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A B S T R A C T   

Firearm violence rates have increased in U.S. cities in 2020 and into 2021. We investigate contagious and non- 
contagious space-time clustering in shooting events in four U.S. cities (Chicago, Los Angeles, New York and 
Philadelphia) from 2016 to 2020. We estimate the dynamic reproduction number (Rt) of shootings, a measure of 
contagion, using a Hawkes point process. We also measure concentration over time using a spatial Gini index. We 
find that the contagious spread of violence increased in 2020 in several, but not all, of the cities we considered. In 
all four cities, non-contagious (Poisson) events comprised the majority of shootings across time (including 2020). 
We also find that the spatial location and concentration of shooting hot spots remained stable across all years. We 
discuss the implications of our findings and directions for future research.   

1. Introduction 

In the wake of a global pandemic and social unrest throughout the 
United States, firearm violence has risen to concerning levels across 
many of America’s large urban cities. In their recent report of crime rates 
in the year 2020 across 34 cities, Rosenfeld and Lopez (2020) observed a 
30% increase in homicide rates as compared to the previous year. Gun 
assaults increased 8% in this similar time period. Early media reports in 
2021 suggest this troubling trend in lethal violence persists. Scholars 
currently seek explanations to this sharp rise in violence, while police 
departments and municipal governments are desperate to identify 
effective interventions to curb this growing epidemic. The causes and 
correlates of urban violence have proven difficult to parse apart. 

Over the past decade, scholars have sought explanations of gun 
violence trends through spatiotemporal event modeling. In short, gun 
violence is believed to generate contagion effects, or repeat events. Put 
simply, firearm violence begets more firearm violence through several 
mechanisms. Concentrated social disadvantage in neighborhoods 
(Morenoff, Sampson, & Raudenbush, 2001; Papachristos, 2009; Tita & 
Ridgeway, 2007) as well as retaliatory events associated with gang 
violence and geographic turf wars (Brantingham, Tita, & Mohler, 2021; 
Green, Horel, & Papachristos, 2017; Papachristos, 2009; Papachristos, 
Braga, Piza, & Grossman, 2015; Rosenfeld, Bray, & Egley, 1999) aid this 

explanation of the spatial diffusion of gun violence. Firearm homicides, 
shots fired, and non-fatal shootings have been shown to demonstrate 
spatial spillover effects from one census tract to another (Cohen & Tita, 
1999; Zeoli, Grady, Pizarro, & Melde, 2015; Zeoli, Pizarro, Grady, & 
Melde, 2014), while the spatial clustering of firearm violence has been 
observed to be non-random at both the county (Messner et al., 1999) and 
block levels (Ratcliffe & Rengert, 2008). Moreover, several studies have 
demonstrated that gun violence does indeed generate near-repeat 
spatiotemporal patterns (Caplan, Kennedy, & Piza, 2013; Haberman, 
Hatten, Carter, & Piza, 2021; Mazeika & Uriarte, 2019; Renda & Zhang, 
2019; Sturup, Rostami, Gerell, & Sandholm, 2018; Wells, Wu, & Ye, 
2012; Wu & Wells, 2016; Youstin, Nobles, Ward, & Cook, 2011). Such 
contagion effects may explain the spatial trends in firearm violence 
patterns, where some geographies within a city endure chronic and 
highly concentrated firearm violence while other areas of the same city 
experience significant fluctuations of these same events (Braga, 
Papachristos, & Hureau, 2010; Sadler, Melde, Zeoli, Wolfe, & O’Brien, 
2021). Thus, contagious shooting events which spread to other geog-
raphies within a city may exacerbate overall levels of violence for a 
given city. 

In this article we investigate the extent to which the rise in gun 
violence in 2020 (see Fig. 1) in four major U.S. cities can be explained by 
an increase in the contagiousness of shooting events. For this purpose we 
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use a spatiotemporal Hawkes process (Loeffler & Flaxman, 2018; Mohler 
et al., 2021) to estimate the dynamic reproduction number (Rt) of 
shooting events, along with a non-contagious background Poisson rate 
of events that controls for day of week, month of year, and long-term 
trends that can generate stable space-time clustering patterns (Park, 
Schoenberg, Bertozzi, & Brantingham, 2021). The Hawkes process is a 
stochastic version of the susceptible-infected-removed (SIR) model in 
epidemiology (Rizoiu, Mishra, Kong, Carman, & Xie, 2018) and esti-
mates events as a branching process where each event generates a 
probability of other events nearby in space and time. We also investigate 
space-time clustering and concentration of shooting events using a 
spatial Gini index applied to yearly data. 

While public discourse has largely centered on the rise in homicide 
(Rosenfeld & Lopez, 2020) in 2020 and 2021, we focus on shootings for 
a couple of reasons. First, while homicide rates have increased across 
many urban communities, lethal violence remains a rare event when 
considered in space and time. Sparse data makes estimation of spatio-
temporal patterns difficult to do with a level of certainty afforded 
through the use of shooting data, which are more frequent in number. 
Second, research has demonstrated a considerable overlap in space and 
time between homicide and non-fatal shootings (Braga et al., 2010), 
while event level analyses have demonstrated few differences in the 
demographic characteristics between those who live and those who die 
in shooting events. Rather what differentiates a non-fatal shooting from 
a fatal shooting are factors such as wound severity (Hipple & Magee, 
2017), the caliber of weapon used (Braga & Cook, 2018), and the speed 
of emergency response. This body of work suggests the study of all 
shooting events can help to better understand spatiotemporal patterns in 
homicide. 

The outline of the paper is as follows. In Section 2, we discuss related 
literature on crime contagion and gun violence. In Section 3, we discuss 
our methodology, including Hawkes process modeling and estimation, 
and a modified Gini index estimator used for measuring spatial con-
centration when event counts are low. In Section 4, we provide details 
on the open-source shooting data used for this study covering 
2016–2020 from Chicago, Los Angeles, New York, and Philadelphia. In 
Section 5, we present the results of our analysis. We find that contagion 
is estimated to have increased in 2020 in several, but not all, cities. In all 
four cities, spontaneous non-contagious (Poisson) events are estimated 
to have comprised the majority of events across time, consistent with 
research on acoustic gunshot detection (Loeffler & Flaxman, 2018). We 
also found that the spatial location and concentration of shooting hot-
spots, as measured through the Gini index, remained stable across 
2016–2020. In Section 6, we discuss the implications of our findings, 
limitations of our analysis, and directions for future research. 

2. Related work on crime contagion and gun violence 

The idea of crime contagion is not specific to the study of violent 

crime. Indeed, crime contagion is conceptually equivalent to ideas of 
event dependence and repeat victimization (Brantingham, Yuan, & 
Herz, 2020; Farrell & Pease, 1993; Johnson et al., 2007). The study of 
contagion is also not restricted to a single spatiotemporal scale. At the 
finest scale, the general model of contagion posits that there is some 
interaction between individual offenders and the physical and/or social 
environment that causally triggers subsequent events. In the case of 
property crimes, offenders ‘learn something’ about their targets (e.g., 
vulnerable houses) in the process of committing a first crime that at-
tracts them back to that same location to repeat the prior success (Short, 
D’orsogna, Brantingham, & Tita, 2009). Alternatively, those same of-
fenders might share what they learned with others who then act on that 
information (Wright & Decker, 1996). In the case of violent crime, an 
attack by one party on another triggers a retaliatory response (Bran-
tingham et al., 2020; Decker, 1996; Randle & Bichler, 2017). Retaliation 
is driven either by a so-called ‘code of the street’ (Anderson, 1999), or by 
a deep-seated individual psychological need for revenge (Tedeschi & 
Felson, 1994). For both property and violent crime, the expected sta-
tistiscal pattern of crime contagion is that offspring events (the result of 
contagious spread) will occur near in time and space to the parental 
events (the triggers of contagious spread) (Mohler, Short, Brantingham, 
Schoenberg, & Tita, 2011). 

With respect to gun violence, Fagan, Wilkinson, and Davies (2007) 
provided a useful model of the potential for social contagion that could 
help to explain the noted increases in homicide and gun violence in 
2020. At the center of this model of social contagion of violence are 
firearms, and the influence these weapons have on social interactions. 
When guns are perceived as pervasive in a local context there are 
resultant changes in perceptions of danger associated with interpersonal 
disputes or conflicts between groups, creating an “ecology of danger.” 

Given this backdrop, increases in the real or perceived threat of the use 
of weapons in disputes leads to the contagion of fear, whereby residents 
perceive not only that others have guns, but that they are likely to use 
them should the need arise. This leads to more people carrying a firearm 
both for self-protection in the event they are the target of a crime, and as 
a status symbol in order to dissuade others from attempting to victimize 
them. Finally, this process leads to the widespread adoption of violent 
identities, where people portend a tough or aggressive persona that 
denotes a willingness to engage in violence if challenged. Together, 
knowledge of increased rates of firearm violence in a local area can both 
set this process in motion, but also reinforces and amplifies the necessity 
of using guns to settle disputes. 

In 2020, there were numerous events and social processes that may 
have helped to set the social contagion of violence processes in motion, 
and reinforce the necessity of carrying and using firearms to settle dis-
putes. First, there were already signs of increased gun violence, 
including homicide, across U.S. cities starting in early 2020. Second, 
shortly after the COVID-19 pandemic hit the United States there was a 
surge in gun sales that was widely reported in the media (Levine & 

Fig. 1. Weekly number of shootings from 2016 to 2020 in Chicago, Los Angeles, New York, and Philadelphia.  
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McKnight, 2020). This was likely both a sign of increased anxiety about 
the potential consequences of the pandemic on personal safety, but also 
further stoked the fear of weapon-related violence. The murder of 
George Floyd at the hands of a Minneapolis police officer and the 
resultant social unrest targeted at the police more broadly may have 
further reinforced the need for people to engage in violent “self-help” 

when it came to interpersonal disputes, consistent with the work of Kirk 
and Papachristos on legal cynicism (Kirk & Papachristos, 2011).1 The 
perceived inability of the police to protect residents from gun violence 
may have been reinforced by widespread discourse on the notion of de- 
policing across urban communities, whereby officers were unwilling to 
engage in proactive tactics to prevent or intervene in violence due, in 
part, to the backlash they faced in the wake of high profile officer 
involved shootings and the ongoing social distancing efforts associated 
with the pandemic. Together, this suggests that the message to com-
munities was that gun crime was rising, people were arming themselves 
at record numbers, and the police were either unwilling or unable to 
intervene or investigate to prevent ongoing acts of violence. 

Of course, it only does so much to hypothesize on all the various 
mechanisms at play here. Such a theoretical framework motivates the 
empirical question at hand: Is the recent increase in violence due to 
contagion? Answering this question is a necessary first step before 
research is extended to uncover the mechanisms that appear to explain 
the rise in gun violence, and whether theories that focus on contagious 
shootings play a critical role in the recent surge in gun violence. 

3. Methodology 

3.1. Branching process model of the dynamic reproduction number of 
shootings 

We fit a Hawkes branching process (Bertozzi, Franco, Mohler, Short, 
& Sledge, 2020; Mohler et al., 2021) to shooting events with intensity, 
λ(x, t) = μf (x)hd(t)hm(t)hy(t)+

∑

t>ti

Rti gt(t− ti;ω)gx(x− xi; σ) (1) 

Here the background Poisson rate of events is assumed separable in 
space and time, where f (x) models the spatial component of the back-
ground rate, fit using a Gaussian mixture model (GMM), and hd, hm, and 
hy model day of the week, monthly, and yearly trends in the background 
rate. The second term in Eq. (1) models contagion between events, 
where Rt is the dynamic reproduction number (Bertozzi et al., 2020). 
Specifically, Rt is the expected number of secondary or offspring 
shooting events initiated by an event (under the branching process 
representation of the Hawkes process (Veen & Schoenberg, 2008)). The 
temporal component in the second term gt is assumed to be exponential. 
The spatial component gx is assumed to be Gaussian. The Hawkes 
branching process is related to the SIR model of infectious disease 
(Rizoiu et al., 2018), where the linear model in Eq. (1) estimates new 
cases in the absence of finite population effects. The model is fit to the 
data using an expectation-maximization algorithm as detailed in Liu, 
Carter, Ray, and Mohler (2021); Veen and Schoenberg (2008); Bertozzi 
et al. (2020). 

To construct confidence intervals for parameters, we simulate mul-
tiple realizations of the Hawkes process fit to shooting data and then re- 
estimate model parameters to quantify uncertainty. The branching 
process representation of the Hawkes process is used for simulation, 
where first background Poisson events are generated from the Poisson 
process intensity μf(x)hd(t)hm(t)hy(t). Offspring events are then itera-
tively added to the dataset, where each event generates L ~ Pois(Rt) 
offspring events with spatial coordinates determined by adding random 

numbers drawn from gx to the parent event location and a random 
number drawn from gt to the time of the parent event. To better match 
the spatial distribution of events in the actual data, which lie on a street 
network, we re-sample the original dataset coordinates using the EM 
estimation branching probabilities to assign spatial locations to the 
background events in each simulation (as is done in Mohler et al. 
(2021)). Locations of simulated contagion events are then sampled from 
the continuous density gt(t − ti; ω)gx(x − xi; σ). 

3.2. Spatial concentration of shootings 

We also assess the yearly spatial concentration of shootings in each 
city by estimating the Gini index of aggregated event counts in 500 m ×
500 m grid cells. We use a small-sample correction as outlined in 
Mohler, Brantingham, Carter, and Short (2019) by first fitting a Poisson- 
Gamma density to event counts and then estimating the Gini index as: 
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1

N

⎛

⎜

⎜

⎜

⎝

2

⎛

⎜

⎜

⎜

⎝

∑

N

i=1

(N + 1 − i)g(i)

∑

N

i=1

g(i)

⎞

⎟

⎟

⎟

⎠

−N − 1

⎞

⎟

⎟

⎟

⎠

(2) 

where gi is drawn independently in grid cell i from the estimated 
Gamma distribution, N is the total number of cells, and g(i) are sorted 
counts. 

4. Data sources 

We use open-source shooting data from Chicago,2 Los Angeles3,4 

New York,5 and Philadephia.6 The events contained a date and time of 
the event, along with the latitude and longitude of the location. Events 
without a location were removed from the analysis. Overall, the data 
consists of 10,715 events in Chicago, 4745 events in Los Angeles, 6037 
events in New York, and 7489 events in Philadelphia across 2016–2020. 
Because the Hawkes process is a continuous model, exact repeat events 
(or events rounded to the nearest block) can cause the bandwidth of the 
spatial kernels to become small or approach zero during EM estimation. 
We therefore jitter the latitude and longitude locations with Gaussian 
noise with mean zero and standard deviation 10−3 degrees, equivalent 
to approximately 111 m. 

5. Results 

In Fig. 2 we display results of the goodness of fit of the Hawkes 
process model fit to data from Chicago, Los Angeles, New York, and 
Philadelphia. We present day of week, month of year, and yearly trends 
of the data compared to 100 realizations of the estimated Hawkes model. 
We also plot, in Fig. 3, the distribution of shootings from 2016 to 2020 
and an example realization from the fitted Hawkes process. Overall, we 
find that the Hawkes process provides a plausible fit to the data in each 
city. 

To further assess the goodness of fit, we apply residual analysis and 
thin the original shootings data by retaining events with probability, 

p =
λinf

λ(xs
i , t

s
i )
, (3)  

1 Legal cynicism, in this instance, “refers to a cultural frame in which people 
perceive the law as illegitimate, unresponsive, and ill equipped to ensure public 
safety” (page 1190) (Kirk & Papachristos, 2011). 

2 https://data.cityofchicago.org/Public-Safety/Chicago-Shootings/fsku-dr7m  
3 https://data.lacity.org/Public-Safety/Crime-Data-from-2010-to-2019/ 

63jg-8b9z  
4 https://data.lacity.org/Public-Safety/Crime-Data-from-2020-to-Present/ 

2nrs-mtv8  
5 (https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident- 

Data-Historic-/833y-fsy8  
6 https://www.opendataphilly.org/dataset/shooting-victims 
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where λinf is the infimum of the intensity on the domain of each city. 
When the model is correctly specified, the thinned residual points are a 
realization of a constant-rate Poisson process (Schoenberg, 2003), 
whereas there will be an excess or deficit of events in regions the esti-
mated intensity under- or over-estimates the true intensity. We can then 
compare the distribution of the thinned events to that of a unit rate 
Poisson process to assess the goodness of fit of the intensity. One way to 
make this comparison is using Ripley’s K function (Ripley, 1976), the 
average number of events K(r) within a radius r of each event. In Fig. 2 
we display the average K-function for the thinned residuals (averaged 
over 100 thinned residual realizations) along with the K-function of 100 
simulated Poisson processes. In Fig. 2, we find that the average K- 
function of the thinned residuals of the data is plausibly Poisson (with 
the exception of small scales in Chicago, where some excess clustering is 
not explained by the model). 

In Fig. 4 we display the estimated time-varying reproductive number 
(Rt) of shootings along with 95% confidence intervals. While Philadel-
phia and Los Angeles have higher estimated reproduction numbers in 
2020 compared to 2019 (significant at the 0.009 and 0.02 level 
respectively using a two-sided t-test), the reproduction number in New 
York is estimated to have gone down in 2020 and the differences in 

Chicago’s reproduction number over time are not statistically signifi-
cant. In general, Philadelphia and New York have higher estimated 
reproduction numbers than Chicago and Los Angeles. This could be due 
to geographical differences between cities, such as the size of street 
networks. To the extent contagion effects are less localized in Chicago 
and Los Angeles, our methodology, which focuses on distance, is not 
well suited to detect non-local effects. 

One by-product of the EM estimation algorithm is that a probabilistic 
branching structure is estimated alongside model parameters. We 
therefore have an estimate of the number of events that are spontaneous 
(generated by the background Poisson rate) vs. the number of events 
that can be attributed to contagion. In Table 1, we show the estimated 
number of contagious vs. spontaneous non-contagious generated events 
for each city and each year. Here we find that a majority of events are 
estimated to be spontaneous, across cities and years, consistent with 
recent Hawkes process estimation of acoustic gun- shot detection events 
(Loeffler & Flaxman, 2018). At the same time, we find higher levels of 
contagion in the present study than in acoustic gunshot detection events 
and considerable variation across cities in the level of contagion, from 
the highest average of 30% in New York City to the lowest of 15% in 
Chicago. 
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In Fig. 5 we display yearly estimates of the Gini index and in Fig. 6 we 
display spatial locations of shooting hotspots that contain 25% and 50% 
of events (the 25% and 50% percentages are selected using the 
convention established by Weisburd (2015). Here we find that the 
concentration of shootings is high across cities and years, where the Gini 

index is in the range of 0.65 to 0.85. For reference, the Gini index ranges 
from 0 (spatially uniform) to 1 (complete concentration in a single grid 
cell). We also find that concentration is consistent across years and that 
hotspots appear, for the most part, in the same locations from year-to- 
year in each city. In Table 2, we display the percentage of hotspots 
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that are the same from one year to the next containing 50% of shootings. 
For example, between 2019 and 2020, 62.5% of hotspots were the same 
in Los Angeles, 66.7% were the same in Chicago, and 58.5% and 86.7% 
overlapped in New York and Philadelphia respectively. 

6. Discussion 

Understanding the potential causes underlying a recent surge in gun 
violence in urban American cities is necessary for designing effective 
interventions. Here we find that the contagious spread of violence—-
where prior shootings trigger future gun violence—has played a mixed 
roll in the surge. 

The four cities examined here all display some measure of contagious 
spread of gun violence, but contagious events are the minority of 
shootings. Overall in 2020, contagious events made up between 19% 
(Chicago) and 33% (Philadelphia) of all shootings. The remainder 
should be considered spontaneous or non-contagious events tied to 
structural features of the environment. Surprisingly, the relative volume 
of contagious violence moved in different directions depending upon the 
city in question. Contagious shootings made up a greater share of such 
violence in Los Angeles and Philadelphia in 2020 compared with 2019 
(increasing from 21% to 31% and 28% to 33% of events, respectively), 
remained statistically unchanged in Chicago (increasing non- 
significantly from 14% to 19% of events), and actually went down in 
New York City (decreasing from 31% to 26% of events). 

The bigger shift (by volume) in shootings is tied to structural features 
of the environment and an overall increase in the background temporal 

intensity of events. This is reflected in the high percentage of sponta-
neous events in Table 1 and the high and temporally stable Gini index of 
spatial concentration in Fig. 5. Non-contagious or spontaneous events 
made up between 67% (Philadelphia) and 81% (Chicago) of all shoot-
ings in 2020. With respect to time, across all four cities there was an 
abrupt shift to much higher baseline shooting intensity between 2019 
and 2020 (see Fig. 2). In Chicago, the shift was to a baseline intensity last 
exceeded in 2016. In the remaining cities, the shift was to a baseline 
intensity higher than anything seen in the last five years. 

It has long-been recognized that crime is unevenly distributed across 
space forming areas of high and low concentration (Mohler et al., 2019; 
Weisburd, 2015). Indeed, crime hotspots are recognized at all 
geographic scales of resolution (Brantingham, Dyreson, & Brantingham, 
1976). The relative stability of geographic crime patterns has received 
less attention overall, though this remains an important issue for 
designing crime prevention strategies. In Mohler, Short, & Brantingham 
(2017) it is suggested, for example, that there is a tradeoff between the 
concentration of crime in space (Weisburd, 2015) and the stability of the 
associated hotspots. In general, at fine spatiotemporal scales crime is 
much more concentrated, but hotspots also frequently shift from place to 
place (see also Wang, Zhang, Bertozzi, and Short, 2021). At coarse 
spatio-temporal scales, crime is more diffuse, but the resulting hotspots 
also rarely move around. Braga et al. (2010) examined the spatial sta-
bility of gun violence in Boston from 1980 to 2008. Their results “... 
suggest that gun violence upswings and downturns are largely concen-
trated at a small number of gun violence hot spots that intensify and 
diminish over time”. It is possible that gun violence trends at these 

Table 1 
Estimated number of spontaneous (Sp.) events vs. the number and percent- age of contagion (Cnt.) events.   

Chicago Los Angeles New York Philadelphia 
Year Sp. Cnt. % Sp. Cnt. % Sp. Cnt. % Sp. Cnt. % 
2016 2349 370 14% 829 171 17% 851 357 30% 947 286 23% 
2017 1740 330 16% 734 167 19% 682 284 29% 919 276 23% 
2018 1547 271 15% 714 156 18% 628 323 34% 1000 409 29% 
2019 1402 226 14% 634 170 21% 666 301 31% 1044 406 28% 
2020 2000 458 19% 791 355 31% 1443 499 26% 1483 718 33%  

Chicago Los Angeles
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0.70

0.65

0.85

New York Philadelphia
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0.75

0.70

0.65
2016 2017 2018 2019 2020 2016 2017 2018 2019 2020

year

G

Fig. 5. Estimated yearly Gini index, Gˆ, of shootings using a grid of 500 m × 500 m cells. 95% confidence interval shown in blue. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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places follow trajectories that are consistent with a spatial diffusion 
process” (p. 50). Moreover, they conclude that less than 3% of micro 
places in Boston had volatile levels of gun violence. 

The policy implications of our findings are two-fold. First, increases 
in the proportion of contagious gun violence may be tackled through 
short-term, spatially-focused efforts to disrupt contagious spread. In the 

case of gang-related violence, this might be achieved through 
community-led violence interruption efforts (Park et al., 2021), or 
traditional crime suppression (Rosenfeld, Deckard, & Blackburn, 2014). 
Second, the jump in non- contagious spontaneous events are likely to 
require efforts to achieve larger-scale, structural changes in the envi-
ronment and routine behaviors, such as remediating vacant lots and 
abandoned housing (MacDonald, Branas, & Stokes, 2019). To the extent 
that the surge in 2020 was tied to routine activities (Cohen & Felson, 
2003) unique to the pandemic, a return to “normal life” might help cities 
naturally reverse course. If structural changes underlying the surge have 
become more embedded, then it may take a considerable period of time 
to return to the conditions that prevailed before 2020. In Chicago, for 
example, it took approximately three years to see a decrease in baseline 
crime intensity after the 2016 spike in shootings, which was of a similar 
magnitude to the recent increase. All things being equal, we might 
expect a return to 2019 levels to take at least as long without any specific 
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Fig. 6. Hotspots (1 km × 1 km) each year accounting for 25% of shooting events (red) and 50% of shooting events (blue and red combined). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Stability of hotspots over time. Percent overlap of hotspots from year to year 
containing 50% of shootings  

Year Los Angeles Chicago New York Philadelphia 
2016–2017 71.59% 74.19% 49.40% 67.65% 
2017–2018 57.02% 63.01% 59.02% 80.65% 
2018–2019 57.00% 70.27% 57.69% 69.70% 
2019–2020 62.50% 66.67% 58.46% 86.67%  
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strategies to improve local conditions. 
This study is not without limitations. First, while research suggests 

the study of fatal and nonfatal shootings is useful for understanding 
urban violence, public discourse centered on urban violence has largely 
focused on the increase in homicides across numerous U.S. jurisdictions 
across 2020 and 2021. Because of the rarity of homicide events in space 
and time, the analyses presented in the current study were not well 
suited for a strict focus on homicide. Second, research suggests a pos-
sibility that contagious violence may spread through social networks 
that are non-local, whereby shooting events in one part of the city may 
motivate shootings in distant areas. Our focus on spatiotemporal pat-
terns in gun violence would not capture such events. 

A further limitation of our analysis is that we did not explicitly ac-
count for changes in the intensity of shootings due to exogenous shocks, 
such as pandemic related lock-downs or protests. Crime contagion can 
be facilitated by multiple distinct processes and may be connected 
simultaneously to unique features of individual routine activities, social 
networks and community social norms (e.g. about retaliation). As a 
result, endogenous or exogenous changes in any of these domains may 
also have an indirect impact on crime contagiousness. For example, the 
wide-spread ‘lock down’ and social distancing practices adopted in 
response to the global pandemic in 2020–2021 are known to impact 
social dynamics in general (e.g., urban mobility). It is reasonable to 
expect that these changes impacted crime contagiousness. Current evi-
dence suggests that the impact of COVID-19 ‘stay-at-home’ orders on 
crime volume was generally more muted than expected (Mohler et al., 
2020; Piquero et al., 2020). It also appears that criminal street gangs also 
did not immediately take advantage of the pandemic to expand their 
activity (Brantingham et al., 2021). If the pandemic is a primary un-
derlying cause of the increase in violence contagiousness, observed in 
three of the four cities in 2020, then we can hope that a return to more 
normal social conditions may lead to a return to more ‘normal’ patterns 
of violence. 

However, in at least two of these cities (Los Angeles, Philadelphia) 
the increases in crime contagiousness in 2020 appear to be part of a 
trend stretching back to at least 2018. In New York, the decrease in 
crime contagiousness also appears to be part of a pattern of decline (or 
reversion to the mean) after a peak in 2018. These patterns would seem 
to implicate changes in social dynamics that predate the pandemic that 
are not necessarily the same across settings. Future research will be 
required to tease apart what was happening on the ground. Among many 
possible avenues of investigation, we believe it is worth assessing the 
role of changes in the size and organization of gangs, the availability of 
guns and higher caliber ammunition (Braga & Cook, 2018), the 
perceived legitimacy of the police and government (Kirk & Papachristos, 
2011; LaFree, 2018), and the continued infiltration of social media into 
daily life. 
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