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1. Introduction

Event-triggered control plays a significant role in current con-
trols research; see, e.g., the works [1-8], and [9]. An advantage
of event-triggered control is its ability to reduce the computa-
tional burden associated with control implementations, by only
changing control values when a significant event occurs. Such
events are usually characterized as times when the state of the
system enters a prescribed region. This differs from standard
zero-order hold control strategies, which instead usually recom-
pute the control values at times that are independent of the
state. As shown in [10], event-triggered control is fundamen-
tally a control problem for an interconnection consisting of the
controlled plant and the event-triggering mechanism. Several
previous event-triggered control design schemes can be unified
from a small-gain perspective [11].

Emerging computing methods may facilitate recomputing con-
trol values. However, the increasing use of shared wired (or
shared wireless) networked control systems strongly motivates
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designing controls that can take communication, computation,
and energy constraints into account [3]. This has led to mul-
tiple event-triggered control designs, such as those in [8,9,12],
and [13]. A different body of current control theoretic research
is based on positive systems, meaning, systems for which the
nonnegative orthant is a positively invariant set. This has led
to new control analysis and designs that help overcome the
challenges of applying traditional Lyapunov function approaches.
Several works on positive systems are based on interval observers
(as defined, e.g., in [14-16]), which yield intervals containing
values of estimated states at each time, where the inequalities
involving vector valued functions are viewed componentwise; see
[17] and Section 2. Interval observers and positive systems led
to advances in aerospace engineering, mathematical biology, and
other applications.

This (and the need to consider linear time-varying systems
with uncertain coefficients and output feedback in applications)
motivates this work. Here, we develop a new event-triggered
control technique based on the theory of positive systems. The
positive system will be the dynamics for (x, —x), where (x, X) is
the state of an interval observer (for an estimator X of unmea-
sured states). See (26), where x is then multiplied by —1 to obtain
a dynamics for (x, —x) that is a positive system, which is essen-
tial for proving the exponential stability of our event-triggered
system. We believe that our work is the first to apply positive
systems and interval observer methods to event-triggered output
feedback control for systems with uncertain dynamics.
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Our global exponential stability proof uses interval observers
as comparison systems, and the linear Lyapunov function ap-
proach from works such as [17], [18], and [19, Chapt. 3]. How-
ever, [17] does not cover event-triggering. Significant innovations
in our work include (1) our covering time-varying systems, using
new methods that are beyond the scope of traditional treatments
of event-triggered linear time-invariant systems, such as our fac-
toring of fundamental solutions as products of solutions of matrix
differential equations, (2) our novel approaches to finding lower
bounds on the times between event triggering times, and (3)
our new theorem that ensures global exponential stability even
when there is uncertainty in the dynamics, which uses our novel
small-gain approach to output feedback control. Other significant
innovations in our work include (4) our use of matrices of ab-
solute values instead of the usual matrix 2-norm, which, in our
examples, leads to larger lower bounds on the inter-sample times
between the event-triggering times and therefore provides an
advantage compared with existing event-triggered controls, and
(5) the integration of small-gain arguments and positive system
theory for tackling the event-triggered control of linear time-
varying systems with output feedback and uncertainty in the
system matrices. Our use of matrices of absolute values instead
of standard Euclidean 2-norms is a key innovation that makes
it possible to use our positive systems and interval observer
methods.

We review our definitions and notation in Section 2. We
introduce our class of time-varying systems and our assump-
tions in Section 3. In Section 4, we present our event-triggered
control design, and we state our theorem on the asymptotic
convergence properties that our closed-loop systems enjoy when
using this control design. In Section 5, we prove our theorem. In
Section 6, we illustrate our method in a marine robotic dynamics
and other cases. We end in Section 7 with our suggestions for
future research.

In addition to addressing the essential difficulties of achiev-
ing event-triggered control for linear systems with outputs and
uncertain coefficient matrices, this paper improves on our con-
ference version [20]. The improvements are our covering
time-varying systems (which call for using fundamental solutions
instead of matrix exponentials), and a proof of our theorem and a
new application to a marine robotic system. These three features
were not present in [20], which was confined to time-invariant
systems and which only provided sketches of proofs of theorems.
Also, by including time-varying and uncertain coefficients and
output feedback control, the theorem in this work includes the
dynamics from all three theorems of [20], as special cases.

2. Definitions and notation

We use these definitions and this notation, where the dimen-
sions of our Euclidean spaces are arbitrary unless we otherwise
indicate. The arguments of functions are omitted when no con-
fusion can arise from the context. Set Zo = {0,1,2,...} and
N = Zo\{0}. Given a matrix G = [g;] € R"™*, we set |G| = [|g;l],
i.e., the entries of |G| are the absolute values of the corresponding
entries of G. We also set G = [max{g;, 0}] and G~ = Gt -G, and
sup,¢; |G(€)| = [my] where m;; = sup,; |g;(¢)| when G is a time-
varying and bounded matrix-valued function and J is a subset of
the domain of G. A square matrix is called Metzler provided all
of its off-diagonal entries are nonnegative. We use inequalities of
matrices, in the following entry-wise sense. Given two matrices
D = [dy] and E = [e;] of the same size, we write D < E (resp.,
D < E) provided dj; < e; (resp., dj < e;) for all i and j. We use
similar notation for vectors. Hence, |x| € R" is a vector of absolute
values of any vector x € R". A matrix M is called positive provided
M > 0, where 0 is the zero matrix.
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For a matrix M = [m;] in R™*", we let Dy denote the diagonal
matrix diag{mi, myy, ..., my,} in R™", Hence, all of the main
diagonal entries of M — Dy, are equal to zero. We let Ry, =
DM + (M — Dm)+ and NM = (M — D]\/l)_, soM = RM — NM.
We let || - || denote the standard Euclidean norm of matrices and
vectors, and we let || - || (resp., || - |l;) denote the sup norm of
matrix-valued functions in this norm over their domain (resp.,
an interval J in their domain). We let I be the identity matrix in
any dimension, and we use the usual definition and properties of
fundamental matrices, e.g., from [21, Appendix C]. We use & x4
to denote the fundamental matrix for a system of differential
equations of the form z = M(t)z. We also use the standard
definitions (e.g., from [10]) of class KX£ and K, functions.

3. Class of systems and assumptions

We consider the system with an output y given by
{ X(t) = (Ao(t) + As(t))x(t) + (Bo(t) + Bs(t))u(t)
) =

Cx(t) ()
with x valued in R", y valued in RY, the control u valued in RP,
known bounded continuous matrix-valued functions Ag and By,
matrix-valued functions As and B; whose entries are piecewise
continuous and that can represent uncertainties, and a known
constant matrix C € R?". In some of what follows, we set
A(t) = Ao(t)+As(t) and B(t) = Bo(t)+Bs(t). Our main assumptions
are as follows:

Assumption 1. There is a known bounded continuous matrix-
valued function L : R — R™? such that the system

2(t) = (A(t) + L(£)C)z(t) (2)

is uniformly globally exponentially stable to the origin on R".
Also, there are known constants a, > 0 and b, > 0 such that
Asllco < ax and [|Bslloo < b.. O

Assumption 2. There are a matrix I” > 0, a bounded continuous
matrix-valued function K : R — RP*" a constant p > 0, a
function V : [0, +00) — R" of class C!, and two vectors V > 0
and V > 0 in R" such that, with the choices

H(t) = Ag(t)+Bo(t)K(t) and E(t) = Ry(t)+Ny(t), (3)
we have
VvV (4)
and

V()" + V(e)" (E(t) + [Bo(tK (D)) < —pV(£)" (5)

forallt >0. O

The motivation for Assumptions 1-2 is as follows. Assump-
tion 1 is a time-varying analog of the usual requirements from the
constant coefficient unperturbed case that (A, C) is observable,
which is then robustified by including As(t) in the coefficient
matrix in (2). Hence, the required exponential stability condition
for (2) will be satisfied if the unperturbed system z(t) = (Ao(t) +
L(t)C)z(t) is uniformly globally exponentially stable to the origin
on R" when the sup norm of As is small enough. Assumption 2
is a time-varying robustified analog of the usual requirement in
the time-invariant case that H is Metzler and Hurwitz, in which
case H = Ry = E; see [20] for our study of time-invariant
cases, and [19, Lemma 2.3, p.41] for a proof that there are a
positive constant vector V € R" and a constant p > 0 such that
VTH < —pVT when H € R™" is a constant Metzler Hurwitz
matrix.
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Our rationale for calling Assumption 2 a robustified version of
the preceding condition from [19] is that if there exist a positive
vector V € R" and a positive scalar p such that VTH(t) < —2pV T
holds for all t > 0, and if H(t) is Metzler for all t > 0, then
Assumption 2 will be satisfied when I" has small enough entries
(because H = E). Hence, the control parameters can be chosen in
the following three steps. First, choose K so that H satisfies the
preceding conditions. Second, choose L such that Assumption 1
is satisfied. Third, choose I to have small enough entries so
that Assumption 2 is also satisfied. Therefore, taken together,
Assumptions 1-2 are a time-varying robustified analog of the
requirements from the emulation conditions in event-triggered
control. These assumptions will be used in the second part of our
proof of our theorem, to establish the exponential convergence
conclusion of our theorem. See Appendix A for ways to check
whether Assumption 2 is satisfied.

Given K and I' satisfying the requirements from Assump-
tion 2, we use the function

t
20(t,s) = @Ao(t,s)—i-/ Dy, (t, m)Bo(m)K(m)dm, (6)

and we consider any constant v > 0 such that
sup{|l — 2, '(t,8) : 0 <s<t<s+v}<T, (7)

where I' is from Assumption 2 and where the inverse values .Qo’l
will exist for small enough v > 0 because £2y(s,s) = I for all
s > 0, and because the boundedness of Ag, By, and K implies that
sup{||(082¢/0t)(t,S)]| : 0 <s <t < s+ v} is bounded for each
v > 0. See Appendix B for ways to find constants v > 0 to satisfy
(7), including a method based on factoring fundamental solutions.
In Section 5, we prove that our constant v > 0 that satisfies (7)
is a lower bound on the intervals between the event triggering
times t;, so the Zeno phenomenon does not occur.

Fixing any constant v > O satisfying (7) and V satisfying
the requirements from Assumption 2, and letting v denote the
smallest entry of the constant vector V > 0 from Assumption 2,
and letting c, and g be positive constants such that

I2(6)]l < c.e 8 z(s)| (8)

holds along all solutions of (2) for alls > 0 and t > s (so g is
the rate of global exponential convergence in Assumption 1), and
using the notation

where
E, = sup{|®a,(t, S)L(s)| : 0<s<t <s+v} (10)

where I and L are from Assumptions 1-2, our last assumption is
as follows, where C is the matrix used in (1):

Assumption 3. The constants
G = % (IAslle + lIBsK|loo) and

11

G2 = 2 (|[vT BokIBICl v + [V hCl]l) i
are such that the inequality

GGy < 1 (12)

is satisfied. O

Remark 1. Condition (12) is a small-gain condition that we use
in the second part of the proof of our theorem in Section 5; see
Remark 4, and see [10] for background on small-gain methods.
Although larger g values in the G; formula can reduce Gy, the
price to pay is to change L in Assumption 1, which would pro-
duce changes in the B in the G, formula; see (9)-(10). Hence,
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Assumption 3 also illustrates the trade-off between convergence
rates and gains in Assumption 1. In a similar way, while changing
K in Assumption 2 may allow larger decay rates p > 0 in our
condition (5) in Assumption 2 and so increase the denominator
of G,, the price to pay could be to increase G;. O

4. Event-triggered control design

In terms of the preceding matrices and constants and the
matrices (9), and continuing our notation A = Ag + As and
B = By + Bs, we are now ready to define our event-triggered con-
trol. Our event-triggered feedback control and the corresponding
event-triggering times t; are defined by

u(t) = K(t)x(t;) for all t € [t;, tiy1) and i > 0O, (13)
where t; = 0, and where for integers i > 0, we have

(a) X(t) = A(tx(t) + B(OK(D)X() if t € (i, tiy1),

(b) X(t) = Ao(t)X(t) + Bo(t)K(t)x(t;) + L(t)[CA(t) — y(t)]if t €

(Ei, tiv1)s
(c) the inequality

[%(t) — x(6)] <

~ ~ 14
IR+ B [,y 1CR(E) = ¥(O)]dE (14)
is satisfied for all t € [t;, ti+1), and
(d) for each i such that t; < +00, we have
fi1 = sup {s =t 1X(r) — X(t;)] < TI&(r)| (15)
B [raxor—v | CRE)—y()|dC for all € [t;, s1},
where | -| denotes vectors of absolute values as explained in

Section 2, B is from (9), the constant v > 0 satisfies the require-
ments from Section 3, and L(t) was specified in Assumption 1.
The system (a)-(d) is an event-triggered dynamics that resets
the control values at the times t;, using the following inductive
argument.

Starting at time to = 0, we choose u(t) = K(t)X(0). Then, we
continue to use the control formula u(t) = K(t)x(0) as long as

|x(t) — X(0)] =
TIRO| + B firi0.c-) 1CK(0) — y(0)]dE

continues to hold. This yields an interval [0, t,] along which the
control takes the values u(t) = K(t)X(0), and the proof of our
theorem will show that t, > v. Then we change the control
formula to u(t) = K(t)x(t1), where t; is the supremum from (d)
with the choice i = 0, if t; < +00. We repeat this process
inductively, with t, replaced by t1, then by t;, and so on, to define
the control values and triggering times t; for all t > 0. Hence, (a)-
(d) provide a recursively defined event-triggered control, whose
triggers are computed from values of the observer . See Remark 3
for ways to implement the preceding event-triggered algorithm.
Our theorem is then:

(16)

Theorem 1. Let Assumptions 1-3 hold, and let K, L, I, and v satisfy
the requirements above. Then we can find positive constants ry and
5 such that all solutions of the closed-loop system given by (a)-(d)
satisfy ||x(8)]| < rie~"28|x(0)|| forallt > 0. O

Remark 2. The preceding theorem is new, even in the special
case where A; and Bs are zero. This is because of our abil-
ity to achieve event-triggered output feedback stabilization with
time-varying coefficients Ag and By. O

Remark 3. We can implement the event-triggered control (a)-
(d) by extrapolating; see Section 6, where we implemented our
method by extrapolation. Alternatively, Theorem 1 remains true
if we fix any constant T > v (with v again chosen as in Section 3)
and then replace (c)-(d) by
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(c’) the inequality

X(t = T) — &(t:)| <

FIRE = T) + B [y 0.cor_y ICR(E) — y(0)]de
is satisfied for all t € [t; + T, t;y1 + T), and

(d") for eachi € Zg, we have 0 < t;;; — t; < T. In addition, if i is
such that t;;1 < t; + T, then we have

(14)

tiy1 =
sup {s > t; : [X(r — T) — X(t;)] < T'|X(r —T)|

+B [ 0rv_n [CRO—Y(E)|d for all

relt+T,s+Tl}.

With the preceding changes, the event-triggered control is imple-
mented as follows. At time t; = 0, we choose u(0) = K(0)x(0),
and then we use the control values u(t) = K(t)X(0) up to time
t =ty+ T =T, or up to the infimum of the times t > T when
the value t — T fails to satisfy (14’) if such a violation of (14')
occurs, whichever occurs first. We call this time t;. At that time
t1, we switch to using the control values u(t) = K(t)X(t;). Then
we repeat this process with i = 0 replaced by i = 1, and argue
inductively to obtain control values and triggering times that are
defined for all times t > 0. The fact that Theorem 1 remains true
with the preceding changes follows by replacing t throughout the
first part of the proof of the theorem below by t — T. Hence,
only measurements of X and of the output y up to time t — T are
needed to monitor the event trigger at times t. Using the change
of variable s = t —T in (14'), it then follows that (14) remains true
forall t € [t;, tirq) for values i > 0, so the second part of the proof
of the theorem below remains valid with the preceding changes
in (c)-(d). Moreover, with the preceding changes, we still obtain
the lower bound t;; 1 — t; > v on the intersample intervals for all
i.

(15

5. Proof of Theorem 1

The proof has two parts. In the first part, we use our condition
(7) on the constant v > 0 to show that the Zeno phenomenon
does not occur. In the second part, we use Assumptions 1-3
to show that the global exponential stability conclusion of the
theorem holds.

First part. Letting v be the constant we defined above, we
prove that the inter-event times t;;; — t; are bounded below by
v, i.e, if there are any finite triggering times t; > 0, then either
(A) there are only a finite number of finite instants ¢, ..., tj and
mineqo,... jj(t41 — &) > v or (B) there are infinitely many finite
instants t; and infiez, (41 — ;) > v. (The case where there are no
trigger times gives t; = +oo and u(t) = K(t)x(0) for all t > 0.)

For any i € Zg such that t; < +oo, we apply the method
of variation of parameters to the equation in (b) over [t;, t) with
t € [t;, t; + v] with the initial state X(t;) to get

X(t)=9g(t, t;)

+ [¢Ao(r, 6)+ fi @alt, E)BO(Z)K(Z)dZ] Aty (17)
where
olt. 1) = / (£, OL(OICA(E) — y(L)IdL. (18)

Hence, X(t;) = 2, (¢, &)[X(t)—G(t, ;)] for all t € [&;, t+v], which
is equivalent to

() = &(t;) = [1 — 24 (¢, 6)] &(t) + 257 (¢, t)G(t. ;) (19)
for all t € [t;, t; + v]. Hence, (7) gives
X(t) — &(6:)] < TR0 + 1825 (¢, t)G(t, 6;)] (20)

for all ¢t € [t;, t; + v].
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Since our formula (18) for G and our choice (10) of E, give
t
st el <E, [ 160~ yeyae, 1)
t

and since (7) gives |$2, '(t, ;)] < I +1, it follows from our choice
(9) of B that we have

t
max{0,t—v}

120t t)a(t, &) < B |CX(€) — y(e)|de (22)

for all t € [t;, t + v]. Using (22) to upper bound the second right
side term in (20), it follows that the inequality (14) holds for all
t € [t;, t; + v], which gives t; 1 > t; + v.

Second part. We prove the global exponential stability of the
0 equilibrium of the closed-loop system (a)—(d). In what follows,
all equalities and inequalities should be understood to hold for all
t > 0, unless otherwise indicated.

Let X(t) = x(t) — x(t) and G = Ag + LC. Then (a)-(b) give

X() GOX(t) — As(£)x(t) — Bs(t)K(£)X(o (1))
[G(£) + As(£)IX(t) (23)
—As(0)X(t) — Bs(0)K(6)x(o (1))

forall t > 0, where o (t) is the largest of the times t; such that t; <
t. Therefore, by applying the method of variation of parameters
to the last equality in (23), it follows from Assumption 1 that (23)
satisfies an exponential ISS estimate of the form

IXON < max{B1(I1X(s)]l, t =), y1lIXllo(s).e1)} (24)

forall s > 0 and t > s and for a suitable function 8; € K£ and the
class Ko function y;(s) = Gys, where G; was defined in (11), and
where the exponential property of the ISS means that there are
positive constants c¢; and ¢, such that Bi(s, t) = cyse™2! for all
s > 0and t > 0. Here we used the fact that (8) implies that the
fundamental matrix for (2) satisfies || @44 c(t, S)|| < c,e 8¢9,

Also, setting H = Ay + BoK and [i(t) = X(t;) — X(t) for all
t € [t;, tiv1) and i > 0, we have

X(t) H(E)R(E) + Bo(tK(£)(t) + L(t)CK(E)
[Ru(t) — Ny (t)1X(t) (25)
+ Bo(K(D)u(t) + L(E)CK(E).

We next introduce the comparison system

X(t) = Ru(t)X(t) — Nu(t)x(t)
+ (Bo()K(E)A(E))T + (L(E)CR(E)) (26)
Xt) = Ru(t)(t) — Nu(t)X(t)

— (Bo(O)K(6)in(t))™ — (L(t)CX(t))~

which we use as an interval observer for X. We refer to (26) as
an interval observer, because (as we show later in the proof) it
will satisfy x(t) < X(t) < x(t) for all t > 0 and so provides an
interval [x;(t), X;(t)] containing each component k;(t) for all t > 0
andi=1,2...,n We assume

x(0) < 0 < x(0) and x(0) < %(0) < x(0). (27)
Since Y(t) = (x(t), —x(t)) is a solution of a dynamics of the form
Y(t) = H(t)Y(t) + P(t) (28)

for some matrix-valued functions # and P having piecewise
continuous entries such that #(t) is Metzler for all t > 0 and
P(t) >0 forall t >0, [22, Lemma 1] implies that

X(t) =0 <Xx(t) (29)

for all t > 0. Similar reasoning implies that x(t) — x(t) > 0 and
X(t) — x(t) > 0 for all t > 0; this follows by applying [22, Lemma
1] to the 2n dimensional dynamics for (x(t) — X(t), X(t) — x(t)).
Hence, for all t > 0, we obtain

X(t) <0 <X(t) and x(t) < X(t) < X(t). (30)



F. Mazenc, M. Malisoff, C. Barbalata et al.

For the preceding initial conditions, set x,(t) = x(t)—x(t). Then
(30) gives x(t) — x(t) < X(t) < x(t) — x(t) and so also

X(£)] < x.(¢). (31)
Simple calculations give
K0 = Ru()+Na(OW(E) (32)
+ Bo(O)K(£)(t)] + IL(E)CX(L)].
Consider the function W(t,x,) = VT(t)x,, where V is from

Assumption 2. By (c) and (32), it satisfies

W(t) = VT(ER()+ VT(E)Ru(t) + Nu(0)xa(t)

+ VTIBo(t)K(E)ia(t)l 4+ VT (E)IL(E)CX(E)|

VI(ERAE) + VT (E)(Ru(E) + N (£)x(t) (33)
+ VT()IBo(0K(8)| (TIX(E))

+B [0 C(OAE) + VTILE)CK(E))

for all t > 0 along solutions of (32), where the notation Ry
and Ny is as defined in Section 2, B was defined in (9), cte) =
Cx(£)—y(£) and W(t) means (d/dt)W(t, x.(t)). Using (5), (31), and
(33), we get

IA

W(t) < —pW(t, x(t))+ VT (£)L(E)CX(L)|
+VT(O)Bo(K (B [0y C(E)AL
< —pW(t, x,.(t))+ E(t), where (34)
2t) = VIOBoOKOIBICI [y a0y X(OIAE

+ VTIL(t)CX(t)),

where the first inequality in (34) used the nonnegative valued-
ness of x,(t) (which follows from (31)) to maintain the inequality
from (5) when (5) is right multiplied by x.(t).

By applying the method of variation of parameters to

W(t) < —pW(t, x.(t)) + E(t) (35)

from (34), it follows from the formula (34) for & that the x,
dynamics satisfies an exponential ISS estimate of the form

1%(E)1 < .
max{Ba([1x«(s)Il, t — ), V2(lIXll max{0,s—v},01)}

foralls > 0 and t > s and for a function 8, € K. (having the
form By(s,t) = dyse~%! for suitable positive constants d; and
d,), because of the exponential ISS estimate (35) and the bound
IW(s, x.(s))Il < [IVIx4(5)|]l, where V is the upper bound on V from
(4)) and y»(s) = Gys, where G, was defined in (11). We now use
(31) to upper bound |X| in the ISS estimate (24) to obtain the new
estimate

X0l <
max{B1([Ix(s)ll, t — s), Y1(lIX« |l (max0,s—v},1)}

for all s > 0 and t > s. Then, we use the small-gain condition
G1G; < 1 from Assumption 3 to check that the looped ISS
estimate (36)-(37) is such that y1(y»(s)) < s for all s > 0. It then
follows from the proof of the small-gain theorem (e.g., from [10,
p. 61] or the proof of [23, Theorem 2.6]) that the (x,, X) dynamics
are globally exponentially stable to 0 on R?". The conclusion of
Theorem 1 now follows because we can assume that x(0) <
M|x(0)| and x(0) > —M|x(0)| for a large enough constant M > 0,
which imply that our condition (31) gives ||x(t)|| = ||x(t)—X(t)||
RN + 1XON < %O + X < 2[|(x«(£), X(£))|| for all
t > 0 and [|(x4(0), X(0))]| < (4M + 1)|x(0)]|, so we can convert
the exponential stability estimate for (x,, X) into the required
exponential stability estimate for x(t).

(36)

(37)

IA

Remark 4. Our small-gain argument from the previous proof
differs significantly from standard small-gain approaches to event

Systems & Control Letters 161 (2022) 105131

Path of
robot .-~
X2 ’
Y1 X1
y2
' Desired curve
r r to be tracked

Fig. 1. Curve Tracking Frames and Positions from [25].

triggering, because we use a small-gain condition between X
and x,, instead of between the original system and the event
triggering rule. O

6. Illustrations
6.1. Output feedback event-triggered control

In this subsection, we illustrate Theorem 1, using a benchmark
two-dimensional (i.e., planar) curve tracking dynamical system
from [24,25]. While simpler than more complex ship models, or
the analogous 3D curve tracking model from [25,26], it illustrates
the value of Theorem 1 for using event-triggering to eliminate the
need to continuously adjust the control values. We consider the
system

p(t) = —sin(¢(t))
$t) = SREG +u) (38)
yo = plt)

which models curve tracking by a unit speed surface marine robot
with a gyroscopic control u. In (38), the available measurement
p is the distance between the marine robot and the closest point
(i.e., projection) on the curve being tracked (where we assume
as in [25] that the closest point is unique at each time), ¢ is the
heading angle (measuring the difference between the angles of
the tangent lines of the path of the marine robot and of the path
being traced out by the closest point on the curve being tracked),
and « is the curvature at each time. See [25] for a derivation of the
model (38). Also, see Fig. 1 for the position and frame (ry, X1, ¥1)
on the boundary curve being tracked at the closest point, and
the position and frame (ry, X3, y,) for the vehicle, where p =
Ir; — 2|, and ¢ is the angle between the tangent vector x; at
the projection point on the curve being tracked and the tangent
vector X, on the curve being traced out by the robot at each time.
We assume for simplicity that « is a positive constant.

The linear approximation of (38) around any choice of the
reference trajectory (po.(t), ¢-(t)) is

pa(t) = ar(t)pa(t)
@a(t) = ax(t)pa(t) + az2(t)da(t) + u(t) (39)
yt) = pa(t),
where
ara(t) = — cos(@y (1)), ax(t) = — L), (40)
and ax(t) = —Kls_:((ﬁ:((g).

Let us consider the reference trajectory (o, ¢,), where

=- (1- L2 d ¢,(t)=arcsi 4 41
or( )—K( - 1+t> and ¢( )—arCSIH(M)- (41)
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The physical meaning of the constant A, € [0, min{1, «}) is that
it determines how fast the robot is traveling towards the curve
that is being tracked. For this reference trajectory, (1 — A,)/k is
the infimum of the distance between the position of the robot and
the projection on the curve being tracked. Then (39)-(40) give

ara(t) = Ai(t) — 1, an(t) = =5 + Ay(t), and

A2 1/2
an(t) = As(6), where 4(t) = 1= (1- 55 )
22
-k (42)
_ 211 2(1+0)4
Az(t) =K i ? . and
(-%%)
A 1
A3(t) - (1+t)2 27% .

Let us choose k = 2. This produces the dynamics

pa(t) = (Ax(t) — 1)ga(t)
Ga(t) = —(1— Ax(t))pa(t) + As(t)da + u(t) (43)
yt) = pa(t).

The change of coordinates (x;(t), x2(t)) = (pa(t), pa(t) — ¢a(t))
produces the dynamics x(t) = A(t)x(t) + Bu with output y(t) =
Cx(t), where

wo-[ 2437

B=10,—1]T,C =[1,0], and A4 = A; — A; — As.

Then simple Mathematica calculations show that the require-
ments of Assumptions 1-3 are satisfied with A; = 0,B; =0,V =
[1,2]7, K = [0, 1.75], each entry of I" being 0.1, L = [—2, —=5]T,
and p = 0.01 when A, = 0.1. The preceding choices of V, p, K,
L, and I" were obtained by first finding constant choices of V, p,
K, L and I" for which our assumptions are satisfied in the special
case where A, = 0 (and with a constant choice of H that is both
Metzler and Hurwitz), and then by choosing A, > 0 to be a small
enough constant such that the requirements of our assumptions
are still met with these choices of V, p, K, L, and I". For instance,
to check that Assumption 1 is satisfied, we solved the Riccati
equation PM + MTP = —] for P with the choice M = A + LC in
the A, = 0 case, and then we checked that A, = 0.1 was small
enough so that Vy(z) = z" Pz is a quadratic Lyapunov function for
2(t) = (A(t)+LC)z(t). Then the requirement (B.1) from Lemma B.1
in Appendix B is satisfied with v = 0.026. Hence, (7) is satisfied,
so Theorem 1 applies in the special case where A; an Bs are both
the zero matrices.

If we replace (41) by the reference trajectory

1— Aq(t)
1= A0+ As(0) ] (44)

1 cos(t

pr(t) = —(1 —0.1sin(t)) and ¢,(t) = arcsin J (45)
K 10«

and replace V, p, I', and v by V = [1, 3.7]7, p = 0.001,
0.6075 0.648

r= [ 0081 0243 ] (46)

and v = 0.2125, respectively, and keep the rest of the dynamics
the same, then (7) is again satisfied. This can be checked by noting
that

sup{ll — 2, '(t,s)l :s € [0,2n), t e [s,s+v]} < T, (47)

and then using the argument from Appendix B for cases where
A(t) is periodic. The entries of " in (46) and v were chosen using
the following two step process. In the first step, the entries of I"
were chosen as the largest ones for which the requirements of
Assumption 2 were satisfied with the preceding choices of A, B,
V, K, and p. Then, in the second step, v > 0 was chosen to be the
largest value such that (7) is satisfied with the preceding choices
of A, B, K, and I' = [I}]. However, with the preceding choices,
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Fig. 2. Curve Tracking in Periodic Case, showing Convergence of State Vector

to Desired Elliptic Curve using Positive Systems Based Event-Triggered Control
from Theorem 1: Phase Plane.
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Fig. 3. Tracking in Periodic Case, showing Convergence to Desired Oscillatory
Curves using Positive Systems Based Event-Triggered Control from Theorem 1:
States from Theorem 1.

our sufficient condition (B.1) from the proof of Lemma B.1 is not
satisfied, because its left side with b = ||BK|| and a = ||A|l» is
2.07515 > min{Fn, Iy, 151, I, 1} = 0.081. This illustrates
how numerical techniques (such as the alternative methods from
Appendix B) can allow cases where (B.1) is violated but where
our method still applies.

In Figs. 2-3, we plot MATLAB simulations that we obtained in
the preceding periodic case with the preceding parameter values
using the event-triggered control from our theorem (i.e., (a)-(d)
above) applied to (43). In the top figure, we used p4(0) = ¢,(0) =
0.1 as the initial state. In Fig. 3, we plot the solutions that we
obtained for different initial states (,04(0), ¢4(0)). Since the plots
show convergence to the reference trajectory (45), they illustrate
the value of our theorem, and they demonstrate the benefits of
our event-triggered control designs.

The preceding cases are beyond the scope of works for time-
invariant systems such as [8], because of our time-varying coef-
ficient A(t), unless A, = 0 in our reference trajectory (41). In
the special case where A, = 0, the matrix A is constant, and
in that A, = 0 case, the example would be covered by [8] if
we instead had C = I. Therefore, we next compare the lower
bound v that we would obtain from our method with the lower
bound v that could be obtained from [8, Corollary IV.1] in the
A, =0and C =1 case. When A, = 0, our assumptions and our
requirement (B.1) from Lemma B.1 are satisfied with v = 0.0925
and the same choices of the other parameters that we used in
our treatment of the A, = 0.1 case. On the other hand, if we
apply [8, Corollary 1V.1] with the same set of parameters (using
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o=min{l;:1<i<n,1<j<n}=0.1in[8, Corollary IV.1],
which corresponds to our trigger condition |e| < I"|x|), then we
would have gotten v = 0.0592, so our method provides a larger
lower bound v on the inter-sample times, and therefore ensures
less frequent event triggers.

6.2. Robustness

We next illustrate Theorem 1 using the special case

{ x1(t) (14 81(6))x1() + 3(1 4 82(6))x2(t) + u
Xy(t) 31+ 85(t)x1(t) +u

of (1) withBy =[1,1]",B; =0,C =1,

s=| 1 2| anda =] & 252 (49)
712 o] 2T % 0 |

where x; and x, are valued in R, the piecewise continuous
bounded unknown functions §; represent uncertainty, and u is the
real valued input, which agrees with the example in [20] when
each §; is the zero function. Then, using the notation K = [K;, Kz],
our assumptions will be satisfied when the supremum of the §;'s
and the entries of I" > 0 are small enough, provided

1
po| 14K stk
2k K

(48)

(50)

is Hurwitz and Metzler (again by [19, Lemma 2.3, p.41]). We will
therefore choose K; = —4/3 and K, = —1/3. Then simple Math-
ematica calculations show that the requirements of Theorem 1
are satisfied when sup{|8;(t)] : t > 0} < 0.01 for all i, by
choosing L = [l] with l;; = —1.1, l;; = —0.5, L1 = —0.5,
and I, = —0.1, and v = 0.02, and each entry of I" to be 0.045,
because these choices ensure that our assumptions and (7) hold.
Moreover, when the §;’s are 0, we can satisfy the requirements
with v = 0.122 with all other parameters as before. This gives
the lower bound v = 0.122 on the intersampling times t;; 1 — t;.

In the special case of the preceding example where each §;
is the zero function, the system (48) is covered by the event-
triggered results from [8]. If we had instead used [8, Corollary
IV.1] to obtain a lower bound on the ti.; — t's (using ¢ =
min{/; : 1 <i <n,1 <j < n}=0.045 in [8, Corollary
IV.1], which corresponds to our trigger condition |e| < I"|x|), then
we would have gotten v = 0.0811 in the case where the §;'s
are the zero function. Hence, our method again provides a larger
v and the potential advantage of ensuring less frequent control
recomputations.

Fig. 4 shows MATLAB simulations of (48) that implement the
event-triggered controller from Theorem 1, with a 20 second time
horizon using the above parameter values with the §;’s taken to
be the constant values 0.01. For this time horizon, our controller
from Theorem 1 produced 73 sample times when the control was
recomputed.

7. Conclusion

In this paper, we used the theory of positive linear time-
varying systems and interval observers, along with small-gain
techniques, to tackle the robust, event-triggered, output-feedback
control of linear time-varying systems. Our design method was
motivated by the need to only infrequently recompute con-
trol values in marine robotic and other applications, instead of
frequently changing control values. It has been shown how to
guarantee robust global exponential stability properties for large
classes of linear time-varying systems with output feedback and
uncertainty in the coefficient matrices. The efficacy of the new
proposed framework is illustrated through explicit quantification
of uncertainty and implementation in a marine robotic example.
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Fig. 4. Positive Systems Approach in Unperturbed Case, illustrating the Ca-
pability of our Event-Triggered Control from Theorem 1 to Ensure Desired
Convergence.

Since the mechanism in Section 4 calls for the co-location of
the sensor and observer, we plan to develop analogs where the
transmissions between the output sensor and the observer are
scheduled (where the observer is implemented remotely) and
where exact knowledge of the observer values X(t) is not required.
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Appendix A. Checking Assumption 2
We provide two remarks on how to check Assumption 2.

Remark A.1. Assumption 2 can always be satisfied for a matrix
I > 0 with small enough entries and a constant matrix K
when (A, B) is a (constant) controllable pair, after a change of
variables. This is done by choosing a constant matrix K such that
all eigenvalues of A+ BK are negative real values, and then using
a similarity transformation that transforms (A, B) into a new pair
(PAP~!, PB) where

H = P(A+BK)P~! (A1)

is the (Hurwitz and Metzler) Jordan canonical form of A+BK. Then
we can satisfy the requirements of Assumption 1 with a constant
vector V > 0 (by [19, Lemma 2.3, p.41]). O

Remark A.2. Assumption 2 can also be satisfied in time-varying
cases where (Ag(t), Bo(t)) has the form (A. + Ax(t), B, + Ap(t))
when (Ac, B.) is a controllable pair and the sup norms of the
continuous time-varying parts (A4, Ag) and the entries of I” > 0
are small enough, by applying the change of coordinates from
Remark A.1 to (A¢, B¢). On the other hand, for any constant « > 0,
Assumption 2 is also satisfied by

_ (at) _ — —
Ag(t)=1— gf;i&r) Bo=1, K=-4,T=4, (A2)
V=2+sin(at), V=3, V=1, andp=3—c¢

for any constant ¢ € (0, 3). This illustrates how Assumption 2
also allows cases where the supremum of Ay can be arbitrarily
large (because > 0 can be arbitrarily large). Then we can
use numerical methods to find values v > 0 such that the
requirements from Lemma B.1 hold. For instance, for « = 50,
they hold with (A.2),c =2.99,and v =0.1. O
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Appendix B. Methods for choosing v

A key ingredient in our theorem is the constant v > 0 satisfy-
ing our condition (7). The following lemma provides a sufficient
condition for v > 0 to satisfy (7) (but see below for other ways
to satisfy (7)):

Lemma B.1. Let I" € R"*" be a positive matrix and $2¢ be defined
by (6). Fix constants a > 0 and b > 0 such that ||Ag|lc < a and
IBoK|loo < b. Let y € (0, min{1, ro}) be a constant, where ry is the
smallest of the entries of the matrix I’ > 0. Then for any constant
v > 0 such that

(14 (b/a))(e®™ — 1

our requirement (7) is satisfied. 0O

)e(1+(5/a))(e“”—1> <y, (B.1)

Proof. We show that £2¢(t, s) is invertible and that

-5 t,s) <T (B.2)

is satisfied when t € [s, s + v] and s > 0.

To prove the invertibility property, first note that since @4,(t, s)
is invertible, it follows from the semigroup property of funda-
mental solutions that the matrix £2¢(t, s) is invertible if and only if
N(s,t)=1 +f: Dy, (s, m)Bo(m)K(m)dm is invertible. When ¢ > s,
this matrix is invertible if

£(t,s) < 1, (B.3)

where

L(t,s) = /S[ | @ay (s, m)l[IBo(m)K (m)|dm (B.4)

(by showing that the nullspace of N(s, t) is 0). Also,

L(t,s) < / teﬂm—S’de < (b/a)(e™ 9 — 1) (B.5)
s

when t > s > 0, e.g., by the Peano-Baker formula (e.g., from [21,
Appendix C.4]). Since (B.1) implies that (b/a)(e” — 1) < 1, we
deduce that the inequality (B.3) is satisfied for all s > 0 and
t € [s, s+ v], which implies that £2¢(t, s) is invertible for all s > 0
and t € [s,s + v].

Next, we prove that (B.2) is satisfied for all t € [s, s+v], where
s > 0 is arbitrary. Note that (B.2) is satisfied if

[1= g2t < v (B.6)
This inequality is equivalent to
1= =2t 5N <y (B.7)

with fzo(t, s) =1 — §2¢(t, s). We prove that ||$2y(t, s)|| < 1 for all
t € [s,s + v]. Since

20(t,5) = (B.8)
I— ®p(t,s) f Dy, (t, m)Bo(m)K(m)dm '
the inequality
1820(t, )| < [T — ®ag(t, )| + (b/a)e ™ — 1) (B.9)
is satisfied when t > s > 0. The Peano-Baker formula gives
+o00 k k
(t - 5) ”AOHOO a(t—s)
[ a(t,9) 1] = Y — == = -1 (B.10)
k=1
when t > s > 0. Thus (B.9) implies that
o a(t—s) a(t—s) __

(1+ (/@) (e — 1)
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when t > s > 0. From (B.1), we deduce that ||fzo(t,s)|| <y<l

forallt € [s, s+v]. Hence, by the matrix geometric series formula,

the inequality (B.7) is equivalent to

f Q(t, s
k!

k=1

<y (B.12)

forallt € [s,s + u] It is satisfied if

o(t, s)
1820(t, $)I Z ” <y (B.13)
forallt e [s, s + v]. This inequality is equivalent to
1820(t, 5)[le1 o < 5. (B.14)
According to (B.11), (B.14) is satisfied if
(1+ (b/@)(e ) — el HE/AETI1 < (B.15)

By (B.1), this is the case. This concludes the proof. O

The optimal (i.e., largest) v satisfying the requirements of
Lemma B.1 is the v such that (B.1) holds with equality, which is
the root v of

(1+ (b/a))(e™” =y, (B.16)

because the left side of (B.1) is strictly increasing in v. We can
use numerical methods to solve for the root v > 0 of (B.16). The
constant v constructed in the proof of Lemma B.1 is in general not
the largest possible v such that (7) is satisfied for given choices of
Ao, Bo, K, and I'". In practice, direct or numerical techniques can be
applied to find values for v that satisfy (7) but violate (B.1). To see
how, we next consider other ways to satisfy (7), including a result
for periodic cases which we used to compute v in Remark A.2. See
also Section 6.1 for an application to curve tracking.

First we consider the case where Ay, By, and K have the same
period p, > 0. Second, we consider a case where Ay has the form
Ao(t) = Ac + Ax(t) for a constant matrix A., where the known
matrix-valued function A, is bounded and continuous (but not
necessarily periodic), under suitable bounds on the sup norm of
Ap.

To cover the periodic case, first note that in this case, we
have ®4(t,s) = Pay(t — ips, s — ip,) and so also 2¢(t,s) =
£20(t — ips, s — ip,) for all integersi > 0, all s > ip, and all t > s,
by our formula (6) for £29. Hence, (7) will hold if v > 0 is such
that (B.2) is satisfied for all s € [0, p,] and t € [s, s + v]. To see
why, note that if (B.2) holds for all s € [0, p,] and ¢t € [s, s + V],
and if s, > 0 and t, € [sq, Sq + v] are given, then we can find an
integer i > 0 such that s, € [ip., (i + 1)p4], so

Il — 25 (ta, a)l = 1T = 24 ' (ta — P, S0 — (B.17)

because s, — ip, € [0, p,] and t, — ip, € [Sq — ip«, Sq — ipx + V].
For any v > 0, we can use numerical methods to check whether
(B.2) holds for all s € [0, p,] and t € [s, s + v], because we can
factor @,,(t, m) forallm € [s,t], s € [0,p,], and t € [s,s + V],
e.g., by writing

Dy (t, m) = aa(t)Ba(m) (B.18)

forallm > 0 and t > m, where o4 and S, are the unique solutions
of the matrix differential equations

— et/ 1)

ip )l =T,

da(t)=Ao(t)aa(t) and Ba(m)=—Ba(m)Ao(m) (B.19)
that satisfy a4(0) = B4(0) = I, and by then checking if
sup{|l — 2, '(t,s)| :s € [0, pi], t € [s, s+ V]} < T (B.20)

see, e.g., [27], for the use of this decomposition of fundamental
solutions in adaptive control. The factoring (B.18) makes it possi-
ble to compute the fundamental solution values that are needed
to check Assumption 3.
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To cover cases where Ag(t) = Ac + Ax(t) for a constant
matrix A. and continuous and bounded A,, assume that the
coefficient matrix B = By is a known constant matrix, and that
the requirements of Assumption 2 are satisfied for some I" > 0
with a constant K, but similar reasoning applies if B and K are
time varying.

Choose any positive matrices Iy and I, = [y;] such that
I' = I'; + I'y. Then (7) is satisfied if v > 0 and A, satisfy

sup |I — 2.'(¢)] < I'; and

£efo,v] (B.21)
{b*evI\AcII (eU”AA”oo — ])}”951”[0‘”] < ¢o,
where b, = 1+ v|BK||,
N
Qc(s) = e + / eM6=OdeBK, (B.22)
0
and the constant ¢y € (0, 1) is such that
1192 lpo.vy < min {vi:1<i<n 1<j<n}. (B.23)
To see why (7) is satisfied in this case, we first write
R0(t,s) = Qc(t —5)+ Pay(t,s) — el ~He
+ [ [@aolt, ) — eAt=O] BKde (B.24)
= Q(t —s)[T+n(t,s)]
foralls >0andt € [s,s + v], where
t,8) = R:(t — )" @p, (£, 5) — Al
n( ,tS) o(t—s) [_[Ao( ,S) (B.25)
+ J; (®ag(t, €) — e=9) BKde].
Using the bound
”‘DAO(L 0)— eAc(H)H < eVl (eV”AAHoc — ]) (B.26)

which holds for all £ € [s,t],s > 0,and t € [s, s+ V], e.g., by [28,
Lemma 2], and recalling (B.21), it follows that ||5(t, s)|| < ¢ < 1,
and therefore that I + n(t, s) is invertible (by checking that its
nullspace is trivial). This implies that (B.24) is invertible when
s>0andt els,s+v]

Also, for ¢ = min; y4, and for any S € R™" that satisfies
IIS|I < c,we have |S| < I},. Specializing the preceding observation
to the case where S = 2.(t —s)™! — .Qo‘l(t, s), it follows from
Lemma C.1 in Appendix C (applied with My = £2.(t —s), Ng being
the quantity in squared brackets in (B.25), m = [|£2!|[j0.,}, and 7
being the quantity in curly braces in (B.21)) that (B.23) gives

Mo = (Mo + No) |

e S D (B.27)
<min{y; : 1<i<n,1<j=<nj,

and so also

|2:(t — )" — 25 (¢ 8)] < T, (B.28)

by writing £2o(t, s) = Mo +No and then noting that [|[My"[|[No| <
co. Hence, the bound |I — Qo‘l(t,s)l < I foralls > 0 and
t € [s, s+ v] follows from the first inequality in (B.21) and (B.28)
and our decomposition I" = I, + I}. Conditions (B.21) can be
checked numerically by computing £2. in (B.22), and they hold
for a small enough v > 0 because £2.(0) = I, by the continuity of
matrix inversion.

Using the preceding alternative conditions (B.21) instead of
(B.1) from Lemma B.1, we can allow cases with bigger values of
v, and therefore ensure less frequent recomputations of control
values. For instance, consider the scalar case where A, = By = 1,
K = —2.2, A4 is bounded by 0.1, I' = 0.35, and v = 0.16.
Then, simple Mathematica calculations show that condition (B.1)
is violated, because with the choices a = 1.1 and b = 2.2, the left
side of (B.1) is 1.02834 > min{1, I'} = 0.35. On the other hand,
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the criteria (B.21) are satisfied with the preceding choices of A,
By, K, I', and v and any A, that is bounded by 0.1, if we choose
co = 0.0526, I'; =0.797I", and I', = 0.2171".

Appendix C. Lemmas from [28]

We used the following lemmas (which are [28, Lemma 1], and
a variant of [29, Lemma 1] with a similar proof, respectively) in
Appendix B:

Lemma C.1. Let My € R™" be an invertible matrix. Let Ny € R™*"
be a matrix. Let n and m be two constants such that ||M071 | <m
and ||Ng|| < n. Assume that mn < 1. Then the matrix My + Ny is
invertible and

-
M5 = Mo +No) | < == (&)

is satisfied. O

Lemma C.2. Consider the system

£(t) = [A(t) + ()] ¢(t) (C2)

where A : [0, 4+00) — R™" is a continuous matrix-valued function,
¢ is valued in R", and & [0, +00) — R™" has piecewise
continuous entries. Then for all t; € R and t; € R such that t; > t,,
the inequality

1P are(ts, t2) — D alty, )l 3
< elAlxlt—t2) (el (i) _ 1) (C3)

is satisfied. O
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