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ALGEBRAICITY OF THE METRIC TANGENT CONES AND

EQUIVARIANT K-STABILITY

CHI LI, XIAOWEI WANG, AND CHENYANG XU

1. Introduction

We work over the field C of complex numbers. This paper is a sequel to the
works in [29, 35, 36]. Together with the previous works, we complete the proof of
Donaldson-Sun’s conjecture [13, Conjecture 3.22] (see Theorem 1.1), which says
that as an affine variety, the metric tangent cone C := Co(M∞, d∞) of any point
o on a Gromov-Hausdorff (GH) limit (M∞, d∞) of a sequence of Kähler-Einstein
Fano manifolds only depends on the algebraic structure of the singularity and is
independent of the metric structure. Previously in [35] we proved that the interme-
diate semistable cone W in Donaldson-Sun’s work (see [13]) only depends on the
algebraic structure.

Our strategy is to systematically use minimizers of the normalized volume func-
tional (defined in [31]) to characterize valuations associated to metric tangent cones.
Aiming at a vast generalization of the original differential geometric approach, we
try to algebraize the construction of [13] by giving a completely local definition
of a two-step degeneration process for an arbitrary klt singularity. This has been
done under suitable assumptions about the minimizer of the normalized volume. In
fact, these assumptions yield the first step of the degeneration and our current note
draws a complete picture of the second step in the degeneration. In particular, with
the help of the metric structures, we now have a rather satisfactory understanding
of this process for those singularities appearing on the GH-limit M∞. We will give
more details in the following discussion.

1.1. Main results. For the first step of the degeneration, in [35], we showed that
the valuation considered in [13], whose original definition depends on the metric,
is a minimizer of the normalized volume (see 2.3) and such a minimizer is uniquely
determined by the underlying algebraic structure. In fact, we proved in [35] that
for any klt singularity (X, x), the real valuation v ∈ ValX,x that minimizes the
normalized volume functional and satisfies the following two conditions is unique
up to rescaling: (a) v is quasi-monomial; (b) v has a finitely generated associated
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1176 CHI LI ET AL.

graded ring. These two conditions are satisfied by the valuation constructed via
Kähler-Einstein metric structure in [13]. So this result allows us to recover the
semistable cone W , which is defined by the associated graded ring of v, by using
the minimizing valuation and hence verifies the first part of [13, Conjecture 3.22].
Note that it was conjectured in [29] that minimizing valuations always satisfy these
two conditions. 1

We know that the semistable cone W degenerates to the metric tangent cone
C and is K-semistable (see [13] and [35, Theorem 5.5]). In the current paper, we
complete the picture by showing that the metric tangent cone C is the unique K-
polystable degeneration of W . In particular, this implies that C depends only on
the algebraic structure of W , which itself only depends on the algebraic structure
of o ∈ M∞.

Theorem 1.1 ([13, Conjecture 3.22]). The metric tangent cone C of o ∈ M∞ on a
GH-limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure
of o ∈ M∞.

As in [13], the assumption on M∞ can be weakened, e.g. M∞ is a GH-limit of
a sequence of projective manifolds X with fixed volumes, bounded Ricci curvature
and diameter. All arguments extend verbatim. One can expect Theorem 1.1 will
significantly simplify the determination of metric tangent cones in examples (see
e.g. [19]).

Since a Fano cone singularity (C, ξ) with a Ricci-flat Kähler cone metric is aways
K-polystable (see [9, Theorem 7.1] and also Corollary A.4), once knowing that
W depends only on the algebraic structure of o ∈ M∞, Theorem 1.1 is just a
consequence of the following more general result by letting (X,D, ξ0) = (W, ∅, ξ0):

Theorem 1.2 (Existence and uniqueness of K-polystable degenerations: log Fano
cones). Given a K-semistable log Fano cone singularity (X,D, ξ0), there always
exists a special test configuration (X ,D, ξ0; η) that degenerates (X,D, ξ0) to a K-
polystable log Fano cone singularity (X0, D0, ξ0). Furthermore, such (X0, D0, ξ0) is
uniquely determined by (X,D, ξ0) up to isomorphism.

If we restrict ourselves to the quasi-regular case of log Fano cones, then we obtain
the following result for log Fano varieties.

Theorem 1.3 (Existence and uniqueness of K-polystable degenerations: log Fano
varieties). Given a K-semistable log Fano variety (S,B), there always exists a spe-
cial test configuration (S,B) that degenerates (S,B) to a K-polystable pair (S0, B0).
Furthermore, such log Fano pair (S0, B0) is uniquely determined by (S,B) up to iso-
morphism.

We note that for the special case of Q-Gorenstein smoothable Fano varieties, this
was proved in [33, 7.1] based on an analytic results on the existence and uniqueness
of Gromov-Hausdorff limit for a flat family of Fano Kähler-Einstein manifolds (see
also [42]). We emphasize here that our proof of Theorem 1.2 is new and uses
only algebro-geometric arguments. Moreover, our techniques also give rise to an
equivariant criterion for testing K-polystability.

1After the submission of this paper, the quasi-monomial property has been proved in [46].
More recently, the uniqueness of minimizers (up to rescaling) is proved in [47] unconditionally.
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ALGEBRAICITY OF THE METRIC TANGENT CONES 1177

Theorem 1.4 (T -equivariant K-stability=K-stability). Let (S,B) be a log Fano
variety with an action by a torus group T ∼= (C∗)d. Then (S,B) is K-polystable if
and only if it is T -equivariantly K-polystable, that is for all T -equivariant special
test configuration (S,B), the generalized Futaki invariant Fut(S,B) ≥ 0, and the
equality holds only when the test configuration is a product, i.e. (S,B) ∼= (S,B)×A1.

Note that Theorem 1.4 is proved for smooth Fano manifolds in [10] for general
reductive group actions using analytic approach. Our result works for any singular
Q-Fano varieties. This combined the work [20] allows one to effectively check the
K-stability of Q-Fano T -varieties of complexity one. 2

We will first deal with the quasi-regular case, i.e. Theorem 1.3. The key tech-
nical result in its proof is Theorem 3.2, which says that if (S(i),B(i))(i = 1, 2)
are two special test configurations of the log Fano pair (S,B) with central fibres

(S(i)
0 , B(i)

0 ) and vanishing Futaki invariants, then there exist special test configu-

rations (S ′(i), B′(i)) of (S(i)
0 , B(i)

0 ) such that (S ′(i), B′(i)) have isomorphic central
fibers. In practice, we will work on the cones: we first take the cone over (S,B) to
get a log Fano cone (X,D), and then take cones over (S(i),B(i)) to get test config-
urations (X (i),D(i)) of (X,D). Then we just need to find a common degeneration

of the central fibre of (X(i)
0 , D(i)

0 ). To construct such test configurations, we aim at
constructing a (C∗)2-equivariant family (X,D) of log Fano cones over C2, such that
if taking the base change over C×{1} (resp {1}×C), we get back the test configura-
tion (X (1),D(1)) (resp. (X (2),D2)). Then the special fiber (X,D)×C2 {(0, 0)} gives
a common degeneration of (X(i), D(i)). This family (X,D) is obtained by using a

divisor E(2)
k over (X (2),D(2)) to degenerate (X (2),D(2)), where the divisor E(2)

k is a
birational transform of Ek×C and Ek belongs to a sequence of special divisors {Ek}
(k ≥ 1) over X. To see E (2)

k induces a degeneration, one needs to show that there

is a birational model Y(2)
k → (X (2)

k ,D(2)
k ) such that the only exceptional divisor of

Y(2)
k /X (2)

k is Ek for k ' 1. This is a subtle property, and we prove it by combining
the tools of Minimal Model Program (MMP) with a careful analysis of normalized
volumes functional (see Section 3.2.1 for a more detailed explanation for this step).

The following commutative diagram shows some relation between different ob-
jects in this proof. The symbols ‘!’ means the degeneration under a special test
configuration and ‘""#’ means taking a C∗-quotient. See (3.11) for the more detailed
diagram.

(1.1) (X(2)
0 , D(2)

0 )

(X ′(2),D′(2))

!!
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"

""◗
◗◗◗ (X,D)

(X (2),D(2))## #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$

(X (1),D(1))

!! !"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"

$$♠
♠

♠
♠

(S(2)
0 , B(2)

0 )

(S′(2),B′(2))

!!
!"
!"
!"
!"

(S,B)
(S(2),B(2))## #$ #$ #$ #$

(S(1),B(1))

!! !"
!"
!"
!"

(S′
0, B

′
0) (S(1)

0 , B(1)
0 )

(S′(1),B′(1))

## #$ #$ #$ #$

(X ′
0, D

′
0)

%%♠
♠

♠
♠

(X(1)
0 , D(1)

0 )
(X ′(1),D′(1))

## #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$

&&◗ ◗ ◗ ◗

.

2After the submission of the paper, the equivalence between equivariant K-stability and K-
stability has been completely solved in [48].
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To confirm Donaldson-Sun’s conjecture (see [13, Conjecture 3.22]), we then use
some approximation approach to treat the case of a general log Fano cone, i.e.
including the irregular case. However, the common degenerations are a priori only
weakly special (Definition 2.16). So we extend [34, Theorem 4] to (possibly irregular)
log Fano cones, proving that for K-polystable log Fano cones, weakly special test
configurations with vanishing Futaki invariants must already be special. To apply
this to metric tangent cones which are Ricci-flat Kähler cones, we use the result of
Colins-Székelyhidi [9] about the K-polystability of Ricci-flat Kähler cones. Since we
need to allow more general test configurations than just special test configurations,
we provide a proof of this fact (see Remark A.2) in Appendix A by adapting the
argument of Berman in [1] to our setting.

We now sketch the organization of the paper. More details will be given at the
beginning of each section. In Section 2.1, we recall basic tools in our arguments
including normalized volumes, normalized multiplies and Kollár components. In
Section 2.2, we recall the notions of log Fano cones, their test configurations and
K-stability. We also discuss how to get test configurations using models over log
Fano cones. In the quasi-regular case, we are reduced to the K-stability of log
Fano pairs. In Section 3, we prove our main results in the case of log Fano pairs. In
Section 3.1, we prove a lemma about special degenerations of K-semistable log Fano
pairs with zero Futaki invariants. In Section 3.2, we prove the main technical result
(Theorem 3.2) on common special degenerations of special degenerations with zero
Futaki invariants. In Section 3.3, we finish the proof of main results for log Fano
pairs. In Section 4, we deal with the general case of log Fano cones. In Section 4.1,
we obtain common weakly special degenerations for log Fano cones with vanishing
generalized Futaki invariants. In Section 4.2, we show that these weakly special
test configurations are indeed special test configurations. We generalize the last
step of results in [36] to the case of log Fano cones. We complete the proof of
Theorem 1.2 and Donaldson-Sun’s conjecuture in Section 4.3. In the appendix, we
prove the analytic result that Ricci-flat Kähler cones are Ding-polystable among
Q-Gorenstein test configurations. This result could substitute results in Section 4.2
to complete the proof of Theorem 1.1.

Notation and conventions. We follow the standard notation in [24, 26]. In this
paper, a variety is a reduced, separated and finite type scheme over C, that is
allowed to be reducible. We call a pair (S,B) a log Fano variety if (S,B) has klt
singularities, and −(KS +B) is ample.

2. Preliminaries

2.1. Normalized volumes. In this section, we recall the definition of the normal-
ized volume of valuations centered at a klt singularity x ∈ (X,D). This is intro-
duced in [31]. For readers’ convenience, we discuss some basic properties which will
be needed later.

Definition 2.1. Let X = SpecC(R) be an irreducible affine variety and x ∈ X a
closed point. We denote by ValX,x the space of real valuations v : R → R≥0∪{+∞}
that satisfy the following conditions: for any f, g ∈ R:

(1) v(fg) = v(f) + v(g);
(2) v(f + g) ≥ min{v(f), v(g)};
(3) v(0) = +∞, v(C∗) = 0;
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ALGEBRAICITY OF THE METRIC TANGENT CONES 1179

(4) v(f) > 0 if f(x) = 0.

For any v ∈ ValX,x and m ∈ R, its m-th valuation ideal is defined as am(v) :=
am(v,X) = {f ∈ R; v(f) ≥ m}.

We remark that ValX,x is also called the ‘non-archimedean link’ around x ∈ X
in some literatures.

For any m > 0, am(v) is a primary ideal associated to the maximal ideal mx.
We will denote its Hilbert-Samuel multiplicity by mult(am). If Λ = v(R) ⊂ R≥0

denotes the valuative semigroup of v, then {am(v); m ∈ Λ} is a Λ-graded sequence
of ideals. In other words, they satisfy, for any m,m′ ∈ Γ, (i) : am′(v) ⊆ am(v) if
m′ ≥ m and (ii) : am(v) · am′(v) ⊆ am+m′(v). Note that {am(v);m ∈ Z} is also a
Z-graded sequence of ideals.

Definition-Proposition 2.2 ([14,28]). Let X be an irreducible variety of dimen-
sion n. For any v ∈ ValX,x, the volume of v is the following well-defined quantity:

(2.1) vol(v) = lim
m→+∞

dimC(R/am(v))

mn/n!
= lim

m→+∞

mult(am)

mn
=: mult(a•).

Now we assume (X,D) is a log pair such that KX + D is Q-Cartier. For any
divisorial valuation v = ordS where S is a prime divisor on a normal variety Y
with a proper birational morphism µ : Y → X, the log discrepancy of ordS is
defined as A(X,D)(ordS) = ordS(KY − µ∗(KX +D)) + 1. By [21] and [5], there is
a canonical way to extend the log discrepancy to become a lower semicontinuous
function A(X,D) : ValX,x → R ∪ {+∞}.
Definition-Proposition 2.3 (see [31, Theorem 1.1]). Assume x ∈ (X,D) is a klt

singularity. For any v ∈ ValX,x, its normalized volume v̂ol(X,D,x)(v) is defined as:

(2.2) v̂ol(X,D,x)(v) =

{
A(X,D)(v)

n · vol(v), if A(X,D)(v) < +∞;
+∞, if A(X,D)(v) = +∞.

For simplicity, we will just write v̂ol(v) if the singularity x ∈ (X,D) is clear. This

quantity is a rescaling invariant: v̂ol(λv) = v̂ol(v) for any λ > 0.
The volume of a klt singularity x ∈ (X,D) is defined to be the following positive

number

(2.3) vol(x,X,D) = inf
v∈ValX,x

v̂ol(X,D,x)(v).

It has been shown that there always exists a minimizer v of v̂ol(X,D,x) among all
v ∈ ValX,x in [4]. The expected properties of the minimizers are formulated in the
Stable Degeneration Conjecture ([31, Conjecture 6.1], [35, Conjecture 1.2]). The
case of cone singularities over Fano varieties was studied in [29, 32]. The general
case was systematically studied in [36] under the assumption that the minimizer
is a divisorial valuation and in [35] under the assumption that the minimizer is a
higher rank quasi-monomial valuation.

We will need a relation between the normalized volume and the normalized
multiplicity of a graded sequence of ideals.

Proposition 2.4 ([38]). If x ∈ (X,D) is an n-dimensional klt singularity, then we
have

vol(x,X,D) = inf
b•

mult(b•) · lctn(X,D; b•),

where b• runs over all graded sequence of primary ideals cosupported at x.
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1180 CHI LI ET AL.

We now state some central results from our previous works and refer to the next
section for the notations of log Fano cones (see Definition 2.12) and their K-stability
(see e.g. Definition 2.23).

Theorem 2.5 ([29,32,35,36]). Let (X,D, ξ) be a log Fano cone singularity. Then
it is K-semistable if and only if the valuation wtξ induced by ξ is a minimizer of

v̂ol(X,D,x) on ValX,x.

We will also use the following notion frequently:

Definition 2.6. Let (X,D, x) be a klt singularity. A prime divisor S over (X,D, x)
is called a Kollár component over (X,D, x), if there exists a projective birational
morphism µ : Y → X such that (i) µ is an isomorphism over X \ {x} and the
exceptional divisor S = µ−1(x) is irreducible and Q-Cartier; (ii) −S is µ-ample;
(iii) (Y, µ−1

∗ D + S) is plt.

For any Kollár component, we define its different ∆S by the following equality:

KS +∆S = (KY + S + µ−1
∗ D)|S .

It is easy to see that (S,∆S) is a log Fano pair.
The relevance of Kollár components to the minimization of normalized volume

is contained in the following result:

Theorem 2.7 ([36, Theorem 1.2, 1.3]). Let (X,D, x) be a klt singularity. Assume

that v0 ∈ ValX,x is a minimizer of v̂ol(X,D,x). Then we can find a sequence of
Kollár components Sk and constants ck > 0, such that

ck · ordSk → v0 and v̂ol(ordSk) → v̂ol(v) as k → +∞.

Moreover, if v0 is divisorial, then v0 = c · ordS for some c > 0 and a Kollár
component S satisfying the condition that the log Fano pair (S,∆S) is K-semistable.

In Theorem 2.7, when v0 is a divisorial minimizer, then [4] also shows it yields a
Kollár component. In the case of K-semistable log Fano cones, the approximation
stated in Theorem 2.7 can be realized concretely by perturbing the Reeb vector
field to rational ones.

2.2. K-stability of log Fano cones. In this section, we recall the definition of
a log Fano cone singularity and its K-stability, by essentially following [8, 9] and
[35, Section 2.5]. Denote by T a complex torus which is isomorphic to (C∗)r.

Test configurations.

Definition 2.8. Let X be an n-dimensional reduced affine variety which is not
necessarily irreducible. We say that a T -action on X is good if it is effective and
there is a closed T -fixed point x ∈ X (called the vertex) that is in the closure of
any T -orbit. By a T -singularity in this paper, we always mean an affine variety X
with a good T -action. If D is a T -invariant R-divisor on X we say that (X,D) is
a pair with a good T -action.

Let N = Hom(C∗, T ) be the co-weight lattice and M = N∗ the weight lattice.
If X = SpecC(R) is a T -variety, then there is a weight space decomposition:

(2.4) R =
⊕

α∈Γ

Rα where Γ = {α ∈ M | Rα -= 0} ⊂ M.
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ALGEBRAICITY OF THE METRIC TANGENT CONES 1181

The action being good implies R0 = C. We will call any element ξ in the Lie algebra
NR := N ⊗R a coweight vector (or abbreviated as a vector). We will denote by 〈ξ〉
the subtorus of T generated by ξ, i.e. the subtorus corresponding to the minimal
linear Q-linear subspace V ⊂ N ⊗Q such that V ⊗ R contains ξ.

If T acts on a smooth variety X, then ξ will give a vector field on X. For
example, if we consider the multiplication of C∗ on C, then the coweight vector
1 ∈ Z yields the vector field t∂t.

Definition 2.9. The Reeb cone of X with respect to a good T -action is the fol-
lowing set:

(2.5) N+
R := {ξ ∈ NR | 〈α, ξ〉 > 0 for any α ∈ Γ\{0}} .

Any vector ξ ∈ N+
R will be called a Reeb vector on the T -variety X.

Definition 2.10. For any ξ ∈ N+
R , we define its volume as:

volX(ξ) := volX,x(ξ) = lim
k→∞

∑
〈ξ,α〉≤k dimC(Rα)

kn/n!
.

The limit in Definition 2.10 was known to exist by using the multivariable Hilbert
series as in [8, Proof of Theorem 4.10] (see also [39]). If (X, x) is a normal affine
T -variety, then each ξ ∈ N+

R corresponds to a valuation wtξ ∈ ValX,x which is
defined as:

(2.6) wtξ(f) = min

{
〈α, ξ〉; f =

∑

α

fα with fα -= 0 ∈ Rα

}
.

Note that in this case volX(ξ) in Definition 2.10 is just the volume of the valuation
wtξ.

One key property of the volume function is the following.

Lemma 2.11 (see [8, 35, 39]). The function ξ 1→ volX,x(ξ) is smooth and strictly
convex on N+

R .

Proof. The smoothness was proved in [8, Theorem 4.10] where volX(ξ) was inter-
preted as the leading coefficient of the expansion of the so-called index character,
(which also appeared in the earlier work of Martelli-Sparks-Yau (see [39, (6.10)]).

The strict convexity of volX,x follows from [35, Section 3.2]. In fact, if we let
Y → X be the normalization of X, the T -action can be lifted to Y . Denote the
preimage of x to be {yi}i, then we know yi are on pairwise distinct components Yi

of Y , and the T -action on each Yi is good. We claim that the following identity
holds true:

volX,x(ξ) =
∑

i

volY,yi(ξ).

Indeed, since ξ 1→ volX,x(ξ) and ξ 1→ volY,yi(ξ) are continuous, we just need to
verify the identity when ξ is rational. Any rational ξ generates a C∗-action and
vol(ξ) reduces to the degree of an ample orbifold line bundle (see [8, Proposition
4.3] and [39, 5.3]). The identity follows from the fact that the degree of the orbifold
line bundle is the sum of its degrees on irreducible components.

Thus we may assume X to be normal. Then [35, Proposition 3.10], which gen-
eralizes the convexity result from [39], says that ξ 1→ volX,x(ξ) is a strictly convex
function for ξ ∈ N+

R . $
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1182 CHI LI ET AL.

Definition 2.12 (Log Fano cone singularity). Let (X,D) be an affine pair with
a good T action. Assume (X,D) is normal with klt singularities. Then for any
ξ ∈ N+

R , we call the triple (X,D, ξ) a log Fano cone structure that is polarized by
ξ. If 〈ξ〉 ∼= C∗ which is equivalent to saying that ξ is a multiple of a vector in N+

Q ,
then we call (X,D, ξ) quasi-regular. Otherwise, we call it irregular.

Definition 2.13 (Quotient in the quasi-regular case). In the quasi-regular case,
we can take the quotient (S,B) of (X \{x}, D \{x}) by the C∗-group 〈ξ〉 generated
by ξ in the sense of a Seifert C∗-bundle, and we will denote by (X,D)/〈ξ〉. More
precisely, assume ξ ∈ 1

lN , and we write

R =
⊕

k=0




⊕

〈ξ,α〉=k/l

Rα



 :=
⊕

k=0

Rξ
k.

Then we take S = Proj(
⊕

k=0 R
ξ
k). By [23, Section 4], π : X \ {x} → S is a

Seifert C∗-bundle, with the quotient X \ {x} → (S,B1) where B1 is the branch
divisor. Write D =

∑
i aiDi. Since each Di is Cm-invariant, Di is the pull back of

a divisor Ei on S and the multiplicity of Di along π∗(Ei) is denoted by mi. Define
B2 =

∑
i

ai
mi

Ei. Let B = B1 + B2. Then π∗(KS + B) = (KX + D)|X\{x} since
π∗(KX +B1) = KX\{x} (see [23, Corollary 41]) and π∗(B1) = D|X\{x}.

The quotient (S,B) is a log Fano variety, because we assume that (X,D) is klt
at x (see [23, 42] or [24, Lemma 3.1]).

Definition 2.14 (Test configuration). Let (X,D, ξ0) be a log Fano cone singularity
with a torus group T action (see Definition 2.12). A T -equivariant test configuration
(or simply called a test configuration) of (X,D, ξ0) is a quadruple (X ,D, ξ0; η) with
a map π : (X ,D) → C satisfying the following conditions:

(1) X is an affine variety and π : X → C is a flat family. D is a divisor on X
with Supp(D) not containing any component of a fiber of π.

(2) η is a holomorphic vector field that generates a C∗-action on (X ,D) such
that π is C∗-equivariant and π∗η = −t∂t. As a consequence, there is an
isomorphism φ : (X ,D)×C C∗ ∼= (X,D)× C∗.

(3) The torus T acts on (X ,D) fiberwise and commutes with the C∗-action
generated by η, and coincides with the action on the first factor when

restricted to (X ,D)×C C∗
φ∼= (X,D)× C∗.

A test configuration (X ,D, ξ0; η) is called a product one if there is a T -equivariant
isomorphism (X ,D) ∼= (X,D)× C and η = η0 − t∂t where η0 is a coweight vector
of T and t∂t is the canonical lifting of t∂t on C through the second projection. In
this case, we will denote (X ,D, ξ0; η) by

(X × C, D × C, ξ0; η) =: (XC, DC, ξ0; η).

A normal test configuration (X ,D, ξ0; η) is called Q-Gorenstein if KX + D is
Q-Cartier.

According to Definition 2.14, a test configuration (X ,D, ξ0; η) of the log Fano
cone (X,D, ξ0) is a T̃ := T ×C∗-equivariant degeneration of (X,D) where the C∗-
action is generated by −η. If it is not a product test configuration, then its central
fibre X0 admits an effective T̃ -action, whose Lie algebra is generated by the Lie
algebra of T and η.
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Moreover if we assume X = Spec(R) and decompse R =
⊕

α Rα into weight
spaces with respect to the fiberwise T -action, condition (1) in Definition 2.14 implies
that each weight piece Rα is a flat C[t]-module. As a consequence X and X0 have
the same weight cone and Reeb cone with respect to the fiberwise T -action. In
particular, ξ0 is contained in the Reeb cone of X0 under the T -action.

Remark 2.15. Any test configuration can be T × C∗-equivariantly embedded into
CN × C (for N ' 1) and our definition is the same as the definition given in
[8, Definition 5.1]. The choice of sign in the identity π∗(η) = −t∂t in Definition
2.14 is compatible with our later arguments and calculations.

BecauseKX+D isQ-Cartier, by the structure theory of T -varieties, there exists a
T×C∗-equivariant nowhere-vanishing section s ∈ |m(KX+D)| (see [37, Proposition
4.4], and also [39, 2.7]). For any b ∈ R and ξ + bη ∈ NR ⊕ R, define:

A(ξ + bη) :=
1

m

Lξ+bηs

s
,

where Lξ+bη is the Lie derivative of s with respect to the vector field associated to
ξ + bη. Note that this is a linear function.

If (X ,D, ξ0; η) is any Q-Gorenstein test configuration of an n-dimensional log
Fano cone (X,D, ξ0), we will denote:

(2.7) Tξ0(η) =
A(ξ0)η − A(η)ξ0

n
.

Definition 2.16 (Weakly special and special test configurations). In the notations
we used before, we define a weakly special test configuration (resp. special test
configuration) of (X,D, ξ0) to be a Q-Gorenstein test configuration (X ,D, ξ0; η)
with central fiber (X0, D0) satisfying that:

(X ,D + X0) has log canonical singularities (resp. (X0, D0) has klt singu-
larities).

In this case, we say that (X0, D0) is a weakly special degeneration (resp. special
degeneration) of (X,D).

Note that by inversion of adjunction, being special implies being weakly special.
For simplicity, we will just say that (X ,D) is a Q-Gorenstein (or weakly spe-

cial, special) test configuration if ξ0 and η are clear. We also say that (X,D, ξ0)
degenerates to (X0, D0, ξ0) (or simply to (X0, D0)).

Test configuration and filtration. In [6, Section 2.5], a filtration viewpoint for test
configurations is developed. Here we will mainly work with data over the vertex of
the cone which brings more flexibility when applying the minimal model program.
In this section, we will discuss these ideas and modify them to fit into our context.

Lemma 2.17. Given a normal T -equivariant test configuration (X ,D, ξ0; η) of
(X,D), we can find a Z-graded sequence of ideals {a•} of R (see (2.4)) such that

(1) ak = R for k ≤ 0;
(2) ak is a homogeneous ideal for any k ∈ Z: ak =

⊕
α ak ∩Rα for any k ∈ Z;

(3) the extended Rees algebra Rees :=
⊕

k∈Z t
−kak satisfies Spec(Rees) = X .

Moreover, if η is in the Reeb cone of X0 with respect to T̃ = T × C∗, then ak is
primary for k > 0.
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Proof. Recall by the definition of the test configuration, X = Spec(R) where R =⊕
Rα and each Rα is a flat C[t]-module. For any f ∈ OX , we could denote by f̄ its

pull back from the first factor of X×C∗. Since X ×CC∗ ∼= X×C∗, we could mimic
the construction in [6, Section 2.5] by defining ak =

⊕
α

{
f ∈ Rα |t−kf̄ ∈ Rα

}
,

and then we form the extended Rees algebra Rees =
⊕

k∈Z akt
−k. We claim

Rees is finitely genrated. In fact, by construction, we have the injective morphism
Rees → R. Conversely using the weight decomposition with respect to the C∗-
action, any F ∈ Rα is of the form

∑
k t

−kf̄k for some {fk} ⊂ Rα. So we have
R ∼= Rees, which in particular implies that Rees is finitely generated.

Since R is a flat C[t]-algebra, that means a0 = R which implies that ak = R
for k ≤ 0. This is the first property. The second property follows from that the
C∗-action generated by η commutes with T .

Finally, if η is in the Reeb cone, then 〈η,α〉 > 0 for any α ∈ Γ\{0} (see (2.4)).
Thus for any α -= 0 and f ∈ Rα, the order of f vanishing along (t = 0) is 〈η,α〉 > 0,
which implies for any k, fm ∈ ak for m ' 0. $

Remark 2.18. Since the Reeb cone with respect to T is open, for any given test
configuration, one can always perturb ξ0 to be a rational Reeb vector ξ′0 ∈ N+

Q .
Our choice of the sign for η with π∗(η) = −t∂t means that the weight η on the
function t has weight 1. For m ' 1 sufficiently divisible, mξ′0 + η is an integral
vector in the Reeb cone with respect to T̃ = T × C∗. See e.g. Example 2.19.

We give a way of obtaining test configurations using models. It generalizes the
construction of special test configurations via Kollár components as discussed in
[35, 2.2.1].

Example 2.19. First, we give an example from [36, Example 7.1.2] which will
illustrate the construction. We refer to [35, 2.2.1] for more general constructions.

Consider the 3-dimensional Ad singularity

X = {z21 + z22 + z23 + zd+1
4 = 0} ⊂ C4 with d > 3.

Set D = ∅, ξ0 =
∑3

i=1(d+ 1)zi∂zi + 2z4∂z4 which generates the natural C∗-action
on X, and set the vertex to be x = (0, 0, 0, 0). Then (X, ξ0) is a log Fano cone.

Consider the filtered blow µ : Y → X which is given by the strict transform of X
under the weighted blowup of C4 with weights (2, 2, 2, 1). The exceptional divisor
is given by E = {Z2

1 +Z2
2 +Z2

3 = 0} ⊂ P(2, 2, 2, 1) ∼= P(1, 1, 1, 1) = P3. We see that
E ∼= P(1, 1, 2) with the different ∆E = 1

2D∞ where D∞ = {Z4 = 0} ∩E = P2 ∩E.
Note that E is a Kollár component.

We can also consider the special test configuration given by

X = {(t; z1, z2, z3, z4); z21 + z22 + z23 + td−3zd+1
4 = 0} ⊂ C4 × C,

and η = −t∂t + 2
∑3

i=1 zi∂zi + z4∂z4 generates the C∗-action

(τ, (t; z1, z2, z3, z4)) 1→ (τ−1t, τ2z1, τ
2z2, τ

2z3, τz4).

Since we assume d > 3, the central fibre X0 = {z21+z22+z23 = 0} ⊂ C4 is isomorphic
to (C2/Z2)× C and admits a (C∗)2-action generated by ξ0 and η. Note that η|X0

is in the Reeb cone of X0 with respect to (C∗)2 and

(E,∆E) = (X0 \ {0})/(C∗ = 〈η〉).
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Moreover in this example the log Fano pair (E,∆E) admits an orbifold Kähler-
Einstein metric and is hence K-polystable. So by [35, 36, 47], ordE is the unique

minimizer of v̂olX,x.

Definition 2.20. Let (X,D, ξ0) be a log Fano cone singularity. Let µ : Y → X
be a T -equivariant proper birational morphism from a normal model Y , which
is an isomorphism outside X \ {x} with a T -equivariant integral Weil divisor E
supported on Ex(µ) such that −E is ample. Denote by R :=

⊕
k∈Z t

−kbk, where
bk = µ∗(OY (−kE)).

Then (X ,D, ξ0; η) is a test configuration associated to the model µ : Y → X,
where X := Spec(R) and D is the cycle (with Q-coefficients) degeneration of D.
More precisely, if we write D =

∑
aiDi, where Di are prime divisors with the

corresponding ideal IDi , then we can define Di on X to be the divisor corresponding
to the ideal IDi

:=
⊕

k∈Z(bk ∩ IDi)t
−k ⊂ R, and let D =

∑
aiDi.

Conversely, starting with a normal test configuration (X ,D, ξ0; η) and assuming
η is in the Reeb cone of X0, we take the primary ideals ak as in Lemma 2.17, and
then take the normalized filtered blow up (see [44, Chapter 1] for the definition)
µ : Y → X induced by a• = {ak}k∈Z with an exceptional divisor E.

Lemma 2.21. The above two constructions give equivalence between normal test
configurations (X ,D, ξ0; η) with η in the Reeb cone and models µ : Y → X satisfying
the conditions in Definition 2.20. Moreover,

(1) (X ,D, ξ0; η) is a special test configuration if and only if µ : Y → X yields
a Kollár component; and

(2) (X ,D, ξ0; η) is weakly special if and only if (Y,E + µ−1
∗ D) is log canonical.

Proof. If we start with a normal test configuration (X ,D, ξ0; η), then we get a
graded sequence of primary ideals {a•} by Lemma 2.17. If we take the filtered
blow up of {a•} and get E as above, then we claim it is normal and the algebra
{bk = µ∗(OY (−kE))} is the same as the algebra

⊕
k=0 ak.

In fact,
⊕

k=0 ak ⊂
⊕

k=0 bk is a subalgebra, but the latter is integral over the
former. Thus it suffices to verify that the R-algebra

⊕
k=0 ak is integrally closed.

Similar to the proof of [27, 9.6.6], this follows from the fact that to check whether
a function f is contained in ak suffices to only check it at the divisorial valuation
along the the special fiber X0. More precisely, let the special fiber X0 =

∑
miEi

where Ei are the prime divisors, then

a homogeneous element f ∈ the normal closure
⊕

k=0

ak

⇔ f satisfies an equation fm + a1f
m−1 + · · ·+ am = 0 with ai ∈ aik,

which implies the vanishing order of f along Ei is at least kmi as the element in
aj have vanishing order along Ei at least jmi by the definition. Then we conclude
f ∈ ak.

If we start with a normal model µ : Y → X and E as in Definition 2.20, then⊕
k=0 bk is a normal algebra where bk = µ∗(OY (−kE)), then we can easily show the

Rees algebra
⊕

k∈Z t
−kbk is normal, thus the induced test configuration (X ,D, ξ0; η)

is normal. If we take the filtered blow up then Y ∼= Proj(
⊕

k=0 bk) as −E is ample,
and the divisor Proj(

⊕
k=0 bk/bk+1) ⊂ Y yields E.
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To prove the second part of the statement, let v : A1
C ⊂ X corresponds to the

section of vertices. Consider the C∗-action given by η in the data of the test
configuration, then (S = ProjC[t]Rees,B) is the base of the C∗-quotient of (X \
v(A1

C),D \ v(A1
C)) as a Seifert bundle (see [23]), i.e., we remember the codimension

one orbifold structure and put it into B. Over the special fiber, we have

S0
∼= Proj

⊕

k=0

ak/ak+1
∼= Proj

⊕

k=0

bk/bk+1
∼= E.

If (X ,D + X0) is log canonical, then X0 is reduced and (X0, D0) is semi-log-
canonical. Thus E = S0 is reduced and (S0, B0 := B|S0) is semi-log-canonical.
Moreover, if we write KE+DE = (KY +E+µ−1

∗ D)|E , then DE is sent to B0 under
the isomorphism between E and S0. Thus by inversion of adjunction, (Y,E+µ−1

∗ D)
is log canonical.

For the converse, assume (E,DE) is log canonical, it suffices to show that
bk/bk+1 = H0(E,OE(−kE)) for any positive integer k, as this implies that (X0, D0)
is the orbifold cone over (E,DE) induced by the ample (Q-Cartier) integral Weil di-
visor −E. First, since the test configuration is Q-Gorenstein, −KE −DE ∼Q λE|E
for some λ > 0 . Therefore, E and KY + E + µ−1

∗ D are anti-ample over X,

−(k + 1)E = KY + E + µ−1
∗ D − (k + 1)E − (KY + E + µ−1

∗ D).

We conclude that R1µ∗OY (−(k + 1)E) = 0 by the Kawamata-Viehweg vanishing
theorem; then we can apply µ∗ to the following exact sequence

0 → OY (−(k + 1)|E) → OY (−kE) → OE((−kE)|E) → 0.

If we specialize the argument to the plt case, we obtain that E is indeed a Kollár
component. $
Generalized Futaki invariants and K-stability. We define the generalized Futaki
invariant for Q-Gorenstein test configuration using the volume function. One can
easily show this definition is the same as the one in [8]. However, the formula in
Definition 2.22 is more convenient to use for the current paper.

Definition 2.22 (Generalized Futaki invariant). For any Q-Gorenstein test con-
figuration (X ,D, ξ0; η) of (X,D, ξ0) with the central fibre denoted by (X0, D0, ξ0),
its generalized Futaki invariant is defined as

Fut(X ,D, ξ0; η) :=
DTξ0 (η)

volX0(ξ0)

volX0(ξ0)
,

where we used Tξ0(η) in (2.7) and the directional derivative

DTξ0 (η)
volX0(ξ0) :=

d

dε

∣∣∣∣
ε=0

volX0(ξ0 + εTξ0(η)).

Since generalized Futaki invariant defined above only depends on the data on the
central fiber, we will also denote it by Fut(X0, D0, ξ0; η).

Next, we will introduce the notions of K-stability. We note that in the definition,
we only look at special test configurations, in the spirit of [43].

Definition 2.23 (K-stability). We say that (X,D, ξ0) is K-semistable; if for any
special test configuration (X ,D, ξ0; η), we have Fut(X ,D, ξ0; η) is nonnegative.

We say that (X,D, ξ0) is K-polystable, if it is K-semistable, and any special test
configuration (X ,D, ξ0; η) with Fut(X ,D, ξ0; η) = 0 is a product test configuration.
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If (X ,D, ξ0; η) is a special test configuration, we know A(ξ0) = A(X0,D0)(wtξ0) >
0. Then we see the following identity holds:

(2.8) DTξ0 (η)
volX0(ξ0) =

d

dε

∣∣∣∣
ε=0

v̂olX0(wtξ0+εη) ·
1

nA(ξ0)n−1
,

where we use the rescaling invariance of the normalized volume and A(ξ0) = A(ξ0+
t·Tξ0(η)) for t 6 1 (see (2.7)) As a consequence, we can rewrite the Futaki invariant
of a special test configuration in the following way:

(2.9) Fut(X ,D, ξ0; η) := Dη v̂olX0(wtξ0) ·
1

nA(ξ0)n−1 · volX0(ξ0)
.

This shows that it differs from the one in [35, Definition 2.26] by a positive constant.
It also differs from Collins-Székelyhidi’s definition by a constant.

Remark 2.24. Obviously to define the K-stability notions, we can also consider
more general test configurations than the special ones. In [34] we proved that for
the K-stability of log Fano varieties, to test on all test configurations is equivalent
to only test on special test configurations.

For log Fano cone singularities, results like [34] are not completely known. Never-
theless, later in this paper, we have to deal with weakly special test configurations,
as they will naturally appear in our argument. Thus we need to prove a statement
(see Proposition 4.3) similar to [34, Theorem 4], which says that for log Fano cone
singularities, our definition of K-semistability is also equivalent to test on all weakly
special test configurations.

Compared to the other literatures, all test configurations are considered in [8],
whereas in [9,35] K-stability notions are only tested on special test configurations.

We will need the following simple fact, which follows from the definition of the
generalized Futaki invariant applied to product test configurations:

Lemma 2.25. Assume that the log Fano cone (X,D, ξ0) admits a torus action by
T ′ ∼= (C∗)r

′
that commutes with 〈ξ0〉. Let N ′ be the coweight lattice of T ′. Then

the function
η 1→ Fut(XC, DC, ξ0; η)

is linear with respect to η ∈ N ′
R.

Log Fano varieties. In the below, we will specialize previous definitions to the case
of quasi-regular log Fano cones, which correspond to Fano projective varieties.

Definition 2.26. Assume (S,B) is a log Fano variety. A test configuration of
(S,B,−(KS + B)) is a quadruple (S,B,L; η) with a map π : (S,B) → C that
satisfies the following conditions:

(1) L is a π-ample Q-line bundle and π : S → C is a flat family and Supp(B)
does not contain any component of the fiber. We denote the central fiber
by (S0, B0, L0).

(2) There is a C∗-action (with coweight η) on (S,B) such that π is C∗-
equivariant where C∗ acts on the base C by multiplication and there is a
C∗-equivariant isomorphism φ : (S,B,L)×C C∗ ∼= (S,B,−(KS +B))×C∗,
where C∗-trivially acts on the first factor of (S,B,−(KS +B))× C∗.

Most of the time, as in the literature, we omit η in the quadruple and simply denote
the test configuration by (S,B,L).
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Such a test configuration is called Q-Gorenstein if S is normal,

KS + B is Q-Cartier and L ∼Q −(KS + B).

In this case, we usually just write the test configuration as (S,B; η) or simply as
(S,B).

A Q-Gorenstein test configuration is called special if (S0, B0) is a log Fano pair
with klt singularities. In this case, we say that (S0, B0) is a special degeneration of
(S,B).

A test configuration (S,B,L; η) is called a product one if there is an isomorphism

(S,B,L) ∼= (S,B,−(KS +B))× C such that η = η0 + t∂t

where η0 is a coweight vector on some torus group T acting on (S,B) and t∂t is the
coweight corresponding to the C∗ factor. In this case, we will denote (S,B,L; η)
simply by (SC, BC; η).

For a test configuration of a log Fano variety, by trivially adding a copy over
{∞}, we can take the intersection formula (see [41, 45]) of the generalized Futaki
invariant as the definition. More precisely, for any test configuration of (S,B), we
can glue it with a trivial family of (S,B)×P1 \ {0} along (S,B)×C∗ to get (S̄, B̄)
over P1 and denote by L̄ ∼Q −(KS̄/P1 + B).

Definition 2.27 (Generalized Futaki invariants). For any Q-Gorenstein test con-
figuration (S,B,L; η) of (S,B), we define the generalized Futaki invariant

Fut(S,B; η) := − L̄·n

n(−(KS +B))·n−1
where n = dimS + 1.

By the intersection formula (see [41,45]), Definition 2.27 of the generalized Futaki
invariants coincides with the one in [12].

Definition 2.28 (K-stability, see [12,34,43]). We say that (S,B) is K-semistable,
if the generalized Futaki invariant Fut(S,B; η) is nonnegative for any special test
configurations. We say that (S,B) is K-polystable, if it is K-semistable, and any
special test configuration (S,B,L; η) with Fut(S,B,L; η) = 0 is a product test
configuration.

Remark 2.29. We choose to work specifically on Q-Gorenstein test configurations
(S, B,L), since it fits into our study on log Fano cones. By [34], we know for a log
Fano variety, working on this intermediate generality of test configurations yields
the same stability notions as working either only on special test configurations or
on all test configurations.

Given a Q-Gorenstein test configuration (S,B,L; η), by choosing λ such that
λ(KS + B) is Cartier, we can get a Q-Gorenstein test configuration (X ,D, ξ0; η) of
(X,D) := C(S,B,−λ(KS + B)) by letting (X ,D) = C(S,B;−λL), ξ0 = u∂u the
canonical rescaling vector on X where u is an affine coordinate on the line bundle
λL, and letting η also denote its canonical lifting from S to X that corresponds to
the pull back of pluri-log-canonical forms (see [29, Page 3186–3187].

Lemma 2.30 (see [8, Theorem 4] and [29, Lemma 6.20]). Notations as above. If
(S,B; η) is a Q-Gorenstein test configuration, then

Fut(S,B; η) = Fut(X ,D, ξ0; η).
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Proof. With the above choice of ξ0, A(ξ0) = λ−1. Since η is the canonical lifting,

we have A(η) = 0 so that Tξ0(η) =
A(ξ0)

n η = λ−1

n η (see (2.7)). So we get:

DTξ0 (η)
volX0(ξ0) =

λ−1

n

d volX0(ξ0 + tη)

dt

∣∣∣∣
t=0

= λ−1 lim
m→+∞

wm

mn/(n− 1)!
= −λn−1L̄·n

n
,

where wm is the weight of the 〈η〉 action on H0(S0,−mλ(KS0 + B0)). The sec-
ond identity follows from [8, Theorem 4] (see also the calculation in [29, Proof of
Lemma 6.20]). For the last identity, see [6, Theorem 5.3]. Dividing both sides by
volX0(ξ0) = λn−1(−(KS +B))·n−1 we get the identity. $

Lemma 2.30 says that the definition 2.27 is compatible with the generalized Fu-
taki invariants for log Fano cones in Definition 2.22. Thus Definition 2.23 specializes
to Definition 2.28. It is well known that if we have a product test configuration
induced by a vector field coming from a C∗-action on (S,B), then the generalized
Futaki invariant defined above becomes the classical Futaki invariant. It also follows
from Lemma 2.25 that

Lemma 2.31. Assume a log Fano variety (S,B) admits a torus action by T ∼=
(C∗)r. Let N be the coweight lattice of T . Then the Futaki invariant η 1→ Fut(S ×
C, B × C; η) is linear with respect to η ∈ NR.

3. Case of log Fano pairs

In this section, we will focus on the stability of log Fano pairs. More concretely
we will construct a common degeneration of two K-semistable degenerations of
a log Fano variety, as well as investigate the equivariant K-stability for a torus
action. Even in this case of log Fano varieties, we find it more flexible to work
on the associated log Fano cones in order to use a combination of techniques from
the minimal model program and results on normalized volumes. The study will be
generalized to log Fano cones later. However, we believe that treating the case of
log Fano pairs first will help the reader to more easily get the main idea.

3.1. K-semistable degeneration of K-semistable log Fano pair. We will
need the following lemma which allows us to reduce a two-step equivariant de-
generation to a single equivariant degeneration. The idea of its proof is similar to
the one used in [36, Section 6]. In fact, the proof is a mimic of the argument in the
classical GIT situation, but replacing Kempf’s instability theorem [22, Corollary
4.5] by [36, Theorem 1.4].

Lemma 3.1. Let (S,B, η) be a special test configuration of a K-semistable log
Fano variety (S,B) with central fiber (S0, B0). Suppose that Fut(S,B) = 0. Then
(S0, B0) is a K-semistable log Fano variety.

Proof. By [36, Theorem E], if a log Fano pair admits a torus action, then to test its
K-semistability it suffices to consider torus equivariant test configurations. There-
fore, if (S0, B0) is not K-semistable, then there is an equivariant special test con-
figuration (S ′,B′) := (S ′,B′, η′) with respect to the C∗-action corresponding to η
such that

Fut(S ′,B′, η′) < 0.
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We denote by (S′
0, B

′
0) the central fiber of (S ′,B′, η′).

We can assume (S,B) (resp. (S ′,B′)) is C∗-equivariantly embedded into PN ×
C×{0} (resp. PN ×{0}×C). By abuse of notations, we denote η : C∗ → SL(N+1)
(resp. η′ : C∗ → SL(N + 1)) to be the 1-parameter subgroup (1-PS) generated by
η (resp. η′). Then η commutes with η′, or equivalently [η, η′] = 0. Let Θ = mB
for some sufficiently divisible positive integer m such that Θ is integral.
(3.1)
Hilb(S,Θ) ∈ HN,P,p := {(Hilb(S),Hilb(Θ)) ∈ Hilb(PN , P )×Hilb(PN , p) | Θ ⊂ S ⊂ PN}

where P (k) = h0(OS(k)) and p(k) = h0(OΘ(k)) for k ' 1 are the Hilbert polyno-
mials for (S,Θ) ⊂ PN × PN . The SL(N + 1)-action on PN induces an action on
HN,P,p. We then have the following convergence:

Hilb(S0,Θ
∗
0) = lim

t→0
η(t) ·Hilb(S,Θ).

We remark Θ0 := mB0 is not necessarily the same as the scheme Θ∗
0 due to the

possible appearance of embedded points on Θ∗
0. However, we have the inclusion of

the ideal sheaves IΘ∗
0
⊂ IΘ0 , with the support of the cokernel being of codimension

at least two on S0. We can similarly define p′(k) = h0(OΘ0(k)) and have the
following convergence:

Hilb(S′
0,Θ

′
0) = lim

t→0
η′(t) ·Hilb(S0,Θ0) ⊂ HN,P,p′

Hilb(S′
0,Θ

′∗
0 ) = lim

t→0
η′(t) ·Hilb(S0,Θ

∗
0) ⊂ HN,P,p.

Therefore, we have the inclusion of the ideal sheaves IΘ′∗
0
⊂ IΘ′

0
, and the codimen-

sion of the support of the cokernel is at least two on S′
0.

Our goal now is to construct a new test configuration (S ′′,B′′) of (S,B) with a
special fiber (S′

0, B
′
0) such that Fut(S ′′,B′′) < 0, contradicting to our assumption

that (S,B) is K-semistable.
Notice that the action of C∗ × C∗ ∼= 〈η〉 × 〈η′〉 < SL(N + 1)2 on HN,P,p induces

a C∗ × C∗-equivariant map

(3.2)
φ : C∗ × C∗ −−−−−→ HN,P,p

(η, η′) 1−→ (η, η′) ·Hilb(S,Θ)

which may be regarded as a rational map φ : P1 × P1 ""# HN,P,p. By extending φ
to the closure the its graph:

(P1 × P1)×HN,P,p ⊃ G := graph(φ)
φ̂

−−−−−−−−−→ HN,P,p,

we obtain the following diagram

(3.3) G

f
!!

φ̂

''❑
❑❑

❑❑
❑❑

❑❑
❑

C∗ τ ((

τ̂

))❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥ C∗ × C∗ % & ((

(η,η′)·Hilb(S,Θ)

**
P1 × P1 φ ((❴❴❴ HN,P,p,

where f is a (C∗ × C∗)-equivariant blow-up, φ(0, 0) = Hilb(S′
0,Θ

′∗
0 ) and

(3.4)
τ : C∗ −−−−−→ C∗ × C∗

t 1−→ (tk, t)
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is a 1-PS with k ' 1 and τ̂ its lift. Then τ̂ satisfies

φ̂ ◦ τ̂(0) = lim
t→0

φ̂ ◦ τ̂(t) = φ(0, 0) = Hilb(S′
0,Θ

′∗
0 ).

Let (S ′′, Θ̃′′) be the flat family obtained by pulling pack the universal family
(SHilb,BHilb) → HN,P,p via τ̂ , and let B′′ := 1

mΘ̃′′. Then (S ′′,B′′) is a special test
configuration and we have

Fut(S ′′,B′′) = Fut(S′
0, B

′
0; kη + η′)

= Fut(S′
0, B

′
0; kη) + Fut(S′

0, B
′
0; η

′)

= Fut(S0, B0; kη) + Fut(S′
0, B

′
0; η

′)

= k · Fut(S,B) + Fut(S ′,B′)

= 0 + Fut(S ′,B′) < 0,

where we used the linearity of the Futaki invariant (cf. Lemma 2.31) in the second
identity. Hence (S ′′,B′′) is the test configuration we are looking for and our proof
is completed. $
3.2. Common degenerations of log Fano pairs.

3.2.1. A common degeneration result and outline of proof. The main technical the-
orem of this section is the following.

Theorem 3.2. Let (S,B) be an (n−1)-dimensional K-semistable log Fano variety.
If there are special test configurations (S(i),B(i)) (i = 1, 2) of (S,B) with central

fibers (S(1)
0 , B(1)

0 ) and (S(2)
0 , B(2)

0 ) such that Fut(S(i),B(i)) = 0, then there are two

special test configurations (S ′(i),B′(i)) of (S(i)
0 , B(i)

0 ) with isomorphic central log
Fano fibers (S′

0, B
′
0) such that Fut(S ′(i),B′(i)) = 0.

We remark that Theorem 3.2 should be regarded as an analogy of a corresponding
statement in classical geometric invariant theory (GIT) (see e.g. [40, Theorem 3.5]).
As an immediate consequence we have the following:

Corollary 3.3. In the above notion, if we assume further that (S(1)
0 , B(1)

0 ) is K-

polystable, then there is a special test configuration of (S(2)
0 , B(2)

0 ) with generalized

Futaki invariant 0 and central fiber isomorphic to (S(1)
0 , B(1)

0 ).

To make our proof of Theorem 3.2 in 3.2.2 more accessible, we first give an
outline of the argument. We will use notations introduced in previous sections.

Motivated by the works in [29, 32, 36], we consider the normalized volume func-

tion v̂ol(X,D,x)(·) defined on the valuation space ValX,x over the vertex x of the cone

(X,D) = C(S,B;−λ(KS + B)) for a sufficiently divisible λ > 0. Then (S(1),B(1))
determines a “ray” of valuations, temporarily denoted by {wε}0≤ε+1, emanating
from the canonical valuation w0 = ordS (S also denotes the divisor obtained by
blowing up the vertex). Indeed, by Lemma 3.4, when k ' 1, w1/k = ak · ordEk ,
where ak > 0 and Ek is a Kollár component over (X,D, x) (see Lemma 3.4). More-
over we know that the generalized Futaki invariant Fut(S(1),B(1)) is the derivative
of the normalized volume at w0 along this ray.

By taking cones similar as before, {(S(i),B(i))}i=1,2 induce special degenera-
tions of (X,D), which will be denoted by {(X (i),D(i))}i=1,2. Note that Ek × C∗

determines a divisorial valuation over X × C∗ and hence over (X (2),D(2)). As we
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mentioned in the introduction, our main goal is to construct a model Y(2)
k → X (2)

with a (prime) exceptional divisor E(2)
k given by Ek × C∗, such that it satisfies

(Y(2)
k , E(2)

k )×C C∗ ∼= (Yk, Ek)× C∗, where the isomorphism is compatible with the
equivariant isomorphism of the second special test configuration. Based on the re-
sults from the minimal model program (MMP) (see [3]), this would be true if we
could find a graded sequence of ideals A• and a positive real number c′k such that
the following two conditions are simultaneously satisfied:

(✿) (X (2),D(2) + c′kA•) is klt and A(Ek × C;X (2),D(2) + c′kA•) < 1,

whereA(Ek×C;X (2),D(2)+c′kA•) is the log discrepancy of (the birational transform
of) Ek × C with respect to the triple (X (2),D(2) + c′kA•). Note that this way of
applying MMP is also a major ingredient in the study of some related problems in
[4, 35, 36] .

To construct such a graded sequence A• of ideals, we look at the graded sequence
of valuation ideals {a•} of ordEk and its equivariant degeneration along the second
special test configuration (X (2),D(2)). The resulting graded sequence of ideals over
X (2) will be denoted by A•. We claim for k ' 1, A• is exactly what we are looking
for. Indeed, as we will show (see Claim 3.6), the assumptions that (S,B) is K-
semistable and Fut(S(1),B(1)) = 0 guarantee the existence of c′k satisfying the two
conditions in (✿). This is possible thanks to the interaction between K-semistability
and minimization of normalized volumes/normalized multiplicities.

Applying the relative Rees algebra construction to E(2)
k ⊂ Y(2)

k /C, and then
taking a quotient by the natural rescaling C∗-action, one can obtain a family over
C2, whose restriction to C× {t} for t -= 0 is the same as (S(1),B(1)) and it gives a

degeneration of (S(1)
0 , B(1)

0 ) when restricted to C × {0}. On the other hand, over

{0}× C, one get a degeneration of (S(2)
0 , B(2)

0 ). Therefore, we obtain that the two

log Fano varieties (S(i)
0 , B(i)

0 ) (i = 1, 2), which are special fibers of the two special
test configurations (S(i),B(i)) (i = 1, 2) with Fut(S(i),B(i)) = 0 (i = 1, 2), indeed
admit degenerations with isomorphic special fibers (see Theorem 3.2).

3.2.2. Proof of Theorem 3.2. As (S(i),B(i)) (i = 1, 2) are special test configurations,

(S(1)
0 , B(1)

0 ) and (S(2)
0 , B(2)

0 ) are log Fano varieties. Consider the cone (X,D) =

C(S,B;−λ(KS + B)) over S and similarly (X(i)
0 , D(i)

0 ) = C(S(i)
0 , B(i)

0 ;−λ(K
S(i)
0

+

B(i)
0 ))(i = 1, 2) for some sufficiently divisble λ. Denote the corresponding degen-

eration of X to X(i)
0 over C to be X (i), then we get special test configurations

(X (i),D(i), ξ0; η(i)) of (X,D, ξ0), where D(i) is the cone over B(i) and ξ0 is from the
natural C∗-action on the cone.

From [6, Definition 4.4], we know that the central fiber S(1)
0 of the special de-

generation S(1) induces a valuation w′ := q · ordF for some divisor F over S. Let
ordS denote the canonical divisorial valuation associated to the exceptional di-
visor, which is isomorphic to S, obtained by blowing up the vertex x. Assume
µ : S̃ → S is a birational morphism such that the divisor F is on S̃ and (S̃, F ) is log
smooth. Let X̃ → X be the resolution given by the total space of the line bundle
of µ∗(λ(−KX − B)) over S̃. Then following [29, Page 3181–3182], we denote by

a1 = −λ(A(S,B)×C(S
(1)
0 ) − 1) and let wε be the quasi-monomial valuation on the

model (X̃, S̃ + F̃ ) with weight (1 + εa1, εq) with respect to S̃ and the pull back F̃
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of F by X̃ → S̃ (see [29, Definition 6.12]). We choose ε∗ such that 1 + εa1 > 0 for
any ε ∈ [0, ε∗). Then wε is centered at the vertex x of X. By [29, Proposition 6.16],
we have the identity:

(3.5) A(X,D)(vk) = kA(X,D)(w1/k) = k ·A(X,D)(ordS) = k · λ−1.

For N 9 k ' 1, let vk = k ·w1/k. Then vk = d · ordEk is a multiple of a divisorial
valuation ordEk for some d ∈ Z>0. As a valuation, we can describe vk explicitly as
follows (see [29, (57)]). For any f ∈ H0(S,−mλ(KS +B)),

(3.6) vk(f) = km+ ord
S(1)
0

(f̄),

where f̄ is the meromorphic section of mL → S obtained by pulling back f via the
map

(S\S(1)
0 ,mL) ∼= (S × C∗,m · p∗1L)

p1−→ (S,mL).

Note that vk can also be defined as the restriction of wtkξ0−η from C(X (1)) to

C(X) by using the C∗-equivariant isomorphism X (1)\X(1)
0

∼= X ×C∗ (see [29, page
3184–3185]).

Lemma 3.4. Notations as above, for k ' 1, the divisor Ek corresponding to vk is
a Kollár component with an associated model Yk → (X,D). Moreover, the special
test configuration (X (1),D(1)) is given by the special test configuration associated to
Ek (in the sense of Definition 2.20) up to a base change. In particular (S(1),B(1))
can be recovered by the model Ek → Yk → (X,D).

Proof. For simplicity, we denote L = −λ(KS + B). By [6, Proposition 2.15] (see
also Lemma 2.17), we know that X (1) is given by

SpecC[t]




⊕

m∈N




⊕

j∈Z
t−jFjH0(S,mL)







 =: SpecC[t](R(1))

where FjH0(S,mL) is given by:

FjH0(S,mL) =
{
s ∈ H0(S,mL) | t−j s̄ ∈ H0(S,mL)

}
.

Therefore X(1)
0 is isomorphic to

Spec




⊕

j∈N

(
⊕

m∈N
FjH0(S,mL)/Fj+1H0(S,mL)

)

 ,

and the (C∗)2-action on X(1)
0 is induced by the two gradings.

On the other hand, f ∈ FjH0(S,mλ(−KS − B)) if and only if ord
S(1)
0

(f̄) ≥ j

which by [29, (57)] is equivalent to

vk(f) = mk + ord
S(1)
0

(f̄) ≥ mk + j .

In other words, the valuation ideal ap(vk) of vk = d · ordEk is determined by:

f ∈ H0(S,mλ(−KS −B))∩ap(vk) if and only if f ∈ Fp−mkH0(S,mλ(−KS −B)).

Since vk ∈ ValX,x is C∗-invariant, we have the identity:

grvkR =
⊕

p∈dZ

⊕

m

Fp−mkH0(S,mL)/Fp+1−mkH0(S,mL).
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Let ξ 1
k
:= ξ0 − 1

kη. For an element

f̄ ∈ FjH0(S,mL)/Fj+1H0(S,mL),

its weight vector is α = (m,−j) and 〈ξ 1
k
,α〉 = m+ j

k . Thus

Proj(grordEk
R) ∼= Proj(grvkR)

is the quotient of X(1)
0 by the C∗-action generated by ξ 1

k
(see Definition 2.13). So

we have: (Ek, Bk) :=
(
(X(1)

0 , D(1)
0 ) \ {x(1)}

)
/〈ξ 1

k
〉 (where x(1) is the vertex and Bk

includes the orbifold locus) and Ek can be extracted over X. Since (X(1)
0 , D(1)

0 )
has klt singularities, (Ek, Bk) is a log Fano variety which has klt singularities and
hence is a Kollár component over X by the inversion of adjunction.

To see that last statement, note that we can rewrite R(1) as:

R(1) =
⊕

j∈Z

⊕

m∈N
t−jamk+j(vk) ∩H0(S,mL),

=
⊕

p∈Z

⊕

m∈N
t−p+mkap(vk) ∩H0(S,mL),

which is isomorphic to the extended Rees algebra of a•(vk):

(3.7)
⊕

p∈Z

⊕

m∈N
t−pap(vk) ∩H0(S,mL) =

⊕

p∈Z
t−pap(vk).

Indeed, it is easy to verify that the map t−p+mkf 1→ t−pf for any f ∈ ap∩H0(S,mL)
is an isomorphism of the two algebras. On the other hand, the extended Rees
algebra of ordEk is given by:

⊕

q∈Z
u−qaq(ordEk) =

⊕

p∈dZ
u− p

d ap(vk).

From this we see that X (1) = Y ×C,t-→td C where Y is the test configuration asso-
ciated to ordEk in the sense of Definition 2.20. $

In the proof of Lemma 3.4, there is a rank 2 torus (C∗)2 acting on X(1)
0 , such

that if we let ξ0 be the coweight vector (1, 0), then X(1)
0 /〈ξ0〉 ∼= S(1)

0 , and the action

by the coweight (0, 1) is induced by the action on S(1)
0 from the test configurational

S(1) structure. We construct a ray ξε = ξ0 − εη, where η corresponds the action

with coweight (0, 1). Then any ξε gives a quasi-monomial valuation wtε on X(1)
0

(see (2.6)). Moreover, for ε ∈ [0, ε∗), it also induces a sequence of quasi-monomial
valuations wε in X which is contained in ValX,x (see [35, Proof of Theorem 3.5]).
Our proof in Lemma 3.4 just gives a verification of the divisorial valuation, which
can be easily extended to the general case.

Furthermore, as proved in [29, Lemma 6.20] or [35, Section 2.4], if we define

f(ε) := v̂ol(wε), then it is a smooth convex function on [0, ε∗) with 0 < ε∗ 6 1 such
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that f(0) = v̂ol(v) and

f ′(0) =
d

dε
v̂olX(wε)

∣∣∣∣
ε=0

=
d

dε
v̂olX0(wtε)

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

v̂olX0(ξ0 − εη)

= C · Fut(X (1),D(1), ξ0; η
(1)),

where the last identity follows from (2.9) and the constant

C = n ·AX0(wtξ0)
n−1 · vol(ξ0) > 0.

Lemma 3.5. For k sufficiently large, the model Yk → X extracting Ek can be

degenerated along X (2) to obtain a model µ : Y(2)
k → X (2) over C with an exceptional

divisor Ek such that the following properties hold true:

(1) There is the following isomorphism which is equivariant with respect to the
C∗-action generated by η(2):

(Y(2)
k , E(2)

k )×C C∗ ∼= (Yk, Ek)× C∗.

(2) (Y(2)
k , µ−1

∗ D(2) + E(2)
k + (Y(2)

k )t) is log canonical for any t ∈ C (i.e., in the

terminology of [25, Definition 2.2], (Y(2)
k , µ−1

∗ D(2) + E(2)
k ) a locally stable

family over A1
C).

Proof. For a fixed sufficiently large k, denote by Ik the m-primary ideal over x ∈
X induced by Ek which is the push forward of O(−mEk) for a fixed sufficiently
divisible m. Let

ck = lct(Ik;X,D) =: lct(Ik)

be its log canonical threshold. Then because Ek is a Kollár component, we have:

f

(
1

k

)
= v̂ol(ordEk) = mult(Ik) · cnk .

Note that because of the rescaling invariance of the normalized multiplicities
mult(Ik) · lctn(Ik), we can replace Ik by its powers and the normalized multiplicities
do not change, so we do not specifically denote m.

Since f ′(0) = C · Fut(X (1),D(1), ξ0; η) = 0, we have

f

(
1

k

)
= f(0) +O

(
1

k2

)
.

Fix k, for each l ≥ 1, as in [36, Lemma 4.1], we can construct a graded sequence
of ideals A• = {Al} on X (2) such that

Al ⊗C[t] C[t, t−1] ∼= I lk[t, t
−1] and Al ⊗C[t] (C[t]/(t)) ∼= in(I lk),

where {in(I lk)} is the graded sequence of ideals consisting of initial ideals of the

sequence {I lk}l for the C∗-degeneration of X to X(2)
0 . To simplify the notations, we

just denote
bk,• = {bk,l}l = {in(I lk)}.

Claim 3.6. For any ε > 0, we can find k sufficiently large and δ sufficiently small
satisfying:

(3.8) A(Ek;X,D + c′kIk) < ε/2 and c′k < lct(bk,•;X
(2)
0 , D(2)

0 )

with c′k := ck(1− δ).
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Proof of Claim 3.6. To prove the claim, we first note that, by using A(Ek, X,D +
ckIk) = 0 and identity (3.5):

A(Ek;X,D + (1− δ)ckIk) = δ ·A(X,D)(Ek) = δ · k ·A(X,D)(ordS).

On the other hand, since (X(2)
0 , D(2)

0 ) is K-semistable by Lemma 3.1, we know that

f(0) = vol(x(2), X(2)
0 , D(2)

0 ) (see Theorem 2.5), where x(2) is the vertex. Therefore,

f(0) ≤ lct(bk,•;X
(2)
0 , D(2)

0 )n ·mult(bk,•)

≤ cnk ·mult(Ik)

= f

(
1

k

)
= f(0) +O

(
1

k2

)
,

where we have used Proposition 2.4 for the first inequality, and the non-increasing
of log canonical thresholds under specialization as well as mult(bk,•) = mult(Ik) for
the second inequality.

We get the inequality:

lct(bk,•;X
(2)
0 , D(2)

0 )

ck
≥

(
f(0)

f(1/k)

)1/n

.

Since (1 + O( 1
k2 ))

1
n is also of the order (1 + O( 1

k2 )), for any fixed ε, there exists
K0 ' 0 such that for any k ≥ K0,

(
f(0)

f(1/k)

)1/n

≥ 1− ε

4k ·AX,D(ordS)
.

Now if we choose δ to be:

δ =
ε

2k ·A(X,D)(ordS)
,

then c′k = (1− δ) · ck < lct(bk,•;X
(2)
0 , D(2)

0 ) and

A(Ek, X,D + (1− δ)ckIk) = ε/2.(3.9)

$

We may assume ε is less than 1. It follows from Claim 3.6 that
(3.10)

A(Ek × C;X (2),D(2) + c′kA•) < ε/2 and c′k < lct(A•;X (2),D(2) +X(2)
0 ),

where we used the inversion of adjunction for the second inequality. We can then

apply [3, Corollary 1.4.3] to precisely extract an irreducible divisor E(2)
k to obtain

a birational morphism µ : Y(2)
k → X (2) whose restriction over X ×C∗ is the divisor

Ek × C∗ and −E(2)
k is ample over X (2).

Moreover, as (Y(2)
k , µ−1

∗ D(2) +(1− ε)E(2)
k + Y (2)

0 ) is log canonical, by ACC of log
canonical thresholds ([16, Theorem 1.1]), we may choose ε to be sufficiently small

and independent of k such that (Y(2)
k , µ−1

∗ D(2) + E(2)
k + Y (2)

0 ) is log canonical. $

There is a C∗ × C∗ = 〈ξ0〉 × 〈η(2)〉-action on X(2)
0 . Note that [ξ0, η(2)] = 0. The

ideals {bk,•} is (C∗)2-equivariant. In fact, by definition it is clearly equivariant with
respect to 〈η(2)〉. It is also equivariant with respect to the first factor because Ek

is 〈ξ0〉-invariant and X (2) is 〈ξ0〉-equivariant.
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(3.11)

(X(2)
0 , D(2)

0 )

(X ′(2),D′(2))

!!
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"

""&
&&& (X,D)

(X (2),D(2))←−Y(2)
k ←−E(2)

k## #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$

(X (1),D(1))←Yk←Ek=Ek×A1

!! !"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"
!"

$$♥ ♥ ♥ ♥ ♥
Yk ← Ek

##

(S(2)
0 , B(2)

0 )

(S′(2),B′(2))

!!
!"
!"
!"
!"

(S,B)
(S(2),B(2))## #$ #$ #$ #$

(S(1),B(1))

!!
!"
!"
!"
!"

(S′
0, B

′
0) (S(1)

0 , B(1)
0 )

(S′(1),B′(1))

## #$ #$ #$ #$

(X ′
0, D

′
0)

%%♥
♥

♥
♥

(X(1)
0 , D(1)

0 )
(X ′(1),D′(1))

## #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$ #$

&&& & & &

Yk,0 ← Ek.##

Now we apply the family version of the construction first introduced in [36,

Section 2.4], to conclude that the model Y(2)
k → X (2) with relative anti-ample E(2)

k

over X (2) yields a degeneration of X (2) which gives a family (X,D) over C2, whose
restriction over (C∗)2 ⊂ C2 is isomorphic to (X,D)× (C∗)2. More precisely, if we
assume X (2) = SpecC[s](R(2)) and define the extended Rees algebra:

(3.12) R =
⊕

m∈Z
am(ordEk)s

−m ⊂ R(2)[s, s−1],

where as before am(ordEk) = {f ∈ R(2), ordEk(f) ≥ m}. Then X = SpecC[t,s](R)

and D is the divisor on X induced by D(2). Using the fact that (Y(2)
k , µ−1

∗ D(2) +

E(2)
k + (Y(2)

k )t) is log canonical for any t ∈ C (see Lemma 3.5.2), we know that
(X,D+ X×C2 ({t}× C))×C2 (C× {0}) is log canonical (see Lemma 2.21).

Using the basic property of the Rees algebra (see e.g. [36, Section 4.1]), we see
that

(X,D)×C2 (C× {1}) ∼= (X (2),D(2)).

Moreover, we claim that:

(X,D)×C2 ({1}× C) ∼= (X (1),D(1)).

This holds true if the morphism am(ordEk) = µ∗O(−mEk) → am(ordEk) =
(µ|Yk

)∗O(−mEk) is surjective which follows from the vanishing R1µ∗(−mEk) = 0.
The restrictions of (X,D) over the two axes C × {0} and {0} × C respectively

give test configurations (X(1)
0 , D(1)

0 ) and (X(2)
0 , D(2)

0 ) with the same central fiber
(X ′

0, D
′
0). We know these two test configurations are indeed weakly special because

(X,D+ X×C2 ({0}× C))×C2 (C× {0}).
The 〈ξ0〉-action on (X,D) extends naturally to (X,D) over C2. Moreover, KX+D

is Q-Cartier and admits a (C∗)2-equivariant nowhere-vanishing section s ∈ |m(KX+
D)|. Then we can take the quotient of the action (X,D) by the 〈ξ0〉-action to get a
pair (S, B̃). Its restrictions over the two axes C×{0} and {0}×C respectively give

test configurations (S(1)
0 , B(1)

0 ) and (S(2)
0 , B(2)

0 ) with the same central fiber (S′
0, B

′
0).

Because the generalized Futaki invariants are defined by the intersection numbers,
we know the generalized Futaki invariant of the test configuration (S, B̃)×C2 (C×
{0}) degenerating (S(1)

0 , B(1)
0 ) to (S′

0, B
′
0) is 0 since the nearby fibers (S, B̃) ×C2
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(C× {t}) (t -= 0) all have generalized Futaki invariants 0, and the same is true for

the test configuration (S, B̃)×C2 ({0}× C) degenerating (S(2)
0 , B(2)

0 ) to (S′
0, B

′
0).

Then the central fiber (S′
0, B

′
0) will automatically be a log Fano variety since

otherwise it follows from [34, Theorem 7] that we can construct a special test con-

figuration of (S(1)
0 , B(1)

0 ) with a strictly negative Futaki invariant, which contradicts

to the K-semistability of (S(1)
0 , B(1)

0 ) by Lemma 3.1.
Thus this completes the proof of Theorem 3.2.

3.2.3. Application to torus-equivariant K-polystability.

Lemma 3.7. Assume (S,B) is an (n − 1)-dimensional K-semistable log Fano
pair. Let (S,B) be a special test configuration with central fibre (S0, B0) such that
Fut(S,B) = 0. If S admits a torus TS

∼= (C∗)d−1-action, then (S,B) and (S0, B0)
admit a common K-semistable degeneration (S1, B1) with a TS×C∗ ∼= (C∗)d-action,
which extends the TS-action on (S,B) as well the C∗-action on (S0, B0).

Proof. By Lemma 3.1, we know (S0, B0) is K-semistable. Fix a sufficiently divisible
λ. By Lemma 3.4, for k ' 1, the special degeneration induces a Kollár component
Ek over the cone

Ek → Yk → (X,D) = C(S,B;−λ(KS +B)).

The cone (X,D) admits a T ∼= TS × C∗-action, where the first factor TS-action is
induced from the TS-action on (S,B) and the second factor C∗-action comes from
the natural rescaling on the cone (X,D).

Consider the valuation ideal Ik = am(ordEk) for m ' 1, and its equivariant
degeneration {bk,l}l of {I lk} on the fiber of XCd := X×Cd over 0 ∈ Cd with respect

the T -action given by b̃k,l. That is to say, b̃k,l is a T -equivariant ideal on XCd which
is flat over Cd, whose restriction over in 1 = (1, . . . , 1) ∈ (C∗)d ⊂ Cd is I lk, and over
0 ∈ Cd is bk,l.

Then as before, we know there is a smooth function f on [0, ε∗) with 0 < ε∗ 6 1
such that

f

(
1

k

)
= mult(Ik) · lct(Ik)n and f ′(0) = 0.

Then by exactly the same argument as in Claim 3.6, we know that for any ε > 0,
we can pick k ' 1 and c′k such that

A(Ek, X,D + c′kIk) < ε and c′k < lct(bk,•;X0, D0).

Therefore, we can construct a T -equivariant birational model µd : Yk → XCd

which over 1 yields Yk → X, and Ex(µd) = E is an irreducible divisor which is
anti-ample over XCd . For any point t ∈ Cd, we can find the coordinate hyperplanes
H1, . . . , Hd passing through t. By inversion of adjunction, (XCd , DCd +

∑d
i=1 Hi +

c′k · b̃k,l) is log canonical, which implies that (Yk, E + µ−1
∗ DCd + µ∗ ∑d

i=1 Hi) is log
canonical by ACC of log canonical thresholds (see [16]) as before. This implies
that for any t ∈ Cd, any component of the fiber (Yk)t is of dimension dim(X)

by [11, Proposition 39] as it is contained in µ∗ ∑d
i=1 Hi. Moreover, (Yk)t → X

is birational, since if (Yk)t has another component, then it is contained in E and

µ∗ ∑d
i=1 Hi, thus violates [11, Proposition 39] again.

Denote by ai = µd∗OYk(−iE). For any j ∈ N, we have an exact sequence

0 → OYk(−(i+ 1)E) → OYk(−iE) → Qi → 0

Licensed to Princeton Univ. Prepared on Fri Jun  3 15:55:37 EDT 2022 for download from IP 71.226.228.64.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALGEBRAICITY OF THE METRIC TANGENT CONES 1199

for a sheaf Qi supported on E . Since E is Q-Cartier, we know Qi is Cohen-Macaulay
(see [26, Proof of Proposition 5.26]); thus it is flat over Cd as it is equi-dimensional.
By the vanishing theorem, we can pushforward the above exact sequence by µd to
get

0 → ai+1 → ai → µd∗(Qi) → 0.

Since for any t ∈ C∗, Rj(µd)t∗(Qi)t = 0 for any j > 0, by base change theorem (see
e.g. [17, Theorem III.12.11]), this implies

µd∗(Qi)⊗ k(t) = µd∗(Qi ⊗ k(t)) = (µd)t∗(−iEt)/(µd)t∗(−(i+ 1)Et)

and we inductively get ai ⊗ k(t) = (µd)t∗O(Yk)t(−iEt) for all i ∈ N. Then we
can take the relative extended k[t1, . . . , td]-Rees algebra

⊕
i∈Z ai · t−i, which yields

T̃ -equivariant family Xd+1 over Cd+1. The above discussion says the construction
commutes with any base change, i.e. for a any t ∈ Cd, if we consider the base change
Xd+1 ×Cd+1 ({t} × C), we get exactly the degeneration induced by (Yk)t → X. In
particular, we can choose (X1, D1) to be the fiber over 0 ∈ Cd+1 and (S1, B1) is
its C∗-quotient. And (S1, B1) is K-semistable, since it is a special degeneration of
(S,B) with generalized Futaki invariant 0. $

3.3. Proof of main results for log Fano pairs.

Proof of Theorem 1.3. Given a K-semistable log Fano pair (S(0), B(0)) := (S,B).
If it is not K-polystable, then by [34] we know it has special degenerations to log
Fano pairs which are not isomorphic to (S,B), with generalized Futaki invariant 0.
Let (Sp, Bp) be a log Fano pair, which among all possible special degenerations of
(S,B) admits a faithful torus action of the maximal dimension. We claim (Sp, Bp)
is K-polystable. If this is not true, by Lemma 3.7, (Sp, Bp) has a K-semistable
degeneration (S(1), B(1)) which admits a faithful torus action of a larger dimen-
sion. However, by the proof of Lemma 3.1, we can indeed degenerate (S,B) to
(S(1), B(1)), which is a contradiction.

The uniqueness directly follows from Theorem 3.2, as any test configuration
(S,B) which degenerates (S,B) to a K-polystable log Fano pair (S0, B0) automat-
ically satisfies Fut(S,B) = 0. $

Proof of Theorem 1.4. It is known from [36] that to check K-semistablity, we only
need to check the T -equivariant special test configurations. Then from K-
semistability to K-polystability, it follows from Lemma 3.7. $

4. General case of log Fano cones

In Section 4.1, we will generalize the techniques in Section 3 to the case of log
Fano cones. This allows us to get weakly special test configurations with isomor-
phic central fibres and generalized Futaki invariants 0, under similar assumption
as in Theorem 3.2. In Section 4.2, we prove that these weakly special test con-
figurations are indeed special. We prove this fact by generalizing the last step in
[34] to the setting of log Fano cone singularities, including the irregular case. We
complete the proof of Donaldson-Sun’s conjecture (Theorem 1.1) and Theorem 1.2
on existence/uniqueness of K-polystable degenerations in Section 4.3.
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4.1. Common degenerations of log Fano cones. Fix a K-semistable log Fano
cone (X,D, ξ0) with a torus action by T ∼= (C∗)r. Then wtξ0 is a minimizer of

v̂olX,D by Theorem 2.5. Assume that (X (i),D(i), ξ0; η(i)) (i = 1, 2) are two special

degenerations of (X,D, ξ0) to (X(i)
0 , D(i)

0 , ξ0), (i = 1, 2) respectively. Recall that ξ0
on X (i) is just given by the natural extension of ξ0 on X ×C∗. By assumption η(i)

has an integral coweight which can be written as the form (·, 1) with respect to the

decomposition of T̃ := T × C∗ ∼= (C∗)r+1. Note that the central fibers (X(i)
0 , D(i)

0 )
(i = 1, 2) admit T̃ -actions generated by T and 〈η(i)〉.

Theorem 4.1. Let (X,D, ξ0) be a K-semstable log Fano cone. With the notations
in the above paragraph, assume Fut(X (1),D(1), ξ0; η(1)) = 0 and Fut(X (2),D(2), ξ0;
η(2)) = 0. Then there are weakly special test configurations (X ′(i),D′(i), ξ0; η′(i))

of
(
X(i)

0 ,D(i)
0 , ξ0

)
(i = 1, 2) with isomorphic central fibers such that

Fut(X ′(i),D′(i), ξ0; η′(i)) = 0 for i = 1, 2.

We follow a similar strategy as in Section 3.1.

Proof. We first claim that (X(1)
0 , D(1)

0 , ξ0) is K-semistable. If not, then there is a

special test configuration (X ′′(1)
0 ,D′′(1)

0 , ξ0; η′′(1)) with

Fut(X ′′(1)
0 ,D′′(1)

0 , ξ0; η
′′(1)) < 0,

which degenerates (X(1)
0 , D(1)

0 , ξ0) to (X ′′(1)
0 , D′′(1)

0 , ξ0). Then we claim there is

a test configuration (X̃ ′′(1)
0 , D̃′′(1)

0 , ξ0; kη(1) + η′′(1)) for some k ' 0 degenerating

(X,D, ξ0) to (X ′′(1)
0 , D′′(1)

0 , ξ0) with the generalized Futaki invariant

Fut(X̃ ′′(1)
0 , D̃′′(1)

0 , ξ0; kη
(1) + η′′(1))

= k · Fut(X (1),D(1), ξ0; η
(1)) + Fut(X ′′(1)

0 ,D′′(1)
0 , ξ0; η

′′(1))

< 0,

which is contradictory to our assumption (X,D, ξ0) is K-semistable. Here we used
the linearity of the generalized Futaki invariant from Lemma 2.25 as in the log

Fano cone case. Denote by σ : A1 → X̃ (1)
0 the section of vertices and similarly

σ′′ : A1 → X̃ ′′(1)
0 . To see the existence of such test a configuration we fix a rational

vector ξ′0 ∈ N+
Q , and take the quotient, we get (S(1)

0 ,B(1)
0 ) and (S ′′(1)

0 ,B′′(1)
0 ) which

give special test configurations of the log Fano pairs obtained as the 〈ξ′0〉-quotients
of (X,D) and (X(1)

0 , D(1)
0 ). Since [η(1), η′′(1)] = 0, the proof of Lemma 3.1 shows

that there is a test configuration that degenerates the 〈ξ′0〉-quotient of (X,D) to

that of (X ′′(1)
0 , D′′(1)

0 ). Then we can take the cone back to get (X̃ ′′(1)
0 , D̃′′(1)

0 , ξ0).
(Also see [35, Section 4.2] for a direct construction.)

Applying the diophantine approximation (cf. [35, Lemma 2.7]) of the coordinates
of ξ0, we can choose a sequence of integral vectors {ξ̃k} such that |ξ̃k−kξ0| ≤ A for
any constant A > 0 where k is an infinite sequence of increasing positive integers.
Consider the Kollár component Ek determined by ξ̃k + η(1) over x ∈ (X,D) (it is
a Kollár component by Lemma 3.4). Let Ik = am(ordEk) for a sufficiently divisible
m depending on k. Let ck = lct(Ik;X,D) and consider:

f(
1

k
) = v̂ol(ordEk) = mult(Ik) · cnk .
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Let T̃ = 〈ξ0, η(1)〉 ∼= (C∗)r+1 be the torus generated by ξ0 and η(1), and Ñ =
Hom(C∗, T̃ ) be the coweight lattice of T̃ .

Since (X(1)
0 , D(1)

0 , ξ0) is K-semistable,

v̂ol(ξ) := v̂ol
(X(1)

0 ,D(1)
0 )

(wtξ)

is a smooth function of ξ ∈ Ñ+
R and obtains the minimum at ξ0 (see Theorem 2.5).

By (2.9), this also implies that for any rational vector η1 ∈ ÑR,

d v̂ol(wtξ0+tη1)

dt

∣∣∣
t=0

= C · Fut(X(1)
0 × C, D(1)

0 × C, ξ0; η1) = 0(4.1)

By Taylor’s remainder theorem there is a neighborhood U of ξ0 ∈ ÑR and a
positive constant C > 0 (independent of ξ) such that, for any ξ ∈ U , we have the
inequality:

v̂ol(ξ0) ≤ v̂ol(ξ) ≤ v̂ol(ξ0) + C|ξ − ξ0|2.
Note that f( 1k ) = v̂ol( 1k ξ̃k + 1

kη
(1)) by the rescaling invariance of the normalized

volume. Because
∣∣∣ 1k ξ̃k +

1
kη

(1) − ξ0
∣∣∣ ≤ C ′k−1 for C ′ > 0 independent of k, there

exists K0 ' 1 such that for any k ≥ K0, f(
1
k ) = f(0) +O( 1

k2 ).
Then the same argument as in the case of the log Fano varieties using [3, Corol-

lary 1.4.3], shows that we can find µ(2) : Y(2)
k → X (2) a morphism over C with a

divisor E (2)
k such that −E(2)

k is ample over X (2) and (Y(2)
k , E(2)

k )×CC∗ = (Yk, Ek)×C∗

where the isomorphism is equivariant with respect to the C∗-action generated by
η(2). Moreover, fixed any arbitrarily small ε, we can choose k sufficiently large such
that the log discrepancy of Ek with respect to (X,D+ (1− δ)ck · Ik) is less than ε,

and (X(2)
0 , D(2)

0 + (1− δ)ck · in(Ik)) is log canonical for a suitable choice of small δ
(see (3.8)). The it follows from the ACC of log canonical thresholds (see [16]) that

(Y(2)
k , E(2)

k + (µ(2))−1
∗ D2 + (Y(2)

k )t) is log canonical for any t ∈ C.
The relative extended Rees algebra gives a family (X,D) over C2, such that over

C×{t} (resp. {t}×C) (t -= 0), it gives a family which is isomorphic to (X (1),D(1))
(resp. (X (2),D(2))). The family (X,D) admits a (C∗)r+2-action.

By Lemma 2.21, we get weakly special test configurations

(X ′(i),D′(i), ξ0; η
′(i)) of (X(i)

0 , D(i)
0 , ξ0) (i = 1, 2)

with an isomorphic central fiber (X ′
0, D

′
0, ξ0).

We claim that the generalized Futaki invariants Fut(X ′(i),D′(i), ξ0; η′(i)) are 0.
Indeed, by the construction,

(X,D, ξ0; η
(1))

∣∣∣
C×{t}

∼= (X (1),D(1), ξ0; η
(1)).

It follows from our assumption that

Fut(X (1),D(1), ξ0; η
(1)) = Fut(X(1)

0 , D(1)
0 , ξ0; η

(1)) = 0.

By the flatness of the weighted piece and (C∗)2 equivariance, we get for any t,

vol
X(1)

0
(ξ0 + tη(1)) = volX′

0
(ξ0 + tη(1)),

which implies that Fut(X ′
0, D

′
0, ξ0; η

(1)) = 0 (see (4.1)). Similarly, we have
Fut(X ′

0, D
′
0, ξ0; η

(2)) = 0. $
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By the above result, we obtain two weakly special test configurations

(X ′(i),D′(i), ξ0;η′(i)) with isomorphic central fibres (X ′(1)
0 , D′(1)

0 , ξ0)∼=(X ′(2)
0 , D′(2)

0 , ξ0)
and zero generalized Futaki invariants. In the next subsection, we are going to show
that (X ′(i),D′(i), ξ0; η′(i)) are indeed special test configurations.

4.2. Vanishing Futaki invariants and special degenerations. We will prove
Proposition 4.3, which says to test K-(semi, poly)stability of a log Fano cone.
Although in our definition we only require to test on all special degenerations, it
is indeed the same to test on all weakly special test configurations. A tool we will
use is to write the generalized Futaki invariant of a weakly special configuration as
the derivative of the leading coefficient of the index character (see [8, 9, 39]).

If there are two T -equivariant weakly special test configurations

(X (i) = Spec(R(i)),D(i), ξ0; η) of a K-semistable log Fano cone (X,D, ξ0),

with Fut(X (i),D(i), ξ0; η) = 0, by Lemma 2.17, we know X (i) is associated to a

graded sequence of ideals a(i)• which we can assume to be primary (see Remark
2.18) as

Fut(X (i),D(i), ξ0;mξ′0 + η)

= Fut(X (i),D(i), ξ0;mξ′0) + Fut(X (i),D(i), ξ0; η)

= 0,

where Fut(X (i),D(i), ξ0; ξ′0) = 0 follows from the K-semistability of (X,D). More-
over, since the test configuration is weakly special, by Lemma 2.21 there is indeed
a birational morphism µi : Y i → X (i = 1, 2) with a reduced exceptional divisor

Ei such that (Y i, Ei + (µi)−1
∗ D) is log canonical and a(i)k = µi

∗(−kEi). There-
fore, we can take a normalized graph µg : Y g → X of Y 1 ""# Y 2 over X with
pi : Y g → Y i. Then for any pair (a, b) such that

(
−ap∗1(E

1)− bp∗2(E
2)
)
is integral,

by Definition 2.20, we can consider the test configuration Ya,b of (X,D, ξ0) induced
by

(
−ap∗1(E

1)− bp∗2(E
2)
)
.

We apply the T -equivariant index character (see [8, Section 4] for more details)
for any ξ ∈ Ñ+

R ⊂ ÑR ∼= Rr+1 where Ñ+
R is the Reeb cone of the T̃ = T ×C∗-action

and t ∈ C with the real part :(t) > 0, and define:

(4.2) F (a, b; ξ, t) =
∑

α∈t̃+R

e−tα(ξ) dimRa,b
α (v),

where Ra,b is the ring of the special fiber of Ya,b.
Now if we fix a prime integral vector ξ ∈ t+R ∩N such that

〈ξ〉-quotient of (X (i),D(i)) = (S(i), B(i),L(i)) (i = 1, 2)

give test configurations of the 〈ξ〉-quotient (S,B) of (X,D) with polarizations Li.
Then the quotient of Ya,b by 〈ξ〉 is given by the normalized graph Sa,b of S(1) ""#
S(2) with morphisms φi : Sa,b → S(i) and the polarization is given by aφ∗

1L(1) +
bφ∗

2L(2).
The following statement essentially follows from [8, Theorem 4.10].

Proposition 4.2. For a fixed ξ ∈ Ñ+
R the index character F (a, b; ξ, t) has a mero-

morphic extension to C with poles along the imaginary axis. Near t = 0 it has a
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Laurent series expansion:

(4.3) F (a, b; ξ, t) =
a0(a, b; ξ)n!

tn+1
+

a1(a, b; ξ)(n− 1)!

tn
+ · · · ,

where a0(a, b; ξ) is a polynomial of (a, b) whose coefficients depend smoothly on
ξ ∈ Ñ+

R .

Proof. It follows from [8, Proposition 4.3] that when ξ is rational, then a0 coincides
with the leading term of the total weight on the test configuration Sa,b constructed
from the quotient log Fano pair. Since it can be represented by an intersection
formula, in particular, it is a polynomial of a and b by [41, 45].

Denote by s = r + 1. By the proof of [8, Theorem 4.10], we know

F (a, b; ξ, t) =
e−t(ξ1α1+···ξsαs) ·HNa,b(e−tξ1 , . . . e−tξs)

ΠN
j=1(1− e−t(ξ1w1j+···+ξswsj))

,

where ξ = (ξ1, . . . , ξs) ∈ Ñ+
R , (α1, . . . ,αs) ∈ Zs and wij (1 ≤ i ≤ s, 1 ≤ j ≤ N)

are real numbers. The leading term of the Laurent expansion is the same as the
leading term of

HNa,b(1, . . . , 1)

ΠN
j=1(1− e−t(ξ1w1j+···+ξswsj))

.

Since a, b only appear in the part HNab(1, . . . , 1) which does not depend on ξ, and
from the case that ξ is rational, we know that HNa,b(1, . . . , 1) is a polynomial of
(a, b), which implies a0 is a polynomial of (a, b). $

With all these preparations, we can prove Proposition 4.3 which is a general-
ization of [34, Theorem 4] from the quasi-regular case to the general case of an
arbitrary log Fano cone singularity. Although we expect the full results of spe-
cial degeneration in [34] can be extended, here we only need the last step of the
argument.

Proposition 4.3. Let (X ,D, ξ0; η) be a weakly special test configuration of a log
Fano cone singularity (X,D, ξ0). Then we can find a special test configuration
(X ′,D′, ξ0; η′) and a positive integer m such that

Fut(X ′,D′, ξ0; η
′) ≤ m · Fut(X ,D, ξ0; η),

and the strict inequality holds if (X ,D, ξ0; η) is not a special test configuration.

Proof. By Lemma 2.21, the weakly special test configuration is induced by a T -
equivariant morphism µ : Y → X, such that the reduced exceptional divisor E is
anti-ample over X and (Y,E + µ−1

∗ D) is log canonical. Suppose (X ,D, ξ0; η) is
not special, then (Y,E + µ−1

∗ D) is not plt. Therefore, by [36, Proposition 2.10],
we can find a T -equivariant Kollár component S over x ∈ (X,D) such that its
log discrepancy with respect to (Y,E + µ−1

∗ D) is 0. Denote by µ′ : Y ′ → X the
plt blow extracting precisely S. So by Lemma 2.21 again, it gives a special test
configuration (X ′,D′, ξ0; η′) and the base change factor m (which we omit from now
on) corresponds to a multiple such that the coefficient of S in the pull back of mE
is integral.

Let Y g be the normalized graph Y ""# Y ′ and p : Y g → Y , p′ : Y g → Y ′

the natural morphisms. Then for any pair of positive integers (a, b), the divisor
bp∗E + ap′∗S are anti-ample, and therefore induces a test configuration Xa,b by
Lemma 2.21. We take a0(a, b, ξ) as in Proposition 4.2.
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Now we claim that

DTξ0 (η)
a0(1, 0, ξ0) = Fut(X ,D, ξ0; η) > Fut(X ′,D′, ξ0; η

′) = DTξ0 (η)
a0(0, 1, ξ0).

To see this we write:

p∗(KY + E + µ−1
∗ D) = p′∗(KY ′ + S + (µ′

∗)
−1D) +G,

and since the log discrepancy AY,E+µ−1
∗ D(S) = 0, the negativity lemma (see [26,

Lemma 3.39]) implies that G ≥ 0.
For any irreducible component Ei in Supp(G), denote by ci its coefficient in G.

In particular, from our assumption that X is not a special test configuration, for
some component E0 contained in Supp(E), its coefficient c0 is positive. Let Fi be
divisor on X0 given by the orbifold cone C(Ei,−E|Ei).

We take the previous construction for the two test configurations X and X ′. By
Proposition 4.2, for a fixed ξ0, if we define

f(t; ξ0) = DTξ0 (η)
a0(1− t, t; ξ0),

then the difference of the generalized Futaki invariant is of the form

Fut(X ′,D′, ξ0; η
′)− Fut(X ,D, ξ0; η) =

∫ 1

0

d

dt
f(t; ξ0) dt.

The integrand is smooth in [0, 1], and the proof of [34, Proposition 5] shows that
it is non-positive when ξ0 is rational. Thus it is non-positive. We claim its value at
0 is

d

dt
f(t; ξ0)

∣∣∣∣
t=0

= − 1

volX(wtξ0)

∑

i

ci · volFi(wtξ0) < 0.(4.4)

In fact to see (4.4), when ξ0 is rational, we can compute on the quotient log Fano
pair, and this is given in [34, Page 217]. Since both sides are smooth functions on
ξ0, we know that they must be equal to each other. $

An immediate consequence is the following.

Corollary 4.4. For a K-semistable log Fano cone singularity (X,D, ξ), if it has a
weakly special test configuration (X ,D, ξ0; η) with the generalized Futaki invariant
being 0, then it is a special test configuration, i.e., the central fiber is klt.

4.3. Completion of the proofs of main theorems for log Fano cones.

Proof of Theorem 1.2. The proof follows the same structure as the proof of Theo-
rem 1.3, so we will only outline the steps.

We first prove the existence of K-polystable degenerations. Let (Xp, Dp, ξ0)
be a log Fano cone which admits a maximal dimensional torus T p-action among
all K-semistable special degeneration of (X,D, ξ0). By definition, T p contains T .
If (Xp, Dp, ξ0) is not K-polystable, it admits a T -equivariant degeneration to a
non-isomorphic log Fano cone (X(1), D(1), ξ0) under a special test configuration
with generalized Futaki invariant 0. Similar to the proof of Lemma 3.7, this indeed
implies that there is a T p-equivariant degeneration of (Xp, Dp, ξ0) to (X(2), D(2), ξ0)
under a special test configuration of generalized Futaki invariant 0. Moreover,
(X(2), D(2), ξ0) admits an action by a torus whose dimension is equal to dim(T p)+
1. By the proof of Theorem 4.1, (X(2), D(2), ξ0) is also a K-semistable special
degeneration of (X,D, ξ0), which is a contradiction.
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To see the uniqueness, by Corollary 4.4, we can replace the word “weakly special”
by “special” in the statement of Theorem 4.1. Recall that by definition special
degenerations of K-polystable log Fano cone with zero generalized Futaki invariants
must be product. So the uniqueness of K-polystable degeneration follows. $

Proof of Theorem 1.1. It is shown in [13] that there is a special test configuration
(W , ξ0; η) of the intermediate cone (W, ξ0) with central fibre (C, ξ0). Because C
admits a Ricci-flat Kähler cone metric, we know C is K-polystable (see [9, Theorem
1.1] or Corollary A.4). In particular, Fut(W , ξ0; η) = 0. Moreover by [35, Theorem
1.4], we know that W is K-semistable and is uniquely determined by the algebraic
germ (M∞, o).

Assume W specially degenerates to another K-polystable Fano cone C ′ by a
special test configuration (W ′, ξ0; η′) with Fut(W ′, ξ0; η′) = 0. Then Theorem 4.1
implies that C and C ′ degenerate to a Fano cone C ′′ by special test configurations
with generalized Futaki invariants 0. This implies C ∼= C ′′ ∼= C ′ by the polystability
of C and C ′. $

Appendix A. Ding-polystability of Ricci-flat Kähler cones

In the proof of Theorem 1.1, we rely on the result proved in [9] which says that
that for a Fano cone singularity with a Ricci-flat Kähler cone metric, the generalized
Futaki invariant Fut(X , ξ0; η) > 0 for any non-product special test configuration.
However, as we have seen, in our argument (see e.g. the proof of Theorem 4.1),
more general test configuration will show up. Therefore in this appendix, we want
to discuss the proof of a more general statement, namely for any non-product
Q-Gorenstein test configuration, the corresponding Ding invariant is positive (see
Theorem A.3). This can be used to slightly modify the proof of Theorem 1.1 (see
Remark A.5). We point out that our proof of Theorem A.3 follows the general
strategy in [1] and is slightly different from [9]. For simplicity of notations, in this
appendix we will restrict to the case that the boundary divisor D = ∅ which suffices
for proving the main application of our results in Theorem 1.1.

Definition A.1 (Ding-stability). We say that (X, ξ0) is Ding-semistable, if for any
Q-Gorenstein test configuration (X , ξ0; η) of (X, ξ0) with central fibre (X0, ξ0), its
Berman-Ding invariant, denoted by DNA(X , ξ0; η), is nonnegative, where

DNA(X , ξ0; η) :=
DTξ0 (η)

volX0(ξ0)

vol(ξ0)
+ lct(X ;X0)− 1.(A.1)

We say that (X, ξ0) is Ding-polystable, if it is Ding-semistable, and any Q-
Gorenstein test configuration (X , ξ0; η) with DNA(X , ξ0; η) = 0 is a product test
configuration.

We will show in (A.18) that the DNA-invariant in (A.1) is equal to the slope of
a Ding-type functional (see Definition A.9) along a subgeodesic ray associated to
the test configuration. Following the notations of [6] in the log Fano case, we will
use DNA to denote such slope functional, since it can be viewed as a functional on
the space of non-Archimedean metrics (associated to test configurations).

Remark A.2. We immediately see that DNA(X , ξ0; η) = Fut(X , ξ0; η) if and only
if the test configuration is weakly special, and Ding-semistability (resp. Ding-
polystability) implies K-semistability (resp. K-polystability). It has been proved
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that in the log Fano pair case, they are equivalent [6, 15]. Following [1], it will
become clear that the notions of Ding-stability fit better with our calculation.

Theorem A.3. Assume (X, ξ0) admits a Ricci-flat Käler cone metric. Then
(X, ξ0) is Ding-polystable among Q-Gorenstein test configurations.

Corollary A.4. Assume (X, ξ0) admits a Ricci-flat Kähler cone metric. Then
(X, ξ0) is K-polystable among all weakly special test configurations.

Remark A.5. Corollary A.4 could yield an alternative argument in one step of the
proof of Theorem 1.1. More precisely, with notations in the proof of Theorem 1.1,
let C and C ′ be two K-polystable degenerations of W . Then the degenerations
of C and C ′ to C ′′ obtained via Theorem 4.1 are weakly special with zero Futaki
invariant. We can skip Proposition 4.3 but replace [9, Theorem 1.1] by the stronger
statement Corollary A.4, which directly implies there is no non-product weakly
special test configurations of C and C ′ with zero Futaki invariant. Then we conclude
immediately that C ∼= C ′′ ∼= C ′.

Let (X, ξ0) be a Fano cone singularity with the vertex point o. Recall that this
implies that X is a normal affine variety with at worst klt singularities. Moreover
there is a good T action where T ∼= (C∗)r and ξ0 ∈ N+

R . On X there exists a T -
equivariant nowhere-vanishing holomorphic m-pluricanonical form s ∈ | − mKX |.
Such holomorphic form can be solved uniquely up to a constant as in [39, 2.7]. In
the following, we will use the following volume form on X associated to s:

(A.2) dVX =

(√
−1

mn2

s ∧ s̄

)1/m

.

Assume that (X, ξ0) is equivariantly embedded into (CN , ξ0) with ξ0 =∑
i aizi

∂
∂zi

with ai ∈ R>0. Fix a reference smooth Kähler cone metric on CN whose

associated Reeb vector field r∂r−
√
−1J(r∂r) = 2ξ0. By its rescaling property such

a radius function is C0-comparable to
∑N

i=1 |zi|2/ai . The restriction ωX := ωCN |X
is a Kähler cone metric on X. Moreover 2Im(ξ0) = J(r∂r) is the Reeb vector field
of ωCN and ωX . Since T acts on X, T also acts on the set of functions on X
by τ ◦ f(x) = f(τ−1x) for any τ ∈ T and x ∈ X. For convenience, we denote
X◦ = X \ {o} where o is the vertex of X and define:

Definition A.6. Denote by PSH(X, ξ0) the set of bounded real functions ϕ on
X◦ that satisfies:

(1) ϕ ◦ τ = ϕ for any τ ∈ 〈ξ0〉;
(2) r2ϕ := r2eϕ is a proper plurisubharmonic function on X.

We can think of functions in PSH(X, ξ0) as transversal Kähler potentials as in
[13]. More precisely, because ∂r generates a R+-action (R+ = {a ∈ R; a > 0}) on
X◦ without fixed points, if the link of X is defined as Y := {r = 1} ∩ X, then
Y = X◦/R+ and X◦ ∼= Y × R+. We set:

(A.3) χ =

√
−1

2
(∂̄ − ∂) log r2 = −1

2
Jd log r2,

and define:

Definition A.7. Denote by PSH(Y, ξ0) the set of bounded real function ϕ on Y
that satisfies:
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(1) ϕ ◦ τ = 0 for τ ∈ exp(R · Im(ξ0)).
(2) ϕ is upper semicontinuous on Y and (dχ+

√
−1∂∂̄ϕ)

∣∣
Y

≥ 0, where the
positivity is in the sense of currents.

Here we identify the function on Y with its pull back to X◦ ∼= Y × R+ via the
projection to the first factor. There is an isomorphism PSH(X, ξ0) ∼= PSH(Y, ξ0)
by sending ϕ 1→ ϕ|Y . We will use these two equivalent descriptions in the following
discussion.

Definition A.8. We say that r2ϕ := r2eϕ where ϕ ∈ PSH(X, ξ0) is a radius
function of a Ricci-flat Kähler cone metric on (X, ξ0) if ϕ is smooth on Xreg and
there exists a constant C > 0 such that

(A.4) (
√
−1∂∂̄r2ϕ)

n = C · dVX .

If we take Lr∂r on both sides, we get: Lr∂rdVX = 2ndVX , which is also equivalent
to Lξ0s = mns. If we write

(A.5) dVX = 2r2n−1dr ∧ ΩY , or equivalently ΩY := 2−1r1−2ni∂rdVX ,

then L∂rΩY = 0. On the other hand, a direct computation shows that:

(A.6)
√
−1∂∂̄r2ϕ = r2ϕ(dχ+

√
−1∂∂̄ϕ) + dr2ϕ ∧

(
χ− 1

2
Jdϕ

)
.

Then it is easy to verify that the equation (A.4) is equivalent to:

(A.7) (dχ+
√
−1∂∂̄ϕ)n−1 ∧ χ =

C

n
· e−nϕΩY .

The equation (A.4) is the Euler-Lagrange equation for the following Ding-type
functional:

Definition A.9 (see [9, 35]). For any function ϕ ∈ PSH(X, ξ0), define:

(A.8) D(ϕ) = E(ϕ)− log

(∫

X
e−r2ϕdV

)
=: E(ϕ) +G(ϕ)

where E(ϕ) is defined by its variations:

δE(ϕ) · δϕ = − 1

(n− 1)!(2π)n volX(ξ0)

∫

X
(δϕ)e−r2ϕ(

√
−1∂∂̄r2ϕ)

n.

Using the identity (A.6), one can verify that:

(A.9) δE(ϕ) · δϕ = − n

(2π)n vol(ξ0)

∫

Y
(δϕ)(dχ+

√
−1∂∂̄ϕ)n−1 ∧ χ.

As in the standard Kähler case, a consequence of this description is the following
explicit expression of E(ϕ) (see [13]):

(A.10) E(ϕ) = − 1

(2π)n vol(ξ0)

n−1∑

i=0

∫

Y
ϕ(dχ+

√
−1∂∂̄ϕ)i ∧ (dχ)n−1−i ∧ χ.

In the similar vein, using (A.5) we have the identity:

(A.11) G(ϕ) = − log

(∫

Y
e−nϕΩY

)
− log(n− 1)!.

We will study the asymptotic of E(ϕt). In the following we will denote D := {z ∈
Z; |z| ≤ 1}, D∗ = D \ {0} and S1 = {z ∈ D; |z| = 1}. We will always identify
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the functions on X with functions on X × D or X × D∗ by pulling back via the
projection to the first factor.

Proposition A.10 (see [35, Lemma 5.10]). Let ϕ(x, t) = ϕ(x, |t|) : X × D∗ → R
be a upper semicontinuous function such that ϕt := ϕ(·, |t|) ∈ PSH(X, ξ0) for each
t ∈ D∗. Assume

√
−1∂∂̄(r2eϕ) ≥ 0 over X ×D∗ in the sense of currents. Then the

following identity holds:

√
−1

∂2

∂t∂ t̄
E(ϕt)dt ∧ dt̄ = − 1

(n+ 1)!(2π)n vol(ξ0)

∫

X×D∗/D∗
(
√
−1∂∂̄(r2eϕ))n+1e−r2ϕ

= − 1

(2π)n vol(ξ0)

∫

Y×D∗/D∗
(dχ+

√
−1∂∂̄ϕ)n ∧ χ.

In particular, E(ϕt) is concave in − log |t|2.

Proof. The proof of the first identity is the same as the proof as in [35, Lemma
5.10]. The second identity follows from the first one and using the following identity
on X × D∗ to calculate:

√
−1∂∂̄r2ϕ = r2ϕ(dχ+

√
−1∂∂̄ϕ) + dr2ϕ ∧ (χ− 1

2
Jdϕ).

$

Now assume that (X , ξ0; η) is a Q-Gorenstein test configuration of X. Because
η commutes with ξ0 and generates a C∗-action, we can assume that X is embedded
into CN × C and the embedding is equivariant with respect to the T × C∗-action
generated by {ξ0, η}. If we write η =

∑
i bizi

∂
∂zi

with bi ∈ Z and let σ(t) : C∗ →
GL(N,C) be the one-parameter subgroup generated by the vector field η. Then
σ(t)(zi) = tbizi and we let

r(t)2 := σ(t)∗(r2) =: r2eϕ̃(t).

The asymptotic of E(ϕ̃t) can be easily calculated:

Proposition A.11 (see [35, Proposition 5.13]). We have the following identity:

(A.12) lim
t→0

E(ϕ̃t)

− log |t|2 =
Dη vol(ξ0)

vol(ξ0)
.

Proof. We refer to [35] for details. Here we just sketch the key ingredients. Let
ξε = ξ + εη =

∑
i(ai + εbi)zi

∂
∂zi

and rε be a radius function for ξε. Then we have:

(A.13) vol(ξε) =
1

n!(2π)n

∫

X0

e−r2ε (
√
−1∂∂̄r2ε )

n.

Taking derivative with respect to ε in the above volume formula, we can derive:

Dη vol(ξ0) =
1

(2π)n(n− 1)!

∫

X0

θe−r2(
√
−1∂∂̄r2)n,
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where we have denoted θ := η(log r2). We can then calculate (see [39, Appendix
C] or [35, Lemma 5.11]):

d

d(− log |t|2)E(ϕ̃t) =
1

(n− 1)!(2π)n vol(ξ0)

∫

X

˙̃ϕe−r(t)2(
√
−1∂∂̄r(t)2)n

=
1

(n− 1)!(2π)n vol(ξ0)

∫

X
σ(t)∗(θ)e−σ∗r2σ∗(

√
−1∂∂̄r2)n

=
1

(n− 1)!(2π)n vol(ξ0)

∫

Xt

θe−r2(
√
−1∂∂̄r2)n.

As explained in [35, Proof of Proposition 5.12], the last expression converges as
t → 0 to Dη vol(ξ0)/ vol(ξ0).

By Proposition A.10 E(ϕ̃t) is concave in − log |t|2. So the statement follows from
the above discussion and the following identity for concave functions:

lim
t→0

d

d(− log |t|2)E(ϕ̃t) = lim
t→0

E(ϕ̃t)

− log |t|2

$

We need the following basic result from [13] which generalizes Berndtsson’s result
to the Kähler cone setting.

Theorem A.12 ([13], see also [1, 2]). Let ϕ(x, t) = ϕ(x, |t|) : X × D∗ → R be
an upper semicontinuous function such that ϕt := ϕ(·, t) ∈ PSH(X, ξ0) for each
t ∈ D∗. Assume

√
−1∂∂̄(r2eϕ) ≥ 0 over X × D∗ in the sense of currents. Then

G(ϕt) is convex in − log |t|2. Moreover, if G(ϕt) is affine in − log |t|2, then there
exists a holomorphic vector field η0 on X commuting with ξ such that rϕt = σ∗

t rϕ0

where σt = exp(log |t| · η0).

Let (X , ξ0; η) be a Q-Gorenstein test configuration of X with the projection map
π : X → C. Let Xt := π−1(t) be the fiber over {t} and ot the vertex point of Xt.
Denote X ◦ = X \ {ot; t ∈ C}. In the following discussion, we denote by R2 the
function obtained by restricting r2, considered as a function on CN × C, to X via
a fixed the equivariant embedding X → CN × C: R2 = r2

∣∣
X .

Definition A.13. Denote by PSH(X|D , ξ0) the set of bounded real functions Φ
on X ◦|D that satisfies:

(1) τ ◦ Φ = Φ for any τ ∈ T ;
(2) R2

Φ := R2eΦ is a proper plurisubharmonic function on X|D.

As before, we can think of functions in PSH(X|D, ξ0) as transversal Kähler

potentials on X|D. If we also denote by χ the restriction of χ =
√
−1
2 (∂̄−∂) logR2 =

− 1
2Jd logR

2 to Y := {R = 1} ∩ X , the we can similarly define PSH(Y , ξ0) as
Definition A.7.

Moreover, using the equivariant isomorphism ι : X|D∗ ∼= X×D∗, we can associate
to any Φ ∈ PSH(X|D) plurisubharmonic function ϕ on X × D∗ and hence a path
ϕt ∈ PSH(X, ξ0) such that R2

Φ = ι∗(r2ϕ). As an example, the path asssociated to
Φ = 0 and is given by ϕ̃t.

Proposition A.14. Assume Φ ∈ PSH(X , ξ0) and let ϕt ∈ PSH(X, ξ0) be the
associated path. Then G(ϕt) is subharmonic in t and its Lelong number at t = 0 is
given by 1− lct(X ,X0).
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Proof. Since R2
Φ = ι∗(r2eϕ) is plurisubharmonic over X|D∗ ∼= X × D∗. Applying

Theorem A.12, we get G(ϕt) is subharmonic in t. To see that it’s subharmonic over
D, we just need to show that G(ϕt) is uniformly bounded from above. Because Φ
bounded, we know that

|G(ϕt)−G(ϕ̃t)| ≤ C.

So we just need to show that G(ϕ̃t) is uniformly bounded from above.
Because η preserves the global section s ∈ |mKX |: Lηs = 0. As a consequence,

dVXt =
(√

−1
mn2

s ∧ s̄
)1/m

∣∣∣∣
Xt

satisfies σ∗
t dVXt = dVX1 = dVX . So we have:

G(ϕ̃t) = − log

(∫

X
e−σ(t)∗r2(σ∗dVXt)

)
= − log

(∫

Xt

e−r2dVXt

)
.

Because Lr∂rdVXt = 2ndVXt , we can write dVXt = 2r2n−1dr ∧ ΩYt and calculate:
∫

Xt

e−r2dVXt = (n− 1)!

∫

Yt

ΩY

= Cn ·
∫

{r≤1}∩Xt

e−r2dVXt ≤ Cn

∫

{r≤1}∩Xt

dVXt ,(A.14)

where Cn = (n−1)!∫ 1
0 e−r2r2n−1dr2

.

Now the upper boundedness of G(ϕ̃t) can be seen in two ways. For one way, one
can resolve the singularity of {r ≤ 1} ∩ (X|D) and estimate the integral using the
method as in [30, Proof of Lemma 3.7] or [7]. The other approximation approach
is the following. Recall that r2 is the radius function associated to the vector field

ξ0 =
∑

i aizi
∂

∂zi
. Now we choose a sequence of vector fields ξ(k) =

∑
i a

(k)
i zi

∂
∂zi

with a(k)i ∈ Q and a(k)i → ai as k → +∞. Choose a sequence of new radius
function r(k) = rξ(k) such that r(k) is uniformly C0-comparable to the functions
∑N

i=1 |zi|2/(a
(k)
i ). Then there exist C1, C2 > 0 such that, for any ε > 0, we have:

C1(r(k))1−ε ≤ r ≤ C2(r(k))1+ε for k ' 1. So we get:
∫

{r≤1}∩Xt

dVXt ≤
∫
{
r(k)≤C(1−ε)−1

1

}
∩Xt

dVXt .

Because a(k)i is rational, we can taking quotient of X by the C∗-action generated

by ξ(k) =
∑

i a
(k)
i ∂zi and reduces to the log Fano case considered in [1] in which

case the upper boundedness of G(ϕ̃t) was shown.
Finally we need to calculate the Lelong number of G(ϕ̃t) with respect to t.

According to [1, (3.21)], the Lelong number of G(t) is equal to the infimum of c
such that∫

U
e−G−(1−c) log |t|2 idτ ∧ dτ̄ =

∫

X|D
e−r2−(1−c) log |t|2dVX < +∞.

We have the following identity:

(A.15)

∫

X|D
e−r2−(1−c) log |τ |2dVX = Cn ·

∫

X|D∩{r≤1}
e−r2−(1−c) log |τ |2dVX .

Because e−1 ≤ e−r2 ≤ 1 is a bounded function, the right-hand-side of (A.15) is
integrable if and only if 1− c < lct(X ∩ {r ≤ 1},X0 ∩ {r ≤ 1}). Using the rescaling
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symmetry as used in (A.14), we see that lct(X ∩{r ≤ 1},X0∩{r ≤ 1}) = lct(X ,X0).
So we are done. $

Assume r2eϕKE with ϕKE ∈ PSH(X, ξ0) is a radius function of a Ricci-flat
Kähler cone metric on (X, ξ0). Let (X , ξ0; η) be a test configuration of (X, ξ0).
We construct a geodesic ray associated to (X , ξ0; η) by solving the homogeneous
Monge-Ampère equation:

(A.16) (
√
−1∂∂̄(R2eΦ))n+1 = 0 on X|D, Φ|X×S1 = ϕKE.

Using transversal point of view, this equation is equivalent to the following equation:

(A.17) (dχ+
√
−1∂∂̄Φ)n ∧ χ = 0 on Y|D, Φ|Y ×S1 = ϕKE|Y .

By considering the envelope (or its equivalent formulation on X|D)

Φ := sup
{
Ψ ∈ PSH(Y|D, ξ0) : Ψ ≤ ϕKE|Y on ∂(Y|D) = Y × S1

}
,

then the following result can be proved in exactly the same way as in [1, Proposition
2.7] by using the transversal Kähler structures of (Y , ξ0). Note that this kind of
extension has also been used in [13] (see also [9, 18]).

Proposition A.15 (see [1, Proposition 2.7]). Φ is locally bounded such that R2eΦ

has positive curvature current and satisfies (
√
−1∂∂̄(R2eΦ))n+1 = 0 on X|D.

Finally we can give the proof of Theorem A.3.

Proof of Theorem A.3. Let Φ be the geodesic ray emanating from ϕKE that is de-
termined by (X , ξ0). Let ϕt be the associated path in PSH(X, ξ0). Then because
(
√
−1∂∂̄(R2eΦ))n+1 = 0, E(ϕt) is affine in t by Proposition A.10. G(ϕt) is subhar-

monic in t by Proposition A.14. So D(t) := D(ϕt) is subharmonic over D. Because
D(t) depends only |t|, D(t) is convex in − log |t|2. Because D(ϕt) ≥ D(ϕKE) for
any t ∈ D, we see that D(t) is a non-decreasing function in − log |t|2.

By Proposition A.11 and Proposition A.14, we have:

lim
t→0

D(t)

− log |t|2 =
Dη vol(ξ0)

vol(ξ0)
− (1− lct(X ,X0)) = DNA(X , ξ0; η).(A.18)

If DNA(X , ξ0; η) = 0, then because D(t) is convex and non-decreasing in − log |t|2,
we see thatD(t) is affine and henceG(ϕt) is affine. So by Theorem A.12, there exists
holomorphic vector field η0 such that ϕt = (σt)∗ϕKE where σt = exp(log |t|η0). The
rest of the argument is the same as [1, Proposition 3.3] as extended to the Ricci-flat
cone setting in [9]. $
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