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§Northern Arizona University, USA

mairieli@ime.usp.br, a.serebrenik@tue.nl, igor@utfpr.edu.br,

{igor.steinmacher, marco.gerosa}@nau.edu

Abstract—Software bots, which are widely adopted by Open
Source Software (OSS) projects, support developers on several
activities, including code review. However, as with any new
technology adoption, bots may impact group dynamics. Since
understanding and anticipating such effects is important for
planning and management, we investigate how several activity
indicators change after the adoption of a code review bot. We
employed a regression discontinuity design on 1,194 software
projects from GitHub. Our results indicate that the adoption
of code review bots increases the number of monthly merged
pull requests, decreases monthly non-merged pull requests, and
decreases communication among developers. Practitioners and
maintainers may leverage our results to understand, or even
predict, bot effects on their projects’ social interactions.

Index Terms—Software Bots, GitHub Bots, Code Review, Open
Source Software, Software Engineering

I. INTRODUCTION

Many Open Source Software (OSS) projects employ code

review as an essential part of the development process [1].

Code review is a well-known practice for software quality

assurance [2]. In the pull-based development model, project

maintainers carefully inspect code changes and engage in

discussion with the contributors to understand and improve the

modifications before integrating them into the codebase [3].

The time maintainers spend reviewing pull requests is non-

negligible and can affect, for example, the volume of new

contributions [4] and the onboarding of newcomers [5].

In this context, software bots play a prominent role in

the code review process [6] by serving as an interface be-

tween users and other tools [7] and reducing the workload

of maintainers and contributors. Accomplishing tasks that

were previously performed solely by human developers, and

interacting in the same communication channels as their

human counterparts, bots have become new voices in the code

review conversation [8]. Code review bots guide contributors

to provide necessary information before maintainers triage the

pull requests [6].

Notoriously, though, the adoption of new technology can

bring consequences that differ from the expectations of the

technology designers and adopters [9]. Many systems intended

to serve the user ultimately add new burdens. Developers

who a priori expect technological developments to produce

significant performance improvements can be caught off-guard

by a posteriori unanticipated operational complexities [10].

Since, according to Mulder et al. [11], many effects are

not directly caused by the new technology itself, but by the

changes in human behavior that it provokes, it is important

to assess and discuss the effects of new technology on group

dynamics, and this is often neglected for software bots.

In the code review process, bots may affect existing project

activities in several ways. For example, while project main-

tainers may direct their effort to other activities, the bot could

provide poor feedback [6, 12] that leads to contributor drop-

out—indeed, lack of feedback on pull requests is known to

discourage further contributions [13].

We aim to understand how the dynamics of pull requests

of GitHub projects change following the adoption of a code

review bot. To understand what happens after the adoption of a

bot, we used a Regression Discontinuity Design [14] to model

the effects of code review bot adoption across 1, 194 OSS

projects hosted on GitHub. Hence, our main research question

is:

RQ. How do pull request activities change after a code
review bot is adopted in a project?

Extending the work of Wessel et al. [6], we investigate

changes in project activity indicators, such as the number of

pull requests merged and non-merged, number of comments,

the time to close pull requests, and the number of commits

per pull request. Using time series analysis, we account for

the longitudinal effects of the bot adoption. We also go one

step further, exploring a large sample of open-source projects

and focusing on understanding the effects of a specific bot

category.

Analyzing the statistical models, we found that more pull

requests are merged into the codebase after the code review

bot adoption, and there is less communication between contrib-

utors and maintainers. Considering non-merged pull requests,

after bot adoption, projects have less monthly non-merged pull

requests, and faster pull requests rejections.

In this paper, we make the following contributions: (i)

identification of changes in project activity indicators after

the adoption of a code review bot; and (ii) an elucidation

of how the introduction of a bot can impact OSS projects.

1

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00011

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on June 03,2022 at 20:12:40 UTC from IEEE Xplore.  Restrictions apply. 



These contributions aim to help practitioners and maintainers

understand the bots’ effects on a project, especially to avoid

the ones that they consider undesirable. Additionally, our

findings may guide developers to consider the implications

of new bots as they design them.

II. EXPLORATORY CASE STUDY

As little is known about the effects of code review bots’

adoption in the dynamics of pull requests, we conducted an

exploratory case study [15, 16] to formulate hypotheses to

further investigate in our main study.

A. Case Study Method

To carry out our exploratory case study, we selected two

projects that we were aware of that used code review bots for

at least a couple of years: the Julia programming language

project1 and CakePHP,2 a web development framework for

PHP. Both projects have popular and active repositories—Julia

has more than 26.1k stars, 3.8k forks, 17k pull requests, and

46.4k commits, while CakePHP has more than 8.1k stars,

3.4k forks, 8.6k pull requests, 40.9k commits, and is used

by 10k projects. Both projects adopt a code review bot named

Codecov, which posted the first comments on pull requests to

the Julia project in July 2016 and CakePHP in April 2016.

After selecting the projects, we analyzed data from one

year before and one year after the bot adoption, using the

data available at the GHTorrent dataset [17]. During this time

frame, the only bot adopted by Julia and CakePHP was the

Codecov bot. Similar to previous work [18], we exclude 30
days around the bot adoption to avoid the influence of the

instability caused during this period. Afterward, we aggregated

individual pull request data into monthly periods, considering

12 months before and after the bot introduction. We choose

the month time frame based on previous literature [18, 19, 20].

All metrics were aggregated based on the month of the pull

request being closed/merged.

We considered the same activity indicators used in the

previous work by Wessel et al. [6]:

Merged/non-merged pull requests: the number of monthly

contributions (pull requests) that have been merged, or closed

but not merged into the project, computed over all closed pull

requests in each time frame.

Comments on merged/non-merged pull requests: the median

number of monthly comments—excluding bot comments—

computed over all merged and non-merged pull requests in

each time frame. We used the median because the distribution

is skewed.

Time-to-merge/time-to-close pull requests: the median of

monthly pull request latency (in hours), computed as the

difference between the time when the pull request was closed

and the time when it was opened. The median is computed

using all merged and non-merged pull requests in each time

frame. We used the median because the distribution is skewed.

1https://github.com/JuliaLang/julia
2https://github.com/cakephp/cakephp

Fig. 1. Monthly merged and non-merged pull requests.

Commits of merged/non-merged pull requests: the median of

monthly commits computed over all merged and non-merged

pull requests in each time frame. We use the median because

the distribution is skewed.

We ran statistical tests to compare the activity indicators.

distributions before and after the bot adoption. As the sample

is small, and there is no critical mass of data points around the

bot introduction, we used the non-parametric Mann-Whitney-

Wilcoxon test [21]. In this context, the null hypothesis (H0) is

that the distributions pre- and post-adoption are the same, and

the alternative hypothesis (H1) is that these distributions differ.

We also used Cliff’s Delta [22] to quantify the difference

between these groups of observations beyond p-value inter-

pretation. Moreover, we inspected the monthly distribution of

each metric to search for indications of change.

As aforementioned, the case studies helped us to formulate

hypotheses for the main study, which comprised more than

a thousand projects. We formulated hypotheses whenever we

observed changes in the indicators for at least one of the two

projects we analyzed in the case study.

B. Case Study Results

The number of merged pull requests increased for both

projects (Julia: p-value 0.0003, δ = −0.87; CakePHP: p-

value 0.001, δ = −0.76) while the non-merged pull requests

decreased for both projects (Julia: p-value 0.00007, δ = 0.87;

CakePHP: p-value 0.00008, δ = 0.95). Figure 1 shows the

monthly number of merged and non-merged pull requests, top

and bottom respectively, before and after the bot adoption for

both projects. Based on these findings, we hypothesize that:

H1.1 The number of monthly merged pull requests in-
creases after the introduction of a code review bot.

H1.2 The number of monthly non-merged pull requests
decreases after the introduction of a code review bot.

Figure 2 shows the monthly median of comments on merged

and non-merged pull requests, respectively. CakePHP showed
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Fig. 2. Monthly comments on merged and non-merged pull requests.

statistically significant differences between pre- and post-

adoption distributions. The number of comments increased
for merged pull requests (p-value=0.01, δ = −0.56) and also

for non-merged ones (p-value=0.03, δ = −0.50) with a large

effect size. Thus, we hypothesize that:

H2.1 The adoption of code review bots is associated with
an increase in the monthly number of comments for merged
pull requests.

H2.2 The number of monthly comments on non-merged
pull requests increases after the adoption of a code review
bot.

Fig. 3. Monthly median time to merge and reject pull requests.

The median time to merge pull requests increased for both

projects (Julia: p-value 0.0003, δ = −1.00; CakePHP: p-value

0.000001, δ = −0.98). Considering non-merged pull requests,

the difference between pre- and post-adoption is statistically

significant only for Julia. For this project, the median time to

close pull requests increased (p-value 0.00007) with a large

effect size (δ = −0.65). The distribution can be seen in

Figure 3. Therefore, we hypothesize that:

H3.1 There is an increase in the monthly time to merge
pull requests after the introduction of code review bots.

H3.2 There is an increase in the monthly time to reject
pull requests after the adoption of a code review bot.

Fig. 4. Monthly commits on merged and non-merged pull requests.

Investigating the number of pull request commits per month

(see Figure 4), we note that the medians before the adop-

tion are quite stable, especially for merged pull requests.

In comparison, after adoption, we observe more variance.

The difference is statistically significant only for CakePHP,

for which the number of pull request commits increased for

merged pull requests (p-value=0.002, δ = −0.58) and for non-

merged pull requests (p-value=0.002, δ = −0.69) with a large

effect size. Based on this, we posit:

H4.1 There is an increase in the monthly number of
commits for merged pull requests after code review bot
adoption.

H4.2 There is an increase in the monthly number of
commits for non-merged pull requests after code review bot
adoption.

In conclusion, differently than Wessel et al. [6], we observe

statistically significant differences for all four activity indica-

tors we investigated in at least one of the two projects. Based

on these observations, we formulated hypotheses to be further

investigated in our main study, comprising a large number of

projects and employed the regression discontinuity design.

III. MAIN STUDY DESIGN

In the following, we present the statistical approach and data

collection procedures for the main study.

A. Statistical Approach

Considering the hypotheses formulated in the case study, in

our main study, we employed time series analysis to account
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for the longitudinal effects of the bot adoption. We employed

Regression Discontinuity Design (RDD) [14, 23], that has

been applied in the context of software engineering in the

past [18, 20]. RDD is a technique used to model the extent of

a discontinuity at the moment of intervention and long after

the intervention. The technique is based on the assumption that

if the intervention does not affect the outcome, there would be

no discontinuity, and the outcome would be continuous over

time [24]. The statistical model behind RDD is

yi = α+ β · timei + γ · interventioni +

δ · time after interventioni + η · controlsi + εi

where i indicates the observations for a given project. To

model the passage of time as well as the bot introduction, we

include three additional variables: time, time after intervention,

and intervention. The time variable is measured as months

at the time j from the start to the end of our observation

period for each project (24 months). The intervention variable

is a binary value used to indicate whether the time j occurs

before (intervention = 0) or after (intervention = 1) adoption

event. The time after intervention variable counts the number

of months at time j since the bot adoption, and the variable

is set up to 0 before adoption.

The controlsi variables enable the analysis of bot adoption

effects, rather than confounding the effects that influence the

dependent variables. For observations before the intervention,

holding controls constant, the resulting regression line has a

slope of β, and after the intervention β + δ. The size of the

intervention effect is measured as the difference equal to γ
between the two regression values of yi at the moment of the

intervention.

Considering that we are interested in the effects of code

review bots on the monthly trend of the number of pull

requests, number of comments, time-to-close pull requests,

and number of commits over a pull request, and all these for

both merged and non-merged pull requests, we fitted eight

models (2 cases x 4 variables). To balance false-positives and

false-negatives, we report the corrected p-values after apply-

ing multiple corrections using the method of Benjamini and

Hochberg [25]. We implemented the RDD models as a mixed-

effects linear regression using the R package lmerTest [26].

To capture project-to-project and language-to-language vari-

ability, we modeled project name and programming language
as random effects [27]. By modeling these features as random

effects, we can account for and explain different behaviors

observed across projects or programming languages [18]. We

evaluate the model fit using marginal (R2
m) and conditional

(R2
c) scores, as described by Nakagawa and Schielzeth [28].

The R2
m can be interpreted as the variance explained by the

fixed effects alone, and R2
c as the variance explained by the

fixed and random effects together.

In mixed-effects regression, the variables used to model the

intervention along with the other fixed effects are aggregated

across all projects, resulting in coefficients useful for inter-

pretation. The interpretation of these regression coefficients

supports the discussion of the intervention and its effects, if

any. Thus, we report the significant coefficients (p < 0.05)

in the regression as well as their variance, obtained using

ANOVA. In addition, we log transform the fixed effects and

dependent variables that have high variance [29]. We also

account for multicollinearity, excluding any fixed effects for

which the variance inflation factor (VIF) is higher than 5 [29].

B. Data Collection

1) Candidate projects: To identify open-source software

projects hosted on GitHub that at some point had adopted

a code review bot, we queried the GHTorrent dataset [17] and

filtered projects in which at least one pull request comment

was made by one of the code review bots identified by Wessel

et al. [6]. Following the method used by Zhao et al. [18] to

assemble a time series, we considered only those projects that

had been active for at least one year before and one year after

the bot adoption. We found 4, 767 projects that adopted at least

one of the code review bots. For each project, we collected

data on all its merged and non-merged pull requests.

2) Aggregating projects variables: Similar to the ex-

ploratory case study (see Section II), we aggregated the project

data in monthly time frames and collected the four variables

we expected to be influenced by the introduction of the bot:

number of merged and non-merged pull requests, median

number of comments, median time-to-close pull requests, and

median number of commits. All these variables were computed

over pull requests that have been merged and non-merged in

a time frame.

We also collected six control variables, using the GHTorrent

dataset [17]:

Project name: the name of the project, used to identify the

project on GitHub. We account for the fact that different

projects can lead to different contribution patterns.

Programming language: the primary project programming

language as automatically determined and provided by the

GitHub. We consider that projects with different programming

languages can lead to different activities and contribution

patterns.

Time since the first pull request: in months, computed since

the earliest recorded pull request in the entire project history.

We use this to capture the difference in adopting the bot earlier

or later in the project life cycle, after the projects started to

use pull requests.

Total number of pull request authors: as a proxy for the size

of the project community, we count how many contributors

submitted pull requests to the project.

Total number of commits: as a proxy for the activity level of

a project, we compute the total number of commits.

Number of pull requests opened: the number of contributions

(pull requests) received per month by the project. We expect

that projects with a high number of contributions also observe

a high number of comments, latency, commits, and merged

and non-merged contributions.
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TABLE I
AN OVERVIEW OF THE STUDIED BOTS

Bot name GitHub user Link # of projects

Ansible’s issue bot ansibot https://github.com/ansible/ansibullbot 1
Elastic Machine elasticmachine https://github.com/elasticmachine 3
Codecov codecov-io https://github.com/marketplace/codecov 460
Coveralls coveralls https://github.com/coveralls 730

Total of 1, 194 under study

3) Filtering the final dataset: After excluding the period

of instability (30 days around the adoption), we inspected the

dataset and found 223 projects with no comments authored by

any of the studied bots. We manually checked 30% of these

cases and concluded that some projects only added the bot for

a testing period and then disabled it. We removed these 223
projects from our dataset.

We also checked the activity level of the candidate projects,

since many projects on GitHub are inactive [30]. We excluded

from our dataset projects without at least a six month period

of consistent pull request activity during the one-year period

before and after bot adoption. After applying this filter, a set of

1, 740 GitHub software projects remained. To ensure that we

observed the effects of each bot separately, we also excluded

from our dataset 78 projects that adopted more than one of

the studied bots and 196 projects that used non-code review

bots. In addition, we checked the activity level of the bots

on the candidate projects. We excluded 272 projects that did

not received any comments during the last four months. After

applying all filters, 1, 194 GitHub software projects remained.

Table I shows the number of projects per bot. All of these

four bots perform similar tasks on pull requests—provide

comments on pull requests about code coverage.

IV. MAIN STUDY RESULTS

In this section, we discuss the effects of code review

bot adoption in project activities along four dimensions: (i)

accepted and rejected pull requests, (ii) communication, (iii)

pull request resolution efficiency, and (iv) modification effort.

A. Effects in Merged and Non-merged Pull Requests

We start by investigating the effects of bot adoption on the

number of merged and non-merged pull requests. From the

exploratory case study, we hypothesized that the use of code

review bots is associated with an increase in the number of

monthly merged pull requests and a decrease in the number

of monthly non-merged pull requests. We fit two mixed-effect

RDD models, as described in Section III-A. For these models,

the number of merged/non-merged pull requests per month

is the dependent variable. Table II summarizes the results of

these two RDD models. In addition to the model coefficients,

the table also shows the sum of squares, with a variance

explained for each variable.

Analyzing the model for merged pull requests, we found that

the fixed-effects part fits the data well (R2
m = 0.68). However,

considering R2
c = 0.75, variability also appears from project-

to-project and language-to-language. Among the fixed effects,

we observe that the number of monthly pull requests explains

most of the variability in the model. As expected, this indicates

that projects receiving more contributions tend to have more

merged pull requests, with other variables held constant.

Furthermore, the statistical significance of the time series

predictors indicates that the adoption of code review bots

affected the trend in the number of merged pull requests.

We note an increasing trend before adoption; a statistically

significant discontinuity at the adoption time; and a positive

trend after adoption that indicates that the number of merged

pull requests increased even faster.

Similar to the previous model, the fixed-effect part of the

non-merged pull requests model fits the data well (R2
m =

0.67), even though a considerable amount of variability is

explained by random effects (R2
c = 0.74). We note similar

results on fixed effects: projects receiving more contributions

tend to have more non-merged pull requests. All time-series

predictors for this model are statistically significant, showing

a measurable effect of the code review bot’s adoption on the

time to review and accept a pull request. We note a decreasing

trend before adoption, a statistically significant discontinuity

at the adoption time, and a slight acceleration after adoption

in the decreasing time trend seen before adoption.

Therefore, based on models for merged and non-merged

pull requests, we confirm both H1.1 and H1.2.

Overall, there are more monthly merged pull requests and

fewer monthly non-merged pull requests after adopting a

code review bot.

B. Effects in Communication

In the exploratory case study, we hypothesized that bot

adoption increases monthly human communication on pull

requests for both merged and non-merged pull requests. To

statistically investigate this, we fit one model to merged pull

requests and another to non-merged ones. The median of pull
request comments per month is the dependent variable, while

number of monthly pull requests, median of time-to-close pull
requests, and median of pull request commits are independent

variables. Table III shows the results of the fitted models.

Considering the model of comments on merged pull re-

quests, we found that the model taking into account only fixed

effects (R2
m = 0.50) fits the data well. However, there is also
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TABLE II
THE EFFECTS OF CODE REVIEW BOTS ON PRS. THE RESPONSE IS LOG(NUMBER OF MERGED/NON-MERGED PRS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept -0.262*** -0.574***
TimeSinceFirstPullRequest 0.00004** 4.3 -0.0001*** 2.4
log(TotalPullRequestAuthors) -0.094*** 171.8 0.086*** 775.7
log(TotalCommits) 0.042*** 484.0 0.068*** 428.6
log(OpenedPullRequests) 0.494*** 8227.1 0.388*** 4958.5
log(PullRequestComments) 0.433*** 2954.3 0.389*** 2341.0
log(PullRequestCommits) 0.272*** 721.0 0.165*** 255.5
time 0.004*** 203.2 -0.004*** 376.1
interventionTrue 0.095*** 16.8 -0.163*** 48.4
time after intervention 0.004** 1.7 -0.004** 1.6

Marginal R2 0.68 0.67
Conditional R2 0.75 0.74

*** p < 0.001, ** p < 0.01, * p < 0.05

TABLE III
THE EFFECT OF CODE REVIEW BOTS ON PULL REQUEST COMMENTS. THE RESPONSE IS LOG(MEDIAN OF COMMENTS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept -0.096*** -0.123***
TimeSinceFirstPullRequest 0.00000 20.0 -0.00002* 24.4
log(TotalPullRequestAuthors) 0.053*** 163.6 0.069*** 621.1
log(TotalCommits) -0.014*** 36.6 -0.009** 106.0
log(OpenedPullRequests) 0.079*** 1002.8 0.072*** 1362.9
log(TimeToClosePullRequests) 0.093*** 3239.7 0.101*** 4615.5
log(PullRequestCommits) 0.093*** 55.0 0.123*** 119.4
time -0.001 1.0 -0.001 7.2
interventionTrue 0.023** 0.8 -0.025*** 1.1
time after intervention -0.002* 0.5 0.0001 0.0

Marginal R2 0.50 0.66
Conditional R2 0.56 0.70

*** p < 0.001, ** p < 0.01, * p < 0.05

variability from the random effects (R2
c = 0.56). We observe

that time-to-close pull requests explains the largest amount of
variability in the model, indicating that the communication

during the pull request review is strongly associated with

the time to merge it. Regarding the bot effects, there is

a discontinuity at adoption time, followed by a statistically

significant decrease after the bots introduction.

As above, the model of non-merged pull requests fits

the data well (R2
m = 0.66) and there is also variability

explained by the random variables (R2
c = 0.70). This model

also suggests that communication during the pull request

review is strongly associated with the time to reject the pull

request. Table III shows that the effect of bot adoption on

non-merged pull requests differs from the effect on merged

ones. The statistical significance of the intervention coefficient

indicates that the adoption of code review bots slightly affected

communication; however, there is no bot effect as time passes.

Since our model for merged pull requests shows a decrease

in the number of comments after bot adoption, we rejected

H2.1. Still, our model for non-merged pull requests did not

show any bot effect as time passes, then we also reject H2.2.

On average, there is less monthly communication on

merged pull requests after adopting a code review bot.

However, the monthly communication on non-merged pull

requests does not change as time passes.

C. Effects in Pull Request Resolution Efficiency

In the exploratory case study, we found that the monthly

time to close pull requests increased after bot adoption. Then,

we fitted two RDD models, for both merged and non-merged

pull requests, where median of time to close pull requests per

month is the dependent variable. The results are shown in

Table IV.

Analyzing the results to the effect of code review bots on the

latency to merge pull requests, we found that combined fixed-

and-random effects fit the data better than the fixed effects.

Although several variables affect the trends of pull request

latency, communication during the pull requests is responsible

for most of the variability in the data. This indicates the ex-

pected results: the more effort contributors expend discussing

the contribution, the more time the contribution takes to merge.

The number of commits also explains the amount of data
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TABLE IV
THE EFFECT OF CODE REVIEW BOTS ON TIME-TO-CLOSE PRS. THE RESPONSE IS LOG(MEDIAN OF TIME-TO-CLOSE PRS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept 0.377** 0.221
TimeSinceFirstPullRequest 0.0002** 452 0.00001 891
log(TotalPullRequestAuthors) 0.208*** 2186 0.166*** 21320
log(TotalCommits) -0.145*** 824 -0.057** 4770
log(OpenedPullRequests) 0.120*** 34444 0.240*** 50376
log(PullRequestComments) 2.472*** 117571 3.326*** 176312
log(PullRequestCommits) 2.275*** 47117 1.721*** 26733
time 0.027*** 3007 0.012** 56
interventionTrue 0.256*** 128 -0.056 9
time after intervention 0.009 6 -0.028*** 66

Marginal R2 0.61 0.69
Conditional R2 0.67 0.72

*** p < 0.001, ** p < 0.01, * p < 0.05

variability, since a project with many changes needs more time

to review and merge them. Moreover, we observe an increasing

trend before adoption, followed by a statistically significant

discontinuity at the adoption time. After adoption, however,

there is no bot effect on the time to merge pull requests

since the time after intervention coefficient is not statistically

significant.

Turning to the model of non-merged pull requests, we

note that it fits the data well (R2
m = 0.69), and there is

also a variability explained by the random variables (R2
c =

0.72). As above, communication during the pull requests is

responsible for most of the variability encountered in the

results. In this model, the number of received contributions

is important to explain variability in the data—projects with

many contributions need more time to review and reject them.

The effect of bot adoption on the time spent to reject pull

requests differs from the previous model. Regarding the time

series predictors, the model did not detect any discontinuity

at adoption time. However, the positive trend in the latency to

reject pull requests before the bot adoption is reversed, toward

a decrease after adoption.

Thus, based on regression results for merged and non-

merged pull requests, we reject both H3.1 and H3.2.

After adopting the code review bot, on average, less time

is required from maintainers to review and reject pull

requests. However, the time required to review and accept a

pull request does not change after code review bot adoption.

D. Effects in Commits

Finally, we studied whether code review bot adoption affects

the number of commits made before and during the pull

request review. Our hypothesis is that the monthly number of

commits increases with the introduction of code review bots.

Again, we fitted two models for merged and non-merged pull

requests, where the median of pull request commits per month

is the dependent variable. The results are shown in Table V.

Analyzing the model of commits on merged pull requests,

we found that the combined fixed-and-random effects (R2
c =

0.48) fit the data better than the fixed effects (R2
m = 0.34),

showing that most of the explained variability in the data

is associated with project-to-project and language-to-language

variability, rather than the fixed effects. The statistical signifi-

cance of the intervention coefficient indicates that the adoption

of code review bots affected the number of commits only at

the moment of adoption. Additionally, from Table V, we can

also observe that the number of pull request comments per

month explains most of the variability in the result. This result

suggests that the more comments there are, the more commits

there will be, as discussed above.

Investigating the results of the non-merged pull request

model, we found that the model fits the data well and that

the random effects are again important in this regard. We

also observe from Table V that the adoption of a bot is

not associated with the number of commits on non-merged

pull requests, since intervention and time after intervention
coefficients are not statistically significant.

Therefore, based on models for merged and non-merged

pull requests, we reject both H4.1 and H4.2.

After adopting a code review bot, the monthly trend in the

median of pull request commits do not change for both

merged and non-merged pull requests.

V. DISCUSSION

Adding a code review bot to a project can represent the de-

sire to enhance feedback to stakeholders, helping contributors

and maintainers, and achieving improved interpersonal com-

munication, as already discussed by Storey and Zagalsky [7].

Still, code review bots can guide contributors toward detecting

change effects before maintainers triage the pull requests [6],

ensuring high-quality standards. In this paper, following the

study of Wessel et al. [6], we focused on monthly activity

indicators that are not primarily related to bot adoption, but
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TABLE V
THE EFFECT OF CODE REVIEW BOTS ON PULL REQUEST COMMITS. THE RESPONSE IS LOG(MEDIAN OF PULL REQUEST COMMITS) PER MONTH.

Merged Pull Requests Non-merged Pull Requests

Coefficients Sum of Squares Coefficients Sum of Squares

Intercept 0.358*** 0.063
TimeSinceFirstPullRequest 0.0001*** 0.30 0.00002 5.7
log(TotalPullRequestAuthors) -0.144*** 0.02 -0.058*** 202.2
log(TotalCommits) 0.017*** 74.04 0.028*** 171.9
log(OpenedPullRequests) 0.163*** 1513.60 0.125*** 1502.9
log(PullRequestComments) 0.520*** 2375.74 0.600*** 3306.3
time 0.001 138.60 -0.003** 8.7
interventionTrue 0.137*** 33.57 0.003 0.0
time after intervention 0.001 0.05 0.001 0.1

Marginal R2 0.34 0.42
Conditional R2 0.48 0.50

*** p < 0.001, ** p < 0.01, * p < 0.05

might be impacted by it. We found that half of them have a

statistically significant effect on the review process.

According to the regression results, the monthly number

of merged pull requests continued increasing, even faster,

after the code review bot adoption. This would indicate that

contributors started to have faster and clearer feedback on what

they need to do to have their contribution accepted. In addition,

the number of non-merged pull requests continued to decrease,

even faster, after bot adoption. Therefore, these models showed

that after adopting the bot, maintainers started to deal with an

increasing influx of contributions ready to be further reviewed

and integrated into the codebase. On the one hand, bots helped

maintainers to focus on the non-trivial review tasks. On the

other hand, if a project did not have the workforce to handle

these incoming contributions it could become a maintenance

burden. These findings confirm the hypothesis we formulated

based on the exploratory case study.

In addition, we noticed that just after the adoption of the

code review bot the median number of comments slightly

increased for merged pull requests. The number of comments

on these pull requests could increase due to contributions

that drastically reduced the coverage, stimulating discussions

between maintainers and contributors. This can happen es-

pecially at the beginning of bot adoption, since contributors

might be unfamiliar with bot feedback. After that initial period,

we found that the median number of comments on merged

pull requests decreased each month. Considering non-merged

pull requests, there is no significant change in the number of

comments as time passes. These results differ from the case

study results, indicating that individual projects reveal different

results, likely caused by other project-specific questions.

From the regression results, we also noticed an increase in

the time spent to merge pull requests just after bot adoption.

It makes sense from the contributors’ side, since the bot intro-

duces a secondary evaluation step. Especially at the beginning

of the adoption, the code review bot might increase the time

to merge pull requests due to the need to learn how to meet all

bot requirements and obtain a stable code. Maintainers’ might

also deal with the increase in the volume of contributions ready

to review and merge impacting the time spent to review all of

them. Further, the regression model shows a decrease in the

time spent to review and reject pull requests. Overall, this

may indicate that, after the bot adoption, maintainers stopped

to expend efforts on pull requests that are not likely to be

integrated into the codebase.

As we found in the model of comments on merged pull

requests, just after the adoption of the bot the median number

of pull request commits increased. The bot provides imme-

diate feedback in terms of proof of failure, which can lead

contributors to submit code modifications to change the bot

feedback and have their contribution accepted. Overall, the

regression models reveal that the monthly number of commits

did not change for both merged and non-merged pull requests

as time passes. These results differ from the case study results.

Nevertheless, even if there is an increase in the number of com-

mits reported in the case study, overall the monthly number of

commits are quite stable. For example, for CakePHP it varies

from 1 to 2 for merged pull requests, and 1 to 4 for non-merged

pull requests. Additionally, in the main study, we account for

control variables, rather than analyzing the monthly number of

commits interdependently. As presented in Section IV-D, for

example, the number of comments on pull requests explains

the largest amount of variability in these models, indicating

that the number of commits is strongly associated with the

communication during the pull request review.

Indeed, the dynamics of pull requests of GitHub projects

changed following the adoption of code review bots. This

change in the pull request dynamics can directly affect con-

tributors’ and maintainers’ work. Hence, understanding how

the code review bot adoption affects a project is important for

practitioners and open-source maintainers, mainly to avoid un-

expected or even undesired effects. Awareness of unexpected

bot effects can lead maintainers to take countermeasures and/or

decide whether or not to use a code review bot.

VI. RELATED WORK

Software bots support activities in software engineering,

such as communication and decision-making [7]. Bots are
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particularly relevant in social-coding platforms [31], such

as GitHub, where the pull-based model [30] offers several

opportunities for community engagement, but at the same time

increases the workload for maintainers [32, 33]. Thus, OSS

communities have been adopting bots to reduce the workload

by automating repetitive tasks on GitHub pull requests [6].

Bots are software applications that integrate their work with

human tasks, serving as interfaces between users and other

tools [34, 35], and providing additional value to the human

users [36]. Software bots frequently reside on platforms where

users work and interact with other users [37]. On GitHub, bots

have user profiles to interact with the developers, executing

well-defined tasks [6].

Storey et al. [7] and Paikari and van der Hoek [38] highlight

that the potentially negative impact of task automation through

bots is being overlooked. Storey et al. [7] claim that bots are

often used to avoid interruptions to developers’ work, but may

lead to other, less obvious distractions. While previous studies

provide recommendations on how to develop bots and evaluate

bots’ capabilities and performance, they do not draw attention

to the impact of bot adoption on software development or how

software engineers perceive the bots’ impact. Since bots are

seen as new team members [8], we expected that bots would

impact group dynamics in a way that differs from non-bot

forms of automation.

Wessel et al. [6] investigated the usage and impact of soft-

ware bots to support contributors and maintainers with pull re-

quests. After identifying bots on popular GitHub repositories,

the authors classified these bots into 13 categories according to

the tasks they perform. The third most frequently used bots are

code review bots. According to Wessel et al. [6], code review

bots are software bots that analyze code style, test coverage,

code quality, and smells. As an interface between human

developers and other tools, code review bots generally serve

to report the feedback of a third-party service into the GitHub

platform. In a preliminary study, Wessel et al. [39] conducted

a survey with 127 open source maintainers experienced in

using code review bots. While maintainers report that bots

satisfied their expectations regarding enhancing developers’

feedback, reducing maintenance burden, and enforcing code

coverage, they also perceived unexpected effects of having

a bot, including communication noise, more time spent with

tests, newcomers’ dropout.

Prior work has also investigated the impact of CI and code

review tools on GitHub projects [18, 19, 20] across time.

While Zhao et al. [18] and Cassee et al. [20] focused on the

impact of the Travis CI tool’s introduction on development

practices, Kavaler et al. [19] turned to the impact of linters,

dependency managers, and coverage reporter tools. Our work

extends this literature by providing a more in-depth investiga-

tion of the effects of code review bot adoption.

VII. THREATS TO VALIDITY

While our results only apply to OSS projects hosted on

GitHub, many relevant projects are currently hosted on this

platform [40]. Our selection of projects also limits our results.

Therefore, even though we considered a large number of

projects and our results indicates general trends, we recom-

mend running segmented analyses when applying our results

to a given project. For replication purposes, we made our data

and source code publicly available.3

One of the constructs in our study is the “first bot comment

on a pull request” as a proxy to the “time of bot adoption”

on a project. A more precise definition of this adoption

time would have involved the integration date, which is not

provided by the GitHub API. Hence, the validity of the “time

of bot adoption” construct might have been threatened by the

definition. We reduce this threat by excluding the period of 15
days immediately before and after adoption from all analyses.

Moreover, Kalliamvakou et al. [41] stated that many merged

pull requests appear non-merged, which could also affect the

construct validity of our study since we consider the number

of merged pull requests.

To reduce internal threats, we applied multiple data filtering

steps to the statistical models. To confirm the robustness of

our models, we varied the data filtering criteria, for example,

by filtering projects that did not receive pull requests in all

months, instead of at least 6 months, and observed similar

phenomena. Projects that disabled the bot during the period

we considered might be a threat. However, detecting whether

a project disabled or not the bot is challenging. The GitHub

API does not provide this information. We reduce this threat

by removing from our dataset projects without bot comments

during the last four months of analysis. Additionally, we added

several controls that might influence the independent variables

to reduce confounding factors. However, in addition to the

already identified dependent variables, there might be other

factors that influence the activities related to pull requests.

These factors could include the adoption of other code review

bots, or even other types of bots and non-bot automation. To

treat this, we removed projects that adopted more than one

bot, based on the list of bots provided by Wessel et al. [6].

VIII. CONCLUSION

In this work, we conducted an exploratory empirical inves-

tigation of the effects of adopting bots to support the code

review process on pull requests. While several code review

bots have been proposed and adopted by the OSS community,

relatively little has been done to evaluate the state of practice.

To understand the impact on practice, we statistically analyzed

data from 1, 194 open source projects hosted on GitHub.

By modeling the data around the introduction of a code re-

view bot, we notice different results from merged pull requests

and non-merged ones. We see that the monthly number of

merged pull requests of a project increases after the adoption

of a code review bot, requiring less communication between

maintainers and contributors. At the same time, code review

bots can lead projects to reject fewer pull requests.

Practitioners and open-source maintainers may use our

results to understand how group dynamics can be affected

3https://zenodo.org/record/3858029#.Xs15vilKhhE
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by the introduction of a code review bot, designing counter-

measurements to avoid undesired effects. Future work includes

the qualitative investigation of the effects of adopting a bot and

the expansion of our analysis for other types of bots, activity

indicators, and social coding platforms.
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