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Abstract Surface organic carbon content and soil moisture (SM) represent first-order controls on
permafrost thaw and vulnerability, yet remain challenging to map accurately. Here we explored the links
between surface organic soil properties and SM dynamics in the Alaska North Slope through data analysis

and process-based modeling. Our analysis, based on in situ SM and brightness temperature data from the Soil
Moisture Active Passive (SMAP) mission, indicated that the SM drydown process in Arctic tundra is closely
related to surface soil organic carbon (SOC) properties. More rapid drydown was generally observed in areas
with high SOC concentration (SOCC) or low bulk density. The drydown timescale derived from the SMAP
polarization ratio (PR) was significantly correlated with SoilGrids surface (0-5 cm) SOCC data (R = —0.54

~ —0.68, p < 0.01) at regional scale. To understand the process, we used a coupled permafrost hydrology and
microwave emission model to simulate changes in the L-band PR during the thaw season. The model accounts
for the variations in organic soil hydraulic and dielectric properties with SOC content and decomposition state.
Model sensitivity runs showed larger L-band PR decreases during the early thaw season in soils with higher
SOCC consistent with the above analysis, whereby highly organic soils (SOCC > 34.8%) drain water more
easily with a larger amount of water discharged or lost (through evapotranspiration) relative to soils with less
carbon concentration (SOCC < 17.4%). Our findings indicate that satellite L-band observations are sensitive to
tundra SM and carbon properties, and may provide critical constraints on predictions of Arctic permafrost thaw
and vulnerability.

1. Introduction

Permafrost underlies about 24% of the exposed land areas in the Northern Hemisphere with more than 85% of the
permafrost distributed above 5S0°N latitude (Zhang et al., 2008). Pronounced warming has occurred in the north-
ern high latitudes, which has induced widespread changes in the northern permafrost region, including increasing
permafrost ground temperatures, active layer deepening, enhanced duration of the zero-curtain period and talik
formation at depth (Biskaborn et al., 2019; Connon et al., 2018; Yi et al., 2019). Permafrost acts as a barrier to
vertical water flow and exerts strong control on soil hydrologic conditions. Warming-induced permafrost thaw
will trigger major changes in the Arctic hydrologic system, including alterations to soil moisture (SM) regimes,
the connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below
ground (Vonk et al., 2019). This shifting soil hydrology with permafrost thaw will create a fragmented landscape
composed of both drier and wetter soil conditions, which will largely determine potential climate and carbon
feedbacks of boreal-Arctic ecosystems (Liljedahl et al., 2016). However, pan-Arctic characterizations of perma-
frost thaw and SM variations remain highly uncertain despite documented rapid changes (Andresen et al., 2020).

The northern permafrost region contains a vast amount of soil organic carbon (SOC; Hugelius et al., 2020).
Highly organic soils can act as strong insulators due to their distinctly different hydraulic and thermal properties,
and can modulate how permafrost thaw responds to warming (Lawrence & Slater, 2008; Yi et al., 2018). The
effects of organic soil on ground temperature evolution are also strongly regulated by the soil structure and water
content (Zwieback et al., 2019). However, representing such effects in global models has been challenging, partly
due to a lack of effective parameterization of organic soil hydraulic properties (Decharme et al., 2016; Paquin &
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Sushama, 2015). Organic soil hydraulic properties can change dramatically depending on the carbon content and
decomposition state of the soil organic matter (SOM). Undecomposed (fibric) organic soils with very low density
have large hydraulic conductivity and are highly permeable, while more decomposed (hemic or sapric) organic
soils exhibit higher density, higher suction, and low hydraulic conductivity (Letts et al., 2000; Verry et al., 2011).
The variability in soil hydraulic properties also has a large impact on the soil thermal properties by affecting
water flow and retention, which influences soil heat transfer and active layer freeze/thaw (FT) processes. Previ-
ous studies have demonstrated that accounting for the variability of hydraulic properties within the organic soil
profile can improve model simulated water table depth, soil temperatures, and hydrologic fluxes in the northern
high latitudes (Bechtold et al., 2019; Guimberteau et al., 2018).

Although surface SOM represents one of the major controls on active layer thaw dynamics and SM variations,
large uncertainties remain in current estimates of the pan-Arctic SOC stock (Hugelius et al., 2020; Mishra
et al., 2021). SOC is the carbon component (~58%) of SOM, which is more measurable than other components
of SOM. As a result, SOC is typically reported in regional and global soil data sets (Hugelius et al., 2020; Tifafi
et al., 2018). Mishra and Riley (2015) showed that the variance of SOC content varied at different scales, but
remained constant beyond the scale of ~500 m, with different environmental factors controlling the SOC spatial
variability at different scales. In situ or ground-based remote sensing measurements generally fail to capture such
variability. A variety of methods including geospatial analysis and machine-learning data-driven approaches have
been applied to upscale in situ SOC content to provide grid-cell mean estimates of SOC for direct comparison
with satellite or model-based products (e.g., Mishra et al., 2021; Mishra & Riley, 2015). However, the accuracy
of the above methods is limited by available in situ SOC measurements that generally fail to capture the spatial
variability of SOC across the vast northern permafrost domain.

Soil dielectric constant is primarily dependent on soil physical characteristics, the amount of water content, and
soil temperature (Schmugge, 1983). Increasing soil water volume will lead to significant increases in both the
real and imaginary parts of the dielectric constant of soil due to the high dielectric constant of water. The soil
dielectric constant dependence on soil type (or texture) reflects the varying amount of soil water bound to the
particle surfaces in different soils. The presence of SOM can modify the soil composition, including the percent-
age of free-water and bound-water components, and in turn affect the dielectric constant. Microwave remote
sensing, especially from longer wavelengths such as L-band, can capture significant dielectric changes resulting
from soil FT transitions or drying/wetting events (Chan et al., 2016; Derksen et al., 2017; Kerr et al., 2012), and
may also provide other useful information on SOM composition and soil water storage. Previous studies have
reported strong L-band sensitivity to surface SM in both tundra and boreal forest, with the sensing depth varying
from ~1 cm to tens of centimeters depending on surface SM conditions (Colliander et al., 2020; Escorihuela
et al., 2010; Gherboud;j et al., 2012). Since the capacity of this soil layer to hold and conduct water varies with
soil type, the differences in microwave emissivity over time should indicate the differences in the soil hydraulic
properties. A few studies have demonstrated a strong qualitative relationship between L-band brightness temper-
ature and soil type and properties (e.g., saturated hydraulic conductivity; Burke et al., 1998; Camillo et al., 1986;
Mattikalli et al., 1998). A follow-on study has successfully inverted meaningful hydraulic parameters using SM
retrievals from L-band brightness temperature (Santanello et al., 2007). However, very few studies have discussed
the potential of L-band brightness temperature to provide reliable estimates of surface soil composition (includ-
ing SOC) and moisture conditions in organic-rich soils or peatlands across the northern permafrost region (Bech-
told et al., 2020; Jonard et al., 2018).

Our goal in this study was to test the feasibility of an integrated process model—remote sensing solution to poten-
tially provide reliable, regional-scale SM and SOC estimates over the vast pan-Arctic region. Our model accounts
for variability in the organic soil hydraulic and dielectric properties in the soil parameterization that is generic to
facilitate model extrapolations over the entire pan-Arctic region. Furthermore, we combined data analysis with
model simulations to study the linkage between tundra SM dynamics (particularly the soil drydown character-
istics) and organic soil properties on the Alaska North Slope. The shape of SM drydown, which is generally
defined as the SM time series directly following a precipitation event with zero infiltration input, is determined by
multiple processes including drainage, runoff and evapotranspiration (McColl et al., 2017). The rate at which soil
drydown occurs, is a measure of SM “memory,” important for studying land surface and atmosphere feedbacks
(McColl et al., 2019). In this study, we first derived the soil drydown characteristics using in situ SM data and
SMAP (Soil Moisture Active Passive) satellite L-band (1.41 GHz) polarization ratio (PR) observations. We then
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Figure 1. Study area (a) and location of in situ sites. A subregion (approximate location indicated by the black box in a)
along the Deadhorse Highway (DHN, (b) was selected for the regional analysis on soil drydown process. Both panel (a) and
(b) are based on the NLCD land cover map, with the legend shown in panel (b). Additional SNOTEL sites in the North Slope
are shown as black dots, which were used to evaluate the Daymet precipitation data (Thornton et al., 2020). The surface SOC
concentration derived from the SoilGrids versionl data set for the DHN subregion is shown in panel (c).

examined the PR and SM sensitivity to soil carbon properties indicated from a regional SOC data set (SoilGrids).
Finally, we used a coupled permafrost hydrology and microwave emission model to clarify the sensitivity of the
L-band PR to tundra SM changes and surface organic soil properties.

2. Study Area and Data Analysis
2.1. Study Area and In Situ Data

Our study area is located on the Alaska North Slope (>~68°N, Figure 1), which encompass the Beaufort Coastal
Plain and Brooks Foothills ecoregions (Berner et al., 2018). Based on the 30-m National Land Cover Database
(NLCD, Jin et al., 2013), this area is dominated by two major tundra types, including Sedge/Herbaceous and
Scrub/shrub tundra. The Beaufort Coastal Plain supports extensive lowland tundra plant communities, dominated
by sedges and small shrubs. The warmer Brooks Foothills supports tussock tundra, shrub tundra, and mixed
tundra communities. This area is underlain by continuous permafrost, which prevents soil drainage and promotes
waterlogged soils and wetland vegetation representative of the larger tundra biome.

YIET AL.

3 of 27



A~
MM\I
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030957

Table 1

The List of In Situ Sites and Data Used in This Study

Coordinates Data sets Period Note

EC tower sites at Imnavait Creek
watershed

Imnavait Creek (IMN) SNOTEL
site

Kelly Station (KLS) SNOTEL
site

Prudhoe Meadow (PM)
SoilSCAPE site (node S5)

Happy Valley (HV) SoilSCPAE
site (node S1)

US-ICh: 68°36'24"N, Latent heat fluxes, surface 2008-2020 Deep T, ; and SM available
149°17'45"W (5 cm) and deep T, ; and SM, from the neighboring
US-ICs: 68°36/21"N, wind speed borehole site; data used
149°18740"W for'hydrlology mod.el .
calibration and validation
US-ICt: 68°36'23"N,
149°18'15"W
68°37'N Surface (~5 cm) SM, T, 2012-2020 Soil drydown analysis; model
149°18'W precipitation calibration and validation
67°56'N Surface (~5 cm) SM, T, 2015-2020 Soil drydown analysis
162°17'W Precipitation
70°13'47"N Surface (~5 cm) SM, T, 2016-2018 Soil drydown analysis; no
148°25'19” data after August 2018
69°9'11"N Surface (~5 cm) SM, T, 2016-2017;2019-2020  Soil drydown analysis; gaps
148°50'31"W. between 2017 and 2019

We used surface (~5 cm depth) SM data from two SNOTEL (SNOwpack TELemetry, http://www.wcc.nrs.usda.
gov) sites and two Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) sites (http://soilscape.
usc.edu) for the soil drydown analysis (Table 1). There are four SNOTEL sites located within the North Slope
Borough boundary (Figure 1a); however, we only chose the Imnavait Creek (IMN) site, since other sites either
have no SM measurements, or are located in the barren mountain area. In addition, we also included the Kelly
Station (KLS) SNOTEL site adjacent to the North Slope region in our analysis. This site was classified as “scrub/
shrub” tundra by the NLCD map, though this area may have some tree canopy coverage based on the site char-
acterization data (Figure S1 in Supporting Information S1). The four sites create a north-south transect from
the Arctic Coastal Plain to the Brooks Range foothills. Half-hourly soil dielectric constant data were available
since August 2016 at the SoilSCAPE sites. We converted the dielectric data to SM using the soil dielectric
model described in Appendix A, and SOM measurements at the two sites as inputs to the dielectric model. The
SOM content is ~22 + 5% at the topsoil (depth of ~15 cm) for the PM site, and ~90 + 4% at surface (depth of
~7 c¢m) for the HV site (Bakian-Dogaheh et al., 2020). The underlying mineral soil texture is silt loam at the PM
site, and silty clay loam for the HV site. Varying SOM content by 10% leads to less than 5% cm?/cm? variations
in the model estimated SM. A soil dielectric model tailored for organic soil is under development using field
soil samples and laboratory measurements, which shall provide more accurate SM estimates. Multiple nodes
were installed at each SoilSCAPE site, although the data temporal coverage is much lower compared with the
SNOTEL sites.

For the hydrology model calibration and validation, we mainly used the data from three Eddy Covariance (EC)
tower sites within the Imnavait Creek watershed (Table 1), including dry heath, moist acidic tussock, and wet
sedge (Fen) tundra (Euskirchen, Bret-Harte, et al., 2017). Mean annual air temperature and precipitation at this
site are —7.4°C and 324 mm, respectively. The surface soil organic layer varies from 34 + 2.4 cm in wet sedge
tundra to 15 + 1.4 cm in the tussock tundra and 2.3 + 0.3 cm in the dry heath tundra. Surface (~5 cm depth) soil
temperature and moisture were available at the three tower sites; deep soil temperature (7 ; at 34, 50, and 90 cm
depths) and SM (14, 39, and 53 cm) are available from a neighboring borehole site (Euskirchen, Bret-Harte,
et al., 2017). Surface SM at the tower sites have large uncertainties including abrupt changes in the SM meas-
urements at the Tussock tundra site; therefore, we also used surface soil moisture and temperature data from the
adjacent Imnavait Creek SNOTEL site for model calibration and validation, which is located in areas with surface
conditions more similar to the dry heath tundra site according to the tower PI (Euskirchen).

2.2. Soil Moisture Drydown Analysis

The soil drydown process can be modeled using an exponential decay function (Shellito et al., 2016):

YIET AL.

4 of 27



A~
MM\I
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030957

0() = Ae(="/) + 0, )

where 0 is the surface SM (cm?/cm?), and # is the time since the beginning of the drydown (days). A, 7o, and 0, are
empirical fitting parameters describing the magnitude of SM drying (cm3/cm?), the drydown timescale (days),
and the residual SM (cm?®/cm?®), respectively. The parameter 7 is of particular interest as a measure of the SM
“memory,” and global studies have shown large variability in 7, with climate regime, soil texture, measurement
depth, etc. (Kurc & Small, 2004; McColl et al., 2017; Rondinelli et al., 2015; Shellito et al., 2016). However, none
of the studies have particularly looked into how this parameter varies in the Arctic region.

We used both the in situ SM (Table 1) and SMAP brightness temperature data to study the SM drydown process
in Arctic tundra. Soil thawing and freezing can lead to changes in the liquid soil water content. Therefore, we
first used the air temperature data to define the surface thaw and freeze onset, and mask out frozen and freeze/
thaw transitional periods. The freeze (thaw) onset was defined as the date when both the air temperature at that
day and the 7-day moving average drop below (rise above) 0°C. We then identified individual drydown periods,
with significant (>~8 mm) rainfall occurring prior to the drydown period, and with less than 2 mm precipitation
occurring during the drydown period. Besides precipitation inputs, soil wetting can also be associated with soil
thawing in the permafrost area (Figure 2). Therefore, we also extracted the apparent soil “drydown’ events that
occurred within the 30-day period after the thaw onset, even though there may be low precipitation accumulation
prior to the “drydown” period. During this period, the soil “drydown” process can be different from classical
“drydown” events in the middle latitudes; during early thaw period in the Arctic, surface soil drainage may occur
simultaneously with subsurface thawing. We chose the “30-day period” because previous studies based on in situ
SM data and satellite SM retrievals have showed that the soil drydown time constant is generally less than 20 days
(McColl et al., 2017; Shellito et al., 2016). In addition, the “30-day period” covers the majority of drydown peri-
ods (i.e., low precipitation input) in the study area. For the analysis, we only analyzed drydown events lasting
longer than 5 days. In situ air temperature and precipitation were used for the analysis at the SNOTEL sites. For
the SoilSCAPE sites, we used the Daymet surface meteorology (Thornton et al., 2020) for the analysis.

We used the Polarization Ratio (PR) derived from the 9-km SMAP L1C_TB_E Northern Hemisphere polar
product (Chaubell et al., 2020) to study the soil drydown process at both site and regional scales (Figure 1b). The
NASA SMAP mission was launched in January 2015 and acquires vertically (V) and horizontally (H) polarized
brightness temperature (Tb) measurements at 1.4 GHz and 40° incident angle. The Tb data are acquired from
the sun-synchronous polar-orbiting satellite at consistent 6 a.m./p.m. equatorial crossing times and with ~40-km
native footprint resolution. The SMAP Tb data are acquired globally with 1-3 days repeat measurements and
daily coverage at the higher latitudes (>50°N/S) due to converging orbital swath acquisitions toward the poles.
The Tb data are composited individually for ascending and descending orbits and mapped to 9 km grid resolution
global and polar EASE-grid version 2 projections using a Backus-Gilbert spatial interpolation process in the
SMAP L1C_TB_E product (Chaubell et al., 2020). We averaged the ascending and descending overpasses to
derive daily mean brightness temperature.

The PR was defined as the polarization difference of the daily mean brightness temperature, normalized by the
mean brightness temperature:

Ty — Ton
R= e lbh
Ton + T /2 2)

where T}, and T}, represent the brightness temperature at V and H pol. Our study area is mainly dominated by
herbaceous and shrub tundra, with relatively low biomass. Therefore, we assume SM is one of the main factors
affecting the PR values. Generally, surface soil is very wet right after spring thaw in Arctic tundra, and then grad-
ually dries out during the thaw season without significant precipitation inputs. Figure 2 shows the time series of in
situ surface SM data along with the SMAP L-band PR time series at the SNOTEL and SoilSCAPE sites. Here, the
SMAP PR gradually drops during the early thaw period at the tundra sites, consistent with the in situ surface SM
data. However, the L-band PR generally shows an earlier thaw onset compared with the SM data at 5-cm depth,
while the surface thaw onset derived from the air temperature data corresponds well with the thaw onset indicated
by the PR time series. Other than SM changes, vegetation growth and resultant changes in the vegetation water
content also affect the PR values (Paloscia et al., 2018). Therefore, we limited our analysis to the first 30-day
period after spring thaw onset (similar to the in situ SM analysis) to reduce the impact of vegetation water content
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Figure 2. Daily time series of in situ SM, L-band PR derived from SMAP brightness temperature data at the SNOTEL and SoilSCAPE sites, used for the soil drydown
analysis, shown with daily precipitation and thaw onset derived from daily maximum (thaw_onset_PM), minimum (thaw_onset_AM) and mean air temperature (thaw_
onset_daily) data. The data at the HV SoilSCAPE site were not shown due to large data gaps and no overlap between PR and SM data during the spring thaw period.

changes on the L-band Tb and PR. The selection of drydown periods for the PR data is similar to the in situ SM
drydown analysis, although no additional constraints were added to the prior accumulated precipitation amount.

We fitted the three parameters, A, 7o, and 7, by minimizing the sum of squared errors between modeled SM (or
PR) with in situ (or SMAP) observations. For the site scale analysis, we did not perform data fitting for each indi-
vidual drydown event, but pooled all data together, due to large uncertainties in the precipitation and SM meas-
urements. For the regional-scale analysis, we selected a subregion along the Dalton Highway (DHN) covering an
area of 1.2° x 2° (Figure 1b), which encompassed all the in situ sites except for the Kelly Station SNOTEL site.
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We chose this region mainly because it experienced very low precipitation during the spring thaw period in 2017
(only a few mms of rainfall were recorded during June), enabling longer drydown events to be extracted from the
PR data from the overlapping SMAP observation period (2015-2020). For the analysis, we excluded all 9-km
grid cells with surface open water area greater than 1% indicated by the SMAP ancillary data. SoilGrids 250 m
SOC concentration (SOCC) and bulk density data (version 1: Hengl et al., 2017; version 2: Poggio et al., 2021)
were used to compare with the drydown timescale derived from the SMAP PR data. The 250-m SoilGrids data
were aggregated and resampled to the same 9-km Northern Hemisphere EASE-grid 2 projection as the SMAP
PR data prior to the comparison. Our preliminary analysis indicates that the two SoilGrids data sets show quite
different spatial pattern across the entire North Slope, but are relatively more consistent in the DHN subregion,
likely because more in situ SOC data are available in this region. With more high-quality SOC and precipitation
(used for identifying drydown events) data available in the future, we will be able to extend our analysis to a
larger domain.

3. Model Simulations

We studied the sensitivity of the SMAP L-band PR time series to the soil drydown process during the thaw season
and tried to identify the main factors controlling this sensitivity, by coupling a permafrost hydrology model with
the widely used tau-omega model. The hydrology model provides soil moisture and temperature simulations
that were converted to soil dielectric constant and used as primary inputs to the tau-omega model. The impact of
varying SOM on soil hydraulic, thermal and dielectric properties was also represented in the model simulation
as described below.

3.1. Hydrology Model Simulation

We used the pan-Arctic Water Balance Model (PWBM; Rawlins et al., 2013) with main improvements on the
evapotranspiration (ET) modeling component to simulate soil thermal and hydrologic conditions in this study.
The PWBM model used here is an extension of a simple large-scale pan-Arctic water balance model, but has been
improved to include more detailed processes to account for organic soils, changes in snow cover properties and
soil water phase change on the soil FT process (Rawlins et al., 2013; Yi et al., 2015). Other model improvements,
including new parameterizations for surface fractional open water and soil carbon content (Rawlins et al., 2019),
were not used here. We used a different organic soil parameterization in the PWBM for this study as discussed in
Section 3.1.1. The model simulates snow/ground and subsurface temperature dynamics using a 1-D heat transfer
equation, and the 1-D Richards equation was used to simulate soil water movement within the soil profile. The
PWBM model defines 23 soil layers down to 60 m below surface, with a finer vertical resolution in the surface
layers. The center of each layer in the top ~1 m soil profile is located at 1, 3, 8, 13, 23, 33, 45, 55, 70, 105 cm
depths. Multiple snow layers are used to account for the effects of seasonal snow cover evolution on the ground
thermal regime. More model details can be found in Rawlins et al. (2013) and Yi et al. (2015).

We modified the ET scheme in the original PWBM model to improve both the model simulated ET and SM. The
original PWBM model did not distinguish soil evaporation from plant transpiration, and soil water loss through
ET was calculated for the entire root zone. This approach may overestimate total ET when the surface soil is dry
or vegetation cover is low. In this study, we separated soil evaporation from plant transpiration. For soil evapora-
tion, water was taken from the first 2 soil layers (~5 cm), while for transpiration water was taken from the rooting
zone or thawing depth. The details were provided in Appendix B.

3.1.1. Soil Parameterization Adapted for Organic Soil

Organic soils have distinctly different hydraulic properties from mineral soils, and should be accounted for when
modeling soil conditions in the northern permafrost region. Depending on the degree of decomposition, highly
organic histosol or peat soils can be classified as fibric (least decomposed), hemic (moderately decomposed),
and sapric (highly decomposed; Verry et al., 2011). Fibers are fragments of plant tissue representing the unde-
composed or partially decomposed portions of soil organic materials. The fiber content (FC) of SOM is a proxy
measure of the degree of organic soil decomposition that affects the bulk density, porosity, and pore size distribu-
tion, and thus can have significant impact on soil water-retention characteristics and hydraulic conductivity. Chen
et al. (2019) proposed a new soil parameterization that incorporates “fiber content” to describe the soil hydraulic
properties, which was used in this study.
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The soil bulk density can be expressed as an exponential function of soil organic matter (SOM in mass concen-
tration, g/g; Hossain et al., 2015):

pb = pom - (770N SOM) 3)

where p, is the bulk density (g/cm?) of pure mineral soil (i.e., SOM = 0), and you is the exponential decay rate.
FC can be related to soil bulk density using an exponential function based on data fitting using the soil database
collected by the US Department of Agriculture-National Cooperative Soil Survey (Chen et al., 2019):

FC = 0.9887 - 73127 “4)

This equation gives a similar estimate of FC as the quadratic function proposed from previous studies
(Boelter, 1969; Verry et al., 2011) for soils with low bulk density p, < 0.3 g/cm?; however, here we used the
above equation to cover the full range of p;. Instead of dividing soil solids into just mineral and organic materials
as most land surface models do, we incorporated FC into the parameterization and considered three solid compo-
nents: mineral (m), humus (h), and fibrous (f) materials. The humus and fibrous materials represent the portions
of organic matter that are well-decomposed and slightly decomposed with different FC values, respectively. Their
volumetric fractions (vy, Un, Um, With vy + vp + Uy = 1 — @) can be determined using the organic mass concen-
tration and FC:

vy =22 % SOM x FC
ps

on =22 % SOM x (1 - FC)
Ph

v =22 % (1 - SOM) )

m

where @ is the soil porosity (cm3/cm?), pm, pn, and p; define the specific densities for mineral, hemic/sapric, and
fibric soil materials and are 2.65 g/cm?, 1.80 g/cm?, 0.60 g/cm?, respectively. Their subphase fractions within the
soil solids (fu,, fo,» fo,» With fu, + fo, + fu, = 1) can be expressed as:

fU/ =Uf/(1_®)
Jo, =0vn/(1 = Q)
fon = Un/(1 —@) (6)

The PWBM model uses the Campbell function (Campbell, 1974) to relate soil matric potential and hydraulic
conductivity to volumetric SM using an empirical parameter b. Besides the Campbell shape parameter b, the key
parameters affecting soil water transfer also include the porosity, air-entry potential (), and saturated hydraulic
conductivity (k,), which can vary substantially depending on the organic matter content and FC. We therefore
applied a weighted combination approach using the sub-phase fractions, and the parameter values (X) that are
representative for each principle solid component (i.e., X, X, Xr). The literature values of the above hydraulic
parameters reported for fibric, hemic, and sapric peat (e.g., Letts et al., 2000; Verry et al., 2011) represent values
for soil mixtures of humus and fibrous materials. We assumed those values corresponding to soils with SOM
concentrations of 100% and 35-45%, respectively in this study. We then used the hydraulic parameters of fibric
and hemic/sapric peat and their subphase volumetric fraction (Equation 6) to solve for the nominal values of
purely “humus” and “fibrous” materials (i.e., X, X ). Then, the hydraulic parameters for any soil mixture can
be calculated as the weighted average of the nominal values of principal solid components as described below.

For the soil water-retention curve, there are two parameters to be determined: the air-entry potential y;, and the
exponent b. The values of y; show a very weak dependence on degree of decomposition (Letts et al., 2000). We
thus assumed a linear transition from fibric peat (SOM = 1) to sapric peat (SOM_1 = 35-45%), followed by a
quadratic transition from sapric peat to purely mineral soil:

(SOM -SOM _1)

s.f —Wss) 1ifSOM > SOM_1
—SOM 1 Wsr =Wss) 1 -

Ys = Yss +
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2
(SOM — SOM_1) o

Vs = Yss t+ SOM 12 (Wsm — Wss) ifSOM <SOM_1

where v, and y; ; are the air-entry potential (cm) for fibric and sapric peat, respectively. For the pure mineral
soil, yym = — 10(188-00131xsand%) gy the exponent b, we use the weighted arithmetic mean to calculate b for mixed

soils:
b= forXbr+ fonXbp+ fomXbn ®)

where by, bp, b, are the values for pure fibrous, humus, and mineral materials, respectively, with
b =2.91 + 0.159 X clay% . The values of by and by, can be solved based on the b values of fibric (SOM = 1) and
sapric peat (SOM = SOM_1), given their sub-phase fractions of the three soil constituents. For saturated hydrau-
lic conductivity, we used the weighted arithmetic mean of logiok:

logioks = fo_mlogioksm + fo_nlogioksn + fo_slogioks.s ©)

where k , k» and k; ,, are the saturated hydraulic conductivity (m/s) for the fibrous, humus, and mineral materi-
als, with ky,, = 7.0556 - 1070884+00153and% "qimilar as above, the values of ky, rand k;; can be solved based on

the K values of fibric and sapric peat.

Table S1 in Supporting Information S1 provides the parameter values for fibric and hemic/sapric peat that were
used to solve the nominal value of pure fibrous and humus soil materials used in this study. The hydraulic param-
eters of soils with varying SOM values and mineral soil texture of sand = 44% and clay = 25% are plotted in
Figure 3, showing that the above parametrization is able to capture the slow drainage or water flows in well-de-
composed organic soils. The relationship between soil porosity and soil bulk density (or SOM) was also consist-
ent with data presented in O’Connor et al. (2020) and data collected from our recent field work in the study area
(Bakian-Dogaheh et al., 2020; Figure S2 in Supporting Information S1).

3.2. Tb Simulation

We used the established tau-omega model to simulate the L-band brightness temperature and polarization ratio.
The basic concept and description of the tau-omega model can be found in a number of studies (e.g., Kerr
et al., 2012; Wigneron et al., 2008), and we mainly describe the model parameterization here. The main param-
eters in the tau-omega model include the vegetation optical depth (VOD, z,), soil roughness parameter (h), and
single-scattering albedo (@,), where the subscript p refers to polarization (V or H). Under low to moderate vegeta-
tion cover, the single-scattering albedo is very low and we used 0.05 in this study. The VOD was found to be line-
arly related to the vegetation water content (VWC) using the b, parameter through 7, = by X VWC. We estimated
vegetation water content following the method used in the SMAP SM retrieval algorithm (Chan et al., 2013):

NDVI,.x — NDVIL,,;,

VWC = 19134 X NDVI? — 0.3215 X NDVI + stem fqeror X
1 = NDVLn

(10)

The maximum (NDVI,,.,) and minimum (NDVI,,;,) NDVI values were extracted from the MODIS 16-day NDVI
record (MOD13A2). The stemqor Was used to estimate the stem water content, which varies from 1.5 to 3.0
for grasslands to open shrublands. Soil emissivity (e,) was related to soil reflectivity (r,) by e, = 1 — r,, and the
roughness parameter was used to correct the smooth surface reflectivity r,, for rough surfaces as in r, = r, e™
The r;, values were calculated based on the surface soil dielectric constant using the dielectric model developed
in Park et al. (2017, 2019), with surface (~3 cm) SM and temperature inputs simulated by the PWBM model. A
brief description of the Park's model is given in Appendix A. The Park's model generally captures the difference
between organic and mineral soils as other models (Figure S3 in Supporting Information S1), but allowing for a
fully coupling with hydrologic models such as PWBM. We optimized the roughness parameter, VOD, and the
two vegetation parameters (by and stemq.r) as described in Section 3.3. Finally, the effective soil temperature
(T.ss) required in the tau-omega model was calculated as the weighted average of the PWBM model simulated
surface (~3 cm, center depth of layer 2) temperature (T..r) and deep (55 cm, center depth of layer 8) soil temper-
ature (Tyecp) as in Wigneron et al. (2008) and Gao et al. (2018):
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Figure 3. Selected key model hydraulic parameters in relation to SOM variations. The hydraulic parameters for the fibric peat (SOM = 1) and sapric peat
(SOM_1 = 35%) defined as in Table S1 in Supporting Information S1 were used to solve the hydraulic parameters for soils with varying SOM conditions. The mineral
soil texture has 44% sand fraction and 25% clay fraction. The field capacity was calculated with matric potential of 100 pa.

0 0.181
Teff =Tdeep+(Tvurf_Tdeep)x <m) (11)

where 0 is the surface (~3 cm) SM (cm?3/cm?).

3.3. Model Calibration and Validation

We used a two-step calibration approach in this study. Since soil hydraulic parameters are closely related to
the SOM concentration (Figure 3), we first calibrated the SOM profile used in the hydrology model, and then
calibrated the tau-omega parameters using the SMAP Tb data. The tau-omega model was only run for the thaw
season due to a lack of understanding of the scattering process in frozen soils (Roy et al., 2017). For all optimi-
zation runs, the cost function was defined as the Root Mean Square Errors (RMSE) between model simulated
and observed values.
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The PWBM hydrology model was calibrated and validated using in situ soil temperature and moisture, and evap-
otranspiration data from the three Imnavait Creek tower and neighboring sites. The surface meteorology inputs
for the PWBM model include daily mean and minimum air temperature, downward solar radiation, and vapor
pressure deficit, which were mainly extracted from the Daymet record (Thornton et al., 2020), except that wind-
speed data were extracted from MERRA?2 reanalysis data. Precipitation in the regional data sets generally has
large uncertainty in the Arctic region. Therefore, we used precipitation measurements from the Imnavait Creek
SNOTEL site, with gaps in the daily measurement record filled from the corresponding daily Daymet record.

For the hydrology model calibration, we used the following exponential decay function, similar to Chen
et al. (2020), to characterize the SOM distribution along the soil vertical profile:

SOM(z) = SOM, + —R0=SOMo (12)

Vit e G

where SOMy, and K are the SOM values (g/g) when z approaches the values of —co and +o0, respectively. B is
the decay rate (m~"), which is generally close to 50 m~! based on in situ data (Chen et al., 2020). Z,, is the depth
at which the maximum decay rate (or organic-to-mineral transition) occurs. We used the simulated annealing
(SA) method (Goffe et al., 1994) to optimize the unknown parameters, including SOM, Ky and Z,,,. Generally,
the SOM value at the soil bottom is very low. Test optimization runs using three parameters also showed the
optimized K value at the study site to be a very small value. To minimize the amount of time for the SA optimi-
zation, we set Ko to a constant value (0.05 g/g), which was also used in Chen et al. (2020). We then performed four
calibration experiments for the parameter optimization. The first two experiments used surface soil temperature
(T,,;) or SM data only to optimize the two remaining SOM parameters. We then optimized the parameters using
T
not optimize the parameters using SM at multiple depths because the SM measurements are generally associated

, at multiple soil depths, and finally optimized the parameters using both surface T, ; and SM data. We did

with large uncertainties in the Arctic and deep SM data are particularly scarce. We used equal weighting for the
cost function when using soil temperature or moisture only. When using 7, ;, and SM data together, to determine
the weight for different cost functions, we first calculated the RMSE values of model simulated and observed T
and SM separately, and then adjusted the weighting to make the RMSE values for both variables approximately
equal, in order to give similar weight to the 7, ; and SM observations.

With the SOM parameters calibrated, the PWBM model simulated soil moisture and temperature were then
converted to soil dielectric constant and used as inputs to the tau-omega model. For the tau-omega model calibra-
tion, we also used a two-step approach. First, we ran the model using a constant VOD value throughout the thaw
season and optimized the VOD and soil roughness parameters. Assuming the resulting VOD value was close to
the mean value for the thaw season, we then selected the b, and stem q.or parameters (Equation 10) that gave the
best solutions for model simulated Tb. Previous studies have shown different values for both VOD (or b, values)
and roughness parameters at H and V pol (DeLennoy et al., 2013; Kerr et al., 2012). However, we found that
accounting for these differences did not significantly improve the optimization results; therefore, we used the
same VOD and roughness parameters for both H and V pol.

4. Results
4.1. Soil Moisture Drydown Analysis

The drydown timescale (zp) derived from in situ SM data is generally consistent with the value extracted from
the SMAP PR data during the early thaw period (Figure 4), except for the Kelly Station (KLS) SNOTEL site
(Figure S4 in Supporting Information S1). The KLS site has more precipitation than all other sites, with mean
annual precipitation of 419 mm from 2013 to 2019, which makes it relatively difficult to find representative
drydown periods during the short thaw season. The data at this site also show a poor fitting for the SM drydown
curve (R = 0.56). The 36-km EASE2 grid encompassing the Prudhoe Meadow (PM) site has a much smaller
surface open water fraction (~3%), compared with the 9-km EASE2 grid encompassing this site. Therefore, Tb
data extracted from the SMAP 36-km EASE2 grid product was used here. The derived drydown timescale was
shortest at the Happy Valley (HV) site, and longest at the PM site, while our field surveys indicate higher surface
SOC content at the HV and IMN sites, and lower SOC content at the PM site.
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Figure 4. SM drydown trends (a—c) extracted from in situ data, and (d—f) indicated by the SMAP PR data after spring thaw onset, at the SoilSCAPE (PM, HV) and
SNOTEL sites (IMN).

(a)

At the regional scale, the soil drydown timescale derived from the SMAP PR data were significantly (p < 0.01)
correlated with the SoilGrids surface (0-5 cm) SOC concentration (SOCC) and soil bulk density data (Figure 5).
Higher SOCC or lower soil bulk density was associated with a shorter drydown timescale. Overall lower corre-
lation was found between the drydown timescale and soil bulk density compared with the SOCC data. Compar-
isons of the Alaska-wide in situ soil carbon data with the SoilGrids data indicates an overall better accuracy of
the SOCC data (R = 0.84) than the soil bulk density data (R = 0.58) for both versions of SoilGrids products.
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Figure 5. Correlation between the drydown timescale derived from SMAP PR data during the early thaw period and SoilGrids surface SOC concentration and soil bulk
density in the DHN subregion (Figure 1b).
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Table 2
Statistics of Estimated Drydown Timescale Derived From SMAP PR Observations and SoilGrids Soil Carbon Data for the
Two Dominant Tundra Types in the DHN Region

Soil bulk density (0-5 cm, g/cm?) SOCC (0-5 cm, g/g)
Drydown time scale (days) version 1 version 2 version 1 version 2
lc =51 (num* = 49) 10.10 + 3.77 0.49 + 0.07 0.44 + 0.06 029 +0.03 0.34+0.03
lc =72 (num* = 22) 15.10 +5.85 0.57 = 0.04 0.51 + 0.06 0.25+0.02 0.32+0.02

Note. *indicates the number of 9-km EASE?2 grid cells representing each NLCD land cover type, with Ic = 51 representing
scrub/shrub tundra and lc = 72 representing herbaceous/sedge tundra. Grid cells with poor data fitting (R < 0.75) were
excluded, accounting for 22% of the area. For all grid cells included, the open water fraction is below 0.4% (mean = 0.1%),
and the mean slope is 1.5%.

Previous studies also pointed out larger uncertainties in the soil bulk density from regional and global data sets
(Tifafi et al., 2018). For the soil drydown analysis, we excluded the 9-km EASE2 grids with more than 1% of
surface open water, and also grid cells with dominant land cover types other than tundra. In addition, we excluded
grid cells with a poorly fit SM drydown curve (R < 0.75), indicating unreliable estimates of drydown parameters.
When using a higher threshold for the data fitting correlation (e.g., 0.80), the correlation between the drydown
timescale and soil carbon data was improved for both SOCC and soil bulk density. Significant (p < 0.1) differ-
ences in the drydown timescale and soil carbon properties were found between the two dominant tundra types in
this region, with shorter drydown time and higher SOCC in shrub (versus sedge) tundra (Table 2). Much lower
correlation was found between the estimated drydown timescale and other variables including elevation, slope,
and soil sand and clay content.

4.2. Modeling Calibration and Validation
4.2.1. Hydrologic Modeling

The hydrology model was calibrated using in situ 7, ; and SM data from 2012 to 2014, and was then validated
using data obtained during other time periods. The SOM profile calibrated using different combinations of in
situ T, ; and SM data sets is generally similar, with the mean surface (0—5 cm) SOM ranging from 0.66 to 0.82
(Table 3), which corresponds to SOCC ranging from 0.38 to 0.48 assuming 58% carbon content for soil organic
matter (Pribyl, 2010). Model calibration derived using the soil temperature data (Runl and Run2) produced the
largest reduction in RMSE values in the model simulations, while the model calibration conducted using surface
SM data alone (Run3) shows the least RMSE reduction. These results can be attributed to large variability in the
SM data and larger uncertainties in both SM observations and model simulations over Arctic tundra. Even though
the model calibration derived using T

soi

, at multiple layers (Run2) provides slightly better T, simulations, the
model simulated SM values using the calibrated SOM values show a large positive bias. Therefore, we chose the
calibrated SOM values in Runl as the optimal parameters. If we assume soils with SOM > 80% (corresponding
to FC > 57% and SOCC > 46%) as the pure organic layer, the depth of the surface organic layer is ~3.5 cm using
the above calibrated SOM profile, which is close to the soil characterization at the dry heath tundra tower site and
the IMN SNOTEL site.

gzzlberc::tion Experiments for the PWBM Model and the Reduction in Model Errors Compared With Initial Model Runs
Target variables SOM, (g/g) Zorg (M) SOM (0-5 cm, g/g) RMSE reduction

Runl Surface T ; 0.95 0.11 0.82 63%

Run2 T, at 5, 34, and 50 cm 0.95 0.07 0.66 71%

Run3 Surface SM 0.89 0.10 0.75 20%

Run4 Surface T,

5

.1 and SM (weight: [0.1 1) 091 0.11 0.80 40%

Note. The model calibration period is from 2012 to 2014. For the parameter optimization, SOM, ranges from 0 to 1.0, and
Z,ro ranges from 0 to 0.5, with additional constraint of SOM, + Z,,, <1.2 to avoid a very thicker organic layer with high SOM
concentration, which can result in unstable hydrologic model solution.

YIET AL.

13 of 27



~u
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research

10.1029/2021WR030957

(a)

15

Tsoil (° C)

1

lA

ﬁ%

'M.L-

-15 -
| Ridge Fen Tussock —— Snotel Model|
-20 | | 1 | 1
2015/01/01 2016/01/01 2017/01/01 2018/01/01 2019/01/01 2020/01/01 2021/01/01
(b) 1.2 I I I
| Ridge Fen Tussock —— Snotel Model‘
1 -

SM (cm®/cm®)
o
(o]
I

ﬁs W

\
|
| ) "'\ Wﬁ DW ]
o F NP L AR i

04 | '
\
/ #Lh
0.2
]
0 —_..._,,,J ]‘.~ - - _‘r "
2015/01/01 2016/01/01 2017/01/01 2018/01/01 2019/01/01 2020/01/01 2021/01/01

Figure 6. Daily time series of model simulated surface 7, ; and SM during the validation period (2015-2020), compared with in situ observations at the three EC tower

sites and IMN SNOTEL site. Large drops in the model simulated 7, ; in early winter of 2016 is likely due to a dry bias in the Daymet precipitation used during this
period.

Model simulated surface T, and SM are generally consistent with observations at the Imnavait Creek site
(Figure 6). Model simulated 7, ; has a mean bias of ~—0.5°C and RMSE lower than 1.5°C during the calibration
period (Table 4). There is a slight increase in the RMSE values for T, ; during the validation period. The model

Table 4

Statistics of Model Simulated T, at the Imnavait Creek Site During the Calibration (2012-2014) and Validation Periods

T, (5 cm, °C)

Tsoi] (34 cm, OC) Tsoil (50 cm, 0C)

R Bias RMSE R

Bias RMSE R Bias RMSE
Cal period 0.98 + 0.00 -0.57 £ 0.33 1.35 +0.27 0.97 + 0.01 -0.41 + 0.57 1.16 + 0.15 0.97 + 0.01 -0.52+0.55 1.21+0.15
Val period 0.96 + 0.02 -1.00 + 0.31 1.66 + 0.28 0.96 + 0.01 -0.33 + 0.50 1.40 + 0.52 0.95 + 0.01 —043+048 142+ 045

Note. For surface T, ;, the data at the heath tundra tower site was used, and the validation period is from 2008 to 2011, and from 2015 to 2020. The other sites including

the IMN SNOTEL site, except for the wet sedge tundra (with a positive bias in the model 7, ;), show similar performance. For T, ; at depth, the validation period is
from 2008 to 2011, and 2015.
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Table 5
Statistics of Model Simulated SM at the Imnavait Creek Site During the Calibration (2012-2014) and Validation Period
SM (5 cm, cm?/cm?) SM (14 cm, cm?/cm?) SM (39 cm, cm?/cm?)
R Bias RMSE R Bias RMSE R Bias RMSE

Cal period 0.81 +0.11 -0.02 + 0.03 0.09 + 0.02 0.95 + 0.02 -0.02 + 0.01 0.08 + 0.01 0.95 + 0.03 -0.03 + 0.01 0.07 + 0.01
Val period 0.87 + 0.06 0.01 +0.03 0.08 + 0.02 0.94 + 0.01 -0.01 +0.02 0.09 + 0.01 0.93 +0.02 -0.03 + 0.02 0.07 + 0.01

Note. For surface SM, the SNOTEL site data was used for model validation due to larger soil measurement uncertainty at the tower sites, and the validation period is
from 2015 to 2020. For SM at depth, the validation period is from 2008 to 2011, and 2015.

simulated deep T ; shows similar accuracy compared with surface T, ;. The model simulated T, ; generally
shows larger errors during the winter period than the thaw season (Figure 6a), which is mainly due to uncer-
tainties in the model simulated snowpack and associated snow insulation effects, with additional uncertainties
contributed from the input precipitation data. For example, Daymet precipitation was used in most of year 2016,
due to extended gaps in the SNOTEL precipitation data. Daymet precipitation is much lower than SNOTEL
during the winter period, which results in large drops in the 7 ; simulations in the early winter of 2016. Model
simulated SM shows comparable accuracy during both calibration and validation periods (Figure 6b and Table 5).
There are larger uncertainties in surface SM data at the three EC tower sites, including SM occasionally greater
than 100%, and unrealistic surface soil saturation values during the thaw season at the relatively dry heath tundra
sites (Figure 6b). Therefore, we used the surface SM at the SNOTEL site for comparison. Model simulated
surface SM shows good correspondence with the in situ data (R > 0.91, RMSE < 0.09 cm?/cm?). The deep SM
data show much less variability and stay saturated for most of the thaw season; while the associated accuracy is
mostly due to changes in the SOM concentration (affecting the soil porosity) and model simulated freeze/thaw
transition timing.

Model simulated ET was closely related to model simulated SM time series or vice versa. The model simulated
ET show overall good consistency with the tower-based observations, although large scattering was observed
during both the thaw and frozen seasons (Figure S5 in Supporting Information S1). The missing data period in
the latent heat flux measurements can account for more than 45% of the observational period; therefore, the accu-
racy of the gap-filling method can have a large impact on the ET measurements. After gap-filling, the tower ET
records showed a large decreasing trend (~9.25 mm/yr, p < 0.01) throughout the observation period (2008-2020),
and we cannot exclude this trend from the uncertainty in the data gap-filling methods. The annual ET during the
early period (2008-2012) ranged from 178 to 194 mm/yr at the three tower sites and seems more consistent with
observations in other Arctic regions (Euskirchen, Edgar, et al., 2017), compared with a much lower value during
the later period (126-140 mm/yr). Therefore, we mainly chose the 2008-2012 period for model validation. For
the 2008 to 2012 period, the respective R, bias and RMSE values for the model simulations are 0.85 + 0.05,
—0.15 + 0.16 mm/day, and 0.42 + 0.06 mm/day at the heath tundra tower based on the nongap-filled tower
observations, with similar accuracy at the wet sedge tundra tower site. Model accuracy at the tussock tundra site
is lower, with respective R, bias, and RMSE values of 0.75 + 0.09, —0.50 + 0.41 mm/day, and 0.42 + 0.06 mm/
day. The resulting ET RMSE values are within the uncertainty range of the three tower data sets. During the later
period, the model simulated ET still shows a high correlation with the tower-based measurements (R > 0.82), but
with a larger positive bias (~0.18-0.21 mm/day). Additional investigation is ongoing to understand the negative
trend in the ET data. Finally, a more sophisticated snow sublimation scheme is needed, as the model does not
adequately capture the observed large ET variations attributed to snow sublimation and does not represent snow
deposition. However, these additional factors are beyond the scope of this study.

4.2.2. Tb Modeling

Vegetation optical depth (VOD, 7)) and roughness () can have compensating effects on the model simulated
Tb; that is, a large VOD or roughness value can both result in high emissivity and thus higher Tb values. With-
out additional constraint on the tau-omega model parameters, we obtained a rather high VOD (>0.5) and low
roughness (~0.06), which is unrealistic at this tundra site. Therefore, we limited the maximum VOD to 0.4,
resulting in model optimized VOD of 0.396 and roughness of 0.192. We also obtained two additional sets of

YIET AL. 15 of 27



~u
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research

10.1029/2021WR030957

(a)

Tbv (R=0.77; bias=2.25K; RMSE=5.32K)
T T T

(b)

Tbh (R=0.74; bias=-1.93K; RMSE=5.86K)

270 ¥ 260 "
¥
R 250 | B
* * " ;
260 | » % S
— »* ¥
& % ** * & e
= o %' C o 240 . ¥ )
Foos0t b [= * A Rk
s v h *#;e K3} *f K ] )
3 A 8230 D20 i
= " = # ¥ *
240 | . v %
" 220 f *
* *
* * Cal (2015-2016) * * Cal (2015-2016)
* *  Val (2017-2020) * * *  Val (2017-2020)
230 : . s 210 . * " n
230 240 250 260 270 210 220 230 240 250 260
SMAP Tb (K) SMAP Tb (K)
c . .
(©) Tov(R=0.76; bias=187k; RMsE=6.19K) (D Tbh (R=0.78; bias=-2.6K; RMSE=7.12K)
; *
g 250 | W s
260 | i *{ﬁ AP
< . < & ¥
= o ] =240 | » A 1
F 250 R * = R -+ -
2 - AR 3 L
3] x e S 230 f * * B2
= SR = : "
;}* % *;** E *
240 | ™ o *ormx ¥
T 220 . ¥ 1
* * Cal (2015-2016) * " * Cal (2015-2016)
250 | L % Val (2017-2020) )10 * *  Val (2017-2020)
230 240 250 260 270 210 220 230 240 250 260
SMAP Tb (K) SMAP Tb (K)

Figure 7. Scatter plots of model simulated daily T}, (a, ¢) and T}, (b, d) for the calibration (Cal, 2015-2016) and validation (Val, 2017-2020) periods, using mean VOD
of 0.35 (a)—(b), and accounting for temporal changes in the vegetation water content and VOD values during the thaw season (c, d).

optimal parameters by limiting the VOD value to different ranges (Table 6), which gave slightly larger RMSE
values for the Tb estimates. VOD lower than 0.3 gives substantially large RMSE values; therefore, we did not
conduct optimization with VOD < 0.3. The model simulations showed slightly larger errors when accounting for
vegetation water content changes using Equation 10, compared with model simulations derived using a constant
VOD value throughout the thaw season. For this calibration, we limited the stem a1, to the [1.5 2.0] range based
on the SMAP ancillary data report (Chan et al., 2013). For a mean VOD value of 0.35, the calibrated values for
stemqeror and by are 1.80 and 0.21, which gives a mean estimate of 1.61 kg/m? for vegetation water content from
June to August. The shrub tundra in our study area has a mean aboveground biomass of ~0.97 kg/m? (Berner
et al., 2018), indicating that the above value is a reasonable estimate. A higher VOD value such as 0.4, allows
for higher vegetation water content estimates, which, may be too high in this region. Model simulations using
a lower VOD value such as 0.3, have RMSE values increasing faster when accounting for temporal changes in
vegetation water content and VOD, which also shows a large positive bias in the 7}, simulations. Therefore, for
the sensitivity analysis discussed below, we used the model simulations derived using a mean VOD value of 0.35.

Figure 7 shows the scatter plots of model simulated brightness temperature with SMAP data throughout the
entire SMAP observational period (2015-2020) using the mean VOD value of 0.35. Model simulated T3, has
slightly higher RMSE values (6-7 K) than the T}, (5—6 K) simulations. Model simulated T}, generally shows a
positive bias relative to the SMAP data, while T}, generally shows a negative bias especially for lower Tb values.
The biases may be reduced through using different values of VOD or roughness for the H and V pol. The model
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Figure 8. Daily time series of MODIS NDVI and SMAP polarization ratio (PR) measurements compared with model PR simulations derived using different mean
VOD and roughness parameters (a), and accounting for temporal changes in vegetation water content and VOD during the thaw season (b) over the Imnavait Creek
tower site. The calibration period is from 2015 to 2016, and the validation period is from 2017 to 2020.

simulated PR shows a better correlation and temporal consistency with the SMAP data (Figure 8) when using
temporally varying VOD values accounting for vegetation water content changes throughout the thaw season
(Equation 10). The correlation between model simulated and SMAP PR data is 0.64 with time-varying VOD
values and 0.42 using a mean VOD value, with both correlations significant at p level of 0.01. There were no
significant differences among the model simulated PR time series using different combinations of VOD and
roughness parameters due to compensating effects of VOD and roughness on brightness temperature and PR.
The model generally overestimated the SMAP PR value during the later thaw season (starting around DOY 220).
During this period, surface soil is generally wetter than the previous peak season dry period (Figure 6b) due to
greater precipitation and reduced evaporation (Figure S5 in Supporting Information S1). In addition, vegeta-
tion senescence also starts around mid-August; therefore, we would expect vegetation water content to decrease
accordingly. Thus, the model generally simulated a higher PR value during that period. However, increasing
surface litter during the senescence period with wetter surface conditions may increase the microwave attenuation
(i.e., increasing VOD values) and thus decrease the PR sensitivity to surface SM conditions (Kerr et al., 2012),
which was not accounted for by the model.
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Figure 9. Model simulated sensitivity of L-band polarization ratio (PR) daily time series to different surface SOM conditions through varying SOM, values in
Equation 12. The SOM concentration in the top 5 cm layer is 0.84, 0.57, 0.31, and 0.05 corresponding with SOM,, values of 0.95, 0.65, 0.35, and 0.05, respectively.
The simulations were conducted accounting for temporal changes in vegetation water content and VOD values during the thaw season, with a mean VOD value of 0.35
(roughness = 0.31). Model results are plotted with SMAP PR and MODIS NDVI records for the Imnavait Creek tower site.

4.3. Sensitivity of L-Band Polarization Ratio to Surface Organic Soil Concentration

We investigated the sensitivity of model simulated L-band PR to surface SOM conditions by comparing the
model simulated PR time series using different SOM,, values in the SOM profile (Equation 12). For consistent
comparison, we kept Z,.; and Ky values the same as the above simulation, while changes in SOM; result in asso-
ciated changes in the surface SOM concentration (or SOCC). Figure 9 compares the model simulated L-band PR
time series for surface organic soils with high, medium, and low SOM concentrations, in addition to the mineral
soils. For the mineral soil conditions, we assumed that surface SOM) is equal to SOM at depth, when the SOCC is
~2.9% with Ko = 5% . The resulting model simulated PR is most sensitive to surface SOM changes when surface
SOM,,, value is high. The PR changes during the early thaw period are reduced when surface SOM is lower. The
differences in the model simulated PR are larger when there was a significant drying period such as in year 2015
and 2017, indicated by the surface SM conditions (Figure 6b).

To further understand the sensitivity of the L-band PR during the spring thaw period, we simulated the PR
response to SM variations in different SOM conditions. We first calculated the brightness temperature and PR
values at two extreme SM conditions, when soil is saturated (at porosity) and at wilting point, respectively,
using the tau-omega model and the new soil parameterization described in Section 3.1.1, with different SOM
input values. We then calculated the PR changes between these two conditions. This is used to simulate the
surface soil wetness conditions during the early thaw period when surface soil progresses from near-saturation
to dry conditions with increases in soil drainage and evapotranspiration. The estimated PR response to different
SOM, VOD, and roughness conditions are shown in Figure 10. For comparison, we also included results derived
using different dielectric models. Large changes in the PR were observed for soils with higher SOM concentra-
tion. However, the results did not show significant changes in the PR values until SOM reaches about 30-40%
(~17.4-23.2% for SOCC), which was consistent with the above coupled model sensitivity analysis. Higher VOD
or roughness values reduced the sensitivity of Tb and PR to surface SM changes. Similar behavior in the model
simulated L-band PR was observed if the surface SM changes from field capacity to wilting point, albeit with
smaller magnitude in the PR changes (Figure S6 in Supporting Information S1). Soil texture also affects the
PR sensitivity to SM variability under different SOM concentrations (Figure S7 in Supporting Information S1),
mainly due to its influences on the Campbell b shape parameter (Figure 3). In coarser soils, PR changes can be
similar between sandy mineral soils and soils with a lower amount of SOM. However, regardless of soil texture,
the PR is most sensitive to SM at high SOM concentration (SOM > 60%, or SOCC > ~34.8%).
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Figure 10. Changes in the L-band polarized ratio in response to SM variability between saturation and the wilting point for different SOM concentrations, simulated
using the tau-omega model with different VOD and roughness values. This simulation uses soil texture similar to the Imavait Creek tundra study site (sand = 44%,
clay = 25%). The roughness (1) at H and V pol are assumed equal. Different dielectric models accounting for organic matter (OM), and for mineral soil only (MN,
Mironov et al., 2009) were used to simulate the dielectric constant response to SM changes. The two OM models (Bircher et al., 2016b; Mironov et al., 2015) do not
apply to soils with low SOM concentration; therefore, the simulations with SOM < 35% were not included.

5. Discussion

5.1. Soil Moisture Drydown Characterization in the Arctic Region

Using the polarization ratio as a proxy for surface SM, the soil drydown timescale derived from SMAP polari-
zation ratio data during the early thaw period shows strong correlation with both surface SOC concentration and
soil bulk density obtained from SoilGrids for a relatively flat Arctic tundra area. Previous studies have related
SM drying rates to soil texture, soil sensing depth, and surface evapotranspiration in other regions (Kurc &
Small, 2004; McColl et al., 2017; Rondinelli et al., 2015; Shellito et al., 2016). These studies also pointed out that
different factors may play dominant roles in different climate regions, and can vary during different stages of the
soil drydown period (McColl et al., 2019). The soil drydown rate near soil saturation is mainly controlled by the
soil drainage rate, while the subsequent soil drying process is mostly controlled by soil evaporation. Depending

on the SM, soil evaporation rate can change and thus affect the soil drydown rate.
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Table 6

Statistics of the Tau-omega Model Simulated Brightess Temperatures Derived using Different Sets of VOD (z,) and Roughness Parameters During the Calibration

period (2015-2016)

Mean 7, =0.40, » = 0.19 Mean 7, =0.35, h = 0.31 Mean 7, = 0.30, 2 = 0.60
R (K) Bias (K) RMSE R (K) Bias (K) RMSE R (K) Bias (K) RMSE
Ty Constant 7, 0.75 -0.62 4.97 0.75 -1.72 5.36 0.75 -0.22 4.97
Tyn Varying 7, 0.82 -1.62 5.78 0.81 -2.63 6.24 0.81 -0.50 5.26
T, Constant 7, 0.81 2.99 4.66 0.81 2.77 4.67 0.81 4.00 5.38
T, Varying 7, 0.83 2.44 4.94 0.83 2.27 4.99 0.83 3.60 5.45

Note. For the “constant 7,” scenario, a mean 7, value was used throughout the thaw season, while for the “varying 7,” scenario, temporal changes in the vegetation water
content and 7, values were represented, with the same mean 7, value during the thaw season.

Similar processes may also control soil drying rates in Arctic tundra. Both the drainage rate and soil evaporation
capacity are closely related to soil hydraulic properties, which are mainly affected by the soil organic carbon
content and decomposition state (Bechtold et al., 2019; Letts et al., 2000; Verry et al., 2011). Soil carbon content
and decomposition state can show large variations along depth in Arctic soils, leading to large variability in the
soil hydraulic properties, which, together with a shallow thaw depth, can exert strong control on the soil water
transfer (Quinton et al., 2000) and affect the L-band penetration capability. Our modeling experiment indicates
that organic soils with higher fiber content (SOM > 60% or FC > 33%) generally have a higher saturated hydrau-
lic conductivity, and lower water-retention capacity (Figure 3), which can lead to rapid loss of water. A larger
amount of water is also available for discharge or evaporation due to a larger difference between the soil porosity
and wilting point. Field experiments also generally show rapidly drying and wetting features in less decomposed
organic soils with more fibrous SOM (Zwieback & Berg, 2019).

However, other factors may also play important roles in controlling SM drydown rates in the Arctic. Local topog-
raphy controls the soil drainage rate, and can have significant impact on the soil drydown process. Although our
study area is generally flat, with mean slope of ~1.5%, additional investigation is needed to separate the effects
of soil properties from other confounding factors influencing SM dynamics in regions with more complex topog-
raphy. Another important factor affecting surface soil drydown in permafrost areas is the thawing process, with
increasing soil thaw depth promoting soil water drainage to deep soils (Vonk et al., 2019). However, during the
early thaw period, a shallow thaw depth or water table restricts vertical water movement; lateral preferential flow
can form in the porous organic layer and is an important mechanism of water transmission during this period
(Quinton et al., 2000; Woo & Marsh, 2005). Microtopography and spatial heterogeneity in the organic soil prop-
erties also affect water storage, flow paths and heat transfer, and thus affect soil thaw and drainage rates (Kurylyk
et al., 2016; Quinton & Marsh, 1998; Shi et al., 2015). How to quantify the effects of the above processes on
surface SM drying during the early thaw season needs further investigation.

Uncertainties may be also associated with our analysis of soil drydown timescale at the regional scale. We used
the L-band PR as a SM proxy during the early thaw season in the regional analysis. Although we focus on the
early thaw period when vegetation water content is relatively low compared with the peak thaw season, the
changes in vegetation water content and VOD during the growing season can affect the sensitivity of L-band
PR to surface SM conditions. Using direct SM retrievals rather than the PR values will help to better understand
the underlying processes. However, reliable SM estimates from spaceborne sensors are currently lacking in the
northern permafrost region (Wrona et al., 2017; Zwieback & Berg, 2019). A major reason for this uncertainty is
due to challenges in characterizing the organic soil hydraulic and dielectric properties, which affect soil mois-
ture retrieval accuracy as discussed below. Seasonal transient waterbodies in the northern permafrost region are
common, and can have significant impact on surface emissivity, imparting a wet bias into surface SM retrievals
without correcting for this effect. In addition, instead of using the tau-omega model, using a more detailed
forward emission model such as the two-stream emission model (Schwank et al., 2018) accounting for multiple or
volume scattering processes between the vegetation/litter layer and surface soil, will likely allow for better VOD
and SM estimates in the Arctic.
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Table 7
Same as Table 6, but the Statistics was Calculated for the Validation Period (2017-2020)

Mean 7, = 0.40, 2 = 0.19 Mean 7, = 0.35, h = 0.31 Mean z, = 0.30, & = 0.60

R(K) Bias(K) RMSE  R(K) Bias(K) RMSE  R(K) Bias(K) RMSE

T, Constant 7, 0.76 -0.85 5.48 0.75 -2.04 6.10 0.75 -0.03 5.48
Ty Varying 7, 0.78 —-1.45 7.06 0.78 —2.58 7.53 0.78 —0.45 6.45
T, Constant 7, 0.76 2.27 5.45 0.76 1.97 5.63 0.76 3.26 5.98
T}, Varying 7, 0.74 1.93 6.61 0.74 1.66 6.73 0.75 3.01 6.71

5.2. Uncertainties in the Model Simulations
5.2.1. Uncertainties in the Hydrology Model Simulation

To better simulate SM dynamics in the northern permafrost region, a reliable soil parameterization that can apply
to a wide range of organic soils is needed. Depending on the degree of decomposition, organic/peaty soils can
have quite different water-retention characteristics and hydraulic conductivity (Verry et al., 2011). However, most
current land models do not account for this variability; these models generally only account for the influence
of SOC content on the estimated soil hydraulic parameters, or they use a single “peat” category to represent
the broad range of organic soils in the Arctic (e.g., De Lannoy et al., 2014; Guimberteau et al., 2018; Rawlins
etal., 2019). Soil bulk density decreases exponentially with SOC concentration, and the total SOC content, as the
product of bulk density and SOC concentration, peaks at intermediate SOC concentration (Hossain et al., 2015).
Thus, the total SOC content or SOC density is generally not a good proxy for the soil organic fraction as used
in the land models. In this study, we introduced a soil parameterization that uses the “fiber content” to link the
SOC decomposition state with variations in the organic soil hydraulic properties. The fiber content is empiri-
cally related to SOC concentration calibrated using the USDA-NCCS soil database covering the full range of
organic soils (Chen et al., 2019). SOC concentration or bulk density data are available from several global soil
data sets including the SoilGrids and HWSD (the Harmonized World Soil Database; Poggio et al., 2021; Tifafi
et al., 2018), which makes this parameterization potentially useful for regional applications despite large uncer-
tainties in those data sets. However, additional soil characteristics data are needed to test this parameterization for
different organic soils. In our study, we did not discuss the model uncertainty associated with the uncertainties
in the soil parameterization; rather, we characterize this uncertainty by varying the SOM profile in the model
calibration experiments.

In addition, a lack of reliable in situ data including SM and ET introduces challenges to the model calibration and
validation, and further understanding of the processes controlling SM dynamics in the Arctic region is needed.
A number of field studies have pointed out that lateral water transfer can play an important role in regulating soil
drainage during the spring thaw period (e.g., Quinton et al., 2000; Woo & Marsh, 2005), which is not considered
by the current model. This may add additional uncertainty to the model characterization of the spring “drydown”
process. There are a number of issues associated with eddy covariance measurement methods in the Arctic region
and significant data loss is generally expected in extreme conditions (Euskirchen, Edgar, et al., 2017). Therefore,
the quality of the final flux products used for the model calibration and validation is subject to the accuracy
of the underlying gap-filling methods. It is also a challenge to measure the heat fluxes during the winter time
(Euskirchen, Edgar, et al., 2017), when snow sublimation and deposition can be important to determine the snow
mass and significantly affect the soil thermal regime (Strasser et al., 2008; Yi et al., 2019). High-quality SM data
are also lacking in the northern permafrost region. The lack of a reliable and generic calibration function for
organic soils introduces uncertainty to in situ SM data in the Arctic region (Bircher et al., 2016a). The location
of the soil sensor can change dramatically due to active soil frost heave in the permafrost region (Romanovsky
et al., 2008), which can result in discontinuities in the SM measurements as indicated by the Imnavait Creek site
data.

5.2.2. Uncertainties in the Tb Simulation

As can be seen from the above tau-omega model calibration, there are substantial uncertainties in the VOD and
roughness parameters. Due to a compensation effect of VOD and roughness parameters on the Tb simulation, our
calibration experiments selected three sets of VOD and roughness values (Tables 6 and 7). There is generally a
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lack of data on changes in the vegetation water content and surface roughness height in Arctic tundra. Therefore,
we cannot tell which is the best solution. Using a mean VOD value of 0.35, the estimates of vegetation water
content range from ~1.5 to 2.0 kg/m? during the thaw season, while a recent study based on in situ data and
Landsat imagery provides an estimate of aboveground biomass of ~0.81-1.18 kg/m? for shrub tundra in the
Alaska North Slope (Berner et al., 2018). Previous studies provide estimates of relative water content for leaves
and shoots ranging from ~60% to more than 150% (Huang et al., 2019; Saura-Mas & Lloret, 2007). Therefore, the
above vegetation water content estimates are at the high-end of the realistic range. However, multiple or volume
scattering may also occur within the surface organic or litter layer, which can increase the surface emissions. The
tau-omega model does not account for the above scattering processes, and thus the optimization may give a higher
estimate of VOD to compensate for the above effects.

Previous studies also showed that higher values of the roughness parameter are associated with drier soil condi-
tions (De Lannoy et al., 2013; Neelam et al., 2020); however, including a moisture-dependent function for this
parameter did not produce significant improvements in the model simulations. On the other hand, the presence of
surface litter and undecomposed organic materials in the surface organic layer may result in increasing attenua-
tion of soil emissions or volumetric scattering (Kerr et al., 2012; Zweivack & Berg, 2019). Using the zero-order
tau-omega model may result in large uncertainties in this condition, which mainly represent surface scattering.
The inconsistency between the model PR simulations and SMAP observations during the later thaw season may
be also partly due to the above uncertainty; during this period, surface soil is relatively wet due to precipitation
inputs and lower evaporative demand, while the L-band PR shows reduced sensitivity to surface SM changes.
Finally, uncertainty in the soil dielectric constant also contributes to uncertainties in the tau-omega model simula-
tions. There is currently no mature soil dielectric model for organic soils (Bircher et al., 2016b; Park et al., 2019).
A major challenge in dielectric modeling is to characterize the bound-water fraction with SM changes for differ-
ent organic soil types.

6. Conclusions

In this study, we combined data analysis and process-based modeling to better understand the links between
surface soil organic carbon properties and SM dynamics in Arctic tundra underlain by continuous permafrost.
Our analysis using both in situ SM and SMAP L-band brightness temperature data confirmed the important
control of surface organic soil on SM dynamics in Arctic tundra. Surface soil generally dries faster in areas with
higher surface SOC concentration. Our analysis indicated that the L-band PR was sensitive to the tundra surface
SM dynamics, especially during the early thaw period, and contains useful information on surface organic soil
properties including SOC concentration and bulk density. Our modeling experiments also supported the above
conclusion. Through using a coupled model with improved soil parameterization and dielectric modeling for
organic soils characteristic of tundra, we demonstrated that highly organic tundra soils (SOCC > ~34.8%) with
a higher amount of fibrous organic materials (or fiber content) generally showed larger decreases in the L-band
PR with soil drydown during the early thaw period. This is likely because highly organic soils drain water more
easily (both vertically and laterally), and a larger amount of water can be discharged or lost (through evapotran-
spiration) in those soils, relative to soils with low SOC concentration (SOCC < ~17.4%). However, our mode-
ling experiments also demonstrated that changes in vegetation water content and surface roughness throughout
the thaw season may introduce additional uncertainty to the above analysis of L-band PR sensitivity to surface
SM and SOC conditions. To future improve modeling of surface SM dynamics and organic carbon distribution
using L-band sensing, a better understanding of the temporal and spatial variability of the above two parameters
in the Arctic region is critical. Our study indicates new capabilities for pan-Arctic mapping and monitoring of
organic soil properties using low frequency satellite microwave measurements, which may allow for improved
Earth system model projections of regional water-carbon-energy exchanges and linkages and feedbacks to climate
change in the Arctic.

Appendix A: Soil Dielectric Modeling

Organic soils exhibit different dielectric properties from mineral soils (Bircher et al., 2016a), which should be
accounted for when estimating soil dielectric constant (¢) under variable SM levels or vice versa. Currently,
robust soil dielectric models that can be applied to soils with a wide range of SOM conditions are lacking. Here,
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we used the dielectric mixing model developed by Park et al. (2017) to calculate the effective € of the multi-phase
soil based on the arithmetic average of € values of soil components:

e=(1 _es)xesoil + 0 X Ewarer + (05 — 0) X Eair (Al)
Ewater = (01[q : Ubound) X Epound + (gliq : Ufree) X € free + eice X Eice (A2)

where 6, 0i., and 0, represent soil porosity, ice and liquid water content (cm®cm?), respectively, with
0 = Oice + Oiig. Usree and vpouna are the fractions of free and bound liquid water, with vyree + Ubouna = 1. €s0it, Eairs
Eices Ebounds € free are the dielectric constants of soil solids (mineral or organic), air, ice, bound and free water,
respectively, which can be found in Park et al. (2017). Park's dielectric model was developed to be integrated with
land surface models (LSMs), as all information can be obtained through the LSM or hydrology model. Previous
studies showed that Park's model provides favorable performance for both mineral soils (Park et al., 2017) and
organic soils with different SOM concentrations (Park et al., 2019).

A key parameter in dielectric modeling is the bound-water fraction. In Park et al. (2017), the following equation
is used to determine the free and bound-water fractions in soil:

Ubound = 1, lf 0 < 01)1

-0 . (A3)
Ubound = ®®_0 5 lf0 > 91,,

vt

where 6, is the point at which water switches from bound to free state. In Park et al. (2017, 2019), the SM at
wilting point was used as a proxy for ,,. In our soil parameterization, the wilting point of highly organic soils
(SOM > 0.8) was very low, which was consistent with field data (Verry et al., 2011). However, previous studies
suggest soils with higher organic matter generally contain a high proportion of bound water due to the strong
ability of humus materials to absorb water. Therefore, we used the following equation as in Park et al. (2019) and
Jin et al. (2013) to estimate the transitional point (8,,):

0. = 0.02982 + 0.00786 X (SOM x 100) + 0.00089 X clay% (A4)

where clay% is percentage of clay (volumetric) in soil. Equation A4 gives a very high estimate of 8,, for highly
organic soil, and therefore we limit this value to 0.4. Compared with using the wilting point, using 6,, derived
from Equation A4 gives a closer estimate of € for highly organic soils at 70 MHz (Figure S3 in Supporting Infor-
mation S1) as the data presented in Bircher et al. (2016a). A more detailed comparison of Park's model with other
dielectric models is provided in Supporting Information S1.

Appendix B: Evapotranspiration Modeling Improvements in the PWBM Model

In this study, we revised the ET scheme in the PWBM model using the following steps. We first revised the
potential ET (PET) calculation. In the original model, PET calculation was based on the Hamon method, which
requires minimal meteorology data, but has relatively lower accuracy than radiation-based methods for PET
estimation such as the Makkink model (Lang et al., 2017; Xu & Chen, 2005). Therefore, we used the Makkink
method to estimate PET (mm/day; Xu & Chen, 2005):
A R,
PET =0.61 x i1y XL——0.012 (A5)

v

where R; is the downward solar radiation (MJ/m?/day), A is the slope of the saturation water vapor-temperature
curve at the given air temperature, L, is the latent heat of vaporization (2.45 MJ/m?), and y is the psychrometric
constant.

We then modeled soil evaporation and plant transpiration separately. Soil evaporation was limited by the soil
water in the top two surface layers (0-5.5 cm), while the plants can uptake water from the entire root zone. The
root zone was defined by the rooting depth (Jackson et al., 1996) and can change dynamically based on the soil
water freeze/thaw status within the rooting depth as:

EToiri=12 = PET X (1 = fueg) X f (SM)) (A6)
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root frac; X fiiqi

n
2ilayer=l rootfracilayer X fliq,ilayer

ETpIams,i:l,n = PET x fUL’g X f (SMI) X (A7)

The last term in Equation A7 accounts for the dynamic changes in the root zone with soil liquid water content
(fiiq), and root frac is the root fraction within each soil layer. f{fSM) is a step function of SM, which was set to
0 below the wilting point, 1 above field capacity, and scaled linearly between the two SM values. The MODIS
16-day NDVI (normalized difference vegetation index) observational record (MOD13A2) was used to estimate
the vegetation coverage (fy..,) using a linear relationship (Carlson & Ripley, 1997).

Finally, the snow sublimation rate (mm/day) was estimated using an empirical equation valid for the conditions of
medium roughness, stable stratification and a wide range of wind speeds (Strasser et al., 2008):

Subl = f % (32.82%(0.18 + 0.098 X Windsp) x VPD x dt)/ L, (A8)

where Windsp and V P D are wind speed (m/s) and vapor pressure deficit at the snow surface (hpa), respectively,
dt is the modeling time step (s), L, is the sublimation heat of snow (2.838 kJ/kg), and f is an empirical scaling
factor that can be adjusted locally.
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MAP and MODIS data are available from NASA Earth-data (https://earthdata.nasa.gov/). SoilSCAPE data is
available from https://soilscape.usc.edu. Daymet surface meteorology was downloaded from https://daymet.ornl.
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EC tower sites were downloaded from http://aon.iab.uaf.edu/data.

References

Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., et al. (2020). Soil moisture and hydrology projections
of the permafrost region—A model intercomparison. The Cryosphere, 14(2), 445-459. https://doi.org/10.5194/tc-14-445-2020

Bakian-Dogaheh, K., Chen, R. H., Moghaddam, M., Yi, Y., & Tabatabaeenejad, A. (2020). ABoVE: Active layer soil characterization of perma-
frost sites, northern Alaska, 2018. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1759

Bechtold, M., De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P., Bleuten, W., et al. (2019). PEAT-CLSM: A specific treatment
of peatland hydrology in the NASA Catchment land surface model. Journal of Advances in Modeling Earth Systems, 11, 2130-2162. https://
doi.org/10.1029/2018MS001574

Bechtold, M., De Lannoy, G. J. M., Reichle, R. H., Roose, D., Balliston, N., Burdun, L, et al. (2020). Improved groundwater table and L-band
brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assim-
ilation framework. Remote Sensing of Environment, 246, 111805. https://doi.org/10.1016/j.rse.2020.111805

Berner, L. T., Jantz, P., Tape, K. D., & Goetz, S. J. (2018). Tundra plant above-ground biomass and shrub dominance mapped across the North
Slope of Alaska. Environmental Research Letters, 13(3), 035002. https://doi.org/10.1088/1748-9326/aaaa%

Bircher, S., Andreasen, M., Vuollet, J., Vehvildinen, J., Rautiainen, K., Jonard, F., et al. (2016a). Soil moisture sensor calibration for organic soil
surface layers. Geoscientific Instrumentation, Methods and Data Systems, 5(1), 109-125. https://doi.org/10.5194/gi-5-109-2016

Bircher, S., Demontoux, F., Razafindratsima, S., Zakharova, E., Drusch, M., Wigneron, J.-P., & Kerr, Y. (2016b). L-band relative permittivity of
organic soil surface layers—A new dataset of resonant cavity measurements and model evaluation. Remote Sensing, 8(12), 1024. https://doi.
org/10.3390/rs8121024

Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., et al. (2019). Permafrost is warming at a global scale. Nature
Communications, 10(1), 264. https://doi.org/10.1038/s41467-018-08240-4

Boelter, D. H. (1969). Physical properties of peats as related to degree of decomposition. Soil Science Society of America Proceedings, 33(4),
606-609. https://doi.org/10.2136/ss5aj1969.03615995003300040033x

Burke, E. J., Gurney, R. J., Simmonds, L. P., & O’Neill, P. E. (1998). Using a modeling approach to predict soil hydraulic properties from passive
microwave measurements. /EEE Transactions on Geoscience and Remote Sensing, 36(2), 454-462. https://doi.org/10.1109/36.662729

Camillo, P., O’Neill, P., & Gurney, R. (1986). Estimating soil hydraulic parameters using passive microwave data. IEEE Transactions on Geosci-
ence and Remote Sensing, 24(6), 930-936. https://doi.org/10.1109/TGRS.1986.289708

Campbell, G. S. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Science, 117(6), 311-314.
https://doi.org/10.1097/00010694-197406000-00001

Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Envi-
ronment, 62(3), 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1

Chan, S., Bindlish, R., Hunt, R., Jackson, T., & Kimball, J. (2013). Soil moisture active passive (SMAP) ancillary data report: Vegetation water
content. Jet Propulsion Laboratory.

Chan, S. K., Bindlish, R., O’Neill, P. E., Njoku, E., Jackson, T., Colliander, A., et al. (2016). Assessment of the SMAP passive soil moisture
product. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4994-5007. https://doi.org/10.1109/TGRS.2016.2561938

Chaubell, J., Chan, S., Dunbar, R. S., Peng, J., & Yueh, S. (2020). SMAP enhanced L1C radiometer Half-Orbit 9 km EASE-grid brightness temper-
atures, Version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/XB8K63YM4U8O

YIET AL.

24 of 27



A~
MM\I
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030957

Chen, R. H., Bakian-Dogaheh, K., Tabatabaeenejad, A., & Moghaddam, M. (2019). Modeling and retrieving soil moisture and organic matter
profiles in the active layer of permafrost soils from P-band radar observations. Paper presented at IGARSS 2019—2019 IEEE International
Geoscience and Remote Sensing Symposium. IEEE. https://doi.org/10.1109/IGARSS.2019.8899802

Chen, R. H., Michaelides, R. J., Sullivan, T. D., Parsekian, A. D., Zebker, H. A., Moghaddam, M., & Schaefer, K. M. (2020). Joint retrieval of
soil moisture and permafrost active layer Thickness using L-band insar and P-band Polsar. Paper presented at IGARSS 2020—2020 IEEE
International Geoscience and Remote Sensing Symposium. IEEE. https://doi.org/10.1109/IGARSS39084.2020.9324660

Colliander, A., Cosh, M. H., Kelly, V. R., Kraatz, S., Bourgeau-Chavez, L., Siqueira, P., et al. (2020). SMAP detects soil moisture under temperate
forest Canopies. Geophysical Research Letters, 47, €2020GL089697. https://doi.org/10.1029/2020GL089697

Connon, R., Devoie, l:l, Hayashi, M., Veness, T., & Quinton, W. (2018). The influence of shallow taliks on permafrost thaw and active layer
dynamics in Subarctic Canada. Journal of Geophysical Research: Earth Surface, 123, 281-297. https://doi.org/10.1002/2017JF004469

De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P. P, & Liu, Q. (2014). An updated treatment of soil texture and asso-
ciated hydraulic properties in a global land modeling system. Journal of Advances in Modeling Earth Systems, 6, 957-979. https://doi.
0rg/10.1002/2014MS000330

De Lannoy, G. J. M., Reichle, R. H., & Pauwels, V. R. N. (2013). Global calibration of the GEOS-5 L-band microwave radiative transfer model
over nonfrozen land using SMOS observations. Journal of Hydrometeorology, 14(3), 765-785. https://doi.org/10.1175/JHM-D-12-092.1

Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., & Morin, S. (2016). Impacts of snow and organic soils parameterization on north-
ern Eurasian soil temperature profiles simulated by the ISBA land surface model. The Cryosphere, 10(2), 853-877. https://doi.org/10.5194/
tc-10-853-2016

Derksen, C., Xu, X., Scott Dunbar, R., Colliander, A., Kim, Y., Kimball, J. S., et al. (2017). Retrieving landscape freeze/thaw state from Soil
Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sensing of Environment, 194, 48-62. https://doi.org/10.1016/j.
rse.2017.03.007

Escorihuela, M. J., Chanzy, A., Wigneron, J. P., & Kerr, Y. H. (2010). Effective soil moisture sampling depth of L-band radiometry: A case study.
Remote Sensing of Environment, 114(5), 995-1001. https://doi.org/10.1016/j.rse.2009.12.011

Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W., & Romanovsky, V. E. (2017). Long-term release of carbon dioxide from arctic
tundra ecosystems in Alaska. Ecosystems, 20(5), 960-974. https://doi.org/10.1007/s10021-016-0085-9

Euskirchen, E. S., Edgar, C. W., Syndonia Bret-Harte, M., Kade, A., Zimov, N., & Zimov, S. (2017). Interannual and seasonal patterns of
carbon dioxide, water, and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in North-
eastern Siberia: Siberian CO,, water, and energy fluxes. Journal of Geophysical Research: Biogeosciences, 122, 2651-2668. https://doi.
org/10.1002/2017JG004070

Gao, Y., Walker, J. P., Ye, N., Panciera, R., Monerris, A., Ryu, D., et al. (2018). Evaluation of the tau-omega model for passive microwave soil
moisture retrieval using SMAPEx datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3),
888-895. https://doi.org/10.1109/JSTARS.2018.2796546

Gherboudj, I., Magagi, R., Goita, K., Berg, A. A., Toth, B., & Walker, A. (2012). Validation of SMOS data over agricultural and boreal forest
areas in Canada. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1623-1635. https://doi.org/10.1109/TGRS.2012.2188532

Goffe, W. L., Ferrier, G. D., & Rogers, J. (1994). Global optimization of statistical functions with simulated annealing. Journal of Econometrics,
60(1-2), 65-99. https://doi.org/10.1016/0304-4076(94)90038-8

Guimberteau, M., Zhu, D., Maignan, F., Huang, Y., Yue, C., Dantec-Nédélec, S., et al. (2018). ORCHIDEE-MICT (v8.4.1), a land surface
model for the high latitudes: Model description and validation. Geoscientific Model Development, 11(1), 121-163. https://doi.org/10.5194/
gmd-11-121-2018

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti¢, A., et al. (2017). SoilGrids250m: Global
gridded soil information based on machine learning. PLoS One, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748

Hossain, M. F., Chen, W., & Zhang, Y. (2015). Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic. Information
Processing in Agriculture, 2(3—4), 183-190. https://doi.org/10.1016/j.inpa.2015.09.001

Huang, W., Ratkowsky, D., Hui, C., Wang, P., Su, J., & Shi, P. (2019). Leaf fresh weight versus dry weight: Which is better for describing the
scaling relationship between leaf biomass and leaf area for broad-Leaved plants? Forests, 10(3), 256. https://doi.org/10.3390/f10030256

Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., et al. (2020). Large stocks of peatland carbon and nitrogen
are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20438-20446.
https://doi.org/10.1073/pnas.1916387117

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for
terrestrial biomes. Oecologia, 108(3), 389-411. https://doi.org/10.1007/BF00333714

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., & Xian, G. (2013). A comprehensive change detection method for updating the National Land
Cover Database to circa 2011. Remote Sensing of Environment, 132, 159-175. https://doi.org/10.1016/j.rse.2013.01.012

Jonard, F., Bircher, S., Demontoux, F., Weihermiiller, L., Razafindratsima, S., Wigneron, J.-P., & Vereecken, H. (2018). Passive L-band micro-
wave remote sensing of organic soil surface layers: A tower-based experiment. Remote Sensing, 10(2), 304. https://doi.org/10.3390/rs10020304

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., et al. (2012). The SMOS soil moisture retrieval algorithm.
IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1384—1403. https://doi.org/10.1109/TGRS.2012.2184548

Kure, S. A., & Small, E. E. (2004). Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon
season, central New Mexico. Water Resources Research, 40, W09305. https://doi.org/10.1029/2004WR003068

Kurylyk, B. L., Hayashi, M., Quinton, W. L., McKenzie, J. M., & Voss, C. I. (2016). Influence of vertical and lateral heat transfer on permafrost
thaw, peatland landscape transition, and groundwater flow: Permafrost thaw, landscape change, and groundwater flow. Water Resources
Research, 52, 1286-1305. https://doi.org/10.1002/2015WR018057

Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., et al. (2017). A Comparative study of potential evapotranspiration estimation by eight
methods with FAO Penman-Monteith method in Southwestern China. Water, 9(10), 734. https://doi.org/10.3390/w9100734

Lawrence, D. M., & Slater, A. G. (2008). Incorporating organic soil into a global climate model. Climate Dynamics, 30(2-3), 145-160. https://
doi.org/10.1007/s00382-007-0278-1

Letts, M. G., Roulet, N. T., Comer, N. T., Skarupa, M. R., & Verseghy, D. L. (2000). Parametrization of peatland hydraulic properties for the
Canadian land surface scheme. Armosphere-Ocean, 38(1), 141-160. https://doi.org/10.1080/07055900.2000.9649643

Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., et al. (2016). Pan-Arctic ice-wedge degradation in warming
permafrost and its influence on tundra hydrology. Nature Geoscience, 9, 8. https://doi.org/10.1038/nge02674

Mattikalli, N. M., Engman, E. T., Jackson, T. J., & Ahuja, L. R. (1998). Microwave remote sensing of temporal variations of brightness temper-
ature and near-surface soil water content during a watershed-scale field experiment, and its application to the estimation of soil physical
properties. Water Resources Research, 34, 2289-2299. https://doi.org/10.1029/98 WR00553

YIET AL.

25 of 27



A~
MM\I
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030957

McColl, K. A., He, Q., Lu, H., & Entekhabi, D. (2019). Short-term and long-term surface soil moisture memory time scales are spatially anticor-
related at global scales. Journal of Hydrometeorology, 20(6), 1165-1182. https://doi.org/10.1175/JHM-D-18-0141.1

McColl, K. A., Wang, W., Peng, B., Akbar, R., Short Gianotti, D. J., Lu, H., et al. (2017). Global characterization of surface soil moisture
drydowns. Geophysical Research Letters, 44, 3682-3690. https://doi.org/10.1002/2017GL072819

Mironov, V. L., Kerr, Y. H., Kosolapova, L. G., Savin, I. V., & Muzalevskiy, K. V. (2015). A temperature-dependent dielectric model for thawed
and frozen organic soil at 1.4 GHz. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9), 4470-4477.
https://doi.org/10.1109/JSTARS.2015.2442295

Mironov, V. L., Kosolapova, L. G., & Fomin, S. V. (2009). Physically and mineralogically based spectroscopic dielectric model for moist soils.
IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2059-2070. https://doi.org/10.1109/TGRS.2008.2011631

Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., et al. (2021). Spatial heterogeneity and environmental predictors of
permafrost region soil organic carbon stocks. Science Advances, 7(9). eaaz5236. https://doi.org/10.1126/sciadv.aaz5236

Mishra, U., & Riley, W. J. (2015). Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks. Biogeo-
sciences, 12(13), 3993-4004. https://doi.org/10.5194/bg-12-3993-2015

Neelam, M., Colliander, A., Mohanty, B. P., Cosh, M. H., Misra, S., & Jackson, T. J. (2020). Multiscale surface roughness for improved soil
moisture estimation. /[EEE Transactions on Geoscience and Remote Sensing, 58(8), 5264-5276. https://doi.org/10.1109/TGRS.2019.2961008

O’Connor, M. T., Cardenas, M. B., Ferencz, S. B., Wu, Y., Neilson, B. T., Chen, J., & Kling, G. W. (2020). Empirical models for predicting water
and heat flow properties of permafrost soils. Geophysical Research Letters, 47, €2020GL087646. https://doi.org/10.1029/2020GL087646

Paloscia, S., Pampaloni, P., & Santi, E. (2018). Radiometric microwave indices for remote sensing of land surfaces. Remote Sensing, 10(12), 1859.
https://doi.org/10.3390/rs10121859

Paquin, J.-P., & Sushama, L. (2015). On the Arctic near-surface permafrost and climate sensitivities to soil and snow model formulations in
climate models. Climate Dynamics, 44(1-2), 203-228. https://doi.org/10.1007/s00382-014-2185-6

Park, C.-H., Behrendt, A., LeDrew, E., & Wulfmeyer, V. (2017). New approach for calculating the effective dielectric constant of the moist soil
for microwaves. Remote Sensing, 9(7), 732. https://doi.org/10.3390/rs9070732

Park, C.-H., Montzka, C., Jagdhuber, T., Jonard, F., De Lannoy, G., Hong, J., et al. (2019). A dielectric mixing model accounting for soil organic
matter. Vadose Zone Journal, 18(1), 190036. https://doi.org/10.2136/vzj2019.04.0036

Poggio, L., Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil infor-
mation for the globe with quantified spatial uncertainty. SOIL, 7(1), 217-240. https://doi.org/10.5194/s0il-7-217-2021

Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3-4), 75-83. https://doi.org/10.1016/j.
geoderma.2010.02.003

Quinton, W. L., Gray, D. M., & Marsh, P. (2000). Subsurface drainage from hummock-covered hillslopes in the Arctic tundra. Journal of Hydrol-
ogy, 237(1-2), 113-125. https://doi.org/10.1016/S0022-1694(00)00304-8

Quinton, W. L., & Marsh, P. (1998). The influence of mineral Earth hummocks on subsurface drainage in the continuous permafrost zone. Perma-
frost and Periglacial Processes, 9(3), 213-228. https://doi.org/10.1002/(SICT)1099-1530(199807/09)9:3<213:: AID-PPP285>3.0.CO;2-E

Rawlins, M. A., Cai, L., Stuefer, S. L., & Nicolsky, D. (2019). Changing characteristics of runoff and freshwater export from watersheds draining
northern Alaska. The Cryosphere, 13(12), 3337-3352. https://doi.org/10.5194/tc-13-3337-2019

Rawlins, M. A., Nicolsky, D. J., McDonald, K. C., & Romanovsky, V. E. (2013). Simulating soil freeze/thaw dynamics with an improved pan-Arc-
tic water balance model. Journal of Advances in Modeling Earth Systems, 5, 659-675. https://doi.org/10.1002/jame.20045

Romanovsky, V. E., Marchenko, S. S., Daanen, R., Sergeev, D. O., & Walker, D. A. (2008). Soil climate and frost heave along the permafrost
(Vol. 6). Ecological North American Arctic Transect.

Rondinelli, W. J., Hornbuckle, B. K., Patton, J. C., Cosh, M. H., Walker, V. A., Carr, B. D., & Logsdon, S. D. (2015). Different rates of soil
drying after rainfall are observed by the SMOS satellite and the south Fork in situ soil moisture network. Journal of Hydrometeorology, 16(2),
889-903. https://doi.org/10.1175/JHM-D-14-0137.1

Roy, A., Toose, P., Williamson, M., Rowlandson, T., Derksen, C., Royer, A., et al. (2017). Response of L-Band brightness temperatures to freeze/
thaw and snow dynamics in a prairie environment from ground-based radiometer measurements. Remote Sensing of Environment, 191, 67-80.
https://doi.org/10.1016/j.rse.2017.01.017

Santanello, J. A., Peters-Lidard, C. D., Garcia, M. E., Mocko, D. M., Tischler, M. A., Moran, M. S., & Thoma, D. P. (2007). Using remote-
ly-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed. Remote Sensing of Environment,
110(1), 79-97. https://doi.org/10.1016/j.rse.2007.02.007

Saura-Mas, S., & Lloret, F. (2007). Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-
fire regenerative strategies. Annals of Botany, 99(3), 545-554. https://doi.org/10.1093/aob/mcl284

Schmugge, T. J. (1983). Remote sensing of soil moisture: Recent advances. IEEE Transactions on Geoscience and Remote Sensing, 21(3),
336-344. https://doi.org/10.1109/TGRS.1983.350563

Schwank, M., Naderpour, R., & Mitzler, C. (2018). Tau-omega”- and two-stream emission models used for passive L-band retrievals: Application
to close-range measurements over a forest. Remote Sensing, 10(12), 1868. https://doi.org/10.3390/rs10121868

Shellito, P. J., Small, E. E., Colliander, A., Bindlish, R., Cosh, M. H., Berg, A. A., et al. (2016). SMAP soil moisture drying more rapid than
observed in situ following rainfall events. Geophysical Research Letters, 43, 8068-8075. https://doi.org/10.1002/2016GL069946

Shi, X., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J., Sebestyen, S. D., et al. (2015). Representing Northern Peatland microtopography
and hydrology within the community land mode. Biogeosciences Discussions, 12(4), 3381-3418.

Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., & Mauser, W. (2008). Is snow sublimation important in the alpine water balance? The
Cryosphere, 2, 53-66. https://doi.org/10.5194/tc-2-53-2008

Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S., & Wilson, B. E. (2020). Daymet: Daily surface weather data on a 1-km grid for
North America, Version 4. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1840

Tifafi, M., Guenet, B., & Hatté, C. (2018). Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD,
and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France. Global Biogeochemical Cycles, 32,
42-56. https://doi.org/10.1002/2017GB005678

Verry, E., Boelter, D., Pdivinen, J., Nichols, D., Malterer, T., & Gafni, A. (2011). Physical properties of organic soils. In K.Brooks (Ed.), Peatland
Biogeochemistry and watershed hydrology at the Marcell experimental forest (pp. 135-176). CRC Press. https://doi.org/10.1201/b10708-6

Vonk, J. E., Tank, S. E., & Walvoord, M. A. (2019). Integrating hydrology and biogeochemistry across frozen landscapes. Nature Communica-
tions, 10(1), 5377. https://doi.org/10.1038/s41467-019-13361-5

Wigneron, J.-P., Chanzy, A., Rosnay, P., Rudiger, C., & Calvet, J.-C. (2008). Estimating the effective soil temperature at L-band as a function of
soil properties. IEEE Transactions on Geoscience and Remote Sensing, 46(3), 797-807. https://doi.org/10.1109/TGRS.2007.914806

YIET AL.

26 of 27



A~
MM\I
ADVANCING EARTH
AND SPACE SCIENCE

Water Resources Research 10.1029/2021WR030957

Woo, M.-K., & Marsh, P. (2005). Snow, frozen soils and permafrost hydrology in Canada, 1999-2002. Hydrological Processes, 19(1), 215-229.
https://doi.org/10.1002/hyp.5772

Wrona, E., Rowlandson, T. L., Nambiar, M., Berg, A. A., Colliander, A., & Marsh, P. (2017). Validation of the soil moisture active passive
(SMAP) satellite soil moisture retrieval in an arctic tundra environment: Validation of SMAP in arctic tundra. Geophysical Research Letters,
44, 4152-4158. https://doi.org/10.1002/2017GL072946

Xu, C.-Y., & Chen, D. (2005). Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter meas-
urement data in Germany. Hydrological Processes, 19(18), 3717-3734. https://doi.org/10.1002/hyp.5853

Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., & Miller, C. E. (2019). Sensitivity of active-layer freezing process to snow cover in Arctic
Alaska. The Cryosphere, 13(1), 197-218. https://doi.org/10.5194/tc-13-197-2019

Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., Reichle, R. H., Mishra, U., et al. (2018). Characterizing permafrost active layer dynamics and
sensitivity to landscape spatial heterogeneity in Alaska. The Cryosphere, 12(1), 145-161. https://doi.org/10.5194/tc-12-145-2018

Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M., & Euskirchen, E. S. (2015). The role of snow cover affecting boreal-arctic soil freeze-
thaw and carbon dynamics. Biogeosciences, 12(19), 5811-5829. https://doi.org/10.5194/bg-12-5811-2015

Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., & Brown, J. (2008). Statistics and characteristics of permafrost and ground-ice distri-
bution in the Northern Hemisphere. Polar Geography, 31(1-2), 47-68. https://doi.org/10.1080/10889370802175895

Zwieback, S., & Berg, A. A. (2019). Fine-scale SAR soil moisture estimation in the Subarctic tundra. IEEE Transactions on Geoscience and
Remote Sensing, 57(7), 4898—4912. https://doi.org/10.1109/TGRS.2019.2893908

Zwieback, S., Westermann, S., Langer, M., Boike, J., Marsh, P., & Berg, A. (2019). Improving permafrost modeling by assimilating remotely
sensed soil moisture. Water Resources Research, 55, 1814—1832. https://doi.org/10.1029/2018WR023247

YIET AL.

27 of 27



	Potential Satellite Monitoring of Surface Organic Soil Properties in Arctic Tundra From SMAP
	Abstract
	1. Introduction
	2. Study Area and Data Analysis
	2.1. Study Area and In Situ Data
	2.2. Soil Moisture Drydown Analysis

	3. Model Simulations
	3.1. Hydrology Model Simulation
	3.1.1. Soil Parameterization Adapted for Organic Soil

	3.2. Tb Simulation
	3.3. Model Calibration and Validation

	4. Results
	4.1. Soil Moisture Drydown Analysis
	4.2. Modeling Calibration and Validation
	4.2.1. Hydrologic Modeling
	4.2.2. Tb Modeling

	4.3. Sensitivity of L-Band Polarization Ratio to Surface Organic Soil Concentration

	5. Discussion
	5.1. Soil Moisture Drydown Characterization in the Arctic Region
	5.2. Uncertainties in the Model Simulations
	5.2.1. Uncertainties in the Hydrology Model Simulation
	5.2.2. Uncertainties in the Tb Simulation


	6. Conclusions
	Appendix A: Soil Dielectric Modeling
	Appendix B: Evapotranspiration Modeling Improvements in the PWBM Model
	Data Availability Statement
	References


