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Abstract—This paper presents a design approach for the mod-
eling and simulation of ultra-low power (ULP) analog computing
machine learning (ML) circuits for seizure detection using EEG
signals in wearable health monitoring applications. In this paper,
we describe a new analog system modeling and simulation
technique to associate power consumption, noise, linearity, and
other critical performance parameters of analog circuits with the
classification accuracy of a given ML network, which allows to
realize a power and performance optimized analog ML hardware
implementation based on diverse application-specific needs. We
carried out circuit simulations to obtain non-idealities, which are
then mathematically modeled for an accurate mapping. We have
modeled noise, non-linearity, resolution, and process variations
such that the model can accurately obtain the classification
accuracy of the analog computing based seizure detection sys-
tem. Noise has been modeled as an input-referred white noise
that can be directly added at the input. Device process and
temperature variations were modeled as random fluctuations
in circuit parameters such as gain and cut-off frequency. Non-
linearity was mathematically modeled as a power series. The
combined system level model was then simulated for classification
accuracy assessments. The design approach helps to optimize
power and area during the development of tailored analog circuits
for ML networks with the ability to potentially trade power and
performance goals while still ensuring the required classification
accuracy. The simulation technique also enables to determine
target specifications for each circuit block in the analog comput-
ing hardware. This is achieved by developing the ML hardware
model, and investigating the effect of circuit nonidealities on
classification accuracy. Simulation of an analog computing EEG
seizure detection block shows a classification accuracy of 91%.
The proposed modeling approach will significantly reduce design
time and complexity of large analog computing systems. Two
feature extraction approaches are also compared for an analog
computing architecture.

Index Terms—Analog computing, ultra-low power circuits,
system modeling, feature extraction.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is used for the
diagnosis of neurological disorders such as epilepsy,

sleep disorders, encephalopathies, and coma. In the case of
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epilepsy, treatment involves tracking and profiling of seizures
to administer the correct medication. However, current treat-
ment strategies, which includes interviewing patients or keep-
ing them in the hospital for a long period, are either inaccurate
or impractical [1]. For an accurate characterization of the onset
of seizures, not only do we need to continuously monitor the
EEG signal, but we also have to do it in an unobtrusive manner
such that the day to day activities of a patient are not affected.
A wearable device that can continuously monitor EEG suit
this need. However, wearable battery-powered devices can
monitor EEG only for a limited duration due to the relatively
higher power consumption. In this paper, we propose an ultra-
low power (ULP), analog EEG signal processing hardware
and evaluate its capability through system-level modeling and
simulations. The ULP operation of the hardware is based
on robust sub-threshold analog computing circuits that are
designed to process and extract a seizure event in the analog
domain, incorporating ULP ML inference capability. The
design approach introduced in this paper incorporates models
based on non-idealities from circuit-level simulations in order
to evaluate performance and power trade-offs during system-
level simulations, which can be used to ease and expand the
integration of analog computing components for ML.

A conventional EEG device converts the signal acquired
by the analog front-end (AFE) [2] to a digital format using an
analog-to-digital converter (ADC) followed by digital process-
ing [3]. The data interface can be either wired or wireless [4].
While a wired data interface will station the patient close to a
processing unit, a wireless EEG device can operate only for a
limited duration due to the high power consumption. Wearable
devices with wireless data communication [5] are in demand,
but need lower power consumption. To that end, researchers
have been developing on-chip capabilities for processing and
feature extraction [6]–[9], which significantly reduces the
amount of data transmission. In [7], [9], [10], seizure detection
systems are introduced with power consumption in 100s of
µWs. Another work reduces consumption down to 25µW [6].
In [11], the EEG feature extraction is performed directly on
compressively-sensed signals to save power by processing
fewer samples. Recently, an EEG monitoring device was
reported that achieves a power consumption of 950 nW by
employing an analog feature extraction technique [8]. In [12],
a convolutional neural network (CNN) architecture is modeled
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Fig. 1. EEG-based seizure detection system architecture using conventional digital computing.
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Fig. 2. Envisioned EEG-based seizure detection system architecture using analog computing.

to detect seizures with reduced computational cost. In [13],
[14], deep learning algorithms are used to predict seizures.

In this paper, we demonstrate how ultra-low power analog
computing circuits can be optimized with the added capability
to consider their imperfections during system-level modeling
and simulation aimed at ensuring high classification accuracy,
where seizure detection is utilized as an example application.
The complete signal processing chain of an EEG seizure
detection system is implemented in the analog domain with
only training weights stored in the digital domain. A new re-
ceived signal strength indicator (RSSI) based feature extraction
technique, better suited for analog computing, is also proposed.
The analog computing approach not only saves power and
area, but also has higher classification accuracy. Extensive
circuit simulations were carried to accurately model various
nonidealities in analog circuits such as noise, nonlinearity, and
quantization error to assess their impacts on the classifier and
to allow informed design decisions for underlying circuits.
Conversely, in a bottom-up design approach, the modeling
technique from this work can also be used to determine the
system classification accuracy while exploring architectural
alternatives based on the given performance parameters of
each sub-circuit. Section II provides a background on EEG
monitoring systems, while Section III introduces the proposed
analog feature extraction circuits. Section IV describes the
modeling of the analog system, and Section V explains the
sources of nonidealities in each circuit block and how they are
modeled. Section VI includes simulation results to exemplify
the approach with feature extraction.

II. BACKGROUND

Conventional seizure detection systems employ ML tech-
niques to distinguish between seizures and normal EEG [15]–

[19]. Normal EEG signals span the frequency range of 0−100
Hz with spectrum being divided into five frequency bands: δ
0−3 Hz, θ 3−7 Hz, α 7−15 Hz, β 15−32 Hz, and γ > 32
Hz bands Specific frequencies become more prominent at the
onset of seizures [20]. The power spectrum of the EEG signal
is frequently used as a feature for classification. The frequency
bands are differentiated using a filter bank of 4− 7 bandpass
filters, and spectral energy of each sub-band is calculated with
a moving time window. A feature map is constructed using this
data and fed to a machine learning classifier.

Fig. 1 shows the architecture of a conventional EEG moni-
toring system. It includes an AFE, ADC, digital filters, feature
extraction engine, and a binary classifier. At least 8 channels
are used to acquire spatial information needed for high classifi-
cation accuracy [21]. Often, ADCs with relatively high power
consumption are also required to achieve high sampling rates
to maintain signal fidelity. The 8 channel system presented
in [7] utilizes an area of 25 mm2, including the on-chip
SVM classifier and a 64kB memory. In that, 8 channel AFE
consumes 66µW of power.

EEG signals are at low frequencies and can be processed us-
ing ultra-low power, sub-threshold analog. Analog computing
has reemerged as an alternate computing method to save power
and area to realize a given function [22]–[30]. Recent works
have also explored process variation compensation techniques
to enhance reliability of analog neural networks [31].

In a digital system, circuit level results are abstracted out
into boolean logic. Once abstracted out, circuit-level non-
idealities are rarely investigated for their impact on system
performance. This is not the case for analog computing, where
circuit nonidealities can play a significant role in system
performance. In the context of seizure detection using analog
computing, a better understanding of performance impact of
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Fig. 3. Overview of the model components of the analog seizure detection architecture.

various blocks in the feature extraction unit is needed. The
remainder of this paper will elaborate how an accurate analog
model of the feature extraction engine can be utilized in the
design process of fully analog computational units.

III. ANALOG COMPUTING SYSTEM ARCHITECTURE

Fig. 2 displays an envisioned architecture of the analog pro-
cessing system with analog feature extraction circuits. The first
stage is composed of front-end amplifiers to provide gain for
the incoming signal, which is followed by an analog filtering
stage. The output of each filter is applied to a corresponding
feature extraction circuit to continuously monitor for seizure.
Various blocks with high-level functionality and specification
in Fig. 2 are briefly discussed below.

1) Front-End Amplifiers: The amplifiers in the AFE boost
the incoming EEG signal and should have a flatband gain of
20-30 dB, with ultra-low power consumption. They also have
to be process-voltage-temperature (PVT) resilient.

2) Filter Bank: Filters for EEG have to be narrow band
and require a sharp cut-off to reliably split the incoming signal
into spectral bands. Filters suitable for biomedical applications
with third-order harmonic distortion (HD3) ranging from −60-
−40dB [32]–[34] are often used.

3) Feature Extraction Circuits: We explore two feature
extraction techniques. The conventional root-mean-square
(RMS) spectral energy of the frequency bands and a received
signal strength indicator (RSSI) are modeled to compare their
classification accuracy.

4) Analog-to-Digital Converter: The RSSI values are sent
to an ultra-low power ADC. Since the ADC is moved to the
end of the signal chain with the presented system architecture,
the required sampling rate is very low at 4-samples/s for each
channel, i.e., one sample per second for each of the four RSSI
outputs. At such a low sampling rate, the power overhead of
the ADC can be kept small.

5) Binary Classifier: The choice of classifier is application-
dependent. Here, we have used a SVM classifier for binary
classification. The SVM classifier consists of multiply and
accumulate (MAC) units. The SVM classification computation
can be implemented using off-chip or on-chip techniques [7],
[35].
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Fig. 4. Feature vector map creation using spectral power in a signal composed
of n-channel EEG inputs.

IV. ANALOG COMPUTING SYSTEM MODEL

We constructed the system level architecture in Fig. 2 to
obtain classification accuracy of seizures. Simulation times
for the design of such complex analog systems can be pro-
hibitively long, particularly when the impact of nonidealities
such as noise, nonlinearity, and device mismatches have to be
considered. We can reduce the simulation time by building
accurate models. Furthermore, to facilitate the design of an
analog computation engine, a study of the dependence of
classification accuracy on circuit nonidealities is needed. The
analog models also help define the required specifications to
realize a given classification accuracy. First, an ideal model
with the circuit blocks was created (Fig. 3) to obtain a baseline
classification accuracy. Afterwards, nonidealities present in
analog circuits were obtained using SPICE simulation and
incorporated into the model to study their impact on ML
classification accuracy. The system level architecture in Fig. 2
is modeled using behavioral level circuit functionality. For
example, a linear gain element is used for the front-end
amplifiers and filters that are modeled using real-time filter
implementations. Similarly, the RSSI model is developed by
closely mapping the input-output characteristics of an RSSI.
Another important component of the model is feature defini-
tion and feature model creation using the EEG data, which is
discussed below.

A. Feature Map Creation

Modeling of ML systems helps to develop better algorithms
and hardware [36], [37]. The architecture introduced in Sec-
tion III provides the training data for seizure classification.
Next, a feature map must be prepared, which can be used as
an input to a classifier. The accuracy of the classifier depends
on the selected features. The EEG map must contain spectral,
temporal, and spatial information associated with the seizures.
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Fig. 5. ROC curve with AUC = 0.9993, showing that the two classes are
separable.

The spectral components are obtained through the 4-stage
filter bank. Spatial information is obtained by using multiple
EEG channels. Seizures can be focal or general, and using
more channels provides information about where a particular
seizure originated in the brain. Motion and physiological
artifacts, which corrupt EEG signals, can also be removed by
increasing the number of channels. Usually, between 4 and 256
electrodes are used in present day EEG monitoring systems.
Some applications also use channel selection algorithms to
bring down the amount of data needed to be processed [38]. In
this project, we use all 23 channels from the Boston Children’s
Hospital epilepsy database [21], [39]. The feature vector, X
contains 92 features from the filter bank and 23 channels. The
remaining temporal information is added by appending four
feature vectors X calculated at one second intervals, creating
feature vector XT given by

XT =
[
Xt Xt+1 Xt+2 Xt+3

]
This results in a total of 368 features. The observations are
recorded at an interval of one second. The feature vector is
created for each training sample. The y-axis of the feature
map represents the different training samples, which are each
taken at one second intervals. The feature map is patient-
specific and is fed to the linear SVM classifier. Fig. 4 shows
a representation of the created feature map.

B. Model of the Analog System

Feature extraction block must be designed to achieve high
seizure detection accuracy. We have modeled the blocks in
Simulink to abstract out key design characteristics. First, an
ideal model of the blocks was built based on the circuit
level simulation of the analog block. The ideal model does
not include nonidealities such as noise or nonlinearity. The
nonideal characteristics were then introduced one at a time to
study their effects on classifier performance. Fig. 3 visualizes
the model blocks of the complete analog feature extraction
engine. The EEG data from the CHB MIT database [39] is
used, which is obtained at a sampling rate of 256 Hz. The
simulation time step is also set to match the sampling rate. The
gains of the filter and amplifier stages are modeled together.
The gain block provides a flatband gain of 30dB, while the
filter models include bandwidth restrictions. The raw EEG

data is fed to the gain stage prior to four fourth-order analog
butterworth filters to split the data into δ, θ, α, and β bands.
The high cut-off frequencies of the filters are set to 4Hz, 8Hz,
12Hz, and 100Hz to cover the entire spectrum of the EEG data.
The bandpass filters have been modeled as 4th-order filters
with -40dB roll-off. The next block in the signal chain is the
feature extraction engine. Both RMS and RSSI are modeled
as part of the feature extraction engine. Since the incoming
signal is continuous, the power is calculated in a 2 second
time window. The average power of the signal is:

Pavg =
1

N

N−1∑
n=0

|xn|2 = x2
rms (1)

which is the square of the RMS level of the signal. Hence, the
power of the signal can be modeled as a moving RMS block
followed by a squaring block. The RSSI is modeled in two
parts: first, a power detector circuit is modeled, and then the
RSSI is modeled as a transfer function, where the conventional
RSSI circuit with negative slope is modeled. If an RSSI has a
positive slope, then the model can be adjusted through a sign
change. Since the computation is done entirely in the analog
domain, the RSSI signal is not digitized and the analog voltage
level represents RSSI. The moving RMS block uses a sliding
window with a length of 2 seconds. The squaring block outputs
the power of the signal in a 2 second window. The RSSI is
also modeled to have a low-pass frequency response and a 3-
dB cut-off frequency of 100 Hz. The RSSI output waveform
modeled as a linear function between -60dB and 0dB. Beyond
this range, the graph is modeled as a constant function with an
output voltage of 0 or 800mV . The proposed model of RSSI
was verified with simulation result of an RSSI circuit. Fig. 3
also shows the close agreement of an RSSI circuit simulation
with the model. Once the data passes through the model of the
feature extraction block, a feature map is built as explained in
Section IV-A, and is fed to an SVM classifier.

C. Training and Classification

Training is typically patient-specific, and the data for EEG
without seizures was collected for 148 hours. The data has
been validated using 5-fold cross-validation to avoid over-
fitting [40], [41]. For a single patient, 31 hours of normal
EEG data and 402 seconds of seizure data have been used for
training.

The classification is performed using a linear SVM (LSVM)
classifier in the Statistics and Machine Learning Toolbox. The
SVM classifier determines a decision boundary to separate the
seizures from the non-seizures. A higher number of features
results in a hyperplane separating the feature vector space into
two classes. The general principle of a SVM classifier is as
follows

WT ·X + β =

(
> 0;Seizure
< 0;Normal

)
where X is the power spectral density vector of each of a
channel, WT and β are patient-specific trained weight data.

Since we need to wait for 4 seconds to collect all temporal
information, it is not possible to conduct the final SVM in the
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Fig. 6. Classification accuracy for seizure detection for 5 different patients.

analog domain because that would require excessive analog
memory. Storing the analog voltages for such a long time
is currently not feasible due to the leakages in the switches.
Instead, we perform Wi × Xi for each feature vector (i.e.,
the RSSI output) immediately when they become available,
and the results are then converted into the digital domain
for storage. At the end, when all temporal information is
available, the saved values are summed to generate the final
SVM output. Hence, the final summing for SVM is performed
in digital, whereas the individual multiplications are performed
in analog. Since analog-to-digital conversion is carried out at
the end in one step, the sampling requirement for the ADC is
relaxed significantly such that its power overhead can be low.
The analog-to-digital conversion stage is required to include
temporal information in 1s steps for 4s, and the outputs cannot
be efficiently stored for such a long duration in the analog
domain. The previous values have to be stored until all features
are collected to create the feature vector. For applications
where the temporal information is not required for feature map
creation, the entire SVM operation can be performed in the
analog domain.

Using this model, the classification accuracy was tested
using the MIT CHB database. The feature map was formed
using the ideal model explained above. The optimal number
of spectral bands for RMS based feature extraction has been
found to be 4 to 7 [7], [21]. The optimal number of spectral
bands for RSSI based feature extraction is also 4 or higher as
discussed in Section IV-D2. We have chosen and modeled 4
spectral bands for RSSI based feature extraction to keep the
power consumption low. The receiver operating curve (ROC)
is displayed in Fig. 5, where the area under the curve (AUC)
is 0.99936.

The classifier is tested using patient-specific seizure data,
and it outputs a class label for each observation of seizure
data. The classification accuracy is calculated from the number
of times the classifier correctly predicts each observation. The
seizure classification accuracy, or the sensitivity is defined as

Classification Accuracy =
TP

TP + FN
(2)

where TP (True Positives) is the number of seizure observa-
tions correctly predicted as seizures, and FN (False Negatives)
is the number of seizure observations incorrectly predicted as
no-seizure observations. The percentage of false alarms, or the

Fig. 7. Percentage of observations classified incorrectly as seizures for each
patient. Each record was tested once, while the other records were used for
training.

specificity is defined as

False Alarms =
TN

TN + FP
(3)

where TN is the number of True Negative observations, and
FP is the number of False Positive observations. Since several
records of seizures are available for each patient, each record is
tested once while the other records are used for training. Fig. 6
shows the seizure classification accuracy for each seizure
record of 5 different patients. The false alarm (FA) rate is
also calculated in the same way, by cycling through records
to test for each subject. Each observation falsely classified as
a seizure is counted, and the total percentage of incorrectly
labelled observations in a record is shown in Fig. 7.

D. Analog Feature Extraction Exploration

1) Comparison of Features: In a conventional EEG moni-
toring system, the spectral energy of the EEG signal sub-bands
is used as a feature for seizure classification. The spectral
energy in a sub-band is the RMS power of the EEG signal
integrated over a time window. The difference between the
RMS level in an EEG signal during seizure and normal brain
activity forms the basis of classification. However, RMS power
detection circuits are better suited for digital computation
architectures. On the other hand, power feature extraction
using RSSI can serve as a counterpart in analog. The RSSI is
a log power detector, and is calculated using

RSSIOUT = 10log(Pin|dBm) (4)

The RSSI circuit consists of front-end amplifier stages to
constitute a cascaded limiting amplifier structure for the realiz-
ing log function [42]. We model the RSSI as part of the feature
extraction unit. The dynamic range of the RSSI presented
in [29] was used for this application. The performance of RSSI
and RMS power as features for seizure detection is compared
in the following three ways. Firstly, the conventional digital
architecture shown in Fig. 1 is used to extract RMS power.
Four frequency bands are obtained using FIR filters dividing
the incoming EEG signals into four equal sub-bands ranging
from 0-30 Hz. High order filters are required to divide the
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Fig. 8. Comparison of seizure classification accuracy with RSSI and RMS.

EEG signals into bands. We use 43rd-order FIR filters, as
used in [7], in the filter bank.

In the second method, RMS is used as the feature extraction
circuit using the analog system architecture shown in Fig. 2.
The EEG signal is again divided into equal sub-bands from
0-30 Hz using fourth-order Butterworth filters.

In the third method, RSSI is used as the feature extraction
circuit in the analog system architecture. The performance
with both RSSI and RMS power is compared for seizure
classification accuracy and FA rate.

Fig. 8 and Fig. 9 show the comparison between RMS and
RSSI based feature extraction for five subjects. RSSI based
feature extraction performs better across 5 subjects for both
seizure classification accuracy and FA rate. Note that the dif-
ference in accuracy is small between FIR and RSSI, however,
40th-order FIR filters cannot be implemented in analog. The
fourth-order RMS filters and RSSI are both feasible candidates
for an analog computing system. Here, the difference between
the RSSI and RMS methods was found to be statistically
significant with p = 0.0037. The RSSI based feature extraction
shows an average improvement of 17% in seizure classification
accuracy across 5 patients, compared to the RMS based feature
extraction. The number of FA per hour also improved by an
average of 1.9 FA/hr for the RSSI based feature extraction
compared to the RMS power based feature extraction. The
better performance of RSSI is attributed to its linear response
for a logarithmic input of amplified EEG signals to incorporate
additional mathematical transformation. The RSSI circuit is
also more compatible for an analog computing architecture,
eliminating the need for corresponding higher-order filters.

2) Number of Spectral Bands: The amplified EEG signal is
divided into frequency bands using band-pass filters. The three
techniques of feature extraction are compared while sweeping
the number of bands to find the optimal number of filters
required for maximum accuracy and minimum false alarm rate.

The advantage of using an RSSI as the feature extraction
circuit is further illustrated in Fig. 10. Here, the frequency
range of interest (0 - 30 Hz) is divided into one to eight equal
sub-bands for subject S1. The seizure classification accuracy
increases with increasing number of filters for RMS power
extracted using both FIR and analog filters. The RSSI shows

Fig. 9. Comparison of false alarm Rate with RSSI and RMS.

consistently higher accuracy and smaller FA rate for all sub-
bands. RSSI is also able to achieve higher accuracy with fewer
number of filters. Hardware implementation of RSSI based
feature extraction can hence save both power and area. In this
paper, we use RSSI as the feature for seizure classification
using four Butterworth filters. The bands are divided as δ (0-
4Hz), θ (4 - 8Hz), α (8 - 13 Hz), and β (13 - 100 Hz) as these
frequency bands give a slight performance boost compared to
equally divided sub-bands.

V. MODELING OF BLOCK-LEVEL NONIDEAL
CHARACTERISTICS AND SIMULATION RESULTS

The ideal model described in Section IV gives a baseline
classification accuracy. In order to facilitate the design of
the analog circuits within the feature extractor, nonidealities
that can affect the classification accuracy should be taken
into account. To achieve accurate classification results, circuit
nonidealities were added to investigate their effects.

A. Noise

EEG signal processing is susceptible to noise due to the
low amplitude of EEG signals. The electrodes, amplifiers, and
filters all introduce an input-referred noise to the signals. If the
noise is too high, the EEG signals can easily fall below the
noise floor, resulting in a decreased classification accuracy. For
this reason, biomedical signal acquisition systems generally
have low input-referred noise [43]–[45] below 1 µVrms.

Fig. 10. Comparison of RSSI and RMS as features over a varying number
of spectral bands.
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Fig. 11. Classifications accuracy vs. SNR for subjects S1 and S2, where the
SNR is calculated using the seizure RMS value.

In this work, the ultra-low power, precise, sub-threshold
front-end amplifier circuit discussed in [46] is modeled. Since
this amplifier is switched capacitor based, it introduces high-
frequency switching noise that is filtered out by the filter bank.
The filter bank and RSSI also contribute to the input-referred
noise, which are all lumped together as total input-referred
noise.

To introduce noise in the model, normally distributed ran-
dom numbers are generated with a specified standard devi-
ation that is equivalent to the RMS value of the modeled
input-referred noise. Noise is modeled as white noise in our
MATLAB model, and has no dependence on frequency. This
noise is then added directly to the EEG signals to account
for the combined input-referred noise of the amplifier, filter,
and RSSI. Note that this noise level was obtained through
circuit-level noise and transient simulations with activated
noise present in foundry-supplied devices models to accurately
represent the impact of noise in our model.

The noise contributed by the AFE and RSSI was obtained by
circuit level simulations. Fig. 11 shows the effect of noise on
seizure classification accuracy for two different subjects, where
the signal level is taken from the RMS of the seizure signals.
Fig. 11 shows that the accuracy decreases exponentially for
SNR< 30dB.

Fig. 12. Seizure classification accuracy with different levels of noise added
during training for subject S1.
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Fig. 13. RSSI output voltage simulated with transient noise. The maximum
deviation of the RSSI output with noise is 4 mV.

Improving Robustness against Noise: In practical scenarios,
the noise level varies between training and testing. To test
the robustness of the system, different amounts of noise
were added to the training and test data. Fig. 12 shows the
classification accuracy versus added noise plots for subject S1.
We varied the added noise from 0 to 200µV. The system is
more robust when the training and test data is affected by the
same level of noise. For example, when 200µV noise is added
to the training of the EEG data, the system becomes robust
against noise level lower than 200µV, and its classification
accuracy does not degrade even when the noise amplitude
is comparable to the seizure amplitude. Noise injection to
inputs or weights during training improves regularization, and
prevents overfitting [47]. However, there exists a trade-off
between data fitting and regularization. Adding too much noise
during training can make it harder for the model to fit the
training data. The level of noise that the model can tolerate
is patient-specific since the EEG signal amplitudes can vary
greatly between patients. Fig. 12 shows that adding up to
200µV noise to the training data for subject S1 can have
positive effect on the robustness of the model. To achieve
high classification accuracy, the system design should ensure
overall lower noise contributions from circuit components that
can result in a higher power consumption. As the system noise
starts to affect the classification accuracy, the model can be
trained with added noise to improve classification accuracy.

B. RSSI Noise

The RSSI circuit also suffers from noise, which affects its
sensitivity, especially at lower levels of power. When the signal
power is low, it can fall below the noise level of the RSSI,
resulting in a decreased dynamic range. Furthermore, the RSSI
is impacted by device mismatches that create output offset. An
offset correction technique is employed in each of the limiting
amplifiers [29]. The effect of noise in the final RSSI output can
be seen in Fig. 13. The offset correction scheme reduces the
low frequency flicker noise. The overall noise is also reduced
by increasing the output capacitor size. Corresponding to the
power level of the input noise, the RSSI circuit will produce
a DC voltage output following its transfer curve. Random
variations in the noise power level in our integration time-
window will generate the randomly distributed voltage level.
This is shown in Fig. 13. This noise in the RSSI manifests
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itself as an input-referred noise that can be referred back
to the signal chain input. The average input-referred noise
contribution (i.e., equivalent noise at the AFE input) from the
RSSI block was found to be 0.1 µV, which is low, thanks
to the gain in the signal path prior to the RSSI. The plots
from Fig. 13 can be used to model the practical RSSI circuit.
The RSSI noise results in variations in the output level of the
RSSI at the low power levels, as shown by the simulation
results in Fig. 13. The saturation voltage of the RSSI output
varies by a maximum of 4 mV from the addition of noise,
as verified by SPICE simulations. This variation in the output
saturation level was modeled in the RSSI transfer curve. In
our model, the output saturation level at low power levels was
varied randomly using a uniform distribution (± 4mV) for a
conservative inclusion of the total RSSI output noise.

C. AFE Linearity

Differential analog filters and amplifiers predominately suf-
fer from third-order distortion, since the second-order distor-
tions are suppressed through the differential operation. In gen-
eral, a memoryless nonlinear system produces the following
output without offset:

y(t) = α1x(t) + α2x
2(t) + α3x

3(t) (5)

Here, α1 is the small-signal gain of the system, and α2

and α3 are the second- and third-order distortion coefficients
respectively. The AFE circuits are all fully differential, hence
the second-order distortion is neglected in this analysis. The
nonlinearity is modeled using a polynomial functional block.
This introduces nonlinearity to the signal at the input of the
filter bank. Higher order non-linearity coefficients are ignored,
leaving the third-order harmonic distortion as the main non-
linear component. For small amplitude, the coefficient for the
third order harmonic distortion is found using equation below,
where A is amplitude of the signal

HD3 = 20log

(
α3A

2

4α1

)
(6)

The HD3 of the amplifier and filter bank blocks are combined

Fig. 14. Seizure classification accuracy vs. harmonic distortion for two
subjects, S1 and S2.

Fig. 15. (a) Seizure classification accuracy vs. resolution in number of bits
for subject S1. (b) Seizure classification accuracy vs. SNR with weights
quantized to 8 bits, showing the combined effects of noise and resolution
on classification accuracy for subject S1.

Fig. 16. Seizure classification accuracy with modeled PVT variation with σ
= 10%

and modeled together. For EEG acquisition front-ends, the
total harmonic distortion (THD) is usually kept low to around
1% [2], [48], [49]. Since signals are of low amplitude, the
THD is a much looser constraint than noise. For a conservative
estimate, the third-order coefficient is calculated using Eq. 6,
with a 6mV input signal, which is a value that is higher than
the expected amplified EEG signal. To ascertain how much
nonlinearity the AFE can tolerate, the HD3 was swept from -
60 dBc to -40 dBc. Fig. 14 shows the seizure classification
accuracy with respect to HD3. The classification accuracy
exhibits very low dependence on the linearity of the AFE.
This is primarily because of two reasons: First, the power
contribution due to nonlinearity is small, and second, the
nonlinearity in the circuit does not change the relative power
output produced by the RSSI circuit. The RSSI circuit will
add both fundamental and HD3 power together maintaining
the relative ratio of power in the EEG spectral bands resulting
in an insignificant impact on the classification accuracy.

D. Resolution

In standard SVM classifiers, floating point weights are used
for training and inference. However, hardware implementation
for real-time inference often requires fixed point resolution.
Studies on low precision neural networks [50], [51] found that
performance comparable to 32 bit floating point format could
be achieved using quantized weights and activation. Quantized
weights also reduce computing and storage requirements.
The number of bits required for representation of weights is
assessed in this section. Floating point weights obtained from
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training are assumed to be quantized and stored on-chip before
using them for inference. Fig. 15(a) shows the classification
accuracy against number of bits used for quantization for
subject S1. It reveals that the classification accuracy remains
relatively high for a resolution of 7-bits or above. Here, we
show the classification with the limited resolution of weights,
but this essentially models the effective resolution of the DAC
with multiplication and the RSSI circuit.

E. PVT Variations

PVT variations are factored into our model to account for
deviations in the fabrication process. The gain and offset of
the front-end amplifier are affected by the PVT variations. The
most significant effect on the filter bank is cut-off frequency
variation within each of the four filters. The random offset is
corrected in the RSSI stage. However, the RSSI transfer func-
tion itself may vary due to PVT variations. This can modify
both, the slope and the saturation voltages of the RSSI. The
gain of the front-end amplifier, the cut-off frequencies of the
filter bank, and the transfer function of the RSSI are all varied
randomly around their means for a 1σ variation of 10%. The
model is trained on ideal data without variations, and tested on
data affected by PVT variations. The classification accuracy
for 150 points is shown in Fig. 16. The random fluctuations are
from a normal distribution, however, since the RSSI performs a
non-linear transformation on the data, the seizure classification
accuracy is not expected to follow a Gaussian distribution.
In addition, the weights are assigned such that some features
are weighted more than others, making the system non-linear.
Note that using our sub-threshold biasing technique, a σ of
1% is seen with process variations, which does not show any
significant variation in the classification accuracy.

F. System-level Simulation Results with Combined Effect of
Nonidealities

The described analog based seizure detection system is
robust against circuit nonidealities such as noise, nonlinearity,
and quantization errors. The combined effect of these nonide-
alities is reported in this section. Fig. 15(b) shows the overall
impact of noise and resolution on the seizure classification
accuracy. The nonlinearity of the system is ignored since it
has negligible effect on the sensitivity of the system. The
ideal classification accuracy was obtained from the ideal model
without quantization of weights. The noise added to both
training and test datasets was varied, and all weights were
quantized to 8 bits resolution. The classification accuracy
shows minimal degradation for a SNR>30dB. For an ADC
with > 8-bit resolution, the system does not show significant
degradation in the classification accuracy. Table I summarizes
the simulated performance of the proposed approach. The
latency of the detector was found to be 4 seconds, creating a
delay between the onset and detection of seizures. The latency
is a trade-off for the accuracy because 4 seconds of temporal
information is used to create the feature map.

Table II shows the power and area breakdown of major
circuit blocks of the system. The AFE and RSSI blocks were
designed and simulated to estimate power consumption, which
was found to be 268 nW per channel. Filter implementations

for biomedical applications have been reported with power
consumptions as low as a few nanowatts [32], [56], [57]. We
used the multiplier cell from [58] with its area and power
included in Table II. Since a multiplication output is required
once every 1s, the multiplier is duty-cycled and its power is
≤ 0.02nW. 8-bit weights for the multipliers are stored in regis-
ters. Four such 8-bit registers are needed per channel before the
signal is digitized. ADCs for biomedical applications consume
low power due to their low sampling rates [55], [59]. For the
analog computing system for EEG extraction, a sampling rate
of only 4S/s is required. Hence, the power consumption of the
ADC can be as low as ∼10nW based on [55]. The combined
area of the system based on preliminary layout designs as well
as estimation for the ADC [55] is 0.78mm2. We estimate the
total area for one channel of the analog EEG feature extrac-
tion system to be < 1.2mm2 while accounting for routing
overhead and on-chip interfacing circuits. In comparison, the
area for a single channel of digital implementations ranges
from 3.125mm2 to 6.25mm2 [6], [7], [35], [52], [53]. The
assessments of the analog feature extraction engine show that it
can achieve high seizure classification accuracy with ultra-low
power consumption. Furthermore, the total power consumption
can be traded off with classification accuracy by decreasing the
number of channels and frequency bands in the feature map.

Table I also summarizes the simulation results in compari-
son with other works. With the inclusion of the modeled circuit
non-idealities, the described analog architecture maintains a
similar system performance in terms of classification accuracy.
While the system is tolerant to circuit-level distortions (non-
linearities), the results have shown that the noise levels have
to be kept in an acceptable range by design. Our analog com-
puting ML model is also comparable to a recent CNN based
model [12], where binarized inputs and weights achieved an
AUC of 95.8%. The proposed analog model with ideal circuit
model achieves a classification accuracy of 98.3%.

The presented modeling and simulation approach allows to
determine circuit-level specifications to achieve application-
specific accuracy goals while utilizing low-power circuits for
energy-efficient processing. In addition, it can be used as
a simulation tool to evaluate trade-offs among block-level
specifications to optimize performance and power for analog
computing systems on an application-specific basis.

VI. DESIGN CASE STUDIES

The model created for the feature extraction engine for
seizure detection can be used to facilitate the design of the
analog feature extraction hardware. The information gained
from the models are used to ascertain specifications required
for each of the AFE and feature extraction blocks to achieve
the desired classification accuracy. In this section, the front-end
amplifier and filter blocks for feature extraction are designed
using the specifications acquired from the model.

A. Front-End Amplifier Design

Following the principles of sub-threshold biasing from [46],
a fully differential amplifier is biased with a PTAT current
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TABLE I
PERFORMANCE COMPARISON OF EEG FEATURE EXTRACTION METHODS.

TBCAS’16 [6] JSSC’13 [7] TBCAS’16 [52] JSSC’10 [35] JSSC’15 [53] TBCAS’11 [54] This work*

Technology (nm) 180 180 180 180 180 130 65

Supply (V) 0.9 1.8 1.8 1 1.8 1.2 1

Classifier Thresholding LSVM NLSVM NLSVM dual-LSVM Phase Sync. LSVM

Sensitivity (%) 98.5% 82.7% 95.1% 93% 95.7% 100 91%

False Rate/Specificity 4.4/hour 4.5% 0.94% 0.3 ± 0.7/hr 0.27/hr 1/hr 0.025%

# of Ch. 8 8 8 18 16 2 23

No. of frequency bands 4 7 7 7 7 5 4

Latency (secs) 9.1 < 2 2 6.7 ±3 1 - 4

*Simulated

TABLE II
PER CHANNEL POWER CONSUMPTION AND AREA OF CIRCUIT BLOCKS

Power (nW) Area (µm× µm)

Front-end amplifiers 60 210 × 210

Filters 100 550 × 400

RSSI 96 4 ×430 × 230

Multiplier 0.02 135 × 135

ADC* 10 540 × 110

Digital/Registers/Clock
Generation 1.5 250 × 270

*Estimated based on [55], designed with 90 nm CMOS technology.
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Fig. 17. (a) Constant gm biasing, and (b) design of switched capacitor
differential amplifier to realize robust operation [46].

source. The transconductance of the input pair transistors can
be expressed as

gm =
ln(K)

ηR1
(7)

where R1 is the resistance in the current source. The resistor
is replaced with an equivalent switched capacitor resistor to
ensure smaller design size. This biasing scheme can be used
to ensure small transconductance variation, making analog
circuits more robust against PVT variations.

The front-end amplifier is the first stage in the analog signal
chain, which amplifies the incoming EEG signal. A fully
differential amplifier with a gain of 22 dB was designed with
the robust ultra-low power method described above, using the
circuit in Fig. 17(b). This single-stage differential amplifier
with resistive loads is biased with the described constant gm

biasing scheme. The load resistors are also replaced with
equivalent switched capacitor resistors (SCRs). The gain with
SCR load is given by

Av =
ln(K)f1C1

ηf3C3
(8)

where f3 is the switching frequency of the amplifier’s SCR
load, and f1 is the switching frequency of the PTAT bias
current generator. Equation 8 reveals the stable gain of the
differential amplifier. The input amplitude of EEG AFEs is
typically below 1mV as the MIT CHB data indicates [21],
[39]. An amplifier circuit will exhibit better linearity per-
formance for smaller amplitudes. For a conservative worst-
case estimate, we simulated the amplifier for a maximum
input voltage of 6mV with a 12Hz sinusoidal test signal to
evaluate its nonlinearity. Fig. 18 displays the output spectrum
generated by the circuit. The fractional third-order harmonic
distortion (HD3) component is −58dB below the fundamental
component. The modeled nonlinearity is also shown in Fig.
18. The modeled nonlinearity closely matches the simulated
HD3 of the amplifier.

The model for the analog computing system indicates
that the classification accuracy does not degrade for SNR
>20dB, corresponding to a noise level of 80µV. The input-
referred integrated noise as a function of the amplifier power

Fig. 18. HD3 of the amplifier with an input voltage of 6mV, and frequency
12Hz.
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Fig. 19. Input-referred integrated noise of the amplifier as a function of power
consumption.

Fig. 20. (a) Second-order biquad filter. (b) Scaled capacitance to achieve low
cut-off frequency with small area overhead.

consumption was simulated and is shown in Fig. 19; where
an integration up to 10 kHz was performed, which is much
higher than the AFE bandwidth. Input-referred noise was
obtained from circuit level SPICE simulations by varying the
bias current in the front-end amplifier while keeping the gain
constant. The noise level is below the requirement, but note
that the noise of the amplifier can be further decreased by
increasing the power if needed.

The biasing circuit and the front-end amplifier both use
switched capacitor circuits that require low-frequency clocks
at 32kHz. The 32kHz clock can be generated with single
digit nW power consumption [60]–[62]. A 32kHz crystal
oscillator design based on [61] in 65 nm CMOS technology
also produces single digit power consumption. Owing to the
low operating frequency, the clock distribution will not incur
significant power or routing area overhead

B. Filter Design

A second-order biquad filter was designed as shown in Fig.
20(a). The cut-off frequency of the filter is given by

ωo =
gm
C4

(9)

Two biquads are cascaded together to obtain a fourth-order
filter. The feature extraction engine requires low cut-off fre-
quency (0-100 Hz) for the processing of EEG signals. This is
achieved by lowering the transconductance of the OTA, and by

Fig. 21. HD3 of the fourth order filter with an input voltage of 6mV, and
frequency 6Hz. The input signal for linearity analysis is chosen to accurately
represent the amplified EEG signal.

Fig. 22. Output noise of RSSI as a function of power consumption.

using large capacitors, which increase the area overhead. The
transconductance is reduced by using a source degenerated
OTA. A scaled capacitance, shown in Fig. 20(b), is used to
scale up C4 by 3×. The output noise of the filter was simulated
while enabling transient noise using the foundry-supplied
device models, and was found to be 180 µV integrated up to
1kHz. Hence, the combined input-referred noise of the front-
end amplifiers and four filters is 83µV. As shown in Fig. 12,
when the system is trained with noise, 83µV noise in the test
set does not degrade the classification accuracy. The power
consumption of the fourth-order biquad filter is 25 nW for a
cut-off frequency of 8 Hz.

C. RSSI Design

A 6-stage RSSI similar to [29] was designed. Each limiting
amplifier in the RSSI has a gain of 2.6. Transient output noise
with zero input was simulated by varying the bias current. The
resulting output noise as a function of power consumption
is shown in Fig. 22. As expected, the RSSI output noise
decreases with increasing power. However, the overall noise
value when referred back to the input remains low. This helps
during the informed scaling of the RSSI circuit power during
the identification of design goals, while maintaining a high
classification accuracy.
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VII. CONCLUSION

In this paper, a robust analog computing architecture was
introduced for EEG-based seizure detection. The main feature
extraction components were designed and analyzed on the cir-
cuit level and modeled for system-level behavioral simulations.
Furthermore, a comparison between two different features
(RSSI and RMS) was performed to assess their impact on
classification accuracy. A model of the feature extraction unit
was created to study the effects of circuit-level nonidealities on
seizure classification accuracy. The impacts of noise, nonlin-
earity and quantization of weights were examined. The AFE
modeling and simulations showed that an SNR above 30dB
ensures negligible effect on the classification accuracy with
the described architecture. The results also revealed that the
system robustness can be enhanced through training with an
appropriate amount of added noise. The seizure detection rate
under ideal conditions was 98.3%, whereas the detection rate
with an SNR of 40dB and 8 bit quantization of weights was
found to be 96%. The nonlinearity produced by the front-end
amplifiers and filters had negigible impact on the accuracy of
seizure detection. The average classification accuracy among
all 5 subjects was found to be 91%, with a low average
false positive rate of 0.025%. The power consumption of the
AFE and feature extraction circuits was estimated to be 268
nW/channel.
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