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a b s t r a c t

This paper presents a new design for the event-triggered output feedback control of uncertain

linear time-varying systems. Departing from the traditional treatments of event-triggered linear time-

invariant systems, it is shown that factoring of fundamental solutions as products of solutions of matrix

differential equations, together with small-gain arguments and the notions of interval observers and

positive systems, lead to a new class of robust event-triggered output-feedback controllers. A key

innovation is our use of new event triggers, which use vectors of absolute values instead of the usual

Euclidean 2-norms. An illustrative example of a curve tracking system from marine robotics validates

the efficacy of the proposed design scheme.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Event-triggered control plays a significant role in current con-

trols research; see, e.g., the works [1–8], and [9]. An advantage

of event-triggered control is its ability to reduce the computa-

tional burden associated with control implementations, by only

changing control values when a significant event occurs. Such

events are usually characterized as times when the state of the

system enters a prescribed region. This differs from standard

zero-order hold control strategies, which instead usually recom-

pute the control values at times that are independent of the

state. As shown in [10], event-triggered control is fundamen-

tally a control problem for an interconnection consisting of the

controlled plant and the event-triggering mechanism. Several

previous event-triggered control design schemes can be unified

from a small-gain perspective [11].

Emerging computing methods may facilitate recomputing con-

rol values. However, the increasing use of shared wired (or

hared wireless) networked control systems strongly motivates
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designing controls that can take communication, computation,

and energy constraints into account [3]. This has led to mul-

tiple event-triggered control designs, such as those in [8,9,12],

nd [13]. A different body of current control theoretic research

s based on positive systems, meaning, systems for which the

onnegative orthant is a positively invariant set. This has led

o new control analysis and designs that help overcome the

hallenges of applying traditional Lyapunov function approaches.

everal works on positive systems are based on interval observers

as defined, e.g., in [14–16]), which yield intervals containing

alues of estimated states at each time, where the inequalities

nvolving vector valued functions are viewed componentwise; see

17] and Section 2. Interval observers and positive systems led

o advances in aerospace engineering, mathematical biology, and

ther applications.

This (and the need to consider linear time-varying systems

ith uncertain coefficients and output feedback in applications)

otivates this work. Here, we develop a new event-triggered

ontrol technique based on the theory of positive systems. The

ositive system will be the dynamics for (x, −x), where (x, x) is

the state of an interval observer (for an estimator x̂ of unmea-

ured states). See (26), where x is then multiplied by −1 to obtain

a dynamics for (x, −x) that is a positive system, which is essen-

ial for proving the exponential stability of our event-triggered

ystem. We believe that our work is the first to apply positive

ystems and interval observer methods to event-triggered output

eedback control for systems with uncertain dynamics.
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Our global exponential stability proof uses interval observers
as comparison systems, and the linear Lyapunov function ap-
proach from works such as [17], [18], and [19, Chapt. 3]. How-
ever, [17] does not cover event-triggering. Significant innovations
in our work include (1) our covering time-varying systems, using
new methods that are beyond the scope of traditional treatments
of event-triggered linear time-invariant systems, such as our fac-
toring of fundamental solutions as products of solutions of matrix
differential equations, (2) our novel approaches to finding lower
bounds on the times between event triggering times, and (3)
our new theorem that ensures global exponential stability even
when there is uncertainty in the dynamics, which uses our novel
small-gain approach to output feedback control. Other significant
innovations in our work include (4) our use of matrices of ab-
solute values instead of the usual matrix 2-norm, which, in our
examples, leads to larger lower bounds on the inter-sample times
between the event-triggering times and therefore provides an
advantage compared with existing event-triggered controls, and
(5) the integration of small-gain arguments and positive system
theory for tackling the event-triggered control of linear time-
varying systems with output feedback and uncertainty in the
system matrices. Our use of matrices of absolute values instead
of standard Euclidean 2-norms is a key innovation that makes
it possible to use our positive systems and interval observer
methods.

We review our definitions and notation in Section 2. We
introduce our class of time-varying systems and our assump-
tions in Section 3. In Section 4, we present our event-triggered
control design, and we state our theorem on the asymptotic
convergence properties that our closed-loop systems enjoy when
using this control design. In Section 5, we prove our theorem. In
Section 6, we illustrate our method in a marine robotic dynamics
and other cases. We end in Section 7 with our suggestions for
future research.

In addition to addressing the essential difficulties of achiev-
ing event-triggered control for linear systems with outputs and
uncertain coefficient matrices, this paper improves on our con-
ference version [20]. The improvements are our covering
time-varying systems (which call for using fundamental solutions
instead of matrix exponentials), and a proof of our theorem and a
new application to a marine robotic system. These three features
were not present in [20], which was confined to time-invariant
systems and which only provided sketches of proofs of theorems.
Also, by including time-varying and uncertain coefficients and
output feedback control, the theorem in this work includes the
dynamics from all three theorems of [20], as special cases.

2. Definitions and notation

We use these definitions and this notation, where the dimen-
sions of our Euclidean spaces are arbitrary unless we otherwise
indicate. The arguments of functions are omitted when no con-
fusion can arise from the context. Set Z0 = {0, 1, 2, . . .} and
N = Z0\{0}. Given a matrix G = [gij] ∈ Rr×s, we set |G| = [|gij|],
i.e., the entries of |G| are the absolute values of the corresponding
entries of G. We also set G+

= [max{gij, 0}] and G−
= G+

−G, and
supℓ∈J |G(ℓ)| = [mij] where mij = supℓ∈J |gij(ℓ)| when G is a time-
varying and bounded matrix-valued function and J is a subset of
the domain of G. A square matrix is called Metzler provided all
of its off-diagonal entries are nonnegative. We use inequalities of
matrices, in the following entry-wise sense. Given two matrices
D = [dij] and E = [eij] of the same size, we write D < E (resp.,
D ≤ E) provided dij < eij (resp., dij ≤ eij) for all i and j. We use
similar notation for vectors. Hence, |x| ∈ Rn is a vector of absolute
values of any vector x ∈ Rn. A matrixM is called positive provided
M > 0, where 0 is the zero matrix.
2

For a matrix M = [mij] in Rn×n, we let DM denote the diagonal
matrix diag{m11,m22, . . . ,mnn} in Rn×n. Hence, all of the main
diagonal entries of M − DM are equal to zero. We let RM =

DM + (M − DM )+ and NM = (M − DM )−, so M = RM − NM .
We let ∥ · ∥ denote the standard Euclidean norm of matrices and
vectors, and we let ∥ · ∥∞ (resp., ∥ · ∥J ) denote the sup norm of
matrix-valued functions in this norm over their domain (resp.,
an interval J in their domain). We let I be the identity matrix in
any dimension, and we use the usual definition and properties of
fundamental matrices, e.g., from [21, Appendix C]. We use ΦM
to denote the fundamental matrix for a system of differential
equations of the form ż = M(t)z. We also use the standard
definitions (e.g., from [10]) of class KL and K∞ functions.

3. Class of systems and assumptions

We consider the system with an output y given by{
ẋ(t) = (A0(t) + Aδ(t))x(t) + (B0(t) + Bδ(t))u(t)
y(t) = Cx(t) (1)

with x valued in Rn, y valued in Rq, the control u valued in Rp,
known bounded continuous matrix-valued functions A0 and B0,
matrix-valued functions Aδ and Bδ whose entries are piecewise
continuous and that can represent uncertainties, and a known
constant matrix C ∈ Rq×n. In some of what follows, we set
A(t) = A0(t)+Aδ(t) and B(t) = B0(t)+Bδ(t). Our main assumptions
are as follows:

Assumption 1. There is a known bounded continuous matrix-
valued function L : R → Rn×q such that the system

ż(t) =
(
A(t) + L(t)C

)
z(t) (2)

is uniformly globally exponentially stable to the origin on Rn.
Also, there are known constants a∗ ≥ 0 and b∗ ≥ 0 such that
∥Aδ∥∞ ≤ a∗ and ∥Bδ∥∞ ≤ b∗. □

Assumption 2. There are a matrix Γ > 0, a bounded continuous
matrix-valued function K : R → Rp×n, a constant p > 0, a
function V : [0,+∞) → Rn of class C1, and two vectors V̄ > 0
and V > 0 in Rn such that, with the choices

H(t) = A0(t)+B0(t)K (t) and E(t) = RH (t)+NH (t), (3)

we have

V ≤ V (t) ≤ V (4)

and

V̇ (t)⊤ + V (t)⊤
(
E(t) + |B0(t)K (t)|Γ

)
≤ −pV (t)⊤ (5)

or all t ≥ 0. □

The motivation for Assumptions 1–2 is as follows. Assump-
ion 1 is a time-varying analog of the usual requirements from the
onstant coefficient unperturbed case that (A, C) is observable,
hich is then robustified by including Aδ(t) in the coefficient
atrix in (2). Hence, the required exponential stability condition

or (2) will be satisfied if the unperturbed system ż(t) = (A0(t)+
(t)C)z(t) is uniformly globally exponentially stable to the origin
n Rn when the sup norm of Aδ is small enough. Assumption 2
s a time-varying robustified analog of the usual requirement in
he time-invariant case that H is Metzler and Hurwitz, in which
ase H = RH = E; see [20] for our study of time-invariant
ases, and [19, Lemma 2.3, p.41] for a proof that there are a
ositive constant vector V ∈ Rn and a constant p > 0 such that
⊤H ≤ −pV⊤ when H ∈ Rn×n is a constant Metzler Hurwitz
atrix.
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Our rationale for calling Assumption 2 a robustified version of
the preceding condition from [19] is that if there exist a positive
vector V ∈ Rn and a positive scalar p such that V⊤H(t) ≤ −2pV⊤

holds for all t ≥ 0, and if H(t) is Metzler for all t ≥ 0, then
Assumption 2 will be satisfied when Γ has small enough entries
(because H = E). Hence, the control parameters can be chosen in
the following three steps. First, choose K so that H satisfies the
preceding conditions. Second, choose L such that Assumption 1
is satisfied. Third, choose Γ to have small enough entries so
that Assumption 2 is also satisfied. Therefore, taken together,
Assumptions 1–2 are a time-varying robustified analog of the
requirements from the emulation conditions in event-triggered
control. These assumptions will be used in the second part of our
proof of our theorem, to establish the exponential convergence
conclusion of our theorem. See Appendix A for ways to check
whether Assumption 2 is satisfied.

Given K and Γ satisfying the requirements from Assump-
tion 2, we use the function

Ω0(t, s) = ΦA0 (t, s) +

∫ t

s
ΦA0 (t,m)B0(m)K (m)dm, (6)

and we consider any constant ν > 0 such that

sup{|I − Ω−1
0 (t, s)| : 0 ≤ s ≤ t ≤ s + ν} ≤ Γ , (7)

where Γ is from Assumption 2 and where the inverse values Ω−1
0

will exist for small enough ν > 0 because Ω0(s, s) = I for all
s ≥ 0, and because the boundedness of A0, B0, and K implies that
sup{∥(∂Ω0/∂t)(t, s)∥ : 0 ≤ s ≤ t ≤ s + ν} is bounded for each
ν > 0. See Appendix B for ways to find constants ν > 0 to satisfy
(7), including a method based on factoring fundamental solutions.
In Section 5, we prove that our constant ν > 0 that satisfies (7)
is a lower bound on the intervals between the event triggering
times ti, so the Zeno phenomenon does not occur.

Fixing any constant ν > 0 satisfying (7) and V satisfying
the requirements from Assumption 2, and letting v denote the
mallest entry of the constant vector V > 0 from Assumption 2,
and letting c∗ and g be positive constants such that

∥z(t)∥ ≤ c∗e−g(t−s)
∥z(s)∥ (8)

holds along all solutions of (2) for all s ≥ 0 and t ≥ s (so g is
he rate of global exponential convergence in Assumption 1), and
sing the notation

= (I + Γ ) Eν, (9)

where

Eν = sup{|ΦA0 (t, s)L(s)| : 0≤ s≤ t≤ s+ν} (10)

here Γ and L are from Assumptions 1–2, our last assumption is
s follows, where C is the matrix used in (1):

ssumption 3. The constants

G1 =
2c∗
g (∥Aδ∥∞ + ∥BδK∥∞) and

G2 =
2
pv

(⏐⏐⏐⏐V⊤
|B0K |B|C |

⏐⏐⏐⏐
∞

ν +
⏐⏐⏐⏐V⊤

|LC |
⏐⏐⏐⏐

∞

) (11)

re such that the inequality

1G2 < 1 (12)

s satisfied. □

emark 1. Condition (12) is a small-gain condition that we use
n the second part of the proof of our theorem in Section 5; see
emark 4, and see [10] for background on small-gain methods.
lthough larger g values in the G1 formula can reduce G1, the
rice to pay is to change L in Assumption 1, which would pro-
uce changes in the B in the G formula; see (9)-(10). Hence,
2

3

Assumption 3 also illustrates the trade-off between convergence
rates and gains in Assumption 1. In a similar way, while changing
K in Assumption 2 may allow larger decay rates p > 0 in our
condition (5) in Assumption 2 and so increase the denominator
of G2, the price to pay could be to increase G1. □

4. Event-triggered control design

In terms of the preceding matrices and constants and the
matrices (9), and continuing our notation A = A0 + Aδ and
B = B0 +Bδ , we are now ready to define our event-triggered con-
trol. Our event-triggered feedback control and the corresponding
event-triggering times ti are defined by

u(t) = K (t)x̂(ti) for all t ∈ [ti, ti+1) and i ≥ 0, (13)

where t0 = 0, and where for integers i ≥ 0, we have

(a) ẋ(t) = A(t)x(t) + B(t)K (t)x̂(ti) if t ∈ (ti, ti+1),
(b) ˙̂x(t) = A0(t)x̂(t) + B0(t)K (t)x̂(ti) + L(t)[Cx̂(t) − y(t)] if t ∈

(ti, ti+1),
(c) the inequality

|x̂(t) − x̂(ti)| ≤

Γ |x̂(t)| + B
∫ t
max{0,t−ν}

|Cx̂(ℓ) − y(ℓ)|dℓ (14)

is satisfied for all t ∈ [ti, ti+1), and
(d) for each i such that ti < +∞, we have

ti+1 = sup
{
s ≥ ti : |x̂(r) − x̂(ti)| ≤ Γ |x̂(r)|

+B
∫ r
max{0,r−ν}

|Cx̂(ℓ)−y(ℓ)|dℓ for all r ∈ [ti, s]
}
,

(15)

here | · | denotes vectors of absolute values as explained in
ection 2, B is from (9), the constant ν > 0 satisfies the require-

ments from Section 3, and L(t) was specified in Assumption 1.
The system (a)–(d) is an event-triggered dynamics that resets
the control values at the times ti, using the following inductive
argument.

Starting at time t0 = 0, we choose u(t) = K (t)x̂(0). Then, we
ontinue to use the control formula u(t) = K (t)x̂(0) as long as

|x̂(t) − x̂(0)| ≤

Γ |x̂(t)| + B
∫ t
max{0,t−ν}

|Cx̂(ℓ) − y(ℓ)|dℓ (16)

continues to hold. This yields an interval [0, t∗] along which the
control takes the values u(t) = K (t)x̂(0), and the proof of our
theorem will show that t∗ ≥ ν. Then we change the control
formula to u(t) = K (t)x̂(t1), where t1 is the supremum from (d)
with the choice i = 0, if t1 < +∞. We repeat this process
inductively, with t0 replaced by t1, then by t2, and so on, to define
the control values and triggering times ti for all t ≥ 0. Hence, (a)–
(d) provide a recursively defined event-triggered control, whose
triggers are computed from values of the observer x̂. See Remark 3
for ways to implement the preceding event-triggered algorithm.
Our theorem is then:

Theorem 1. Let Assumptions 1–3 hold, and let K , L, Γ , and ν satisfy
the requirements above. Then we can find positive constants r1 and
r2 such that all solutions of the closed-loop system given by (a)–(d)
satisfy ∥x(t)∥ ≤ r1e−r2t∥x(0)∥ for all t ≥ 0. □

Remark 2. The preceding theorem is new, even in the special
case where Aδ and Bδ are zero. This is because of our abil-
ity to achieve event-triggered output feedback stabilization with
time-varying coefficients A0 and B0. □

Remark 3. We can implement the event-triggered control (a)–
(d) by extrapolating; see Section 6, where we implemented our
method by extrapolation. Alternatively, Theorem 1 remains true
if we fix any constant T ≥ ν (with ν again chosen as in Section 3)
and then replace (c)–(d) by
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(c′) the inequality

|x̂(t − T ) − x̂(ti)| ≤

Γ |x̂(t − T )| + B
∫ t−T
max{0,t−T−ν}

|Cx̂(ℓ) − y(ℓ)|dℓ (14′)

is satisfied for all t ∈ [ti + T , ti+1 + T ), and
(d′) for each i ∈ Z0, we have 0 ≤ ti+1 − ti ≤ T . In addition, if i is

such that ti+1 < ti + T , then we have

ti+1 =

sup
{
s ≥ ti : |x̂(r − T ) − x̂(ti)| ≤ Γ |x̂(r − T )|

+B
∫ r−T
max{0,r−ν−T }

|Cx̂(ℓ)−y(ℓ)|dℓ for all
r ∈ [ti + T , s + T ]

}
.

(15′)

With the preceding changes, the event-triggered control is imple-
mented as follows. At time t0 = 0, we choose u(0) = K (0)x̂(0),
and then we use the control values u(t) = K (t)x̂(0) up to time
t = t0 + T = T , or up to the infimum of the times t > T when
the value t − T fails to satisfy (14′) if such a violation of (14′)
occurs, whichever occurs first. We call this time t1. At that time
t1, we switch to using the control values u(t) = K (t)x̂(t1). Then
we repeat this process with i = 0 replaced by i = 1, and argue
inductively to obtain control values and triggering times that are
defined for all times t ≥ 0. The fact that Theorem 1 remains true
with the preceding changes follows by replacing t throughout the
first part of the proof of the theorem below by t − T . Hence,
only measurements of x̂ and of the output y up to time t − T are
needed to monitor the event trigger at times t . Using the change
of variable s = t−T in (14′), it then follows that (14) remains true
for all t ∈ [ti, ti+1) for values i ≥ 0, so the second part of the proof
of the theorem below remains valid with the preceding changes
in (c)–(d). Moreover, with the preceding changes, we still obtain
the lower bound ti+1 − ti ≥ ν on the intersample intervals for all
i.

5. Proof of Theorem 1

The proof has two parts. In the first part, we use our condition
(7) on the constant ν > 0 to show that the Zeno phenomenon
does not occur. In the second part, we use Assumptions 1–3
to show that the global exponential stability conclusion of the
theorem holds.

First part. Letting ν be the constant we defined above, we
prove that the inter-event times ti+1 − ti are bounded below by
ν, i.e., if there are any finite triggering times ti > 0, then either
(A) there are only a finite number of finite instants t0, . . . , tj and
minl∈{0,...,j}(tl+1 − tl) ≥ ν or (B) there are infinitely many finite
instants ti and infl∈Z0 (tl+1 − tl) ≥ ν. (The case where there are no
trigger times gives t1 = +∞ and u(t) = K (t)x̂(0) for all t ≥ 0.)

For any i ∈ Z0 such that ti < +∞, we apply the method
of variation of parameters to the equation in (b) over [ti, t) with
t ∈ [ti, ti + ν] with the initial state x̂(ti) to get

x̂(t) = G(t, ti)
+

[
ΦA0 (t, ti) +

∫ t
ti

ΦA0 (t, ℓ)B0(ℓ)K (ℓ)dℓ
]
x̂(ti),

(17)

where

G(t, ti) =

∫ t

ti

ΦA0 (t, ℓ)L(ℓ)[Cx̂(ℓ) − y(ℓ)]dℓ. (18)

Hence, x̂(ti) = Ω−1
0 (t, ti)[x̂(t)−G(t, ti)] for all t ∈ [ti, ti+ν], which

is equivalent to

x̂(t) − x̂(ti) =
[
I − Ω−1

0 (t, ti)
]
x̂(t) + Ω−1

0 (t, ti)G(t, ti) (19)

for all t ∈ [ti, ti + ν]. Hence, (7) gives

|x̂(t) − x̂(ti)| ≤ Γ |x̂(t)| + |Ω−1
0 (t, ti)G(t, ti)| (20)
for all t ∈ [ti, ti + ν].
4

Since our formula (18) for G and our choice (10) of Eν give

|G(t, ti)| ≤ Eν

∫ t

ti

|Cx̂(ℓ) − y(ℓ)|dℓ, (21)

and since (7) gives |Ω−1
0 (t, ti)| ≤ Γ + I , it follows from our choice

(9) of B that we have

|Ω−1
0 (t, ti)G(t, ti)| ≤ B

∫ t
max{0,t−ν}

|Cx̂(ℓ) − y(ℓ)|dℓ (22)

for all t ∈ [ti, t + ν]. Using (22) to upper bound the second right
side term in (20), it follows that the inequality (14) holds for all
t ∈ [ti, ti + ν], which gives ti+1 ≥ ti + ν.

Second part. We prove the global exponential stability of the
0 equilibrium of the closed-loop system (a)–(d). In what follows,
all equalities and inequalities should be understood to hold for all
t ≥ 0, unless otherwise indicated.

Let x̃(t) = x̂(t) − x(t) and G = A0 + LC . Then (a)–(b) give
˙̃x(t) = G(t)x̃(t) − Aδ(t)x(t) − Bδ(t)K (t)x̂(σ (t))

= [G(t) + Aδ(t)]x̃(t)
−Aδ(t)x̂(t) − Bδ(t)K (t)x̂(σ (t))

(23)

for all t ≥ 0, where σ (t) is the largest of the times ti such that ti ≤

t . Therefore, by applying the method of variation of parameters
to the last equality in (23), it follows from Assumption 1 that (23)
satisfies an exponential ISS estimate of the form

∥x̃(t)∥ ≤ max{β1(∥x̃(s)∥, t − s), γ1(∥x̂∥[σ (s),t])} (24)

for all s ≥ 0 and t ≥ s and for a suitable function β1 ∈ KL and the
class K∞ function γ1(s) = G1s, where G1 was defined in (11), and
where the exponential property of the ISS means that there are
positive constants c1 and c2 such that β1(s, t) = c1se−c2t for all
s ≥ 0 and t ≥ 0. Here we used the fact that (8) implies that the
fundamental matrix for (2) satisfies ||ΦA+LC (t, s)|| ≤ c∗e−g(t−s).

Also, setting H = A0 + B0K and µ̂(t) = x̂(ti) − x̂(t) for all
t ∈ [ti, ti+1) and i ≥ 0, we have
˙̂x(t) = H(t)x̂(t) + B0(t)K (t)µ̂(t) + L(t)Cx̃(t)

= [RH (t) − NH (t)]x̂(t)
+ B0(t)K (t)µ̂(t) + L(t)Cx̃(t).

(25)

We next introduce the comparison system⎧⎪⎨⎪⎩
ẋ(t) = RH (t)x(t) − NH (t)x(t)

+ (B0(t)K (t)µ̂(t))+ + (L(t)Cx̃(t))+
ẋ(t) = RH (t)x(t) − NH (t)x(t)

− (B0(t)K (t)µ̂(t))− − (L(t)Cx̃(t))−
(26)

hich we use as an interval observer for x̂. We refer to (26) as
n interval observer, because (as we show later in the proof) it
ill satisfy x(t) ≤ x̂(t) ≤ x(t) for all t ≥ 0 and so provides an

interval [xi(t), xi(t)] containing each component x̂i(t) for all t ≥ 0
and i = 1, 2 . . . , n. We assume

x(0) < 0 < x(0) and x(0) < x̂(0) < x(0). (27)

ince Y (t) = (x̄(t), −x(t)) is a solution of a dynamics of the form

Ẏ (t) = H(t)Y (t) + P(t) (28)

for some matrix-valued functions H and P having piecewise
continuous entries such that H(t) is Metzler for all t ≥ 0 and
P(t) ≥ 0 for all t ≥ 0, [22, Lemma 1] implies that

x(t) ≤ 0 ≤ x(t) (29)

for all t ≥ 0. Similar reasoning implies that x(t) − x̂(t) ≥ 0 and
x̂(t) − x(t) ≥ 0 for all t ≥ 0; this follows by applying [22, Lemma
] to the 2n dimensional dynamics for (x(t) − x̂(t), x̂(t) − x(t)).

Hence, for all t ≥ 0, we obtain

x(t) ≤ 0 ≤ x(t) and x(t) ≤ x̂(t) ≤ x(t). (30)
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For the preceding initial conditions, set x⋆(t) = x(t)−x(t). Then
30) gives x(t) − x(t) ≤ x̂(t) ≤ x(t) − x(t) and so also

|x̂(t)| ≤ x⋆(t). (31)

imple calculations give

ẋ⋆(t) = (RH (t) + NH (t))x⋆(t)
+ |B0(t)K (t)µ̂(t)| + |L(t)Cx̃(t)|. (32)

onsider the function W (t, x⋆) = V⊤(t)x⋆, where V is from
Assumption 2. By (c) and (32), it satisfies

Ẇ (t) = V̇⊤(t)x∗(t) + V⊤(t)(RH (t) + NH (t))x⋆(t)
+ V⊤

|B0(t)K (t)µ̂(t)| + V⊤(t)|L(t)Cx̃(t)|
≤ V̇⊤(t)x∗(t) + V⊤(t)(RH (t) + NH (t))x⋆(t)

+ V⊤(t)|B0(t)K (t)|
(
Γ |x̂(t)|

+B
∫ t
max{0,t−ν}

C♯(ℓ)dℓ
)
+ V⊤

|L(t)Cx̃(t)|

(33)

for all t ≥ 0 along solutions of (32), where the notation RH
and NH is as defined in Section 2, B was defined in (9), C♯(ℓ) =

Cx̂(ℓ)−y(ℓ) and Ẇ (t) means (d/dt)W (t, x∗(t)). Using (5), (31), and
33), we get

Ẇ (t) ≤ −pW (t, x⋆(t)) + V⊤(t)|L(t)Cx̃(t)|

+ V⊤(t)|B0(t)K (t)|B
∫ t
max{0,t−ν}

C♯(ℓ)dℓ

≤ −pW (t, x⋆(t)) + Ξ (t), where

Ξ (t) = V⊤(t)|B0(t)K (t)|B|C |
∫ t
max{0,t−ν}

|x̃(ℓ)|dℓ

+ V⊤
|L(t)Cx̃(t)|,

(34)

here the first inequality in (34) used the nonnegative valued-
ess of x∗(t) (which follows from (31)) to maintain the inequality
rom (5) when (5) is right multiplied by x∗(t).

By applying the method of variation of parameters to

˙ (t) ≤ −pW (t, x⋆(t)) + Ξ (t) (35)

rom (34), it follows from the formula (34) for Ξ that the x∗

ynamics satisfies an exponential ISS estimate of the form

∥x∗(t)∥ ≤

max{β2(∥x∗(s)∥, t − s), γ2(∥x̃∥[max{0,s−ν},t])}
(36)

or all s ≥ 0 and t ≥ s and for a function β2 ∈ KL (having the
orm β2(s, t) = d1se−d2t for suitable positive constants d1 and
2), because of the exponential ISS estimate (35) and the bound
W (s, x∗(s))∥ ≤ ∥V̄ |x∗(s)|∥, where V̄ is the upper bound on V from
4)) and γ2(s) = G2s, where G2 was defined in (11). We now use
31) to upper bound |x̂| in the ISS estimate (24) to obtain the new
stimate
∥x̃(t)∥ ≤

max{β1(∥x̃(s)∥, t − s), γ1(∥x∗∥[max{0,s−ν},t])}
(37)

or all s ≥ 0 and t ≥ s. Then, we use the small-gain condition
1G2 < 1 from Assumption 3 to check that the looped ISS
stimate (36)-(37) is such that γ1(γ2(s)) < s for all s > 0. It then
ollows from the proof of the small-gain theorem (e.g., from [10,
. 61] or the proof of [23, Theorem 2.6]) that the (x∗, x̃) dynamics
re globally exponentially stable to 0 on R2n. The conclusion of
heorem 1 now follows because we can assume that x̄(0) ≤

|x(0)| and x(0) ≥ −M|x(0)| for a large enough constant M > 0,
hich imply that our condition (31) gives ∥x(t)∥ = ∥x̂(t)−x̃(t)∥ ≤

∥x̂(t)∥ + ∥x̃(t)∥ ≤ ∥x∗(t)∥ + ∥x̃(t)∥ ≤ 2∥(x∗(t), x̃(t))∥ for all
t ≥ 0 and ∥(x∗(0), x̃(0))∥ ≤ (4M + 1)∥x(0)∥, so we can convert
the exponential stability estimate for (x∗, x̃) into the required
exponential stability estimate for x(t).

Remark 4. Our small-gain argument from the previous proof
differs significantly from standard small-gain approaches to event
5

Fig. 1. Curve Tracking Frames and Positions from [25].

riggering, because we use a small-gain condition between x̃
nd x∗, instead of between the original system and the event
riggering rule. □

. Illustrations

.1. Output feedback event-triggered control

In this subsection, we illustrate Theorem 1, using a benchmark
wo-dimensional (i.e., planar) curve tracking dynamical system
rom [24,25]. While simpler than more complex ship models, or
he analogous 3D curve tracking model from [25,26], it illustrates
he value of Theorem 1 for using event-triggering to eliminate the
eed to continuously adjust the control values. We consider the
ystem⎧⎨⎩

ρ̇(t) = − sin(φ(t))

φ̇(t) =
κ cos(φ(t))
1+κρ(t) + u(t)

y(t) = ρ(t)
(38)

hich models curve tracking by a unit speed surface marine robot
ith a gyroscopic control u. In (38), the available measurement
is the distance between the marine robot and the closest point

i.e., projection) on the curve being tracked (where we assume
s in [25] that the closest point is unique at each time), φ is the
eading angle (measuring the difference between the angles of
he tangent lines of the path of the marine robot and of the path
eing traced out by the closest point on the curve being tracked),
nd κ is the curvature at each time. See [25] for a derivation of the
odel (38). Also, see Fig. 1 for the position and frame (r1, x1, y1)
n the boundary curve being tracked at the closest point, and
he position and frame (r2, x2, y2) for the vehicle, where ρ =

r1 − r2∥, and φ is the angle between the tangent vector x1 at
he projection point on the curve being tracked and the tangent
ector x2 on the curve being traced out by the robot at each time.
e assume for simplicity that κ is a positive constant.
The linear approximation of (38) around any choice of the

eference trajectory (ρr (t), φr (t)) is⎧⎨⎩ ρ̇a(t) = a12(t)φa(t)
φ̇a(t) = a21(t)ρa(t) + a22(t)φa(t) + u(t)
y(t) = ρa(t),

(39)

here

a12(t) = − cos(φr (t)), a21(t) = −
κ2 cos(φr (t))
(1+κρr (t))2

,

and a22(t) = −
κ sin(φr (t))
1+κρr (t)

.
(40)

et us consider the reference trajectory (ρr , φr ), where

r (t)=
1

(
1 −

t∆∗

)
and φr (t)=arcsin

(
∆∗

2

)
. (41)
κ 1 + t κ(1 + t)
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he physical meaning of the constant ∆∗ ∈ [0,min{1, κ}) is that
t determines how fast the robot is traveling towards the curve
hat is being tracked. For this reference trajectory, (1 − ∆∗)/κ is
the infimum of the distance between the position of the robot and
the projection on the curve being tracked. Then (39)-(40) give

a12(t) = A1(t) − 1, a21(t) = −
κ2

4 + A2(t), and

a22(t) = A3(t), where A1(t) = 1−

(
1−

∆2
∗

κ2(1+t)4

)1/2
,

A2(t) = κ2

⎛⎝ 1
4 −

√
1− ∆2

∗

κ2(1+t)4(
2− t∆∗

1+t

)2
⎞⎠ , and

A3(t) = −
∆∗

(1+t)2
1

2− t∆∗
1+t

.

(42)

Let us choose κ = 2. This produces the dynamics⎧⎨⎩ ρ̇a(t) = (A1(t) − 1)φa(t)
φ̇a(t) = −(1 − A2(t))ρa(t) + A3(t)φa + u(t)
y(t) = ρa(t).

(43)

The change of coordinates (x1(t), x2(t)) = (ρa(t), ρa(t) − φa(t))
produces the dynamics ẋ(t) = A(t)x(t) + Bu with output y(t) =

Cx(t), where

A(t) =

[
A1(t) − 1 1 − A1(t)
A4(t) 1−A1(t)+A3(t)

]
, (44)

B = [0,−1]⊤, C = [1, 0], and A4 = A1 − A2 − A3.
Then simple Mathematica calculations show that the require-

ments of Assumptions 1–3 are satisfied with Aδ = 0, Bδ = 0, V =

1, 2]⊤, K = [0, 1.75], each entry of Γ being 0.1, L = [−2,−5]⊤,
nd p = 0.01 when ∆∗ = 0.1. The preceding choices of V , p, K ,
, and Γ were obtained by first finding constant choices of V , p,
, L and Γ for which our assumptions are satisfied in the special
ase where ∆∗ = 0 (and with a constant choice of H that is both
etzler and Hurwitz), and then by choosing ∆∗ > 0 to be a small
nough constant such that the requirements of our assumptions
re still met with these choices of V , p, K , L, and Γ . For instance,
o check that Assumption 1 is satisfied, we solved the Riccati
quation PM + M⊤P = −I for P with the choice M = A + LC in
he ∆∗ = 0 case, and then we checked that ∆∗ = 0.1 was small
nough so that V0(z) = z⊤Pz is a quadratic Lyapunov function for

˙(t) = (A(t)+LC)z(t). Then the requirement (B.1) from Lemma B.1
in Appendix B is satisfied with ν = 0.026. Hence, (7) is satisfied,
so Theorem 1 applies in the special case where Aδ an Bδ are both
the zero matrices.

If we replace (41) by the reference trajectory

r (t) =
1
κ
(1 − 0.1 sin(t)) and φr (t) = arcsin

(
cos(t)
10κ

)
(45)

nd replace V , p, Γ , and ν by V = [1, 3.7]⊤, p = 0.001,

Γ =

[
0.6075 0.648
0.081 0.243

]
(46)

and ν = 0.2125, respectively, and keep the rest of the dynamics
the same, then (7) is again satisfied. This can be checked by noting
that

sup{|I − Ω−1
0 (t, s)| : s ∈ [0, 2π ], t ∈ [s, s + ν]} ≤ Γ , (47)

and then using the argument from Appendix B for cases where
A(t) is periodic. The entries of Γ in (46) and ν were chosen using
he following two step process. In the first step, the entries of Γ

ere chosen as the largest ones for which the requirements of
ssumption 2 were satisfied with the preceding choices of A, B,
, K , and p. Then, in the second step, ν > 0 was chosen to be the
argest value such that (7) is satisfied with the preceding choices

f A, B, K , and Γ = [Γij]. However, with the preceding choices,

6

Fig. 2. Curve Tracking in Periodic Case, showing Convergence of State Vector
to Desired Elliptic Curve using Positive Systems Based Event-Triggered Control
from Theorem 1: Phase Plane.

Fig. 3. Tracking in Periodic Case, showing Convergence to Desired Oscillatory
Curves using Positive Systems Based Event-Triggered Control from Theorem 1:
tates from Theorem 1.

ur sufficient condition (B.1) from the proof of Lemma B.1 is not
satisfied, because its left side with b̄ = ∥BK∥ and ā = ∥A∥∞ is
2.07515 > min{Γ11, Γ12, Γ21, Γ22, 1} = 0.081. This illustrates
how numerical techniques (such as the alternative methods from
Appendix B) can allow cases where (B.1) is violated but where
our method still applies.

In Figs. 2–3, we plot MATLAB simulations that we obtained in
the preceding periodic case with the preceding parameter values
using the event-triggered control from our theorem (i.e., (a)–(d)
above) applied to (43). In the top figure, we used ρa(0) = φa(0) =

0.1 as the initial state. In Fig. 3, we plot the solutions that we
obtained for different initial states (ρa(0), φa(0)). Since the plots
show convergence to the reference trajectory (45), they illustrate
the value of our theorem, and they demonstrate the benefits of
our event-triggered control designs.

The preceding cases are beyond the scope of works for time-
invariant systems such as [8], because of our time-varying coef-
ficient A(t), unless ∆∗ = 0 in our reference trajectory (41). In
the special case where ∆∗ = 0, the matrix A is constant, and
in that ∆∗ = 0 case, the example would be covered by [8] if
we instead had C = I . Therefore, we next compare the lower
bound ν that we would obtain from our method with the lower
bound ν that could be obtained from [8, Corollary IV.1] in the
∆∗ = 0 and C = I case. When ∆∗ = 0, our assumptions and our
requirement (B.1) from Lemma B.1 are satisfied with ν = 0.0925
and the same choices of the other parameters that we used in
our treatment of the ∆∗ = 0.1 case. On the other hand, if we
apply [8, Corollary IV.1] with the same set of parameters (using
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= min{Γij : 1 ≤ i ≤ n, 1 ≤ j ≤ n} = 0.1 in [8, Corollary IV.1],
which corresponds to our trigger condition |e| ≤ Γ |x|), then we
would have gotten ν = 0.0592, so our method provides a larger
lower bound ν on the inter-sample times, and therefore ensures
less frequent event triggers.

6.2. Robustness

We next illustrate Theorem 1 using the special case{
ẋ1(t) = (1 + δ1(t))x1(t) +

1
2 (1 + δ2(t))x2(t) + u

ẋ2(t) =
3
2 (1 + δ3(t))x1(t) + u

(48)

f (1) with B0 = [1, 1]⊤, Bδ = 0, C = I ,

A0 =

[
1 1

2
3
2 0

]
, and Aδ(t) =

[
δ1

1
2δ2

3
2δ3 0

]
, (49)

here x1 and x2 are valued in R, the piecewise continuous
ounded unknown functions δi represent uncertainty, and u is the
eal valued input, which agrees with the example in [20] when
ach δi is the zero function. Then, using the notation K = [K1, K2],
ur assumptions will be satisfied when the supremum of the δi’s
nd the entries of Γ > 0 are small enough, provided

=

[
1 + K1

1
2 + K2

3
2 + K1 K2

]
(50)

s Hurwitz and Metzler (again by [19, Lemma 2.3, p.41]). We will
herefore choose K1 = −4/3 and K2 = −1/3. Then simple Math-
matica calculations show that the requirements of Theorem 1
re satisfied when sup{|δi(t)| : t ≥ 0} ≤ 0.01 for all i, by
hoosing L = [lij] with l11 = −1.1, l12 = −0.5, l21 = −0.5,
nd l22 = −0.1, and ν = 0.02, and each entry of Γ to be 0.045,

because these choices ensure that our assumptions and (7) hold.
Moreover, when the δi’s are 0, we can satisfy the requirements
with ν = 0.122 with all other parameters as before. This gives
the lower bound ν = 0.122 on the intersampling times ti+1 − ti.

In the special case of the preceding example where each δi
is the zero function, the system (48) is covered by the event-
triggered results from [8]. If we had instead used [8, Corollary
IV.1] to obtain a lower bound on the ti+1 − ti’s (using σ =

in{Γij : 1 ≤ i ≤ n, 1 ≤ j ≤ n} = 0.045 in [8, Corollary
V.1], which corresponds to our trigger condition |e|≤Γ |x|), then
we would have gotten ν = 0.0811 in the case where the δi’s
are the zero function. Hence, our method again provides a larger
ν and the potential advantage of ensuring less frequent control
recomputations.

Fig. 4 shows MATLAB simulations of (48) that implement the
event-triggered controller from Theorem 1, with a 20 second time
horizon using the above parameter values with the δi’s taken to
be the constant values 0.01. For this time horizon, our controller
from Theorem 1 produced 73 sample times when the control was
recomputed.

7. Conclusion

In this paper, we used the theory of positive linear time-
varying systems and interval observers, along with small-gain
techniques, to tackle the robust, event-triggered, output-feedback
control of linear time-varying systems. Our design method was
motivated by the need to only infrequently recompute con-
trol values in marine robotic and other applications, instead of
frequently changing control values. It has been shown how to
guarantee robust global exponential stability properties for large
classes of linear time-varying systems with output feedback and
uncertainty in the coefficient matrices. The efficacy of the new
proposed framework is illustrated through explicit quantification
of uncertainty and implementation in a marine robotic example.
7

Fig. 4. Positive Systems Approach in Unperturbed Case, illustrating the Ca-
pability of our Event-Triggered Control from Theorem 1 to Ensure Desired
Convergence.

Since the mechanism in Section 4 calls for the co-location of
the sensor and observer, we plan to develop analogs where the
transmissions between the output sensor and the observer are
scheduled (where the observer is implemented remotely) and
where exact knowledge of the observer values x̂(t) is not required.
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Appendix A. Checking Assumption 2

We provide two remarks on how to check Assumption 2.

Remark A.1. Assumption 2 can always be satisfied for a matrix
Γ > 0 with small enough entries and a constant matrix K
when (A, B) is a (constant) controllable pair, after a change of
variables. This is done by choosing a constant matrix K such that
all eigenvalues of A+ BK are negative real values, and then using
a similarity transformation that transforms (A, B) into a new pair
(PAP−1, PB) where

H = P(A + BK )P−1 (A.1)

is the (Hurwitz and Metzler) Jordan canonical form of A+BK . Then
we can satisfy the requirements of Assumption 1 with a constant
vector V > 0 (by [19, Lemma 2.3, p.41]). □

Remark A.2. Assumption 2 can also be satisfied in time-varying
cases where (A0(t), B0(t)) has the form (Ac + ∆A(t), Bc + ∆B(t))
when (Ac, Bc) is a controllable pair and the sup norms of the
continuous time-varying parts (∆A, ∆B) and the entries of Γ > 0
are small enough, by applying the change of coordinates from
Remark A.1 to (Ac, Bc). On the other hand, for any constant α > 0,
Assumption 2 is also satisfied by

A0(t) = 1 −
α cos(αt)
2+sin(αt) , B0 = 1, K = −4, Γ =

c
4 ,

V = 2 + sin(αt), V = 3, V = 1, and p = 3 − c
(A.2)

for any constant c ∈ (0, 3). This illustrates how Assumption 2
also allows cases where the supremum of A0 can be arbitrarily
large (because α > 0 can be arbitrarily large). Then we can
use numerical methods to find values ν > 0 such that the
requirements from Lemma B.1 hold. For instance, for α = 50,
they hold with (A.2), c = 2.99, and ν = 0.1. □
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ppendix B. Methods for choosing ν

A key ingredient in our theorem is the constant ν > 0 satisfy-
ing our condition (7). The following lemma provides a sufficient
condition for ν > 0 to satisfy (7) (but see below for other ways
to satisfy (7)):

Lemma B.1. Let Γ ∈ Rn×n be a positive matrix and Ω0 be defined
by (6). Fix constants a > 0 and b > 0 such that ∥A0∥∞ ≤ a and
∥B0K∥∞ ≤ b. Let γ ∈ (0,min{1, r0}) be a constant, where r0 is the
mallest of the entries of the matrix Γ > 0. Then for any constant
> 0 such that

1 + (b̄/ā))(eāν − 1)e(1+(b̄/ā))(eāν−1)
≤ γ , (B.1)

ur requirement (7) is satisfied. □

Proof. We show that Ω0(t, s) is invertible and that

|I − Ω−1
0 (t, s)| ≤ Γ (B.2)

is satisfied when t ∈ [s, s + ν] and s ≥ 0.
To prove the invertibility property, first note that since ΦA0 (t, s)

is invertible, it follows from the semigroup property of funda-
mental solutions that the matrix Ω0(t, s) is invertible if and only if
N (s, t) = I +

∫ t
s ΦA0 (s,m)B0(m)K (m)dm is invertible. When t ≥ s,

this matrix is invertible if

L(t, s) < 1, (B.3)

where

L(t, s) =

∫ t

s
∥ΦA0 (s,m)∥∥B0(m)K (m)∥dm (B.4)

(by showing that the nullspace of N (s, t) is 0). Also,

L(t, s) ≤

∫ t

s
ea(m−s)dmb ≤ (b̄/ā)(eā(t−s)

− 1) (B.5)

when t ≥ s ≥ 0, e.g., by the Peano–Baker formula (e.g., from [21,
Appendix C.4]). Since (B.1) implies that (b̄/ā)(eāν − 1) < 1, we
deduce that the inequality (B.3) is satisfied for all s ≥ 0 and
t ∈ [s, s+ν], which implies that Ω0(t, s) is invertible for all s ≥ 0
and t ∈ [s, s + ν].

Next, we prove that (B.2) is satisfied for all t ∈ [s, s+ν], where
s ≥ 0 is arbitrary. Note that (B.2) is satisfied ifI − Ω0(t, s)−1

 ≤ γ . (B.6)

his inequality is equivalent toI − (I − Ω̃0(t, s))−1
 ≤ γ (B.7)

ith Ω̃0(t, s) = I − Ω0(t, s). We prove that ∥Ω̃0(t, s)∥ < 1 for all
t ∈ [s, s + ν]. Since

Ω̃0(t, s) =

I − ΦA0 (t, s) −
∫ t
s ΦA0 (t,m)B0(m)K (m)dm,

(B.8)

the inequality

∥Ω̃0(t, s)∥ ≤ ∥I − ΦA0 (t, s)∥ + (b̄/ā)(eā(t−s)
− 1) (B.9)

is satisfied when t ≥ s ≥ 0. The Peano–Baker formula gives⏐⏐⏐⏐ΦA0 (t, s) − I
⏐⏐⏐⏐ ≤

+∞∑
k=1

(t − s)k∥A0∥
k
∞

k!
≤ ea(t−s)

− 1 (B.10)

when t ≥ s ≥ 0. Thus (B.9) implies that

∥Ω̃0(t, s)∥ ≤ ea(t−s)
− 1 + (b̄/ā)(eā(t−s)

− 1)
¯ ā(t−s) (B.11)
= (1 + (b/ā))(e − 1)
8

when t ≥ s ≥ 0. From (B.1), we deduce that ∥Ω̃0(t, s)∥ ≤ γ < 1
for all t ∈ [s, s+ν]. Hence, by the matrix geometric series formula,
the inequality (B.7) is equivalent to

+∞∑
k=1

Ω̃(t, s)k

k!

 ≤ γ (B.12)

for all t ∈ [s, s + ν]. It is satisfied if

∥Ω̃0(t, s)∥
+∞∑
k=1

Ω̃0(t, s)
k−1

(k − 1)!
≤ γ (B.13)

for all t ∈ [s, s + ν]. This inequality is equivalent to

∥Ω̃0(t, s)∥e∥Ω̃0(t,s)∥ ≤ γ . (B.14)

According to (B.11), (B.14) is satisfied if

(1 + (b̄/ā))(eā(t−s)
− 1)e(1+(b̄/ā))(eā(t−s)

−1)
≤ γ . (B.15)

By (B.1), this is the case. This concludes the proof. □
The optimal (i.e., largest) ν satisfying the requirements of

Lemma B.1 is the ν such that (B.1) holds with equality, which is
the root ν of

(1 + (b̄/ā))(eāν − 1)e(1+(b̄/ā))(eāν−1)
= γ , (B.16)

because the left side of (B.1) is strictly increasing in ν. We can
use numerical methods to solve for the root ν > 0 of (B.16). The
onstant ν constructed in the proof of Lemma B.1 is in general not
he largest possible ν such that (7) is satisfied for given choices of
0, B0, K , and Γ . In practice, direct or numerical techniques can be
pplied to find values for ν that satisfy (7) but violate (B.1). To see
ow, we next consider other ways to satisfy (7), including a result
or periodic cases which we used to compute ν in Remark A.2. See
lso Section 6.1 for an application to curve tracking.
First we consider the case where A0, B0, and K have the same

eriod p∗ > 0. Second, we consider a case where A0 has the form
A0(t) = Ac + ∆A(t) for a constant matrix Ac , where the known
atrix-valued function ∆A is bounded and continuous (but not
ecessarily periodic), under suitable bounds on the sup norm of
A.
To cover the periodic case, first note that in this case, we

ave ΦA0 (t, s) = ΦA0 (t − ip∗, s − ip∗) and so also Ω0(t, s) =

0(t − ip∗, s − ip∗) for all integers i ≥ 0, all s ≥ ip∗ and all t ≥ s,
y our formula (6) for Ω0. Hence, (7) will hold if ν > 0 is such
hat (B.2) is satisfied for all s ∈ [0, p∗] and t ∈ [s, s + ν]. To see
hy, note that if (B.2) holds for all s ∈ [0, p∗] and t ∈ [s, s + ν],
nd if sa ≥ 0 and ta ∈ [sa, sa + ν] are given, then we can find an
nteger i ≥ 0 such that sa ∈ [ip∗, (i + 1)p∗], so

I − Ω−1
0 (ta, sa)| = |I − Ω−1

0 (ta − ip∗, sa − ip∗)| ≤ Γ , (B.17)

ecause sa − ip∗ ∈ [0, p∗] and ta − ip∗ ∈ [sa − ip∗, sa − ip∗ + ν].
or any ν > 0, we can use numerical methods to check whether
B.2) holds for all s ∈ [0, p∗] and t ∈ [s, s + ν], because we can
actor ΦA0 (t,m) for all m ∈ [s, t], s ∈ [0, p∗], and t ∈ [s, s + ν],
.g., by writing

A0 (t,m) = αA(t)βA(m) (B.18)

or allm ≥ 0 and t ≥ m, where αA and βA are the unique solutions
f the matrix differential equations

˙A(t)=A0(t)αA(t) and β̇A(m)=−βA(m)A0(m) (B.19)

hat satisfy αA(0) = βA(0) = I , and by then checking if

up{|I − Ω−1
0 (t, s)| : s ∈ [0, p∗], t ∈ [s, s + ν]} ≤ Γ ; (B.20)

ee, e.g., [27], for the use of this decomposition of fundamental
olutions in adaptive control. The factoring (B.18) makes it possi-
le to compute the fundamental solution values that are needed
o check Assumption 3.
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To cover cases where A0(t) = Ac + ∆A(t) for a constant
matrix Ac and continuous and bounded ∆A, assume that the
coefficient matrix B = B0 is a known constant matrix, and that
the requirements of Assumption 2 are satisfied for some Γ > 0
with a constant K , but similar reasoning applies if B and K are
time varying.

Choose any positive matrices Γa and Γb = [γij] such that
Γ = Γa + Γb. Then (7) is satisfied if ν > 0 and ∆A satisfy

sup
ℓ∈[0,ν]

|I − Ω−1
c (ℓ)| ≤ Γa and{

b∗eν∥Ac∥
(
eν∥∆A∥∞ − 1

)}
∥Ω−1

c ∥[0,ν] < c0,
(B.21)

where b∗ = 1 + ν∥BK∥,

Ωc(s) = esAc +

∫ s

0
eAc (s−ℓ)dℓBK , (B.22)

and the constant c0 ∈ (0, 1) is such that
c0

1−c0
∥Ω−1

c ∥[0,ν] ≤ min
{
γij : 1≤ i≤n, 1≤ j≤n

}
. (B.23)

To see why (7) is satisfied in this case, we first write

Ω0(t, s) = Ωc(t − s) + ΦA0 (t, s) − e(t−s)Ac

+
∫ t
s

[
ΦA0 (t, ℓ) − eAC (t−ℓ)

]
BKdℓ

= Ωc(t − s) [I + η(t, s)]
(B.24)

for all s ≥ 0 and t ∈ [s, s + ν], where

η(t, s) = Ωc(t − s)−1
[
ΦA0 (t, s) − eAc (t−s)

+
∫ t
s

(
ΦA0 (t, ℓ) − eAc (t−ℓ)

)
BKdℓ

]
.

(B.25)

Using the boundΦA0 (t, ℓ) − eAc (t−ℓ)
 ≤ eν∥Ac∥

(
eν∥∆A∥∞ − 1

)
(B.26)

which holds for all ℓ ∈ [s, t], s ≥ 0, and t ∈ [s, s+ ν], e.g., by [28,
Lemma 2], and recalling (B.21), it follows that ∥η(t, s)∥ ≤ c0 < 1,
and therefore that I + η(t, s) is invertible (by checking that its
nullspace is trivial). This implies that (B.24) is invertible when
s ≥ 0 and t ∈ [s, s + ν]

Also, for c̄ = minij γij, and for any S ∈ Rn×n that satisfies
∥S∥ ≤ c̄ , we have |S| ≤ Γb. Specializing the preceding observation
to the case where S = Ωc(t − s)−1

− Ω−1
0 (t, s), it follows from

Lemma C.1 in Appendix C (applied with M0 = Ωc(t − s), N0 being
the quantity in squared brackets in (B.25), m̄ = ∥Ω−1

c ∥[0,ν], and n̄
being the quantity in curly braces in (B.21)) that (B.23) givesM−1

0 − (M0 + N0)−1


=
Ωc(t − s)−1

− Ω−1
0 (t, s)

 ≤
∥Ω

−1
c ∥[0,ν]c0
1−c0

≤ min{γij : 1 ≤ i ≤ n, 1 ≤ j ≤ n},

(B.27)

nd so also⏐⏐Ωc(t − s)−1
− Ω−1

0 (t, s)
⏐⏐ ≤ Γb, (B.28)

by writing Ω0(t, s) = M0+N0 and then noting that ∥M−1
0 ∥∥N0∥ ≤

0. Hence, the bound |I − Ω−1
0 (t, s)| ≤ Γ for all s ≥ 0 and

∈ [s, s+ ν] follows from the first inequality in (B.21) and (B.28)
nd our decomposition Γ = Γa + Γb. Conditions (B.21) can be
hecked numerically by computing Ωc in (B.22), and they hold
for a small enough ν > 0 because Ωc(0) = I , by the continuity of
matrix inversion.

Using the preceding alternative conditions (B.21) instead of
B.1) from Lemma B.1, we can allow cases with bigger values of
, and therefore ensure less frequent recomputations of control
alues. For instance, consider the scalar case where Ac = B0 = 1,

= −2.2, ∆A is bounded by 0.1, Γ = 0.35, and ν = 0.16.
hen, simple Mathematica calculations show that condition (B.1)
s violated, because with the choices ā = 1.1 and b̄ = 2.2, the left
ide of (B.1) is 1.02834 > min{1, Γ } = 0.35. On the other hand,
9

the criteria (B.21) are satisfied with the preceding choices of Ac ,
B0, K , Γ , and ν and any ∆A that is bounded by 0.1, if we choose
c0 = 0.0526, Γa = 0.79Γ , and Γb = 0.21Γ .

Appendix C. Lemmas from [28]

We used the following lemmas (which are [28, Lemma 1], and
a variant of [29, Lemma 1] with a similar proof, respectively) in
Appendix B:

Lemma C.1. Let M0 ∈ Rn×n be an invertible matrix. Let N0 ∈ Rn×n

be a matrix. Let n̄ and m̄ be two constants such that ∥M−1
0 ∥ ≤ m̄

and ∥N0∥ ≤ n̄. Assume that m̄n̄ < 1. Then the matrix M0 + N0 is
invertible andM−1

0 − (M0 + N0)−1
 ≤

m̄2n̄
1 − m̄n̄

(C.1)

is satisfied. □

Lemma C.2. Consider the system

ζ̇ (t) = [A(t) + E(t)] ζ (t) (C.2)

where A : [0,+∞) → Rn×n is a continuous matrix-valued function,
ζ is valued in Rn, and E : [0, +∞) → Rn×n has piecewise
continuous entries. Then for all t1 ∈ R and t2 ∈ R such that t1 ≥ t2,
he inequality

∥ΦA+E (t1, t2) − ΦA(t1, t2)∥

≤ e∥A∥∞(t1−t2)
(
e∥E∥∞(t1−t2) − 1

) (C.3)

s satisfied. □
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