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ABSTRACT: Hadronic 7 decays are studied as probe of new physics. We determine the
dependence of several inclusive and exclusive 7 observables on the Wilson coefficients of the
low-energy effective theory describing charged-current interactions between light quarks and
leptons. The analysis includes both strange and non-strange decay channels. The main result
is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date
experimental measurements and state-of-the-art theoretical techniques. The likelihood can
be readily combined with inputs from other low-energy precision observables. We discuss
a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we
provide a comprehensive and model-independent description of the new physics hints in
the combined dataset, which are known under the name of the Cabibbo anomaly.
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1 Introduction

Hadronic tau decays provide an unique laboratory to study fundamental physics [1, 2]. In the
past they have been mainly used to extract fundamental Standard Model (SM) parameters
or to learn about low-energy hadronic physics. In particular, inclusive tau decay observables
play a role in the determination of the strong coupling constant [3-5], the strange quark
mass, or the V,; entry of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [6, 7]. They also
provide a valuable QCD laboratory, where chiral low-energy constants or properties of the
QCD vacuum can be extracted with high precision through dispersion relations [8, 9]. In
what concerns ezclusive tau decay channels, the two-body decays 7 — 7w, Kv, are under
firm theoretical control. Their key non-perturbative parameters, the pion and kaon decay
constants, are now precisely calculated in lattice QCD [10]. On the other hand, exclusive
modes with two or more hadrons in the final state are much harder to predict within QCD
with high accuracy.

Whenever hadronic uncertainties can be brought under sufficient control, tau decays
can also serve as useful probes of new particles and interactions beyond the Standard Model
(BSM). There are several immediate motivations for such studies. One is the so-called CKM
unitarity problem, or more generally the Cabibbo anomaly. Different observables in kaon,
pion, tau, and nuclear beta decays point to mutually inconsistent values of the Cabibbo
angle (if interpreted in the SM context) [11-13]. Hadronic tau decays provide a valuable
input about BSM models that can successfully address the tensions in the existing data.
Another motivation is provided by the recent anomalies in B — D®*) 7, decays [14], which
hint at new physics coupled to tau leptons. More generally, it is theoretically plausible
that violation of lepton-flavor universality observed in b — sup(ee) transitions [15, 16] has
a counterpart in the tau sector. Many BSM models addressing these B-meson anomalies
predict couplings of the new particles to the light quarks (up, down, strange), especially if
they involve flavor symmetry as an organizing principle. Hadronic tau decays may provide
important information about such models.

With the exception of the 7 — m(K)v, channels, the BSM perspective has been rarely
explored in the tau literature so far (but see [17-19]). In a recent letter [20], we have
embarked onto an unprecedented comprehensive analysis of the BSM reach of hadronic tau
decays. That analysis was based on an effective field theory (EFT) approach to new physics
in charged-current interactions [21, 22], rooted in the broader framework of the Standard
Model EFT (SMEFT) [23]. In ref. [20] we performed a quantitative analysis of non-strange
inclusive and exclusive 7 decays and showed that the resulting constraints on the EFT
parameters (Wilson coefficients) encoding new physics are very competitive and quite
complementary to the ones obtained from electroweak precision observables and the LHC.

With the present manuscript we continue our study of hadronic T decays as probe of
new physics. First, we provide the fine-grained details that led to the results in ref. [20],
which we update with improved calculations and with current values for the experimental
and theoretical inputs. We also extend the framework to the strange sector, which leads to
novel results, in particular for the inclusive 7 — s decays. Finally, we combine our results
for strange and non-strange hadronic tau decays with the results obtained with d — ufy,



and s — ufyy transitions in ref. [24] (which we update to include recent developments).
This exercise leads us to the most comprehensive analysis to date of new physics effects in
the charged-current transitions involving the light quarks. The combination is particularly
relevant to frame the possible BSM explanations to the Cabibbo anomaly together with
all the related low-energy observables. We provide the final combined likelihood for the
low-scale EFT Wilson coefficients and perform a first exploration of some of the preferred
directions in the space of BSM couplings.

The paper is organized as follows. In section 2 we briefly introduce the theoretical
framework that we use in the rest of this work. The phenomenological study starts in
section 3, where we apply the formalism to translate updated results in 7 — 7v,, Kv,
decays into new physics bounds. The sensitivity of two-hadron decays to potential new
physics effects is studied in section 4, with special emphasis on those channels for which
the limitations on the predictive power can be overcome, 7 — nwv,, 7 — nmv, and, up to
a certain extent, 7 — Kmv,. In section 5 we discuss inclusive tau decays. We extend the
traditional SM framework, based on dispersion relations, to describe also potential new
physics effects. We study the associated phenomenology, including improvements of the
results of ref. [20] and extension to the inclusive strange sector. We recapitulate the obtained
7 bounds and perform the combination with the d — wfvy and s — ufyy transitions in
section 6, where we also show some important applications of the combined likelihood. Our
final conclusions and remarks are given in section 7. Additional technical details and results
are shown in appendices.

2 Theoretical framework

We work in the framework of a low-energy EFT where the degrees of freedom are the light
quarks (u, d, s), charged leptons (e, u, 7), neutrinos (v, v, v;), gluon, and photon. The
remaining particles of the SM have been integrated out, in particular the surviving gauge
symmetry is U(1)em X SU(3)c. We assume the absence on any exotic degrees of freedom
with masses below ~ 2 GeV; in particular we do not consider right-handed neutrinos here.
This framework is referred to as the WEFT (or WET, or LEFT) in the literature. For the
sake of this paper we focus on the subset of the Lagrangian describing the leading order
effective charged-current weak interactions between quarks and leptons. We parametrize
these interactions as [21]:

GV, . .
—“TQ“D [(1+€?£)€'m(1—75)w-fw“(l—Vs)D+€3‘f’m(1—Vs)w-ﬁv“(l +7s)D

ceﬁ' =
n _ 1.pe; _
+£(1—’y5)ug-u[ege—e£275]D+Zeglfam,(l—75)Vg-ua“"(1—'y5)D +h.c., (2.1)

where D = d, s is the down-type quark flavor, ¢ = e, y, 7 is the lepton flavor, and o =
i [y*,4"]/2. The normalization is provided by the Fermi constant G, = 1.16638x10~5 GeV 2

We have not included wrong-flavor neutrino interactions [22]. These do not interfere with the SM
amplitude and thus contribute to the observables only at O(e% ), except in neutrino oscillation observables [25].



measured in muon decay. Viq and V,; are elements of the unitary CKM matrix, and they
are positive and real by convention. Consequently, the two are not independent, but instead
are tied by the unitarity relation V2, + V2 = 1.2 The effects of physics beyond the SM are
parametrized by the Wilson coefficients egg. The main goal of this paper is to derive novel
constraints on new physics in the tau sector, and construct a likelihood function for e%".

The Wilson coefficients X7 are renormalization scale and scheme dependent [27].
Numerical values shown in this work are obtained at u = 2 GeV in the M S scheme. This
choice is convenient mainly because it is the standard one used by the lattice community to
give their results, which we use as inputs in our approach. Note that eﬁf are in general
complex parameters, but the sensitivity of the observables considered in this work to their
imaginary parts is very small (with some exceptions that will be mentioned explicitly).
Thus, the results hereafter implicitly refer to the real parts of e2¢, unless otherwise stated.
We added a hat on the tensor Wilson coefficient to stress the fact that it differs by a factor
of four with the notation of our previous work on tau decays [20]. The normalization used
in this work is such that BSM models producing tensor interactions give typically similar
contribution to é2¢, €2 and eB¢ [28, 29].

In the presence of general new physics, observables never probe the CKM elements
directly. Instead, they always probe certain combinations of V,,p and e{*. For this reason it
is convenient to define “polluted” CKM elements that relate in a more straightforward way
to observables, and which can be assigned numerical values based on available experimental
data [30]. We define
Vup = (1 + EEE =+ GID{P‘) VuD . (2.2)
The point of this definition is that the vector currents coupling electrons to light quarks
depend only on Vu p and not on eﬁ‘ . Consequently, Vud and f/'us can be readily extracted,
respectively, from nuclear decays and K — mev, [24]. In our analysis of hadronic tau decays
we will use the numerical values

A

Vid = 0.97386(40) , Vius = 0.22306(56) . (2.3)

These values are extracted from d — uev, transitions and K.z decays (taking into account
possible nonstandard effects), as explained in detail in section 6.2.

3 T— v, Kv;

The single-hadron channels, 7 — v, Kv,, are the only hadronic decays of the tau lepton
that are widely perceived as sensitive new physics probes (see e.g. refs. [1, 31]), especially
through “theoretically clean” ratios such as I'(7 — mv-)/I'(m — pv,,) where the main QCD
contributions cancel. The separate branching ratios are also powerful probes because the
QCD effects are captured by a single quantity, the pion and kaon decay constants fr k,
which can be calculated accurately in lattice QCD [10].

2More precisely V.2, + V2 + [Vis|? = 1 but, given |V,;| = 3.82(24) x 1072 [26], Vi has a negligible effect
on this relation.



The width of these channels in the presence of non-standard interactions is given by [32]

m3f2G2|V,p|? m2\> P P
D(r— Pry) = =P (1 28 ) (14 85 (1+2855 ) (3.1)
=(r = Pr)sm (1+ za}{s’}w) , (3.2)
where b
P T e T e B T
S = €07 — P — BT — R - 2P (3:3)

msr

Here D = d, s for P = , K respectively, B is a short notation for the ratio m?% /(my+mp),
fp is the pseudoscalar decay constant, and 6&18 are the radiative corrections (RC). The hat
in f‘('r — 7y )gy reminds that the “polluted” CKM element Vup was used. Let us note
that the huge chiral enhancement of the pseudoscalar piece in m(K) — fv; is not present
here due to the large tau mass (B /m, ~ 1).

Combining the PDG values of the branching ratios (BR) with the tau lifetime [26] we
find the following experimental values

(T = TV )exp = 2.453(12) x 10712 GeV (3.4)
(T = Kvr)exp = 1.578(23) x 107 GeV (3.5)

with a 4.2% correlation that we will take into account. The 0.5% uncertainty in 7 — vy is
dominated by the BR error, but with a small contribution from the lifetime error, whereas
the 1.4% error in 7 — Kuv; is entirely dominated by the BR. error.

For the calculation of the SM prediction, we use fg+/fr+ = 1.1932(21) [10, 33-43| and
[zt =130.2(8) MeV [10, 37, 38, 40] For the radiative corrections we use 6}(,2 = +1.94(61)%
and 5&{2 — +2.04(62)% which we obtain by combining the recent calculation of the RC
to the ratio 7 = Pv./P — uv, [44] and those to P — uv, from chiral perturbation
theory [45, 46]. We see that the RC themselves cannot be neglected, but their uncertainties
are subleading compared with the fp and experimental ones. Altogether we find

I'(r = mv,)sm = 2.458(34) x 1072 GeV (3.6)
[(r = Kv,)gy = 1.584(24) x 1074 GeV (3.7)

with a correlation of p = 0.73.
Putting the SM and experimental results together gives the following 68% CL results

d

(51(37;)1\1 =€l el — e —ef - %edg =—(09+7.3) x 1072, (3.8)
T
s

SP) =8 et _ T _ e %Efg =—(2+10) x 1073, (3.9)
T

with a 51% correlation. The small difference in the 7 — 7, constraint with ref. [20] is
due to the new input used for the radiative corrections [44]. The slightly smaller error in
ref. [47] for the 7 — Kv; constraint is obtained using the fir+ FLAG average. The latter
includes calculations where the QCD scale is set using the experimental f, + value, which is



polluted by BSM effects in the general EFT setup. For this reason we have used instead
the lattice calculations of f,+ and fx+/f.+ as inputs in our analysis.

Equivalently, the new physics bounds obtained above are simply the result of comparing
the value of V4 (V,s) obtained from 7 — mv,(Kv,) with Via and V,,, which are obtained
from d — uev, transitions and K3 decays. More explicitly:

ViKY = D, (140584 (3.10)
r—+Kv A
Vus] ™= _ Vi (K) ()
= =< 1+6 -0 . 3.11
Vud] v ( + Opsm BSM) (3.11)

Thus, our results make it possible to understand which specific BSM effects we are probing
when we compare these different V5 extractions.

We discuss now briefly the uncertainty sources. The error decomposition for the
T — v, bound is

7.3 % 107% = (250, £ 6,17, +3.0p0 04, ) x 1073, (3.12)

i.e., the error is dominated by the f.+ uncertainty. Improved future determinations of this
quantity are therefore crucial to search for new physics in this process.
The error decomposition for the 7 — Kv, bound is

10 x 1073 = (7.2exp +6.1; . +3.0pc 25y +18; , /f"i) x 1073, (3.13)

i.e., in this channel the experimental error dominates, but closely followed by the fx+
(via fr+) uncertainty. Thus, a combined experimental and lattice effort is needed to make
significant progress in the BSM bound from 7 — Kv, given above. Finally we note that
the RC and Vus errors are also not negligible.

Let us stress that the analysis above includes the ratio I'(1 — Kv,.)/T'(1 — mv.), fully
taking into account that its SM prediction is better known thanks to the precise lattice
calculation of the fyx+/f.+ ratio. This is indeed the origin of the significant correlation
between the bounds in eq. (3.8) and eq. (3.9). We note that a further reduction in the
S+ / fr+ uncertainty will have a minor impact in the BSM bounds above. This is in contrast
with meson decays, where experimental measurements are more precise and the fr+/f .+
uncertainty plays a major role.

Likewise, once we combine the above tau-decay bounds with those obtained from
pion and kaon decays, which we will do in section 6, our final likelihood will take into
account that stringent BSM constraints can be obtained from “theoretically clean” ratios of
observables where the f; x dependence cancels out, such as I'(r — 7w, ) /T'(m = pv,,). This
is once again reflected in significant correlations between tau and meson decay bounds due
to common fr g uncertainties.

Let us briefly discuss the expected impact of future lattice calculations and new data
from facilities such as Belle-II. Major improvements are not expected in fr x [48], in part
because decreasing further the scale setting error is challenging, and in part because of
a lack of motivation. Our results show that the latter is actually not a good reason and



we encourage efforts to improve these quantities, which would also improve BSM bounds
(or Vs determinations) extracted from K — pv,. Nonetheless we expect some modest
improvement. Improvements in the experimental determination of the 7 — 7w (Kv;)
branching ratio seem also possible with the arrival of Belle-II (or even with the existing
BaBar and Belle data, see e.g. ref. [49]). Indeed the current PDG result is dominated by a
BaBar measurement [50].

4 T — PP'v,

The decay of 7 into two pseudoscalar mesons (7~ — v, P~ P') is mediated in the SM by
the vector current. In presence of new physics, scalar and tensor operators can contribute
as well. The relevant hadronic matrix elements can be parametrized in terms of appropriate
from factors as follows [1] (as usual, D stands for a down-type quark, d or s)

(PP 1Dy ul0) = Cowr { (b —po— SEE) FEP'(5) + S FEP ()] ()

(P~POIDul0) = ~Cpp —SLEFEP (s (42)
mp —

(P~ P"°|Do*u|0) = —i(p"pl; - p_pn)F;’P (s), (4.3)

where p” and pj; are the momenta of the charged and neutral pseudoscalars, ¢* = (p— +po)*
and s = ¢%. In the matrix element of the vector current, the two Lorentz structures
correspond to J¥ = 1~ and 07 transitions. The scalar contribution is suppressed by the
mass-squared difference Appr = m%, - mf,,0 because the vector current is conserved in the
limit of equal quark masses. The normalization coefficients Cpps (chosen so that the vector
form factor satisfies F{y¥"(0) = 1, except for the 77 one, which vanishes in the isospin limit)
are given by:

1 3
Crn = m,=\/§, Cxr =1, CKTI‘=7§7 Cg="1, CK%:\/;. (4.4)
New physics effects modify the 7~ — v, P~ P'0 decay rate in several ways: (i) AR
(the shift in the vector current) modifies the overall normalization; (ii) the effect of the

éP™ cannot be absorbed in any SM piece and contributes with a different

tensor coupling €7
kinematic dependence' (iii) finally, the effect of the scalar coupling eg ™ can be absorbed
in the redefinition Fs(s) — Fs(s)(1 + €57 s/(m-(mp — my)). Explicitly, the hadronic

invariant-mass distribution including new physics effects to first order is given by [18, 32, 51]

dr  [dl
£=[£] (142 +eRr— e —cR)tas(s) " +ar(s) T +O(E))  (45)
SM
dr G3|V“D|2mf had s\’
— = (11—
[dsLM Togas LW Chp ( mg)
A2
32 d 12
of (142 MBI 0 SEE NS IRE G (45)
m?



sAZ

61Fs () G225z
ag(s)= 2 s 2 2 (4.7)
3|Fs(s)?App +|Fv (5)?(1+257) Ms,mp, mp)
3 —~Re(Fy(s)Fr(s A(s,m%,m2%,
e Re(Fy (5) () Mo, ) .

~ cpp 3Fs(s)PA% 5 +[Fy () P(142;5)A(s,m3,mb)’

where Appr = A(s,m%_,m%,)/s* and the hat in [dl*/ds]sy indicates, once again, that the
V.4 value was used.> Sﬂ%‘f, = 1.0157(3) accounts for the short-distance electroweak correc-
tions [52-54]. Long-distance electromagnetic corrections and isospin-breaking contributions
are channel dependent and have been studied for the mm [55, 56] and K [57, 58] final
states. Additional angular and kinematic distributions (which have not been measured yet)
have been presented in refs. [18, 51] including BSM effects. We next discuss the new physics

constraints that can be obtained in various channels.

41 T —> 7wy,

This channel has sensitivity only to the vector (¢4™ +€%) and the tensor (£47) contributions,
due to the fact that ag(s) ~ Ay,/s < 1 across the whole physical region 4m?2 < s < m2.
Therefore, the expressions in eq. (4.5) reduce to:

dfwn:| G;zl|[?ud|27”?- had ( S )2 ( s ) 3/2 2

= ———a 1-— 142 — ]\ |EV™(s)]* GeEm(s)  (4.9)
EW %

[ oM 38473 m2 2) ™

ds 2 m
3 Re(Fg™(s)FF™(s) 7
= * 4.1
V. R 12 P R S s 1)

where Gz (s) represents the long-distance radiative corrections [55]. In order to constrain
the BSM couplings, one needs to know the vector form factor F{;"(s) (controlling the SM
amplitude) and tensor form factor F77(s) (controlling the “BSM leverage arm” ap(s)).
The uncertainty in Fy;"(s) ultimately limits the strength of the bounds on BSM couplings,
while the requirement on the uncertainty on F7™(s) is less stringent. Since Fy;’p(s) involve
non-perturbative QCD dynamics, they are hard to predict in a model-independent way,
and we discuss below our strategy to obtain reliable form factors.

Extracting F7"(s) from the 77 invariant mass distribution in 7 — 7@vy is not feasible
at the moment, as this distribution is potentially contaminated by new physics contributions.
We note, however, that F{37(s) can be extracted from the process ete™ — w7, after the
proper inclusion of isospin-symmetry-breaking corrections (see refs. [59-62] and references
therein). The crucial point here is that new physics effects (associated with the scale
A > 2 GeV) can be entirely neglected in e*e™ — n#7n~ at energy /s < A due to the
electromagnetic nature of this process. In this context one can benefit from past studies
that exploited this isospin relation to extract from both 7 — mrv; and ete™ — w7~ data
the mm component of the lowest-order hadronic vacuum polarization contribution to the
muon g — 2, usually denoted by ai’j‘d’l‘o [w7]. (This approach implicitly assumes the absence
of BSM effects, which however may contaminate the 7 data.) While these studies entail an

3The Kéllén function is defined as usual: Az, y,2) = z? 4 y? + 22 — 2zy — 272 — 2y2.



extraction of F{J™(s) by averaging various ete™ datasets, here we chose not to use the full
spectral information but rather perform a simpler analysis based on the particular weighted
integrals of dI'zr/ds, corresponding to aﬁa‘i’l‘o [mrm].

We begin by defining
L dlrr
al, = ds W,,(s) pra (4.11)

s 4m?2

where the weight factor W, (s) is [63-65]

2 2 -1 201
W, (5)= —o2md 12(1-12) (1+—252) / dz— 1-2) ), (4.12)
G[2.L|Vud|2m§- mz mz mz 0 T +m_ﬁ(17z)

where o is the fine structure constant and £(s) encodes the radiative corrections and isospin
breaking effects [55, 59, 66-68|.
In absence of new physics, the spectral integral defined by aj, gives the 7m component

of the lowest-order hadronic vacuum polarization contribution to the muon g — 2, namely
ahad’l‘o [rm]. Moreover, still assuming no BSM contributions, aj, should coincide within

te~ — 77w~ data, assuming

errors with the corresponding quantity aj; obtained from e
isospin-breaking effects and their uncertainty are properly taken into account.

On the other hand, in presence of new physics one has

m3 dr
a;, = ds Wy, (s) uks X (1+2(e + el — €l — %) + ap(s) e
K 4m?2 i dS
g SM
=a%(1 2 dr dr de de ~dT m3 ds W dF'll'ﬂ' 413
_au( +2(e7” + €F — €t —eR))+eT - s au(s) o ar(s), (4.13)
which leads to
“ﬁ _ a‘lete — edr _ gde 4 odr _ de 4 . odr (4.14)
2aze — L L R R T T *
) R
1 f;nm’% ds Wa,(s) —ug ar(s) (4.15)
cr = = 5 - .
2 f;nm’gr ds W, (s) —MZE

To estimate the coefficient ep multiplying er in eq. (4.14), we use a relatively simple
form of the vector form factor based on analyticity, unitarity, chiral symmetry, and the high-
momentum asymptotic behavior of QCD [69], as well as a dispersive parameterization based
on data (see ref. [70] and references therein).? We treat the tensor form factor as follows:

o First, we assume that the proportionality of the tensor and vector form factors,
which is exact in the elastic region [19, 51], holds over the whole s region allowed by
kinematics, namely

Fr™(s) = FF™(0)Fy™ (s) - (4.16)

Note that this proportionality also holds in the resonance chiral theory framework [71],
assuming dominance of the lowest lying state. Since in the elastic region s < 1 GeV?

4At the precision needed we can ignore isospin-breaking and new physics contaminations.



the form factors Fy;7(s) are dominated by the p resonance and fall off rapidly for
s > 1 GeV?, this approximation is quite reasonable (see ref. [1] and references therein).
Moreover, since the weight Wy, (s) falls off rapidly with s, the s > 1 GeV? region, likely
to involve inelastic effects, contributes only about 2% to the integrals in eq. (4.15).
Variations due to different parameterizations of the vector form factors are also at the
few per-cent level. Based on this, we conservatively assign a 10% uncertainty to cp,
due to inelastic effects.

« Second, we use the lattice QCD result of ref. [72] for FX™(0) and the SU(3) rela-
tion FE™(0) = 2FK™(0) to determine FF™(0) = 1.87(7) GeV 1,5 consistently with
ref. [73]. The relative sign F7™(0)/Fy;"(0) > 0 can be fixed by studying the ratio
of form factors in the resonance chiral theory and imposing the appropriate QCD
asymptotic constraints [74, 75]. Overall, the form factor normalization brings in
another uncertainty of about 3.5% for ¢y. Combining linearly the two uncertainties
in cr, we arrive at ¢ = 0.43(8).

In order to use eq. (4.14) to bound the new physics couplings, we need precise input
on a; and aff. For aff,
evaluations of refs. [76, 77| quoting conservative uncertainties according to the prescription
of ref. [68],6 finding a;” — (506.1 & 1.9exp £ 2.8syst) X 10719, For a;, we use as baseline value
the data based evaluation aj, = (516.2 &+ 3.6) x 1071 from ref. [59]. With the above input

we find

in the spirit of ref. [68] we merge the two model-independent

e§T —ede 4 47— ede 1 0.43(R) & = (10.0 £4.9) x 1073, (4.17)

which implies a sub-percent level sensitivity to new physics effects.” The ~ 20 tension
with the SM reflects the long-standing disagreement between e*e~ and 7 data sets [60].
Ref. [62] argued that this disagreement can be removed by considering the effect of p%-
mixing, which is present in e*e™ — 7w data but not in the charged-current 7 data. This
effect is however model-dependent and may be impacted by significant uncertainties, not yet
assessed [68]. We therefore stick with the analysis of ref. [59] and expect that lattice QCD
will soon provide new insights on the size and uncertainty of isospin-breaking corrections
entering in aj, [68, 79].

We note that another constraint on new physics couplings can be obtained by studying
the branching ratio Brr = I'(t — @wv;)/T7 [1, 62, 67]. The analysis parallels the one
described above, with the replacements a, — By, and Wy, (s) = 1/T'; in egs. (4.11)-(4.15),
and uses the isospin-rotated spectral function extracted from ete~™ — wm data. The
resulting constraint, however, is almost degenerate to eq. (4.17) and suffers from larger

5Note that ref. [72] uses a different normalization for the tensor form factor.

SExplicitly, the prescription is: (i) use as central value the arithmetic mean of the two results; (ii) assign
as ‘experimental error’ the largest of the two quoted experimental errors; (iii) assign as ‘systematic error’
the uncertainty related to the tension between the BABAR and KLOE data [68, 76].

7A similar but more conservative treatment of isospin breaking corrections (for which the associated
uncertainties are estimated to be more than 50% of their total size) is performed in ref. [78], leading to
a], = 514.6 *57. This value leads to €f” — €f° + % — €l + 0.43(8) & = (8.4+6.4) x 10%, not changing
the qualitative result of sub-percent sensitivity to new physics couplings.



uncertainties because the flat weight corresponding to the BR samples a region of the
spectral function with relatively larger uncertainties. We therefore do not include this
constraint in our analysis.

We conclude this subsection by noting that the constraint obtained above can be
strengthened by directly looking at the s-dependence of the spectral functions (instead of
the aj, integral), which would also allow us to disentangle the vector and tensor interactions.
Moreover, note that the aj;“ uncertainties include a scaling factor due to internal inconsis-
tencies of the various datasets [60], which hopefully will decrease in the future. In fact, new
analyses of the mm channel are expected from CMD3, BABAR, and possibly Belle-2 [60, 61].
Finally, lattice QCD calculations of the isospin rotation needed to relate ete™ — a7~ to
T — w7y, data are being performed [79], and will contribute to reducing the uncertainty in
this step of our analysis. All in all, we can expect a significant improvement in precision
with respect to the result in eq. (4.17) in the near future.

Another interesting possibility is to extract bounds on the tensor interaction from
its effect on the 77w invariant mass distribution in 7 — 77w, [51]. We note that the
experimental data should be analyzed including simultaneously the tensor coefficient and
the free parameters of the vector form factor in the chosen parametrization. As an initial
exercise, ref. [51] analyzed the 7w distribution fitting only the tensor coupling and using
values for the QCD parameters that were obtained from the same w7 distribution neglecting
non-standard terms. The obtained per-mil level bound illustrates the maximum sensitivity
that can be obtained from a proper analysis.?

4.2 T —= ™V,

As pointed out in ref. [18] the 7 — nmv; channel can provide useful information since the
non-standard scalar contribution is enhanced with respect to the (very suppressed) SM one.
Because of this, one can obtain a nontrivial constraint on €& even though both SM and
BSM contributions are hard to predict with high accuracy.

The 7 — mnrv- decay mode proceeds only through isospin-violation in the SM (see
ref. [1] and references therein), with the branching fraction expected at the 107° level.
This mode has not yet been observed experimentally and we use the experimental limit on
the branching fraction to bound the BSM couplings. Following ref. [18] we write the new
physics dependence of the branching ratio in the form

BR. -
- (T = ny) =1+aed +~(4)?, (4.18)

BRSM(T - 7]71'1/-,-)

where the SM prediction B‘ESM(T — nmy,) is estimated to be in the interval [0.3,2.1] x
107° [80]. The coefficients a and = are estimated to be in the ranges o € [3, 8] x 10% [18]
and «y € [0.7,1.75] x 10° [81]. These large coefficients can be understood by recalling that
for this decay mode as(s) ~ s/(m.(mg — m,)). Exceptionally we retain the quadratic

8Let us note a possible weakness of this approach. Since the current parametrizations of the form factors
are not fully derived from first principles, it can become challenging to assess whether a potential deviation
from data really comes from new physics or from an incomplete parametrization.
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terms in egT, because it dominates in the parameter region where the bound is set. On
the other hand, we ignore the dependence on edLT, e'f{, and é%T, because their coefficients
are not enhanced, and thus their effects are irrelevant given the current experimental and
theoretical precision. We use the experimental limit BRexp (7 — n7r) < 9.9 X 1075 at
95% CL [26, 82]. Using the most conservative values for the SM prediction, as well as for o

and ~ (within their respective ranges), we find the 68% CL interval:
& € (—0.021,0.010). (4.19)

The likelihood is highly non-gaussian due to the quadratic dependence. The bound above
is much weaker than the one obtained in the original work of ref. [18] because the latter did
not take into account the large theory uncertainties affecting the SM prediction and the «
and -y parameters.

The bounds from 7 — 7nr, will significantly improve if theory or experimental un-
certainties can be reduced. The latter will certainly happen with the arrival of Belle-II,
which is actually expected to provide the first measurement of the SM contribution to this
channel [83-85] (see also ref. [86] for Belle results). Improvement on the theoretical side will
be possible with lattice QCD calculations of the relevant form factors. Finally, note that
T — mnu, is one of two probes considered in this work with a significant sensitivity (via
O(€%) effects) to the imaginary part of GQT coefficients (the other probe being 7 —+ Knv.,,
sensitive to Imé&§7). Allowing for a complex e{7, the bound in eq. (4.19) refers to the real
part, and simultaneously we obtain |Im (e‘iST) | < 0.014.

4.3 T — Knvr

For this AS = 1 mode the situation is more involved compared to the analogous AS = 0
case (T — mmv;). The SM amplitude is controlled by the vector from factor FE™(s) and
a small but now non-negligible contribution from the scalar form-factor F£™(s), which
contributes to the decay rate at the % level. Once BSM couplings are turned on, the
channel 7 — K, is mostly sensitive to the vector combination €7, , — €7, p and the
tensor coupling &7. So to obtain %-level bounds one needs %-level predictions of F{{™(s)
and a less precise determination of the scalar and tensor form factors F‘éfr_,"f(s) as well.

For the tensor form factor, as shown in ref. [19], in the elastic region unitarity enforces
the proportionality F£™(s) = FE™(0)F{{™(s). This relation can be extended to the whole
physical region to a good approximation, due to the dominance of the elastic channel
through the K*(892) resonance. In fact, O(1) violation of the above relation are expected
in the K*(1410) region, where however both kinematics and the fall-off of F{¥™(s) conspire
to make the effect only a few % [19]. So the problem is reduced to obtaining a reliable and
BSM-free parameterization for the vector and scalar form factors.

One possible way to achieve precise determinations of F‘I/fg(s) is to use dispersion
parameterizations available in the literature (see for example ref. [57] and references therein)
and fix the subtraction constants and other parameters by matching to lattice QCD, rather
than fitting to 7 — Kmv,- data. This removes the possible BSM contamination at the price
of probably having larger uncertainties. Reaching %-percent level bounds on the BSM
couplings with this approach might not be possible anytime soon.
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Another possibility would be to invoke the same strategy used for the 7 — wwv; channel
and use e*e™ data (through an SU(3) rotation) to obtain the vector from factor, neglecting
the %-level contribution from the scalar form factor. The main error here would be the
SU(3)-breaking corrections and a bound on the new physics coeflicients at the level of
0(0.1) could be possible.

Using one of the approaches outlined above, one should be able to obtain constraints on
Re(€;7) at the 5-10% level. Such an analysis is however beyond the scope of this paper and
we leave it to future work. On the other hand, we note that the CP-violating component
Im(é&}7) could produce a BSM contribution to the CP asymmetry in 7~ — Kgm ™ v, whose
measured value [87] is in tension with the SM prediction [88, 89] at the 2.8-0 level. As
shown in ref. [19], explaining the tension would require |Im(é5")| ~ 0.20, while the neutron
EDM provides via loop effects a much stronger bound at the level of [Im(&57)| < 4 x 107°.

Finally, one can extract bounds on the scalar and tensor interactions from their effect
on the K7 invariant mass distribution [90, 91]. As in the 7 — v, 77 channel, we note that
the experimental data should be analyzed including simultaneously the nonstandard terms
and the free parameters of the vector and scalar form factors in the chosen parametrization.
The ~ 1%-level bounds obtained in refs. [90, 91] in a BSM fit (without fitting the QCD
parameters simultaneously) illustrate the maximum sensitivity that can be obtained from a
proper analysis (see however footnote 8).

It is particularly simple and interesting to discuss the 7 — v K'n channels when egr =0.
In that case, the SM extraction of the form factors from normalized kinematic distribution
is correct. Thus, we can use the associated SM prediction of the BRs [57] to constrain the
vector combination of couplings, which simply produces an overall rescaling:

BR(T = v KT)exp = BR(r — v K7)sm (L+ 27k — 215 R) (4.20)

where ETZSM is the SM prediction calculated using |Vus| from K3 [57]. Using the experi-
mental values from ref. [14] and combining the 7 — v, K~ 7° and 7 — v, K7~ channels,
we find:

€Tn € n + f(e€,65) = 0.008 +0.019, (4.21)

where f(e¥f, &) (€ = p,7) is just a symbolic term to remind us that we do not know the
form of the bound if those coefficients are present. The approach assumes implicitly that
e¢p = 0 because ref. [57] includes K,3-shape data in their analysis of the form factors.” This
assumption could be avoided redoing the analysis of ref. [57] without including K3-shape

data, which would lead to a larger SM uncertainty and hence a weaker BSM bound.

We close this section by noting that 7 — v, K~ K%, v-K ~n,v,K 1 can be also used to
probe nonstandard interactions [91, 92], although large theoretical uncertainties prevent
the current extraction of stringent constraints.

9There’s no such problem with K .s-shape data, since the linear contribution from chirality-flipping
operators is negligible in that case due to the smallness of the electron mass [24].
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5 Inclusive decays

In contrast with exclusive decays, the predictive power of analytic methods for inclusive
decays does not rely on our knowledge of the different form factors. Even when having
a limited theoretical knowledge about the hadronic dynamics, dependent on the internal
degrees of freedom, very precise predictions can be made when integrating over them. A
precise value for the strong coupling can be obtained from non-strange spectral functions [3—
5, 59], as well as valuable information from QCD in the non-perturbative regime (for
example see refs. (8, 9, 93]). Likewise, the same approach can be used to extract a precise
value of |V,,¢| from strange spectral functions [94, 95].

Following the change of perspective adopted in ref. [20] and in this work, we do not
take for granted the validity of the SM and use those theoretical methods to determine SM
parameters. Instead, we take them as external inputs that should come from determinations
insensitive to BSM effects within our general EFT assumptions (as it will be the case for
ag or f.+), or from determinations where the BSM contamination is known in terms of
non-standard couplings (this will be the case for G, V44 or V). The (dis)agreement
between the SM predictions of hadronic-tau-decays observables and the experimental results
can be then directly translated into bounds for the non-standard couplings.

5.1 Non-strange decays

The decay of a 7 lepton into a neutrino and a hadronic state n with total momentum p,, can
proceed through the various quark currents of the Lagrangian of eq. (2.1). The quantum
numbers of both the final hadronic states and the quark currents set useful restrictions
on the possible sources of those decays. In this section we work with final states without
strangeness, which can only be mediated by the nonstrange part (D = d) of the Effective
Lagrangian in eq. (2.1).

The hadronic invariant mass distribution of a hadronic 7 decay (r — nv,) can be
written as the product of a trivial leptonic part and a hadronic exclusive spectral function
that depends on the nonperturbative dynamics, namely [32]

drm n
& = L b (@25, (@), (5.1)
P50 (@) = @) [ 46084 (pn — @) (0IL[0) O Hm), (5.2)

where ¢# is the momentum transfer and d¢, =[]; (2—:;% is the differential hadronic phase
space element and J; and .J5 are quark currents. It can be proven that the inclusive spectral
functions obtained summing over all possible channels, pj, 5,(q) =3, pS??,z, are equal to

the imaginary part of two-point correlation functions of quark currents [96-98]

1
PJ1J2 (Q) = ;ImHJl J2 (Q) ) (53)

where
Wi(e) = [ dlze ™ QT (A(@) 5(0)0). (5.4)
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As a result the inclusive differential decay width can be written in terms of a few correlators.
Finally, the analytic properties of the latter make possible to calculate integrated moments
of the former (dispersion relation).

A priori this important result applies only to the fully inclusive non-strange channel.
However, it is well-known that within the SM the same approach works as well for less
inclusive quantities, namely for the vector and axial components. Let us briefly review the
argument and extend it by including also non-standard currents. As shown in section 3,
vector, scalar and tensor currents do not contribute to the one-meson mode, 7 — Pu;,.
On the other hand, axial and pseudoscalar currents do not contribute to the two-meson
mode (7 — PP'v;), whereas the scalar-current contribution is also absent in the isospin
limit, cf. section 4. For the rest of channels, one can make use of G-parity, a combination
of isospin and charge conjugation that forbids the production of the different hadronic
channels either through vector and tensor or through axial, scalar and pseudoscalar currents,
with the well-known exception of the 7 K K modes, whose G-parity is not well-defined and
has to be decomposed using theoretical input, with the associated uncertainty. Thus, the
usual V and A separation made by experimental collaborations within the SM [59] can be
reinterpreted as a (V,T') and (A, P, S) separation in our BSM setup.

Neglecting contributions of order (e:-”)z leaves only the (VV,VT) and (AA, AP, AS)
correlators in the so-called vector and axial channels, respectively. Additionally, the AS
correlator is zero due to parity considerations. Finally partial conservation of the axial
current relates the P matrix elements with the longitudinal parts of the A one, connecting
IT4p(q) with the longitudinal part of IT44(q) [99]. Taking this into account we can calculate
the normalised invariant mass-squared distributions, dNy/ A/ (Nrds) = 7 dT'V/4 /ds, where
7, is the tau lifetime. We find (32, 98]

Ny 5 )2 2s §
N,ds ¢ (l‘m_g) [(1+—) (1+2€f7, &) ImIL{ 0 (5) +6 € W] (5.5)

T

A 2
;JVN;S=K,¢1 (1 i) {(1 2—)(1+25L+R 4 ImI1y 19 (s)

mr ))ImH(O) )] (5.6)

2

m2
2s

1 26 4€dT €Ep 75—
mT("‘ T r— 4 +eb ST pe——

where kg = 127V,q? B.Spw /m? and €, , = e¥ + ¢¥. The VV, AA and VT correlators
have been Lorentz-decomposed as follows:

i / d'z €7 (0|T[J*(2)J"1(0)]|0) = (—g"¢* + ¢"¢") I)(®) + ¢*¢" T T)(?),  (5.7)
i / d'z € (O[T[V*(2)T°"1(0)]10) = i(¢"*¢° — ¢"°¢*) Tyr(¢?), (5.8)

where J = {V, A}, V# = dy*u, A* = dy"4°uand TH = do*”u. In eq. (5.5) we also took into
account that Imﬂg/%, vanishes in the isospin limit. The factor Sgw = S/ SleIJ = 1.0201(3)
contains the renormalization-group-improved electroweak correction to the semileptonic
decay, including a next-to-leading order resummation of large logarithms [52-54]. Following
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the usual conventions, we include the radiative correction to the purely leptonic process
T — ev; Ve, denoted by S};{,’V, in the Sgw factor as well as in the B, factor, defined by
G2
19273
which in the SM limit Corresponds with the branching ratio of the decay ™ — ev,ve(7).
We remind that Slﬁp = (1 + 5 MZ ) (1 + M (25 71'2)) up to negligible terms of order

Be =T (1 = vreve(y))gy 7 = m2Sih, = 0.17778(31) (5.9)

m#/MW, m?2/m2, and 2-loop corrections [1].

The large scale dependence of T |27] is cancelled in the expression above by that of
the VT correlator, which we study later in this work. On the other hand we will safely
had .

approximate Sz & 1 in the tensor term.

Finally, taking into account that the spin-0 part of the axial correlator can be safely
approximated by the pion pole, one obtains the following predictions for the experimentally
extracted spectral functions py7, (s):

d 2 -2
A=ty e (1-2) " (10 22

Nrds 127%|V,4|2 B.Spw mz m?2
(1+0) Jdr 25\ ! ImIlyp
= (1+2¢f1 5 2EL+R)—ImHVV (s)+6&F 45 (), (510)
dN- 2 m2 s\ 2 2s
s mE (1 5 )7, 20y
Pa ( th) N-ds 1272|V,q[2B.Sgw m2 m2
1
= (1+2€f g 2¢f p 4 ;hnnﬂij{")(s), (5.11)

where s;, = 4m?2 is the continuum threshold. Note that the electron-flavor Wilson Coefficient
€4, g has appeared due to the use of the phenomenological value V.4, cf. eq. (2.3).

In the absence of BSM effects, the experimental spectral functions coincide with the
QCD spectral functions, 1 ~Im Hs,l/txo), as shown in eqs. (5.10)—(5.11). That is, of course, the
rationale for the standard experimental definition in terms of the differential distributions.
However, that relation is spoiled by new physics effects.

Egs. (5.10)—(5.11) connect the accurately-known experimental distributions, p‘i}‘/‘;(s),
the BSM Wilson Coefficients, and QCD correlation functions. As a consequence, precise
theoretical knowledge of the latter, which in principle only depend on «, and the quark
masses, would immediately translate into stringent BSM bounds. However, our theoretical
knowledge of the imaginary parts of the correlators is limited, since perturbative QCD is
known not to be valid below s ~ 1 GeV?, especially in the Minkowskian axis, where the
experimental data lie. Fortunately, the situation is different for integrals of the imaginary
parts of the correlators, which can be calculated with accuracy using the Operator Product
Expansion (OPE) of the corresponding correlators II7 7. This allows one to predict
theoretically the value of weighted integrals of the experimental spectral functions [100]. In
order to derive such dispersion relations, we integrate eqgs. (5.10)—(5.11) multiplied by a
monomial weight function w(s/so) = (s/s0)", which gives

2y - LMy =2 (efp—efin) TNUT 4ef M+ 68 Ivr, (5.12)
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where we have omitted the dependence on sy (upper integration limit), n (the weight
function) and g (renormalization scale) of the various I; integrals to lighten the notation.
These objects are defined by

« sods [ s

I (sp3m) = f = (5) e (g) | (5.13)
th

I$M(s0;n) = f " ? (Si) = Y (5.14)
Sth 0
sods (s 25\ ! ImII

Iyr(so;n; p) E/ — (—) (1 - 2) VT(S), (5.15)

sin S0 \ 50 m2 Tm,

where .J = V, A,V + A and once again sy, = 4m2. The master formula in eq. (5.12) and
the I; definitions can be trivially generalized to any analytic weight function.

The Ij;T , integrals are calculated using the latest ALEPH spectral functions [59] and
represent the experimental input in our analysis. We take into account in this work the
correlations between bins and between channels.

For the calculation of the SM prediction, I{¥ ,, we follow the standard approach [3]:
the integral of the imaginary part of the correlator along the real axis is related to the
contour integral of the OPE of the correlator, which is a function of the strong coupling
constant oy, the quark masses and the so-called QCD vacuum condensates Os,,. As a result
of that calculation one obtains

2 m2 n v A

ISM ,(s05m) = —SLO* (s—;) +241 (s0) — % +62Y 4 (s0;m) , (5.16)
2 (m2\" oy4

LM g(s0in) = +SL: (s—;' - # + 89 A(s0:m) - (5.17)

The details of this derivation as well as those associated to the calculation of each term in
egs. (5.16)—(5.17) are presented in appendix A.1. Here we simply discuss the main elements
of these expressions in a qualitative way:

. Ag)(so) is the purely perturbative contribution, which is only present in the V + A
channel. We calculate it using (M%) = 0.1184(8) from the lattice [10, 101-108].

» The Oy(,41) condensates parametrize the small non-perturbative contributions from
the OPE power corrections, and their numerical values will be discussed below.
5DY 4(s0;n) denotes the so-called quark-hadron Duality Violations, which parameterize
the error introduced by approximating the correlator by its OPE. These contributions
are small for large sy values and will be estimated from the sp-dependence of the
dispersive relation.

o Finally, it is worth mention the origin of the f,+ terms in the SM predictions, which
might be surprising since the observables, I}T ,, do not include the one pion channel
(the integral starts at sy, = 4m2). Its contribution appears nonetheless in the SM

prediction, I‘E}I‘ﬂ’:I 4, due to the analytic properties of the correlators, which relate

— 16 —



different regions in the complex plane. Equivalently, we have to substract the one-pion
channel (the f,+ term) because the dispersive method predicts the total non-strange
integral. We use the Ny = 2 4 1 lattice average f,+ = 130.2(8) MeV [10], from
refs. [37, 38, 40], as in section 3.

Now we discuss the calculation of the nonstandard terms, i.e., the ones in the r.h.s. in
eq. (5.12). First we note that, up to quadratic BSM contributions, we can approximate
I™ =~ I which we calculate using the ALEPH data [59].° The experimental error is
typically around 1% and thus its impact on the nonstandard terms can be neglected. Finally,
the coefficient of the tensor contribution, Iy, is calculated using a dispersion relation, in
analogy to the SM contribution (see appendix A.2). The Iy error is more significant and
will be kept in the analysis.

It is convenient to work with the V 4+ A and V — A channels (instead of V and A) because
of their different characteristics. Namely, the V — A channel does not have perturbative
contributions and its dimension-4 condensate vanishes. In the following subsections, we
choose specific weights and sg values that translate the generic master formula of eq. (5.12)
into specific constraints on BSM couplings. The choice of weights introduced in ref. [20] is
simple, allows the separation of non-perturbative and BSM effects, and produce four BSM
constraints sensitive to different theory uncertainties. As a result, correlations can be taken
into account properly. We decide not to introduce additional moments, which would spoil
these features and thus complicate the analysis.

51.1 V+4+A

The non-strange V' + A inclusive channel has been thoroughly studied in the literature as a
QCD laboratory [3-5, 59, 109-128]. Those studies assume the absence of BSM contributions
and typically use several moments of the spectral function to extract the value of the strong
coupling constant a, and the lowest dimensional condensates 0;/;’4. new physics terms
have a weight dependence that is different to such QCD parameters, and thus we cannot just
re-interpret past SM analysis as BSM constraints. Instead, we have to do the analysis again
including this time BSM coefficients as free independent parameters. For that purpose, we
choose the following two weights:

w-(s) = (1 - %)2 (1 +2mi12_) , (5.18)
wo(s) =1, (5.19)

which give the total hadronic branching ratio and the integral of the spectral function. As
we will see, the latter weight gives a relation where experimental and DV errors dominate,
whereas the uncertainties of perturbative and non-perturbative OPE contributions dominate
in the former case.

197n ref. [20] the I§M integrals were instead calculated theoretically using a dispersion relation, like in the
SM terms. Qur current approach, I§M ~ Ij"p, gives a simpler and more precise estimate. The numerical
impact of this change on our final results will be negligible, since SM and experimental values are both

precisely known and in agreement.
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wr weight. The Iy 4 integral built with this weight and sy = m?2 is, up to some trivial

factors, nothing but the widely-studied total hadronic non-strange branching ratio (By+4)
minus the one-pion one (B;), ie.,

1 Byia-B
e, = . VAA ™ P 95.049(74) x 1073, (5.20)
12m2|V,,4|2S gw B,

where we used the HFLAV averages By, 4 = 0.6183(10) for the inclusive BR and B, =
0.10804(52) for the single pion BR [14],'! which has to be removed because the lower
integration limit in the Iy, 4 definition is sy, = 4m,2r. A somewhat less precise value for
By 4 4 could be obtained by integrating the ALEPH spectral function. This would not have
any impact in the analysis, since theory errors are much larger than the experimental one,
as we discuss below.
On the theory side, the SM prediction is
M —ﬁ Al — 1

VEAT T wr(m3) +2 (m3) *t3 N (5.21)
where A% = 15.10(13)pert(8)a, x 1072 is the perturbative contribution. We have omitted
the DV term, which is expected to be negligible for this weight. On the other hand, 63/,
encodes the small non-perturbative correction to the hadronic tau decay width, which is
suppressed by six powers of Agcp/m-, namely

v = 59 pan O = 4 0V+A+208’V+“‘ = 0.000 + 0.015 5.22
NP = +onp = m° m8 m8 =0. 015, (5.22)

which we have estimated using (i) |0577%| < [6577%|; (i) OF *4 < |OY |, which holds in
the vacuum-saturation approximation [100]; and (iii) the recent determination of the V-A

dimension-6 condensate, Of ~* = —0.0029(5) GeV® [93], which we discuss in section 5.1.2

in more detail.'?

All in all, the resulting SM prediction is
Iv+A = 24.83(39)0pE(26)pert(16)q, (7)s, . = 24.83(50) x 10~ 3, (5.23)
which leads to the following new physics bound

0.0501 (efr,  — €f, ) — 0.0380 €7 + 0.025(8)¢f"

= 0.22(39)0PE(26)pert (16)a, (7) 7_s (TNexp X 102
=0.22(50) x 1072, (5.24)

"The HFLAV fit is carried out summing over hadronic channels [14]. Leptonic decays, which would
potentially contaminate the results with new physics effects, are not used to reduce uncertainties in that fit.
In I f,"f 4 we have neglected the correlation of By and By, which, given the large theory errors, has no
impact in our analysis.

21n ref. [20] a more naive dimensional estimate was used, namely |C9V+A| < (0.4GeV)?4(d — 1)!, which
lead to a 2x larger uncertainty in 6 . This estimate is in agreement (although less precise) with the values
obtained in SM analyses, which extract these non-perturbative contributions from tau data using several
moments and assuming the absence of BSM effects, see e.g. refs. [4, 5, 59].
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where we see that the error is dominated by the perturbative and non-perturbative OPE
uncertainties. As discussed above, the numerical coefficients multiplying e%ﬂ_ r and edRT
are calculated using ALEPH data [59], whereas in the &7 case we use Iy = 0.0041(13)
from table 3 in appendix A.2.

Integral of the V + A spectral function. This observable corresponds to the V + A
case with n = 0 in eq. (5.12). Its SM prediction is particularly simple because O;/ +4
vanishes (up to negligible quark mass corrections):

2
N, = —f;rT* + 24079 (s0) + 6DV A(s0;n = 0). (5.25)

We plot in figure 1 the difference between the experimental integral, I“;x_f 4> and its SM

value, I‘S}ﬁf A, for various sp values. Note that only experimental uncertainties are shown
in the plot, but theory uncertainties are included as well in our analysis. Working with
so = 2.8 GeV?, which is the last point with not-too-large experimental uncertainty, we find

IVP 4 = 53.42(62) x 1077, (5.26)
TN 4 = 52.45(61)pv(28) pert (22)a, (7)5, . x 1073 = 52.45(71) x 10 3, (5.27)

where we used Ap = 29.25(14) pert(11) 4, % 1073 = 29.25(18) x 10~3. The weight chosen,
w(s) = 1, does not generate contributions from QCD vacuum condensates, which are
usually not accurately known. On the other hand, this weight enhances experimental errors
and the DV contribution because it does not suppress the s ~ m% region. Experimental
errors in figure 1 are too large to make definite claims about the DV. One could assume
they are negligible compared with experimental errors at sy = 2.8 GeV2, but we have
estimated conservatively the DV uncertainty from the difference between extrema in the
so € [2.0,2.8] GeV? interval of figure 1. This is partly motivated by the fact that one might
have DV effects that accidentally cancel sg-dependent BSM contributions (even if they
don’t have the typical oscillatory behaviour of DVs).
All in all we find the following BSM bound

0.107 (ef7, g — €1 ) — 0.094 € +0.029(10)éq7
= 1.00(62)exp(61)pv(28) pert (22)as (7) 1+ X 1073
=1.00(95) x 1073, (5.28)

where the different sources of errors are shown. We see that experimental and DV errors
dominate this bound. Once again, the numerical coefficients multiplying c‘fﬁr g and edRT
are calculated using ALEPH data [59], whereas in the 47 case we use Iy = 0.0048(16)
from table 3 in appendix A.2.

51.2 V-A

The V — A correlator would vanish if chiral symmetry were preserved beyond massless
perturbative QCD. This makes the inclusive V — A spectral function an excellent probe
of Spontaneous Chiral Symmetry Breaking [129, 130], which has been used to accurately
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Figure 1. Difference between the experimental and SM values of the Iy 4 integrals for wy, cf. Lh.s.
of eq. (5.12). The error bars in the plot only include the experimental uncertainties.

determine f.+ and other low-energy constants of Chiral Perturbation Theory, QCD vacuum
condensates OZ_A and quark-hadron DV [8, 9, 93, 131]. These analyses were carried out in
the absence of new physics contributions, which are the central objects of this work. We will
be able to extract useful information about the BSM effects if we can have a good control
of such non-perturbative SM contributions, which should be kept in mind when choosing
the weights. Analytic weights ensure that the only low-energy parameter contributing is
the pion decay constant, which is accurately known from lattice QCD. Dimension-2 and
dimension-4 vacuum condensates are negligible [3] and the dimension-6 condensate can be
extracted with < 20% precision from K — 77 matrix elements computed in the lattice [93].
To avoid contributions from higher-dimensional condensates, which are not known from first
principles, we will use polynomial weights with order smaller than three. Finally, to reduce
quark-hadron DV it is convenient to work with weights that vanish for s =~ s¢ (sometimes
known as pinched weights). These considerations lead us to using the following two weights
in our analysis
S

wi(s)=1- ot (5.29)

s\ 2
wi(s) = (1 - —) . (5.30)
50
It is worth noting that the e/ and €47 contributions in eq. (5.12) are not suppressed,
contrary to the SM prediction, which is suppressed because chirality is preserved at the
perturbative level in the V' — A channel. This translates into an enhanced sensitivity to
those Wilson coefficients.

wi(8) weight. In the absence of BSM effects, this weight gives nothing but a linear
combination of the first and the second Weinberg Sum Rules [129], where the SM prediction
is just the pion-pole contribution (up to small DVs):

f2

m2
M, =t (1 - —’f) + 62V 4 (so;w1). (5.31)
S0 80
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Figure 2. Difference between the experimental and SM values of the Iy _ 4 integrals for w;(s), cf.
Lh.s. of eq. (5.12). The error bars in the plot only include the experimental uncertainties.

We plot in figure 2 the difference between the experimental integral, I/, and its SM
value, IPM A, for various s values. Note that only experimental uncertainties are shown in
the plot. For sy = 2.8 GeV? we have

I;®, = 6.08(13) x 1072, (5.32)
1M, = 6.01(60)py (7) 7, x 1072, (5.33)

Since the weight suppresses the s ~ 2.8 GeV? region, one expects a small DV contribution,
which is supported by the observed plateau in figure 2. Thus one could just neglect the
DV error in comparison with the experimental uncertainty. However, as in the integral
of the V + A spectral function, we opted in eq. (5.33) to estimate conservatively the DV
uncertainty from the difference between the so = 2.0 and 2.8 GeV? points in figure 2. This
gives

0.0122 (equ R — €5 R) +0.0371 €ff +0.023(14)éf" = 0.07(60)py (13)exp(7) s, x 1072
=0.07(62) x 1073, (5.34)
which is clearly dominated by DV uncertainties. The numerical coefficients multiplying e%e+ R

and €} are calculated using ALEPH data whereas in the é47 case we use Iy = 0.0038(24)
from table 3 in appendix A.2.

w2(s) weight. The SM prediction for this weight in the V' — A channel and using sg = m2

z
as upper integration limit is given by

2 2\ 2
SM _ Irt m Os,v-a DV 2
NZa=""75 ( - m—’;) +— 5 Tovialmrw). (5.35)

T T T

Given the negligible DV expected for this weight, the only piece left to achieve a precise SM
prediction is Qg v 4. Fortunately this vacuum condensate is connected with K — 7w matrix
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Figure 3. Difference between the experimental and SM values of the Iy, _ 4 integrals for wa(s) in
eq. (5.29), cf. Lh.s. of eq. (5.12).

elements [93, 132-134]. Taking into account those relations, incorporating perturbative and
chiral corrections and using recent lattice data [135], ref. [93] found'®
O = (-2.940.5) x 1073 GeV", (5.36)

at sp = m2 (a small sp-dependence appears due to the inclusion of perturbative corrections).

This value leads to the following SM prediction
LM, =5.212(65); , (16)0, x 1073 = 5.212(67) x 10~°, (5.37)
in excellent agreement with the experimental result
P, = (5.285 4 0.074) x 1073, (5.38)

Figure 3 shows the difference between the experimental and SM values for sp < m2. As
expected for this weight and despite the small experimental errors there is no sign of the
typical oscillatory behaviour associated to DVs. Let us note that the small sp-dependence
of the dimension-6 condensate was taken into account in this figure.

All in all the following BSM bound is obtained

0.0106 (e‘itr r—€F R) +0.0204 €f + 0.017(16)eF" — 0.074(74)exp (65) 5 . (16)0, x 1077
=0.07(10) x 1072, (5.39)

which is dominated by the f,+ uncertainty. Like in the previous cases, the numerical
coefficients multiplying €}, , and € are calculated using ALEPH data whereas in the é§7
case we use Iy = 0.0028(26) from table 3 in appendix A.2.

¥This number updates the preliminary value used in ref. [20], O(‘; A= (-4.2+1.3) x 1072 GeVE. The
new result includes chiral corrections and new lattice results [135], see ref. [93] for details. The impact of
this improvement on the subsequent new physics bound is very small.
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5.1.3 Recap and SM limit

Putting the four nonstrange inclusive constraints together and re-scaling them one finds:

€f" g — €1% p — 0.76e5 +0.49(16)&f = (4 +10) x 1073, (5.40)
el p— et b —0.88¢F +0.27(9) &7 = (9.14+8.8) x 1073, (5.41)
€l g — € g+ 3.05¢F +1.9(1.2)ed" = (5 +£51) x 10 2, (5.42)
o €l g +1.93¢F +1.6(1.5)8F = (7.04+9.5) x 1073, (5.43)
with the following correlation matrix

10.12 —0.016 —0.09

1 0027 011
= , 5.44
p 1 023 (544)

1

which takes into account the main correlations between these constraints, which are of
experimental origin and from the use of a common f,+ value. Theory uncertainties are
dominated by different sources in each constraint, and thus their correlation is neglected,
except for the systematic uncertainty coming from the choice of perturbative prescription,
FOPT or CIPT, for which a 100% of correlation is estimated. The correlation between the
V + A constraints from a common ¢ is neglected, because the associated error is subleading
in both cases.

The main change of these results with respect to ref. [20] is two-fold. On one hand the
uncertainty of the first constraint is ~ 40% smaller thanks to the new estimate of the non-
perturbative contribution. On the other hand, we made nontrivial improvements concerning
the calculation of the numerical coefficients multiplying é‘}w", i.e., the Iy integrals defined
in eq. (5.15). In ref. [20] these quantities were calculated at tree-level and leading OPE-order
(quark condensate). A conservative 50% uncertainty was assigned and the lower values were
used in the analysis. In this work we work instead at Next-To-Leading-Log in the pertur-
bative expansion for the quark condensante, and we include as well an estimate from the
higher-dimensional condensates. The details are presented in appendix A.2 and summarized
in table 3, where we see that the shift with respect to the tree-level LO result is significant
(around 50%), in part because the various corrections happen to go in the same direction.
The final Iy uncertainties, which are rather large and highly correlated between bounds in
egs. (5.40)—(5.43), will be taken into account in the subsequent fits carried out in this work.

In the SM limit (e = 0), our four dispersive relations can be used to determine the
QCD parameters a, and f,+, which enter the SM prediction: I, = f(as, fz=). The
V + A constraints, i.e., egs. (5.40)—(5.41), can be translated into o values, which gives

as(m?) = 0.330 £ 0.017, (5.45)

in agreement with SM analyses [4, 5, 59, 112, 118, 127, 128, 136, 137]. Our determination
is less precise because we used only two moments and a rather conservative estimate of
the non-perturbative contributions (instead of extracting them from tau data). It is worth
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noting however that our extraction is in excellent agreement with the recent review of
ref. [138], which has, running to the 7 mass, as(m2) = 0.324(15) as a conservative average
of hadronic tau decay analyses, which scatter around that number but with lower quoted
uncertainties.

On the other hand, the second V — A relation, which was built using the wy weight,
is by far the most sensitive to the pion decay constant. In the absence of new physics
contributions it gives

Frt = (131.10 £ 0.92) MeV . (5.46)

This is in perfect agreement with the value obtained in ref. [93], f,+ = 130.9(8) MeV, where
the data is analyzed within the SM, using sy = 2.8 GeV? and a slightly different input for V4.

5.2 Strange decays

The formalism for studying the strange sector is the same as in the non-strange one, except
for the change d — s, the inclusion of SU(3)-breaking effects and the fact that G-parity
cannot be used to separate states into IV and A ones. The normalised invariant mass-squared
distribution is then given by

dNP s \?2 2s 140
Nods ~ P (1- m) [(l @) (1+ 2627 ) Im 115 D (s)

2s
+ (1 + m—) (1426275 — 4egT)ImHE41Z%(3)

T

23 m, (0)
14207, + €2 ImII
T ( L+R S had (mu _ mD)) VVD( )
2s m (0)
14207, — 4B + €87 U ImII s
r ( L+R — *“R P Sgav(]j/(mu + mD) AA,D( )
- ImIlyr D(s)
D 3
+ 6€TT Tﬁ‘e, , (547)

for the non-strange (D — d) and strange (D — s) cases, respectively. We have also defined
Kp = 127r|VuD|21§eSEW /m? and we have added a D subindex to the correlators. We have
taken into account that VA, VP and AS correlators vanish because of parity considerations
and we have used conservation of vector and axial currents to relate the V.S and AP
contributions with the longitudinal components of the VV and AA ones, respectively [99].
The associated non-strange contributions can once again be safely neglected owing to the
small value of m, and my, but this is not true anymore for the strange pieces. Finally, the
tensor BSM term is calculated in the SU(3)y limit, where the AT contribution vanishes.'*

This requires using also charge conjugation, which changes the sign of the AT correlator and flips
the ordering of the quark fields inside the current. In the non-strange sector this change of ordering is
compensated with an extra isospin rotation so, if both are good symmetries, the AT correlator changes sign
after applying both transformation and hence it has to vanish. This is nothing but a G-parity transformation.
In the strange sector the extra rotation needed is only valid when the three light masses are the same, i.e.,
in the SU(3)v limit.
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Experimental resolution is worse in the strange case, mainly because of the Cabibbo
suppression, and strange spectral functions are not publicly available. This will hopefully
change soon with the arrival of Belle-II data but, in the meantime, we only work with the
total strange decay width. We normalize it as

. Ol —=v,n B
R‘Tl? = T ZnD [ _ D(’V)] — , (5.48)
B, B.

where np is a hadronic system with the appropriate strangeness (i.e., S — 0/1 for D — d/s)
and Bp denotes the inclusive (non)strange branching ratio. In the SM limit it reduces to
the usual R? definition, where B, corresponds to SM prediction of the branching ratio
associated to the 77 — e v, decay mode. The hat over R? reminds that, in a general
BSM set up, l§'e # B. due to different new physics contributions in 7 — e™ v, with respect
tou—e vyle.

In the limit of SU(3)y conservation, the integrals of the imaginary part of the nonstrange
and strange correlators are equal. Thus, in the SM one has

R k3 SM
T — ) 5.49
“/udlz |Vus|2 + h » ( )

where the last term denotes calculable SU(3)-breaking corrections. This relation has been
used to extract |V,s| from inclusive tau decays [94, 95]:

S
[Vus|* = ML . (5.50)
g ORy

If BSM effects are present they would pollute this extraction. Comparing it with the
Vs value extracted from a different process, such as K — wfry, we will set bounds on
BSM effects that affect those two extractions differently. In order to do such lepton-flavor-
universality test we calculate the experimentally extracted R/ |Vup|? ratio in the presence
of generic nonstandard contributions

~D D 2 SM
RT = [ RT ] (1 + 2 6§§1\’LD) . (5.51)

| VuD | 2 |VUD | th

In analogy with the nonstrange case, we include in 6555, ,, the potential new physics effects
2

affecting the ratio Wupl — g _ 2€LDC - 2636. Integrating the inclusive invariant mass

|VHD|2
distribution of eq. (5.47) we find:

inc Dt De R Dt S Dt P Dt T ~D7
5BSM,DZEL+R76L+R+CDER +CDES +CDEP +CDET N (552)
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where

2 rm2 d 2
= Tl 7 (2 (e Y

2
RD f,’,m T T

Vup|? ™ ds [—2s s \2 o)
~2 D / p m2 (m_z) (1 w2 ) Im I3 p(s), (5.53)
6rm,  [Vup|® /m, ds (—25) ( s ) ©)
S T uw
- = 1- Im II , 54
P m, —mp RP Jip m2 \ m2 m2 m Iy 5(s) (5.54)
b= o / () (1 5g) m
N R m2 1==3 5.55
D= my, +mp RP Jsp m2 2 m2 AA p(s), (5.55)
_ |VuD|2 m';‘-_ ds s 2
ch = 36m—m—— D /;ﬂ mz \} mz ImIlyr, D(s). (5.56)

In the expressions for the cg coefficients we have replaced the SM prediction of the
RP/|V,,p|? ratio by its experimental value, an identification that is valid up to quadratic
BSM terms. In contrast with the previous subsection, we are defining s2) in such a way
that the integrals include the single pole contributions, i.e., s;ih =m2
mainly because it makes the connection with the SM works more straightforward. Finally,
the SM prediction for R /|V,,p|? in eq. (5.51) can be calculated using the QCD dispersion
relations that were described in the previous section. All we need to know is that the

result is the same for the nonstrange and strange cases, up to calculable SU(3)-breaking

S — .2
—eand sj), =mj —¢,

corrections, as shown in eq. (5.49). Finally, we stress that the expression for the tensor
coefficient ¢} in eq. (5.56) is only valid in the SU(3)y limit, as explained above.

We can now recycle the SM works of refs. [7, 94, 139], which make use of strange tau
data to obtain a value for V. In the presence of non-standard interactions the polluted
V,i;‘c value extracted from tau decays is related to the polluted Vus value extracted from
K — mev, by the following relation
. 1/2
R;}' ¥’ inc inc

= | Vil (1 + 0gsm, s — (1 + n)éBSM,d) ) (5.57)

d
I‘f 5 5R%M
ud

(rinc| __
|Vus -

up to quadratic BSM terms, where 1 = §Ryy|Vys|2/ RS ~ 0.07 is an SU(3)-breaking factor.
Using By = 0.6183(10) and B, = 0.02931(41) as experimental inputs [14], as well as
SRSM = 0.237(29) [139)

|Vin| = 0.2192 + 0. 0015¢yp, £ 0.0009yy, , (5.58)

in good agreement with ref. [14].

Now we move to discuss the calculation of the cg coefficients that appear in the BSM
contributions, for which we can take expressions in the SM limit, since we are neglecting
quadratic new physics terms. For the Ciiz we can simply use the SM limit of eq. (5.47)
to rewrite ¢ = —2 Rf,” al R2, which can be taken from experimental data. Once again
we cannot simply use the same relation for the strange counterpart, since we cannot use
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G-parity to separate the V' and A channels. Instead we use that the needed integral over
Imﬂg;{g) in eq. (5.53) is very close to the corresponding Imﬂg};g) one. Deviations from
the exact equality due to quark masses and spontaneous chiral symmetry breaking effects
are described by OPE corrections, and their typical size is below 5% of the total one [140].
Then we simply take ImII{ 17 = }(ImII{}” + ImI{;?), adding a conservative 5% of

estimated uncertainty, and use the SM limit of eq. (5.47) to rewrite

Vas|? [ ds (=25 5\ (M@, _ g©
14 12r / —2( 2)<I_F)I (), ~1{) ) (o). (559)

s Jer, mz \mz 2

For the integrals in cf involving the longitudinal correlators, H(O), we use the values

obtained in ref. [6] for Rzll’)I:V/ 4» defined as

2 2+k 1+1
kLL mr ds S s (0)
Ropya= 24 , mZ (1 - —) (—) ImlLyy 04 p(s) - (5.60)
All in all we have
Hd

R
= —2#‘ =-0.97(1), (5.61)
T
B = —1.00(5) — ";‘;l (BT - RIG) = —1.03(5) (5.62)
T
S — M | A1w|2 = 0.08(1) (5.63)
# My, — M ZRg e v ’ .
p_ me |Vl 0L
p_ _Tr  [usl 'V'“" Rv% = —0.38(1), (5.65)
My + Mg ZR,.
v,
ch = 36m 2] '“' Iz =0.40(13) (5.66)

T

where we have used Ry = —0.00777(8), Rovs = —0.135(3) and R_.y, = —0.028(4) from
table 2 in ref. [6]. Note also that ¢} vanishes in the isospin limit.

Finally, we have computed the tensor coefficient ¢}, in the SU(3)y limit using exactly
the same approach as in the non-strange sector, i.e., we use I, 3} = 0.0041(13) from table 3
in appendix A.2. We expect the SU(3)y breaking piece to be negligible compared to the
large I ‘I}% uncertainty. It is worth noting that our result for the tensor contribution disagrees
by a factor of 2 and a minus sign with ref. [141], where the effect of a non-standard tensor
contribution in strange tau decays was studied.'®

15To ease the comparison, let us write the tree-level contribution linear in &7 (called Cr in ref. [141]) as
follows:

s Rd Ra ‘ s R — )
(SR;% tree _ ( LT L (SR.tS}i\'[) — _ {21' CZ:HOOE;_T — 14472 <QQ)3MO &
|‘/ud|2 |‘/u.~s|2 3T tree 2“/'.::3'2 mz
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Once we have calculated the c}, coefficients, we can use eq. (5.57) to obtain a BSM con-
straint from the comparison of the Vs value extracted from inclusive tau data in eq. (5.58),
and the Ky value, Vs = 0.22306(56) (see section 6.2):

€rsursu = 0BSn,s — (14 1)0B8na
=1.00(e7, g — €1y r) — 1.03ex — 0.38¢ep + 0.40(13) &7 + 0.08(1) €5
— 1.07 (¥ — €, 1) + 1.04€4 4 0.30 €7 — 0.43(14) &7
= —(0.0171 £ 0.0085), (5.67)

which is the main result of this section. The contributions in the second (third) line are
those affecting the inclusive strange (non-strange) decay. The small difference between the
numbers in those two lines is due to SU(3)-breaking effects. In the above result we have
kept uncertainties in the new physics prefactors only when they are large (> 10%).

The observable that we have used to probe this combination of Wilson coefficients can be
decomposed in four pieces: the one-pion and one-kaon channels, and the remaining inclusive
non-strange and strange BRs. Since we have already studied the first three contributions
in section 3 and section 5.1, we can use the associated bounds in egs. (3.8), (3.9), and (5.40)
to disentangle the novel combination that we are now probing, which is given by

€ n— €5k — 0735 — 0.05(1) €7 +0.5(2) &7 +0.10(1) € = —0.017(16).  (5.68)

This is (half) the BSM contribution to the inclusive strange BR minus the kaon pole,
i.e., the s-quark analogue of eq. (5.40). Let us stress that eq. (5.68) does not represent a
new constraint, since it is derived from eq. (5.67) and the above-mentioned non-strange
constraints.

5.3 Possible future improvements

Finally, let us briefly review some possible future improvements that would improve the
BSM bounds that we have obtained from inclusive observables. On the experimental side,
future spectral functions, hopefully coming from Belle II [83], would translate into an
improvement of the different bounds, by reducing experimental uncertainties with respect
to current LEP data, which could also translate into a better knowledge of DVs.

There is much more room for improvement in the strange sector, since publicly available
spectral functions would allow us to study several integrated moments, each one sensitive
to a different combinations of BSM coefficients. This would allow us to disentangle them,
like we have done in the nonstrange sector. Furthermore, it was shown in ref. [142] that one
can achieve a good predictive power for weight functions with poles in the Euclidean axis,
once the corresponding residues are computed in the lattice.'® Notice how similar weights,

16Precise measurements of the relevant spectral functions would definitively help in clarifying the situa-
tion [136]. Let us note that refs. [95, 142] quote V,s values more compatible with V.. from K.3. However,
they do not directly work with the total inclusive strange BR, but with other spectral moments (that
typically give more importance to the already included 7 — v, K channel) and sometimes involve Ky and
Ky data as well.
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in combination with corresponding lattice data, could also be used to get complementary
new physics bounds for the non-strange V' — A channel.

On the theoretical side, one of the main limitations that may be overcome in the future
are the uncertainties coming from higher-order and non-perturbative corrections [128, 143~
146]. This would decrease some of the dominating SM uncertainties in our bounds, and
it would allow us to use additional moments. It would also allow for a more precise
determination of the Iy integral, with the associated improvement on the bound over the
nonstrange tensor contribution. Finally, long-distance radiative corrections (which currently
can be neglected) should be assessed in order to achieve a per-mil level precision.

6 Recap and combination

In this section we present a likelihood function for the Wilson coefficients of the EFT
Lagrangian in eq. (2.1), combining various low-energy probes of d(s) — ufy, transitions.
We first recapitulate the bounds from the 7 observables discussed in this paper. Next, we
review and update bounds from a variety of nuclear beta, pion, and kaon decays, which
probe the electron and muon charged-current interactions with light quarks. Finally, all
these probes are combined into one global likelihood, which can be used to constrain a broad
range of new physics models affecting the charged-current interactions of light quarks and
leptons in eq. (2.1). We discuss the SM limit of this likelihood and the phenomenological
determinations of the meson decay constants and the Cabibbo angle. As is well known,
various determinations of the latter are in tension with each other [11, 12, 147, 148], the fact
often referred to as the Cabibbo anomaly. As an illustration of sensitivity to new physics,
we also display constraints on the Wilson coefficients in eq. (2.1) when only one of them is
present at a time. This shows in particular simple directions in the EF'T parameter space
that are favored by the Cabibbo anomaly.

6.1 Recap of bounds from hadronic tau decays

Let us recapitulate the BSM bounds that we have obtained in this work so far. On one
hand, exclusive channels 7 — 7, , Kv., mmv, gave us three constraints, cf. egs. (3.8), (3.9)
and (4.17). On the other hand, we obtained five BSM bounds from inclusive observables, cf.
eqgs. (5.40)—(5.43) and (5.67). The one-at-a-time bounds on each Wilson coefficient for each
channel are displayed in table 1.

Combining all these channels we find the following 68% CL marginalized intervals for
the (combinations of) Wilson coefficients:

dr
eL/c+e‘£’fe‘ff 24426
e 0.7+14
dr

et 04+1.0
. = x 102,

7 —3346.0

T T mK T —
Ei fe - €R — €k — m,-(rm.-f-ms)EsjD 0.2£1.0
€7/ — 0.03e57 — €3 + 0.08(1) el — 0.38€37 + 0.40(13)&57 —13+12

(6.1)
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€9 x 10% | efe x 10° | €} x 10° | ¥ x 103 | €47 x 10° | ¥ x 10°

T = TV —0.9(7.3) | 09(7.3) | 0.9(7.3) | 0.6(5.0) X X

T = TV 10(4.9) | —10(4.9) X X 23(12) X

T = Ty x X X X X (—21,10)
V+A 6.9(7.0) | —6.9(7.0) | —8.6(8.4) X 15(19) X
V-A | 7005) | -7.0095) | 3.64.9) X 15(17) X

€T x 10% | €° x 103 | €5, x 103 | €37 x 103 | € x 103 | €& x 103
T — Kv —2(10) 2(10) 2(10) 1.2(6.1) b'q X
S. Inclusive | —17(16) 17(16) 23(22) | 340(327) | —34(35) | —170(161)

Table 1. One-at-a-time bounds on the Wilson coefficients for each channel. For the non-strange
inclusive decays, we have separated them in V+ A and V — A, cf. eqs. (5.40) (5.41) and (5.42) (5.43),
respectively. For the strange inclusive decays, these one-at-a-time bounds correspond to eq. (5.68).
The cross means that the corresponding channel is not sensitive to that particular Wilson coefficient.

where ef"/ ‘= ef" - efc, and the Wilson coefficients are defined in the MS scheme at
scale p = 2GeV. This is the main result of this paper. Note that we do not have enough
experimental information to disentangle the different Lorentz structures of the strange
Wilson coefficients €5/. The two combinations appearing above are simply the one affecting
T — Kv, (cf. eq. (3.3)), and the one affecting the inclusive 7 — usv, (cf. eq. (5.67)). The
small difference between the result in eq. (5.67) and the corresponding one in the global fit
is due to correlation with the non-strange bounds. The bounds in eq. (6.1) take into account
the correlations between inclusive non-strange constraints, cf. eq. (5.44), as well as between
exclusive and inclusive channels due to f;+ and the experimental BR. of 7 — v K (which is

part of the inclusive strange BR). The moderate loss in sensitivity for e',ij/ ‘+ e‘}{ — e‘}{ and

é‘,}" as compared to the results in ref. [20] is a consequence of the change in the inclusive e?f
prefactors, whose larger than expected corrections have opened a nearly flat direction in
the subspace spanned by e‘f/ ‘4 elf — e and &47.

In deriving eq. (6.1) we have employed a nuisance parameter to take into account the
correlated uncertainty of the numerical factors that multiply &7 in the inclusive non-strange
constraints, egs. (5.40)—(5.43). This introduces some amount of non-Gaussianity into the
likelihood. In particular, the confidence intervals for e“}" and e‘z"/ © are not symmetric with
respect to the minimum. For éf_’r" we illustrate this issue in figure 4. Nevertheless, the
likelihood near the minimum is quite well approximated by the Gaussian likelihood obtained

from eq. (6.1) with the following correlation matrix:
1 0.87 —0.18 —0.98 —0.03 —0.45

1 —0.59 —0.86 0.06 —0.59
1 018 -0.36 0.38

p= 1 004 049 (6.2)
1 016
1
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Figure 4. The tau likelihood in function of the Wilson coefficient €27 after marginalizing over the
remaining Wilson coefficients. We show the completed non-Gaussian likelihood (solid red), and the
Gaussian likelihood (dotted red) based on the confidence interval displayed in eq. (6.1).

6.2 Combination with d(s) — ufv, transitions

Now we combine the hadronic tau bounds in eq. (6.1) with those obtained from d(s) — ufv,
transitions, £ = e, u, which include nuclear, baryon and meson (semi)leptonic decays. The
latter were analyzed in a global SMEFT fit in ref. [24], which we update and enlarge
in this work. The two datasets depend on common quantities, namely the meson decay
constants fr x and the CKM matrix elements V,,4,s. As a result, the combined fit includes
by construction “theoretically clean” ratios where meson decay constants and/or CKM
elements cancel, such as e.g. I'(t — 7v;) /I'(m — pv,). Further interest in combining these
datasets stems from the fact that in our EFT, assuming it is UV-completed by the SMEFT
at u ~ myy, the right-handed currents are independent of lepton flavor:

Rt =€t =BT =B, (6.3)
up to small corrections from dimension-8 operators [21, 149]. We will assume this SMEFT
relation in our analysis from now on. The consequence is that 7 decays and d(s) — ufy
transitions probe the same EFT parameters e‘}{ and €, which leads to an important synergy.

We now describe the input observables used in the combined analysis, in addition to
hadronic tau decays. First, we include in the d(s) — ufy; analysis the results of ref. [150],
where a long list of nuclear and neutron beta decay observables were studied. In the present
analysis, an older measurement of the S-v correlation of the neutron [151] by the aCORN
collaboration is superseded by the new result @, = —0.1078(18) [152]. Moreover, the latest
UCN7T measurement of the neutron lifetime [153] leads to the improved combined result
T, = 878.64(59), where we include both bottle and beam measurements and average the
errors a la PDG with the scale factor S = 2.2. Finally, we update the axial coupling of
the nucleon with the latest Ny =2+ 1 4+ 1 FLAG value g4 = 1.246(28) [10, 154-156] and
use ref. [157] for the associated radiative corrections. The nuclear beta decay data provide
stringent constraints on Vud, ejdz, eg-e, and é‘r}?

We combine this beta-decay likelihood with leptonic and semileptonic pion decay data,
which allows us to also constrain the pseudoscalar Wilson coefficient €% and one linear
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combination of the muonic Wilson coefficients edx“. The pion input is described in ref. [24].
Here we update the constraint on the tensor Wilson coefficient obtained from radiative
pion decay m~ — e 1,7, finding é4¢ = (0.5 £+ 2.4) x 10~3. This result is obtained using a
more precise and solid determination of the associated form factor, namely fr = 0.232(14),
which is based on the recent lattice determination of the magnetic susceptibility of the
vacuum [158] (see appendix B for details). Furthermore, we also include in our analysis the
pion beta decay 7+ — n%%*v,, although at present it has negligible impact on the fit.!”
Finally, in this analysis we use the f + lattice input discussed in section 3.
The nuclear and pion data together lead to the constraints

A

Vid 0.97386(40) 10.01 0.75 0.64 0.01 —0.01
e —0.012(12) 1 001 0. 096 0.96
ede 0.00032(99) 1 06 0.01 —0.01
~de = y p = 1 (64)
ek —0.0004(11) 1 001 —0.01
els 3.9(4.3) x 1076 1 —0.999
e, —0.021(24) 1
2
where ei‘}, = Ei“ le _ edp“ m:_ﬁ:-Td)‘ Let us note that the above bound on fili has similar

uncertainty as the corresponding tau bound in eq. (6.1).

Finally, we discuss the constraints from leptonic and semileptonic kaon decays and
hyperon beta decays. Compared to ref. [24], we update the experimental input on semilep-
tonic kaon decays following the recent re-analysis of ref. [160]. More precisely, we use the
constraints on V,sf+(0) listed in table 1 of that reference, however we re-interpret them
as constraints on the EFT parameters in eq. (2.1) (see ref. [24] for details). Concerning
the theory input, we use f4(0) = 0.9698(17) [10, 161, 162], while the kaon decay constant
is determined from f.+ and fx+/f.+, as discussed in section 3. We obtain the following
constraints from s — ufy; transitions

A

Vus \ [ 0.22306(56) 1 -0.110. -0.12 0.03 0.02 0. \
esle 0.0008(22) 1 0. 0. 0. 002 055

€% 0.001(50) 1 0. —0.997 —0.997 0.

et | =| -0.00026(44) |, p= 1 —0.01 —0.01 0.

€S 0.3(2.0) x 107° 1 0999 0.

e —0.0006(41) 1 001
\ & 0.002(22) \ 1

(6.5)

We are ready to combine the constraints from hadronic tau decays (eq. (6.1)), nuclear
beta and pion decays (eq. (6.4)), and kaon and hyperon decays (eq. (6.5)).!® Our constraints
are marginalized over theoretical uncertainties related to the lattice determination of the

"We note that including in the fit the pion beta decay rate normalised by any of the K3 rates (as
advocated in ref. [159]) is equivalent to simply including the pion beta decay rate, as we do in this work.

¥1n fact, one of the inputs in eq. (6.4), namely I'(m — u,,), is replaced in the global combination by the
ratio %":—; The motivation is that the theoretical error on the radiative correction to the ratio [163] is
a tad smaller than the analogous error on the individual widths.
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meson decay constants and calculation of the radiative corrections. Let us stress that we
keep full track of the cross-correlations between tau and d(s) — ufvy bounds due to the
common CKM and meson decay constant inputs. While the polluted CKM elements Vud
and Vus are independent variables in the EFT framework, for the sake of the presentation
it is convenient to introduce a different parametrization of this subspace. Indeed, these two
objects are related as

A

~ ~ V2
Via=\1-VZ |1+ et +eh+ —2—€hl, (6.6)
1-V2
(2 Py
where edLse = e%e -+ —V%LESLE. We will use e‘llfe instead of V4 as a variable in our combined

1-V2,
fit. In the M.S scheme at u = 2 GeV we obtain the following 68% CL intervals:

Vis = Vas (1 + €f° + €) 0.22306(56) 0
ede = ede 4 l—fl‘%ef 2.2(8.6) 3
€% ~3.3(8.2) _3
ede 3.0(9.9) —4
ede 1.3(3.4) -6
ede —0.4(L.1) -3
el 0.8(2.2) -3
€% 0.2(5.0) —2
€p —0.3(2.0) N
2 j—
edule _ e'},“m | -05(18) S RPN (6.7)
e —2.6(4.4) —4
et —0.6(4.1) -3
Z“:T‘/‘e 0.2(2.2) —2
€L 0.1(1.9) —~2
ex 9.2(8.6) -3
S 1.9(4.5) 2
e/ — e s 0.0(1.0) -1
€7/ +0.08(1)ey — 0.38¢57 + 0.40(13)&7 \ —0.7(5.2) -2

where we recall the definition ef te = eP? — ePe. The correlation matrix (in the Gaussian
approximation) associated with these constraints in eq. (6.7) is presented in eq. (C.1).
Inclusion of new physics parameters egf greatly improves the quality of the fit. We find
Xe\m — XZin = 37.4, where x2, is the value of the likelihood at the global minimum, and
X3, is the minimum on the hypersurface where all egf set to zero. This corresponds to 3o
preference for new physics, or 0.3% p-value for the SM hypothesis. However, a preference for
particular equ is not visible in eq. (6.7) due to strong correlations. We will discuss preferred
directions below, in the context of more constrained scenarios.
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Eq. (6.7) contains the most complete information to date about the charged-current
interactions between the light quarks and leptons. In many cases, the real power of the
constraints is obscured by large correlations. As an example, the marginalized constraints

on e%se and eﬁi% are both at a percent level, however the combination

(72
Vu.s s
o €R
1-V2

Soxm = €5 4 e + (6.8)
is much more stringently bound: dcxm = —9.8(4.3) x 10~4. We stress that eq. (6.7) together
with eq. (C.1) contain the information allowing one to disentangle these correlations in the
Gaussian approximation.'® The preference for a non-zero value of the combination dck
is one of the facets of the Cabibbo anomaly, often called the (first row) CKM unitarity
problem in the literature.

In addition to eq. (6.7), there are a few bounds on Wilson coefficients that can be
obtained from their quadratic effect to certain observables. These are inherently non-
Gaussian and uncorrelated with eq. (6.7). In section 4.2, we obtained the following bound
using the 7 — v, 77 channel:

" = —0.06(16). (6.9)

Furthermore, based on the differential distributions measured in K~ — #°

ref. [24] obtained?’

e~ v, decays [164],

e — 1.6(32) x 107°,  &F — 0.035(70). (6.10)

6.3 SM limit

As a first application of the combined likelihood of eq. (6.7), we consider the SM limit, where
all Wilson coefficients e§€ are set to zero. There is only one independent free parameter
remaining in eq. (2.1), which we choose to be V. The other CKM element in eq. (2.1)
is tied to V,, by the unitarity relation V4 = \/w, where we use the PDG
average |Vy5| = 3.82(24) x 1073 (the precise value of V,; has a tiny effect on the fit). At
face value we find the constraint on the (sine of the) Cabibbo angle V,,, reads

Vus = 0.22450(34). (6.11)

However, as can be seen in figure 5, this result is obtained by combining several measurements
that are in strong tension with each other. This tension is referred to as the Cabibbo
anomaly. Note that tau decays, especially the inclusive one of eq. (5.67), further aggravate
the tension (see however footnote 16).

The Cabibbo anomaly can be interpreted as a hint of new physics. In this subsection,
however, we work within the SM paradigm, and from this point of view the anomaly is
simply an inconsistency between different datasets. Therefore, the error eq. (6.11) does not
reflect the real uncertainty on the true value of the SM Cabibbo angle, given the confusing

9The full non-Gaussian likelihood function is available on request.
20We do not include the recent bounds on scalar and tensor interactions obtained by the OKA Collaboration
from the K3 differential distributions [165] since they are presented as preliminary.
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Figure 5. 68% CL constraints on the Cabibbo angle assuming the SM is the UV completion of our
EFT, which implies €Rf = 0. We show the separate constraints from the most precise measurement
probing this parameter: inclusive 7 — s decays, 2-body tau decays, semileptonic kaon decay, the
ratio I'(m — p,) /T (K — pv,), T'(K — pu,), neutron beta decay, and the superallowed 0+ — 0F
nuclear beta decays. The purple band corresponds to a combination of these measurements with
errors inflated a la PDG with the scale factor of S = 2.0, so as to account for the large tension
between the individual inputs.

experimental situation. In such a case, it is more practical to follow the PDG procedure
of (artificially) inflating the errors, so as to make the different measurements compatible.
To this end, we construct a simplified likelihood which takes into account only the most
sensitive probes of the Cabibbo angle. It includes the observables displayed in figure 5
treated as functions of V., fr+, fx+/fr+, f1(0), and the relevant radiative corrections.
Moreover, it includes the lattice and theory constraints on the decay constants, form factor,
and radiative corrections. We democratically inflate all the errors by the factor S until
x2,n/d.o.f is equal to one. Following this procedure we obtain

Vs = 0.22450(67), §=20, (6.12)

from which V,,4 = 0.97447(15) follows. It is eq. (6.12) rather than eq. (6.11) that better
reflects the current knowledge concerning the value of Cabibbo angle, assuming the SM
provides an adequate approximation for the fundamental interactions at the weak scale.
The results of the global fit in eq. (6.7) as well as the Cabibbo angle fit in eq. (6.12)
are marginalized over the uncertainties of the meson decay constants. The same likelihoods
set also confidence intervals for the latter. In the global case these confidence intervals are
not particularly revealing, because they are set by the lattice central values and errors. The
situation changes in the SM limit. Due to the limited number of free parameters, the meson
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ede x 103 s x 103 €108 | ¥ x103 | eF x10% | F x 103
L | —0.79(25) —-0.6(1.2) 0.40(87) 0.5(1.2) 5.0(2.5) | —18.2(6.2)
R | -0.62(25) —5.2(1.7) —0.62(25) | —5.2(1.7) | —0.62(25) | —5.2(1.7)
S | 1.40(65) -1.6(3.2) x —0.51(43) | —6(16) | —270(100)
P | 0.00018(17) | —0.00044(36) | —0.015(32) | —0.032(64) | 1.7(2.5) | 10.4(5.5)
T 0.29(82) 0.035(70) x 2(18) 28(10) —55(27)

Table 2. Constraints on the Wilson coefficients e£¢ in units of 1072, fitting one parameter at a time.
We highlighted in red color the entries where 3a or larger preference for new physics is displayed.
The cross signifies that this particular Wilson coefficient is not constrained by our analysis. Let us
note again that we assume €2¢ = eo* = ¢B7, as predicted by the SMEFT at dimension six.

decay constants are themselves constrained by the experimental data. We find

fot[MeV] 130.54(34)
Frt/fae | =] 1.1958(35) |, §=20. (6.13)
£4(0) 0.9668(28)

As indicated, both egs. (6.12)—(6.13) come from the same fit, where we have applied the
same scale factor S = 2.0. In spite of inflating the errors, the uncertainty on f,+ is reduced
by more than a factor of two compared to the (face value) lattice result. Hadronic tau
decays have a significant impact on reducing the error. We stress that this more stringent
constraint can only be used in the SM context, and is not valid in the presence of new
physics. For fy+/f.+ and f,(0) the errors are actually larger compared to the (face value)
lattice results, reflecting the inflated uncertainty due to the tensions in the global fit.

6.4 Simple new physics scenarios and perspective on Cabibbo anomaly

We move to studying the likelihood of eq. (6.7) in simplified new physics scenarios. First,
we will assume that only a single Wilson coefficient €2’ in eq. (2.1) is present at a time.
This exercise will allow us to identify simple directions in the parameter space where the
goodness of the fit can be significantly improved compared to the SM limit.

The results are shown in table 2. First thing to see is that our likelihood constrains
almost the complete set of egf and eif Wilson coefficients. The typical accuracy is percent
to per mille level. The notable exception are e2¢ and eg“ where much larger accuracy is
due to the chiral enhancement of pseudoscalar interaction. Note that the constraints in
table 2 are often an order of magnitude better than in eq. (6.7), as in the latter case the
true power of the constraints is obscured by large correlations.

Furthermore, the fit shows a preference for non-zero values of several Wilson coefficients.
This is a flip side of the Cabibbo anomaly discussed in the previous subsection. The
preference is strongest for e‘lif', €x, and €77, in which case a single new physics Wilson
coefficients allows one to improve the fit by ~ 9 units of x2. The reason is that these
parameters alter the relation between the magnitude of the Cabibbo angle and various
observables, allowing one to partially reconcile the seemingly inconsistent measurements

— 36 —



in figure 5. For example, a negative e‘}f leads to a decrease in the pion, neutron and
nuclear 8 decay widths. Consequently, V,4 extracted from these measurements (under SM
assumptions) appears smaller than the prediction of the unitarity relation (based on Vi,
extracted from kaon, which is not affected by €%).

This simple analysis points to the range of possibilities for model building addressing
the Cabibbo anomaly. €}¢ can be generated e.g. by a vanilla charged gauge boson (W’)
with SM-like couplings to fermions. A more exotic flavor structure is needed to generate a
required €j7, as one needs a W’ that is coupled much stronger to sy, than to u;dy, and
more strongly coupled to tau leptons than to electrons and muons. On the other hand,
€% can be generated with a W’ coupled to ugsp (and mixing with W after electroweak
symmetry breaking), but again the coupling to #gdp has to be much smaller. We also
note that there exists some preference for scalar, pseudoscalar, and tensor €%, opening an
opportunity for leptoquark models coupled to 3rd generation leptons.

Some of the new physics preferences displayed in table 2 are highly correlated. For
example, only one linear combination of e‘ie and edR is favored to be non-zero, while allowing
these two parameters to vary independently does not improve the fit dramatically (by
2.6 units of x? compared to the case with only e%e). On the other hand, some of the
displayed tensions are largely independent. As pointed out in [12], a scenario with new
physics coupled to right-handed quarks and generating both e}i{ and €}, is strongly favored
by the data. We find the best fit at €4 = —7.1(2.6) x 107* and €}, = —5.7(1.7) x 102 with
X — X2, = 17.5 — formally a 3.80 preference for this scenario with respect to the SM
hypothesis. Another 2-parameter scenario with almost identical level of preference is the
one with SM-like new physics characterized by the €f¢, €57 pair. In this case we find the best
fit at €® = —7.5(2.5) x 107* and €§” = —1.72(62) x 1072, with x&y; — X2, = 17.5. The left
panel of figure 6 clarifies where this preference comes from. The presence of e%e puts the
Cabibbo angle measured in nuclear beta decays in good agreement with the one measured in
kaon decays, while €j" achieves a similar feat with the Cabibbo angle measured in hadronic
tau decays. Some tension remains in the two-parameter scenarios, notably between the
inclusive tau and other determinations in the first case, and between the semileptonic and
leptonic kaon decays in the second case.

The tension can be completely eradicated in multi-parameter scenarios. The right panel
of figure 6 shows the Cabibbo angle in an example with 3 parameters: €%, €%, and €§7. In this
case the best fit is €%, = —6.8(2.6) x 1074, €5, = —5.9(1.7) x 1072, and ;7 = —1.81(62) x 10~ 2.
At the minimum of the likelihood the different datasets now point to perfectly compatible
values of the Cabibbo angle, for which the best fit is V,, = 0.22432(36). Thanks to removing
the tension, the 3-parameter scenario improves the goodness of fit by xZ,; — X2, = 26.1 —
a whopping 4.40 preference compared to the SM hypothesis.

Finally, another interesting scenario is the one in which all Wilson Coefficients are
zero except a universal left-handed one, as this is the situation generated in the SMEFT
with U(3)® flavor symmetry. In this case, which was studied in ref. [21], all channels
receive the same universal global correction that is hidden in the “BSM polluted” Vud
and V,, elements. As a result the only observable consequence is an apparent violation
of unitarity. In our notation, this means that the only non-zero coefficient in eq. (6.7) is
efe = —(8.0+£2.7) x 1074
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Figure 6. The Cabibbo angle beyond the SM. Black error bars show the determination of V,,, using
different subsets of experimental data, see the caption of figure 5 for details. Left: determination
of V,,, in the presence of new physics characterized by the Wilson coefficients €f¢ = —7.5 x 10 4
and €§” = —1.7 x 1072, with the remaining e%¢ set to zero. Such a configuration partly improves
compatibility between different datasets, removing the largest tensions present in the SM fit. However,
some tensions remain, notably between semileptonic and leptonic kaon decays. Right: the same
in the presence of three new physics Wilson coefficients: e‘}{ = —6.8 x 1074, €p = —5.9 x 1073,
and €;” = —1.8 x 10 2. In a relatively simple scenario where these 3 parameters are generated by
new physics, all the datasets point to perfectly compatible values of the Cabibbo angle, with the
combined value V,,, = 0.22432(36).

7 Conclusions and outlook

In this paper we studied hadronic tau decays in the framework of an EFT for light SM
degrees of freedom. This EFT describes the low-energy dynamics of the SM, as well as
subleading effects of hypothetical non-SM particles with masses larger than 2 GeV. Focusing
on the charged-current interactions between light quarks and leptons, the leading non-
standard effects are parametrized by a set of Wilson coefficients egf, cf. eq. (2.1). The main
new result of this paper is eq. (6.1) summarizing the constraints on egg from a large set of
hadronic tau observables, which include the 2-body 7 —+ w(K)vr, 3-body 7 — n7v,, and
inclusive 7 — vrud(s) decays. There we quote percent level marginalized constraints on
six linear combinations of e?f, D =d, s, and we provide the correlation matrix in eq. (6.2).
These bounds reach the per mille level when only one operator is present.

The 2-body channels are theoretically simple, involving only the non-perturbative
meson decay constants f.+ and fg+ and calculable radiative corrections. For this reason
they have been commonly used in the literature for constraining new physics or the CKM
elements. On the other hand, the multi-body and inclusive channels are theoretically more
challenging, and the present paper provides the most comprehensive discussion to date of
the resulting constraints on new physics. Compared to ref. [20], we extend the analysis to
include strange decays (7 — Kv,, T & K7y, T — usv,). We also update and improve the
analysis of the remaining channels with the most recent theoretical and experimental input,
and we provide the details of theoretical calculations that allow us to determine the new
physics dependence of hadronic tau observables.
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We expect the constraints from hadronic tau decays to be further improved in the near
future. On the experimental front, the old LEP measurements of the spectral functions
should be improved by Belle II. For our type of analysis, publicly available high-quality
(inclusive) data in the strange sector would be especially welcome, as they would allow us
to define additional integrated observables and disentangle various €§f Wilson coefficients.
On the theoretical side, we expect further progress in estimating higher-order and non-
perturbative corrections, so as to reduce the dominant uncertainties in the SM predictions.
Concerning the exclusive decay channels, we expect significant experimental and theoretical
progress in several of them. In the 2-pion channel there is an ongoing effort due to the
connection with the g — 2 anomaly. Expected progress in the 7 — nmv, channel [83-85]
would allow us to achieve sensitivity to linear (rather than quadratic) effects in €&, allowing
us to incorporate this parameter into the global Gaussian likelihood.

Tau data can be used to extract V,s and new physics contributions simultaneously. Such
analysis does not show any significant preference for new physics, except for the ~ 20 tension
in the 7 = vy channel. The situation changes abruptly when the information from nuclear
3, baryon, pion, and kaon decays is included in the picture. Within the SM paradigm,
various observables in this larger dataset exhibit the Cabibbo anomaly, that is they point
to mutually inconsistent values of the Cabibbo angle. Beyond the SM, this tension may be
interpreted as a hint for new particles coupled to the SM quarks and leptons. This paper
provides a complete and unbiased characterization of the nuclear, baryon, pion, kaon and
tau data within a general EFT framework. Compared to earlier EFT analyses [12, 13], we
allow all leading order deformations of the SM to be simultaneously present. In particular,
the non-standard scalar, pseudoscalar, and tensor interactions (induced e.g. in leptogquark
models) are taken into account in our analysis. The global likelihood defined by eq. (6.7)
and eq. (C.1) can be used to constrain parameters of any new physics models with new
particles heavier than the weak scale. In this general likelihood, the Cabibbo anomaly is
reflected as a 3.0c preference for new physics (non-zero values of egf) with respect to the
SM hypothesis (e"xz = 0). The preference is strengthened in certain constrained scenarios,
for example in some of the single-e scenarios displayed in table 2.

All in all, our study of hadronic tau decays as new physics probes has allowed
us to provide for the first time a model-independent and global analysis of semilep-
tonic charged-current decays of light quarks involving all three lepton families (that is,
udeve, udpivy,, udTv,, Useve, usjivy,, usTvy). Our results provide on one hand guidance for
model building and on the other hand an unbiased tool to test the implications of new
physics models in this wide set of transitions.
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A QCD computation of inclusive integrals

In this appendix we give technical details on the QCD calculation of the different integrals
entering in our analysis.

A.1 Standard Model contribution

In the SM limit, the main QCD objects entering our inclusive analysis are the two-point
correlation functions of quark currents,

/ diz e (0|T[J* () I (0)]]0) = (—g"™¢® + ¢*¢*) TSN () + ¢ TT)(¢%), (A1)

where J = {V, A}, V¥ = dy*u, A* = dy*~°u. Egs. (5.5) and (5.6) connect the experimental
tau distributions to H(HO) (¢%) = (,1; (%) + (O) 7(¢*), which is an analytic function in all
the complex plane except for the physical cut, whlch lies on the Minkowskian axis. The
continuum threshold for the (1 + 0) correlator is s;;, = 4m2. As a consequence, if we
integrate that correlator times any monomial function (s/sg)™ along the contour of figure 7,
the only contribution comes from the residue at the pion pole. Equating the pion pole

contribution to the integral along the different parts of the circuit leads to

2 2\ . d
Pl = () e (Y o i a2
v+a(so0;n) :FSO s +27T tojs0 70 \20 ViA +dvialsoin), (A.2)
OPE

where we have approximated II})}% (s) along the complex circle |s| = sq by the analytic
continuation of its OPE expression [100]

@)
8;)}13(5 =-Q) = Z W > Cpval@pw) (O)=>" DL (A.3)

dimO=D 5 (@)P7
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This approximation works very precisely if the upper limit of the integral, sy, is large enough,
except maybe near the positive real axis. In the previous expression, 82Y 4(so; n) accounts for
the small deviations from it, known as quark-hadron Duality Violations (DV) [3-5, 166-170].

The D = 0 part of the OPE corresponds to the massless perturbative-QCD prediction,
which will be denoted with an index P. Since chirality is preserved in the massless QCD
Lagrangian, this contribution, which only depends on ay, is identical for the V'V and the
AA correlators. In fact, we can recycle previous studies within the SM to obtain this
contribution. Following the same notation as in ref. [5], this purely perturbative part can
be computed using the Adler function [171],2!

P S
D) = s T = o X Fale) an(-€%), (A4)

where ¢ parameterizes the QCD renormalization scale and as(s) = as(s)/m satisfies the

renormalization-group equation,??

2 i dL =3 Badl(s). (A5)

n=1

The perturbative coefficients K,, = K,,(¢ = 1) are known up to n < 4 [118]. The homo-
geneous renormalization-group equation satisfied by the Adler function determines the
corresponding scale-dependent parameters f{n(f ). Although the dependence on the renor-
malization scale cancels order by order, the truncation to a finite perturbative order leads to
a scale dependence from the missing higher-order terms, which must be taken into account
when estimating perturbative uncertainties.

Let us define? . n
AD(s )_le{ ds (i) 17 (s). (A-6)

21 Js|=s0 S0 \ 80

Using integration by parts,

i

. . ds ( s\"
—27r(n ) ((H(so —ie) — (sq + i€)) + o P (g) D(s))

inserting the perturbative Adler function and parameterizing the circle |s| = sy as s = —s e,

A (s0) =

one finds:

AP (s0) = > K@) [ di (17D 1) a@see’?). (A8)

- 8n m(n+1) ~

21The (1 4 0) superscript will be omitted from now on.

22Different normalizations for the fn coefficients can be found in the literature. This form of the RGE
corresponds to §; = —9/2.

23Notice how A7 has been re-scaled by 7 with respect to ref. [5].
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We take as(M2) = 0.1184(8) from the lattice [10, 101-108],%* then we run it up to as(£2sp).
and perform the integral, both truncating the integrand to a fixed perturbative order
in a4(€%s0) (fixed-order perturbation theory, FOPT), and solving exactly the differential
B-function equation in the Bn>n,.. = 0 approximation (contour-improved perturbation
theory, CIPT).

Again, as in ref. [5], within a given perturbative approach, either CIPT or FOPT,
we will estimate the perturbative uncertainty varying the renormalization scale in the
interval £2 € [0.5, 2. Additionally, we will truncate the perturbative series at n = 5, taking
Ky = 275+ 400 as an educated guess of the maximal range of variation of the unknown
fifth-order contribution. These two sources of theoretical uncertainty will be combined
quadratically.

In order to give a combined determination for the observables, we will finally average
the CIPT and FOPT results. Since the previously estimated perturbative uncertainties do
not fully account for the difference between these two prescriptions, we will conservatively
assess the final error adding in quadrature half the difference between the CIPT and FOPT
values to the smallest of the CIPT and FOPT errors.?

For the tiny non-perturbative part of the OPE, we work at leading order in ay, with
the exception of 0(‘3/ _A, where as corrections are incorporated. Thus, Op is independent
on Q2. Its contribution to I ,(so;n) is

i ds ( s\" _opE Oa(nt1)

o7 i () PO == A9)
Some of the condensates entering into the bounds are unknown. When this is the case, we
take a conservative dimensional guess based on the ones that are known. More details on it
are given in the main text.

Finally, the DV term can be written as

S0Y A(s0;m) = i]( ds (s)n (HViA - Hgf‘x)(s))

[s|=s0 S0 \ S0
= Tds ()" 1 OPE
- /so 0 (s—o) ~ (ImTlvsa(s) - mIPEG (s) - (A.10)

One common tool to reduce these effects is pinching, i.e., using weight functions that reduce
the contributions of the integrals near the Minkowskian axis. We know DV effects go to
zero very fast with the opening of the hadronic multiplicity, typically in an oscillatory way.
Then, DV uncertainties should be strongly dominated by the contributions near the upper
limit of the integral. Thus, we take 1Y , = 0 and estimate the associated uncertainty from
the size of the small fluctuations in the predictions for the different dispersion relations
when changing s¢ in moderate intervals.

24Even when potentially contaminated by new physics f,+ values have been used in some lattice determi-
nations to set the scale, ro, 71 or /o, we have checked that it has no significant impact on our bounds,
since alternative inputs for them (ro, 71 or \/%y) based on resonance masses would have not modified the
extracted strong coupling value significantly.

25Some recent works aimed to understand higher-order corrections, which eventually may lead to a
significant reduction on the perturbative uncertainty, can be found in the literature [128, 143-146].
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A.2 Computation of the Iy integral

In the presence of non-standard interactions, the vector-tensor correlation function enters
our analysis, connected to the invariant mass distribution of eq. (5.5),

i f d'z €9 (0|T[V*(z)T*?1(0)]|0) = i(g"*¢" — ¢"*¢") vz (4?), (A.11)

where V# = dy#u and TH = do**u.
A dispersion relation analogous to eq. (A.2) follows from the analytic properties of the

IIy7(s) correlator,
Ivr(sp,n) = 1(/1%(50,72) + I{(/z%(so,ﬂ), (A.12)

where [ ‘(/1% is the contribution from the complex circle (from now on for ease of notation we
drop the arguments (sg,n) in ]‘(/17)3(2))’
T d I
L= m_flf ds (i) vr(s) (A13)

4mi s|=s0 S0 \ S0 s+ %Qr_ !

and 11(,2% the contribution from the kinematic pole,

2\ " Ty (Q% = me
7@ _( &) ( 2 ) (A.14)

vT

250 mr

where Q2 is the Euclidean momenta (s = Q%¢™). The OPE of IIyr(s) should provide a
good approximation in both I‘(,l% and I‘(,?% for sg ~ m2.

In the following we describe the OPE contributions at several degrees of approximation.
We start with the tree-level, lower-dimension, estimates made in ref. [20] and add several
improvements. Our final value is based on a full Next-to-Leading Log (NLL) evaluation in
a; for the lowest dimensional term, including the running of a; along the complex circle.

Uncertainties coming from higher-dimensional contributions are also discussed.

Tree-level. IIy7(Q?) vanishes at all orders in massless perturbative-QCD. This is a
direct consequence of the chirality fipping nature of the tensor current, do*u = dr,o* ug +
dro™uy, since chiral symmetry is preserved by the massless QCD Lagrangian.

Chiral symmetry is, however, spontaneously broken, and the two-point correlation
function ITy7(Q?) does not vanish in QCD. Taking into account the tiny size of the
light quark masses, the leading OPE contribution comes from the quark condensate, (gq).
Disregarding small SU(3)y-breaking corrections, the tree-level result is [172, 173],26:27

2
HgTP‘,E'I\'ee(QZ) ~ _@ <OIQQ|O>M . (A.15)

This expression is only expected to give a reliable first estimate when the quark condensate
is evaluated at a scale p that is close both to the matching point g and to /sg. Taking

26There is a misprint in the global sign in eq. (2.8) of ref. [172].

27In the absence of explicit sources of SU(3) breaking, such as the light quark masses and electromagnetism,
vacuum is invariant under those transformations and then only SU(3)y singlet operators can acquire a
nonzero vev. As a consequence, (iiu) = (dd) = (3s).
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1= po = 2 GeV, this requirement is approximately satisfied. Using the ansatz of eq. (A.15)
one finds,

e . 20a0)uo [ m2\" AL6
Iy 7 mree = ( _n)smT T9sy ) (A.16)
- n
@  _ _2(qq) m3
Iy T Tree = Som:m - g : (A17)
Adding both pieces,
Ivy mree = — T(Sqigu n,0 > (A.18)

which corresponds to the expression given in ref. [20].

Leading Logarithmic (LL) resummation. A first improvement in the calculation
consists in keeping track of the scale dependence of the correlator, resumming the logs
from the matching scale in eq. (5.12), which we choose to be py = 2GeV, to the most
convenient choice # to cancel logarithms with lower-energy scales, resumming the cascade
of ~ a%(u)log" ( ) contributions.

When taking into account QCD corrections, Iy7(sg,n) becomes dependent on the
renormalization scale, as a consequence of the non-zero anomalous dimension of the tensor
current. In contrast to an already scale independent I3 Vi A(s), this scale dependence only
cancels in the e Iy product. The scale dependence of Iy ¢ is inherited by H‘?;E(s), for
which both the vacuum condensates ({gg)(y) at lower dimension) and the Wilson coefficients
in front (Cgq (1)) are scale dependent [173].

Let us define our convention for the anomalous dimension of any operator O,

=506 (n) ( ) (A.19)

through the identity
d
(ud— + ’Yo) O(p) =0. (A.20)
m

The leading order anomalous dimension (Np = 3) of C\4, can be obtained either (i) by

combining the anomalous dimension of the quark condensate fy(( ) — —73) = —2 with

the one from ef7(u), 7(;2 = —2 [27] and requiring that the €7 (p) Iy(p) product must

be scale-independent; (11) or dlrectly from the one-loop calculation of Cgp (1) [173]. The

result is the same, 7(0() , = %. Then, starting from a matching scale yg in eq. (5.12), we

can re-express YT (o) as a function of Cgy(p) at any other scale p by solving the leading

nl#

order version of the RGE for Cg,(1). One obtains, up to o log 4 corrections (starting

at n = 1),

o)

97 L(Q% ko) = — (QSEZO;) " (99) o » (A.21)

where 'y(l) refers to Cgqy and 51 = —g. Now we have the freedom to set the most suitable
scale g to avoid large logarithms with low-energy scales in both terms of eq. (A.12).
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Inspecting egs. (A.13) gnd (A.14), natural choices for I‘(/lf} and I‘(}% are, respectively,
w2 = spé(z) and pi = m—zzl, where z = gﬂi and £(z) is a function that depends on whether
a logarithmic resummation along the |s| = s circle is performed, ¢°'PT(z) = z, or not,
¢¥OPT(z) = 1. One finds:

_aw

1)FOPT as(ud)\ o
Loy, (ko) = (—aj (s;’)) 102, Tree: (A.22)
2D L)
(o, (1) melaa)uy (as(ug)) j{ P (1_/81013(30)_ logx) "
VT,LL PO 2mis3 as(sg) |zj=1 z— % 2w ’
(A.23)
) _2
2 s (1) -
I\(/T)’,LL(”O) = (M) I‘(/:)r,ncc- (A.24)

Full O(a,) corrections plus LL resummation. We can add the non-logarithmic
contribution of order o, computed in ref. [173] to the cascade of af log" £ contributions.
Including this correction one has, up to (and not including) corrections of order a” log™ ’:—f—
with 0 < m < n, starting at n = 2,

)
HIOPE(Q2, o) = 5_3 (as(uﬁ)) 51 [1  dag(p?) (1 ~ log %2)] (@) o » (A.25)

as(p?) 3m

which with the previous scale choices introduces a correction that goes (up to NLL correc-

tions) as:
., FOPT dovg (1) (—1)"mr{Gq)u, das(ud) g1
AL o = == Iy + 27?1733 ko 220 40 f de—— oy loga, (A.26)
250
dovg(p2
AIS?,?;L}E@ = _%‘LO)IVT,T&*(:(: . (A27)

NLL analysis. Since we have the full D = 3 contribution at NLO in a, available,
the only remaining piece for a full NLL analysis is the NLO anomalous dimension of
the Wilson coefficient Cy4(p). Once again, scale independence of eq. (5.12) implies

2 2 2 . 2 2 2
75(de +‘yé~ <),, » +7é63) = (. Taking into account that 7&3,) = —'y,(n) = —% and 'yédTZ = —% (27,

one finds 75 = 197, Solving [174] the NLO version of the RGE equation (A.20) for C(z,)
with the initial condition:

4 Qe 2 Q2
Cla () = 1 - 328 (1 - log N—Q) , (A28)
one obtains:
2 - = 2 2
=2 (as(pg)) ™ as(pug) —s(1”) (Bo
[1OPE 2 o) = 0 1+0—(_ (1 _ (2))
vr,NLL(Q"; ko) 02 (as(uz)) - 57 7

x {1- %%"2) (l—log “—:)] @), (A29)

— 45 —



where again 'y(i) refers to Cg,) and 2 = —8. Setting again the renormalization scales as
above one has

7 _ (=1)"m, ?{ dr " IPFRLL(Q? = soz, po, u? = &(x)s0) (A.30)
VT,NLL — 47 S0 |zj=1 — 2ﬂ2L 3 .
S0

(1)

n+1 73'T
I‘(/Qi)r NLL = (_m_%) iz (&%))) . [1 + as(pd) — as(m2/2) (%’7(1) _ 7(2))]

2s0 m3 \ as(m2/2 mH

a 2
<1320 (A1)

3
where once again £(z) = 1 corresponds to FOPT and £(z) = z to CIPT.2®

Higher dimensional corrections. The following dimensional contribution comes from
dimension D = 5 [75]. At tree-level,

= 2 _
Hgl;E’D 5(Q2) = TQ[l(OlgsqG’wU;wq’O) ) (A32)
which gives
= 2(0|gs q GH 0
IppP=% = {0lg (f,, Z‘“’ql )(26n,o —bn1) - (A.33)
ms G

Numerical implementation. The main input needed for the numerical evaluation of
Iy is then the quark condensate. We take as input the latest Ny = 2 + 1 lattice estimate,
(Gq)s = —272(5)MeV [10, 175-180].

Unfortunately, no modern precise determination of the D = 5 condensate is available.
We will take conservatively,

(0|gs¢G** 7,,q|0) = 0 £ 0.8 GeV?{gq), (A.34)

where we used the 40-year-old result of ref. [181] (obtained from baryon sum rules) as an
estimate of the uncertainty of the quark-gluon condensate and of the neglected higher-order
OPE contributions (D > 3).

The Iy values obtained in the above-described approximations are shown in table 3.
The different corrections are rather large (notice how the leading contribution for most of
the monomial functions only starts at NLO in a;) and go in the same direction. Qur final
values correspond to the NLL (CIPT and FOPT average) ones taking their difference with
the NLO+LL ones as estimate of the perturbative (D = 3) uncertainty.

B Tensor form factor fr in radiative pion decays

In this appendix we describe an improved evaluation of the tensor form-factor appearing in
the radiative pion decay 7~ — e ve7,

1k, €) [uotysdlm™) = =2 fr(kue, — kveu) (B.1)

28The two-loop analytic continuation of the running coupling must be implemented for the first term in
the r.h.s. of eq. (A.29).
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Weight w=1 Wy w1 w9

Tree 8.1 7.2 8.1 7.2
LL 6.6 6.2 6.0 4.7
NLO+LL 5.4 4.6 4.6 3.6
NLL 4.8 4.1 3.8 2.8

Op_s 0+15 | 0+12 | 0+23 | 0+24
Final |[48+16[41+13|38+24|28+26

Table 3. Theoretical values of /7 for the four weight functions used in this work and obtained
working at different levels of approximation (see main text). The results are given in 102 units.
The so values are those chosen in section 5.1 for each moment, i.e., 2.8 GeVZ, m2, 2.8 GeV?, and
m?2, respectively.

In ref. [182] a connection between the tensor form factor and the magnetic susceptibility of
the vacuum yx [183] was derived by using current algebra (see ref. [74] for a more detailed
re-derivation). Let us first revisit this connection by using instead the chiral Lagrangian of
ref. [184],

X7 = Ay (8 fropw ) — i A (8w, ) + Ag (817 8,) + Ag ()2, (B.2)

derived by adding a new term involving tensor sources to the QCD Lagrangian and by
building the lowest order chiral operators with the same transformation properties under
SU(NF) x SU(NF) (in our case N = 2). The effective low-energy realization of the tensor
quark current at leading order is obtained by equating functional derivatives of the action
with respect to the tensor sources for both Lagrangians. Taking the derivative of the
generating functional with respect to eifﬁu, where e; is the electric charge of the associated
light quark and ¢*” is the tensor source as defined in ref. [184], and contracting with an
initial photon state, one finds at leading order

_ 1, _
X(qq> (OleV|7(Q7 e)) = ;(OIQiUMUQi|7(Q1 e)) = _2A1<O|Fuuh(Q7 E)) ) (B3)
T
where the first identijcy corresponds to the definition of the magnetic susceptibility, x. One
then finds Ay = ﬁ%l.” Taking now the derivative of the action with respect to ¢} and
contracting with a photon in the final state and a pion in the initial state one obtains,
— _ ie«/iAl . e\/§A1
(v(k, €)|[ua""ysd|m™) = — 3F (v(k,€)|Fpm™|n7) = T(k,uev —kuey) s (B.4)
from which, comparing with eq. (B.1) one finds,
V2x(aq)
= —= B.
fr Ya (B.5)

in perfect agreement with eq. (51) of ref. [74]. The magnetic susceptibility x was estimated in
that reference by modeling the Iy correlator assuming dominance of one vector resonance

297, is also known, since it can be shown to be proportional to the tensor form factor of eq. (4.16).
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(the p) and using that ITy7(0) is proportional to x (see also refs. [74, 172, 185-187]).
Fortunately, the quantity of interest has been precisely computed in the lattice [158]

x(qq) = (45.4 + 1.5) MeV (B.6)

Using that result and taking F = F, = (130.50 + 0.13)//2MeV [26], which it is valid at
the working chiral order, one obtains

fr =0.232 +0.012 + 0.008, (B.7)

at p = 2GeV in the M S scheme. The first uncertainty corresponds to an estimate of
higher-order chiral corrections (~ 5%), and the second one corresponds to the one coming
from the lattice input. This updates the bound of ref. [24] to:

&l = (0.5+2.4) x 1073, (B.8)

C Correlation matrix

In this appendix we present the correlation matrix (in the Gaussian approximation) associ-
ated with the global constraints in eq. (6.7):

1001 0. 0. 0. 0. =011 0. 0.03 0. =012 002 0 0. 0. 0. -0.03 —-0.05
1 -097 0. 091 0. 0. —026 025 -092 0. 025 0. —0.83 048 0.85 -0.25 —0.16
1 0.04-095 003 0 0. 0. 0.95 0 0. 0. 08 —-05 —088 0. —0.1
1 -0.02 06 0 0. 0. 0.02 0 0. 0. 003 0. 004 0. 0.
1 -0.00 o 0. 0.02 -0.999 0. 0.02 0. —-0.75 068 0.76 -0.02 0.09
1 0 0. 0. 0.01 0 0. 0. 002 0. -003 O0. 0.
1 0. 0. 0. 0 0.02 055 0. 0. 0. 0. 0.01
1 -0.997 0. 0. —-0.997 0. 0. 0. 0. 0.99 0.98

1 —0.02 —0.01 0.9996 0. 0.02 0.04 —0.02 —0.997 —0.98
1 0. —0.02 0. 075 —0.68 -0.76 0.02 -0.09
1 001 0. O 0. 0. 0.01  0.01
1 001 0.02 0.04 —0.02 -0.997 —0.98
1 0. 0. 0. 0. 0.
1 —0.06 -0.97 —0.01 —0.06
1 011 -0.04 0.05
1 0.02 0.08
1 0.98
1

(C.1)
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