significant wavelength shift
towards the red spectral regime (∼740 nm) with enhanced
wavefunction overlap (�e−h∼50%) [24].

Experimental verification, via metalorganic chemical vapor
deposition, of δ-InN designs is challenging because of the
evaporation and decomposition of In from the layer during
the high-temperature GaN barrier growth. More specifically,
the large discrepancy in growth temperatures between the InN
(<600 ◦C), InGaN (∼700 ◦C), and GaN (∼850 ◦C) layers
result in the decomposition and out-diffusion of In during the
growth of the GaN barrier growth [25]–[29], thus creating a
challenge to integrate δ-InN layers.

This challenge can be addressed by growing an AlGaN
interlayer at the same temperature as the δ-InN layer
(<600 ◦C) to cap and prevent decomposition at the higher
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Fig. 1. Novel active region design consisted of an InGaN QW, δ-InN and
AlGaN interlayer between GaN barriers.

temperature growth of the GaN barrier [28], [29]. The cap-
ping and decomposition concept using an AlGaN IL has
been demonstrated in conventional InGaN QWs. In addi-
tion, the AlGaN IL enables concurrent thermal annealing of
the underlying layers during high-temperature GaN barrier
growth, proving beneficial to the InGaN QW [19]. Moreover,
despite the low-temperature growth of the AlGaN IL, it too
experiences an improvement in crystal quality during the high-
temperature GaN barrier growth [19].

The work presented in this letter exploits the concept of
the δ-InN layer in combination with a thin AlGaN inter-
layer (IL) integrated into a conventional InGaN QW with
GaN barriers (δ-structure) to achieve a high-efficiency long-
wavelength emitter. The δ -structure depicted in Figure 1 is
different from the one presented in reference [24], since it
consists of a δ-InN layer placed on top of the InGaN QW
- rather than in the middle - followed by the AlGaN IL.
Numerical simulations were carried out based on a six-band
k.p formalism for wurtzite structure, considering crystal strain,
valence band mixing, polarization fields, and carrier screen-
ing [9]. The energy band structure, wavefunction overlap, and
spontaneous emission rates were calculated for the δ-structure
and compared to a reference structure. The reference structure
consists of an InGaN QW, AlGaN IL, and GaN barriers with
the same layer thicknesses and compositions as the δ-structure.

II. NUMERICAL SIMULATIONS

Figure 2(a) and 2(b) depict the band structure of the refer-
ence and the δ-structures, respectively. The reference structure
consisted of a 2.6 nm thick In0.2Ga0.8N QW with 1 nm thick
Al0.40Ga0.60N IL and 5 nm thick GaN barriers, while the
δ-structure has an additional 0.6 nm thick δ-InN layer inserted
between the In0.20Ga0.80N QW and Al0.40Ga0.60N IL. The
reference structure is characterized by a transition (emitted)
wavelength of λ = 437 nm, which is the blue spectral
regime with an electron-hole (e-h) wavefunction overlap of
�e−h = 43%. As presented in reference [24], the incorporation
of a very thin δ-InN layer with a much lower bandgap
decreases the energy transition levels both in the condition
band and valence band of the quantum well. It also redshifts
the emitting wavelength. As shown in Figure 2(b), the insertion
of the δ-InN layer redshifts the transition wavelength from
437 nm to 634 nm (red) but at the expense of the e-h
wavefunction overlap �e−h, which is dramatically reduced to
3% as compared to the reference structure.

It is important to mention that the thickness of the inserted
δ-InN layer is close to its critical value of 0.6 nm, which

Fig. 2. Numerical simulations of band-structure and e/h wavefunction
profile of (a) reference structure consisted of 2.6 nm In0.20Ga0.80N QW + 5
monolayers Al0.40Ga0.60N interlayer between 5 nm GaN barriers, and
(b) δ-structure consisted of 2.6 nm In0.20Ga0.80N QW + 2 monolayers
(0.6 nm) δ-InN + 5 monolayers Al0.40Ga0.60N inter-layer between 5 nm
GaN barriers.

Fig. 3. Numerical simulations of band-structure and e/h wavefunction profile
of (1) reference structure consisted of a 2.0 nm thick In0.20Ga0.80N QW
and 5 monolayers Al0.40Ga0.60N interlayer between 5 nm GaN barriers, and
b) δ-structure consisted of a 2.0 nm thick In0.20Ga0.80N QW, 2 monolayers
(0.6 nm) of δ-InN, and 5 monolayers of Al0.40Ga0.60N inter-layer between
5 nm thick GaN barriers.

corresponds to a few monolayers (∼ 2) of InN [30]. The
main reason for the low e-h wavefunction overlap of the
δ-structure is the holes in the valence band. As shown in
Figure 2(a), the peak of the hole wavefunction (�h) of the
reference structure is located at the GaN/InGaN heterointer-
face, and its position does not change with the insertion of
the δ-InN layer. At the same time, the electrons move into the
δ-InN layer (Figure 2(b)).

To increase the e-h wavefunction overlap (�e−h) in the
δ-structure, the peak of the �e−h has to be shifted towards
the δ-InN layer. A simple way to accomplish this is to reduce
the thickness of the InGaN layer. Figure 3(b) presents the
case where the InGaN layer thickness is reduced to 2.0 nm.
By doing so, the peak of the hole wavefunction is shifted
into the δ-InN layer, increasing the e-h wavefunction overlap
�e-h to 86% with an emitted wavelength λ = 615 nm.
Figure 3(a) corresponds to a reference structure with a 2 nm
thick In0.20Ga0.80N layer. It is evident that the δ-InN layer
itself does not help achieve large e-h wavefunction overlap
in this particular novel active region design. The thickness
of the InGaN layer is very crucial. From the numerical
calculations, it was observed for thin InGaN layers <2 nm
with a few inserted monolayers of δ-InN and an AlGaN IL,
the δ-structures will result in very high wavefunction overlap
with a simultaneous wavelength shift towards red wavelengths
compared to the reference structure without the δ-InN layer.
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Fig. 4. Spontaneous emission spectra and radiative recombination rate of
a δ-structure consisted of a 2.0 nm thick In0.20Ga0.80N QW, 2 monolayers
(0.6 nm) of δ-InN, and 5 monolayers of Al0.40Ga0.60N between 5 nm thick
GaN barriers.

In addition to the wavelength shift and the high e-h wave-
function overlap, the δ-InN structure should exhibit very high
carrier injection efficiencies if the active region is implemented
for LEDs. The high bandgap material of the AlGaN IL can act
as an effective barrier for the injected electrons and holes into
the active region by preventing them from thermionic escape
from the quantum well [31]. It is ubiquitous in conventional
InGaN QW-based LEDs to observe a blueshift of the emitted
photon energy with increased injection current. This blueshift
is attributed to 1) in the band-filling effect of localized
energy states formed by potential profile fluctuations (due to
In composition fluctuations) and 2) carrier screening of the
strain-induced polarization fields (those fields are responsible
for the quantum confined stark effect (QCSE). The carrier
screening of the QCSE flattens the potential across the MQWs,
increasing the quantum energy states into the QW.

For the case of the δ-structure, the QCSE is expected to be
strong enough (due to the significant lattice mismatch among
the δ-InN and AlGaN IL) so that the presence of the carries
will not be able to screen it. This screening will result in a
slight blueshift of the emitted wavelength of the spontaneous
emission spectrum (assuming that there is not In-composition
fluctuation into the active region of the δ-structure). This
peak stability can be seen in Figure 4 where the peak of the
spontaneous emission spectrum of the δ-structure increases
from 0.04 × 1026 to 1.12 × 1026 s−1cm−3eV−1 while the
carrier density, n, increases from 2.5 × 1018 to 2 × 1019 cm−3

respectively, with no observed blueshift on the transition
wavelength.

III. PROOF-OF-CONCEPT EXPERIMENTS

The numerical simulations indicate the δ-structure with a
relatively thin InGaN QW and an AlGaN IL can be used as
a highly efficient light-emitting active layer. Proof-of-concept
experiments are carried out to demonstrate the concept of
the δ-structure presented in this work. The proof-of-concept
experiments were similar to the simulations and are divided
into two parts. In the first part, the δ-structure was studied
for a ∼3 nm thick In0.15Ga0.85N QW with ∼1 nm thick
Al0.40Ga0.60N IL, and for the second part, the δ-structure was

Fig. 5. (a) MOCVD growth temperature profile of 1 period of the δ-structure.
(b) Actual growth temperature profile of a 5 period δ-structure. The reference
structures exhibit similar growth temperature profile.

studied for a ∼2 nm thick In0.15Ga0.85N with a QW ∼1 nm
thick Al0.40Ga0.60N IL. The composition of the InGaN layers
among the two experimental parts are varied slightly, but this
does not significantly alter the concept of the wavelength shift
and e-h wavefunction overlap changes of the δ-structures with
respect to their reference structures.

As described in the introduction, the new design of
the δ-structure enables the experimental verification via the
MOCVD. However, an issue that needs to be taken under
consideration is the growth of the pure InN δ-layer to prevent
the presence of metallic-In. It is well known that the MOCVD
growth of InN imposes very narrow optimized growth condi-
tions, which are limited by the ammonia (NH3) dissociation
and metallic-In formation. Nevertheless, this issue can be
overcome by employing a pulsed MOCVD growth mode for
the InN layer, which results in high quality, metallic-In-free
InN films [25]–[29].

The structures investigated in this study are depicted
in Figure 1. The epitaxy of the structures was done
in a vertical-flow shower-head type Veeco-P75 reactor
under a growth pressure of 200 Torr. Ammonia was used
as the group-V precursor, while triethylgallium (TEGa),
trimethylindium (TMIn), and trimethylaluminum (TMAl) were
used as group-III precursors for the III-nitride layers. Five
periods of InGaN/ δ-InN / AlGaN / GaN were grown on top
of a 3 um thick n-doped GaN (3 ×1016 cm−3) templates on a
patterned c-plane sapphire substrate. The growth temperature
profile of the structure is depicted in Figure 5. The InGaN
layers were grown at ∼730 ◦C, while the GaN barriers were
at ∼860 ◦C. To accommodate the growth of the InN at
∼560 ◦C, pulsed-the pulsed MOCVD growth was employed.
During the growth of the InN δ -layer, the NH3 was constantly
running into the reactor while the TMIn precursor was pulsed.
Following the growth of the δ-InN layer, the AlGaN layer
was grown via the normal-MOCVD growth mode (constant
metalorganic flow) at the same temperature of ∼560 ◦C.

To study the effect of the δ-InN, a second structure
without the δ-InN layer was grown under the same growth
temperature profile. Both MQW structures consisted of a
∼3 nm thick In0.15Ga0.85N QW, ∼5 monolayers (∼1 nm)
thick Al0.40Ga0.60N IL, and a ∼10 nm thick GaN barrier, all
repeated 5 times. For the structure with the δ-InN layer, the
growth conditions of the pulsed growth mode were optimized
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Fig. 6. (a) (002) plane X-ray ω/2θ XRD scans, and (b) photoluminescence
spectra of the reference and δ-structure with a 3 nm thick InGaN layer.

to achieve metallic-In-free δ-InN layer with nominal thickness
of ∼0.6 nm [28], [29]. This thickness of the δ-InN layer
corresponds to ∼2 monolayers (∼0.6 nm) which is the opti-
mum thickness for the fully strained InN layer [30]. The two
structures were characterized using a coupled ω/2θ scan in the
(002) - growth direction - via an X-ray diffractometer. As it can
be seen in Figure 6(a), both structures exhibit sharp diffraction
peaks, which is an indication that the crystallinity of the
MQWs is maintained, despite the low growth temperature of
AlGaN IL and the introduction of the δ-InN layer. We believe
that the high growth temperature of the GaN barriers assists
in the re-crystallization of the δ-InN and AlGaN IL, which
in turn improves the overall crystal quality of the structure.
It is also important to notice that despite the introduction of
the δ-InN layer, the picture of the X-ray ω/2θ scan for the
δ-structure does not significantly change. One would expect
smaller fringes between the satellite peaks for the MQW
δ-structure. However, the very thin layer of the δ-InN in
combination with the low resolution of the XRD diffractometer
cannot detect its presence. Any detected signal would be
buried into the noise between the adjacent picks of the MQW
δ-structure.

The PL spectra of both structures are depicted in
Figure 6(b). A 405 nm laser with a 95 mW power was used
as the excitation source. The reference structure has a sharp
luminescence with a peak wavelength of λ = 448 nm. With
the insertion of the δ-InN layer, the structure exhibits a lower
intensity and a redshifted peak wavelength of λ = 571 nm.
(Note, to measure the signal, the integration time of the digital
spectrophotometer had to be increased by 10 times to that
of the reference structure.) Although the measured emitted
wavelength is in the yellow region of the spectrum, it cannot be
discounted that this PL signal is yellow band luminescence of
the GaN substrate and the active layer luminescence is weaker.
In addition, considering the fact that the δ-structure maintains
relatively good crystal quality, according to the XRD spectrum,
the very low luminescence could not be due to bad crystal
quality. The reason for the low luminescence is most probably
associated with poor e-h wavefunction overlap, as predicted
from the numerical simulations.

The second part of the proof-of-concept experiments con-
sists of a reference and δ-structure. The reference structure
consisting of a ∼2 nm thick In0.15Ga0.85N QW, ∼1 nm thick
Al0.40Ga0.60N IL, and ∼10 nm thick GaN barrier repeated
5 times. The δ-structure is the same with the addition of

Fig. 7. (a) (002) plane X-ray ω/2θ XRD scans, and (b) photoluminescence
spectra of the reference and δ-structure with a 2 nm thick InGaN layer.

Fig. 8. Relative efficiencies versus excitation powers with a 405 nm laser
for the reference and δ-structure with 2 nm thick InGaN layer.

the δ -InN layer at ∼0.6 nm thickness after the InGaN QW.
Figure 7(a) shows the X-ray ω/2θ scans of both structures.
Sharp satellite peaks are observed, which is an indication of
the excellent crystal quality of the structures.

Both structures were excited with a 405 nm laser at 95 mW
power. The PL signal is depicted in Figure 7(b), both samples
measured on the same scale. The reduction in the thickness
of the InGaN layer to ∼2 nm results in an increased lumines-
cence for the δ-structure from approximately 40000 to 49000
(1.22 times). The peak wavelength is slightly increased from
450 nm to 475 nm for the reference structure. This result is
consistent with the overlap found in the numerical calculations
for a 2 nm InGaN layer, where the reference structure exhibits
an e-h wavefunction overlap �e−h ∼63% while the δ-structure
has �e−h ∼83% (1.36 times). However, the shift of the
emitted wavelength is very small at ∼25 nm.

These results indicate that the reduction of the thickness
of the InGaN layer and the insertion of the δ-InN layer
improves the emitter’s radiative efficiency and shifts the emit-
ted wavelength as opposed to the structure with a thicker
InGaN layer where the insertion of the δ-InN layer completely
eliminated the photoluminescence. However, it is important
to mention that the experimental structures are not ideal,
i.e., they most likely do not exhibit abrupt heterointerfaces
and neither coherently strained and uniform layers as it is
assumed for the numerical calculations. The above factors will
certainly introduce unwanted crystal defects during the growth
of the structures and shift the layers’ energy states, which will

Authorized licensed use limited to: Jonathan Wierer. Downloaded on June 03,2022 at 19:59:29 UTC from IEEE Xplore.  Restrictions apply. 



FRAGKOS et al.: DELTA InN-InGaN QWs WITH AlGaN ILs FOR LONG WAVELENGTH EMISSION 3600106

impact their properties. This is the reason for the observed
discrepancy in the absolute values of the wavelength shift
between the simulation and the experiment. Further, improving
the MOCVD process or even switching to molecular beam
epitaxy (MBE), where the uniformity of the layers and strain
are better controlled, may improve the properties of the
δ-structures. Nevertheless, the numerical calculations and the
simulations should serve as a guide for the experimental
design. The experimental trends are consistent with the trends
of the numerical calculations presented in this work.

Figure 8 depicts a relative efficiency of the δ-structure with
respect to the reference structure with a 2 nm thick InGaN
layer. The relative efficiency is defined as the integral of the
PL spectra in the range of 350 nm - 550 nm over the relative
output power of the laser (maximum output power of 350 mW
at 100%). The δ-structure exhibits almost 1.85 times higher
efficiency than the reference structure. This is an indication
that the insertion of the δ-InN layer enhanced to some degree
the wavefunction overlap, improving the internal quantum
efficiency of the active layers.

IV. CONCLUSION

In summary, an active region design of InGaN / delta-
InN quantum well with AlGaN interlayer has been proposed
to achieve high-efficiency visible light emitters at longer
wavelengths. This design enables experimental demonstration
via MOCVD because it helps to overcome the evaporation
and decomposition of the δ-InN layer during the growth of
the structure. In particular, the growth of the thin AlGaN
interlayer following the growth of the δ-InN layer at the
same temperature prevents the evaporation and decomposition
of the InN during the high-temperature GaN barrier growth.
In addition, the high-temperature GaN barrier growth anneals
the underlying layers and improves the overall quality of
the structure. The experimental trends are consistent with
the numerical calculations which show (1) a δ-structure with
relatively thick InGaN layer reduces the e-h wavefunction
overlap and reduces the efficiency of the emitter as compared
to the reference structure, and b) a δ-structure with a relatively
thin InGaN layer provides a wavelength shift towards the
and exhibits higher efficiencies compared to the reference
structure.
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