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a b s t r a c t 

We provide a new event-triggered control strategy that relies on the notion of positive systems. Our re- 

sults cover output feedback, and robustness with respect to uncertain dynamics. Our proofs are based on 

interval observers. Our examples show potential advantages of our approach over earlier event-triggered 

methods. 
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. Introduction 

Event-triggered control has played an increasingly important 

ole in control theoretic research; see, for instance, the works 

6,8,9,15,17,18] . One advantage of using event-triggered control is 

hat it can reduce the computational burden associated with im- 

lementing controls, by only changing the value of the control 

hen there is a significant event. These events can be character- 

zed as times when the state enters some prescribed region of the 

tate space. This contrasts with standard zero-order hold strategies, 

here the times at which the control values are recomputed are 

sually independent of the state. Much event-triggered control lit- 

rature can be reformulated as an interconnected control system 

roblem to which small gain methods can be applied; see, e.g., [7] . 

mall gain methods have the desirable advantage of ensuring ro- 

ustness to uncertainty, but can sometimes be conservative, insofar 

hat they can lead to unnecessarily frequent control recomputation 

imes. 

Although emerging computing methods can facilitate recom- 

uting control values, the increasing use of shared wireless (or 

hared wired) networked systems calls for designing controls that 

ake computation, communication, and energy constraints into 

ccount [6] . This led to systematic designs for event-triggered 

ontrols, e.g., in [1,2,17,20] . At the same time, much research 
� Supported by NSF Grants 2009659 (Malisoff and Barbalata) and 2009644 (Jiang). 
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as been done on positive systems, i.e., systems where the non- 

egative orthant is positively invariant, leading to new control 

nalysis and designs that overcome some challenges of using 

raditional Lyapunov methods. Some works on positive systems 

se interval observers (as defined, e.g., in [3,12,16] ), which provide 

ntervals containing values of unknown states when the inequal- 

ties involving vector solutions are viewed componentwise; see 

12,13] . Positive systems and interval observers led to advances in 

erospace engineering, mathematical biology, and other areas. 

This motivates our work, where we use a new positivity based 

vent-triggered control technique to design control strategies that 

ield less conservative triggering conditions than those in litera- 

ure such as [7] , and where we also provide a robustness result 

hat removes the requirement that there be a constant C > 0 such 

hat there is a bound || δ(t) || ≤ C|| x (t) || relating the state x (t) and

he uncertainty δ(t) at each time t ≥ 0 that was present in impor- 

ant works such as [18] . We establish an output feedback and a 

obustness result, covering cases where there may be time-varying 

ncertainties in the dynamics. Our stability proofs use interval ob- 

ervers as comparison systems, and are reminiscent of the results 

f [13] insofar that they are based on linear Lyapunov functions 

or positive systems. However, [13] did not cover event-triggering, 

nd to the best of our knowledge, our work is the first system- 

tic use of interval observers and positive systems to design event- 

riggered controls. 

We provide our notation and preliminaries and introduce our 

ain class of systems in Section 2 . Then, in Section 3 , we pro-

ide our main stability theorem, our extension to output feedback 

ontrol using an observer, and our robustness theorem for uncer- 

ain models. In Section 4 , we illustrate potential advantages of our 
rved. 
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ethod using an example where our method ensures less frequent 

ontrol recomputations than the main small gain event-triggered 

esult in [7] and also less than a result from [17] . We close

n Section 5 by summarizing our findings and suggesting future 

esearch directions. 

. Preliminaries 

We use the following notation, where the dimensions of our 

uclidean spaces are arbitrary unless otherwise noted. The argu- 

ents of functions are omitted when no confusion can arise from 

he context. Set Z 0 = { 0 , 1 , 2 , . . . } and N = Z 0 \{ 0 } . For a matrix

 = [ g i j ] ∈ R 

r×s , we set | G | = [ | g i j | ] , i.e., the entries of | G | are the

bsolute values of the corresponding entries g i j of G . Similarly, we 

et G 

+ = [ max { g i j , 0 } ] and G 

− = G 

+ − G , and sup � ∈ J | G (� ) | = [ m i j ]

here m i j = sup � ∈ J | g i j (� ) | when G is time-varying and bounded

atrix valued function and J is an interval in the domain of G . 

 square matrix is called Metzler provided all of its off-diagonal 

ntries are nonnegative. For two matrices D = [ d i j ] and E = [ e i j ]

f the same size, we write D < E (resp., D ≤ E) provided d i j < e i j 

resp., d i j ≤ e i j ) for all i and j. We also write D � E provided there

s a pair (i, j) such that d i j > e i j . We adopt similar notation for vec-

ors. 

A matrix S is called positive provided 0 < S, where 0 is the zero 

atrix. Let || · || denote the standard Euclidean 2-norm of vectors 

nd matrices, and || · || ∞ 

(resp., || · || J ) denote the corresponding 

up norm of matrix valued functions over their entire domain 

resp., over an interval J in their domain). We let I denote the 

dentity matrix. 

We consider the system 

˙ 
 (t) = Ax (t) + Bu (t) (1) 

here x is valued in R 

n , u is valued in R 

p , and the matrices A and

 are constant. We assume: 

ssumption 1. There is a matrix K ∈ R 

p×n such that the matrix 

 cl = A + BK is Hurwitz and Metzler. �

emark 1. Assumption 1 is not restrictive because many systems 

atisfy it after a change of coordinates. When (A, B ) is controllable, 

here is a change of coordinates that provides new matrices A and 

 that satisfy this assumption. In fact, if (A, B ) is controllable, then

here is a K ∈ R 

p×n such that all eigenvalues of A + BK are negative

eal numbers. Then there exists a matrix P ∈ R 

n ×n such that P (A +
K) P −1 is Metzler because the Jordan canonical form of A + BK is 

etzler. Thus Assumption 1 is satisfied by the pair (PAP −1 , P B ) . �

Recall that the Zeno phenomenon is that a system with sam- 

ling has infinitely many sample times on some interval of finite 

ength. A key ingredient in our analysis in later sections will be 

nding a lower bound ν > 0 on the inter-sample times t i +1 − t i 
etween the event triggering times in all three of our theorems 

hich will imply that the Zeno phenomenon does not occur, which 

ill ensure implementability of our control. This constant ν will be 

rovided by the following lemma: 

emma 1. Let K satisfy Assumption 1 . Then there is a positive matrix 

∈ R 

n ×n such that the matrix 

 = A cl + | BK| � (2) 

is Metzler and Hurwitz. Also, using the function � : [0 , + ∞ ) → R 

n ×n 

hat is defined by 

(s ) = e sA + 

∫ s 
0 e 

�A d �BK, (3) 

here exists a constant ν > 0 such that for all s ∈ [0 , ν] , the matrix

(s ) is invertible and such that the inequality 

I − �(s ) −1 
∣∣ ≤ � (4) 

s satisfied. �
64 
roof. First observe that Assumption 1 implies that there exists 

 positive matrix � ∈ R 

n ×n such that M as defined in (2) is Met- 

ler and Hurwitz. In fact, since 0 ≤ | BK| , it follows that 0 ≤ | BK| �
f 0 < �, which implies that M is Metzler. Moreover it is Hurwitz 

hen the entries of � are sufficiently small (by the continuity of 

igenvalues as functions of the characteristic polynomial’s coeffi- 

ients, and so also of the entries of the matrix [5] ). We conclude 

y observing that � is continuous, �(0) = I, and 0 < �. �

emark 2. Since e sA is invertible, the matrix �(s ) in (3) with s ≥ 0

s invertible if and only if I + 

∫ s 
0 e 

(� −s ) A d �BK is invertible. Thus, it is

nvertible if ∣∣∫ s 
0 e 

(� −s ) A d �BK 

∣∣∣∣ < 1 , (5) 

hich follows by checking that the nullspace of I + 

∫ s 
0 e 

(� −s ) A d �BK

s trivial. The inequality (5) is satisfied if BK = 0 . If BK � = 0 , then

or any ε0 ∈ (0 , 1) , (5) holds if s < s ∗, where s ∗ is the sup of all r

alues such that the left side of (5) is bounded above by ε0 for 

ll s ∈ [0 , r] . A more explicit bound on the allowable s values in

he BK � = 0 case can be obtained as follows. If BK � = 0 , then (5) is

atisfied if 
 s 

0 e 
(s −� ) || A || d � < 

1 
|| BK|| . (6) 

f A = 0 , then this gives the condition s < 1 / || BK|| . On

he other hand, if A � = 0 , then we instead have the con-

ition (e s || A || − 1) / || A || < 1 / || BK|| which is equivalent to

 < (1 / || A || ) ln ( 1 + || A || / || BK|| ) . �
emark 3. Notice for later use that since M defined in (2) is Met- 

ler and Hurwitz, there are a vector V ∈ R 

n satisfying 0 < V , and a

onstant p ∈ (0 , + ∞ ) , such that 

 

	 M ≤ −pV 

	 (7) 

olds. This follows from Haddad et al. [4 , Lemma 2.3, p. 41]. �

. Main results 

.1. State feedback event-triggered control 

We next prove an event-triggered control theorem, whose 

vent-triggered control and triggering times t i will be defined by 

(a) ˙ x (t) = Ax (t) + BKx (t i ) if t ∈ [ t i , t i +1 ) , 

(b) | x (t) − x (t i ) | ≤ �| x (t) | if t ∈ [ t i , t i +1 ) , and 

(c) For each ε > 0 , and for each i ∈ Z 0 such that t i +1 <

+ ∞ , there is a t ‡ ∈ (t i +1 , t i +1 + ε) such that | x (t ‡ ) − x (t i ) | �
�| x (t ‡ ) | 

or all i , where t 0 = 0 and K is from Assumption 1 , and where con-

ition (c) means that for each ε > 0 , there exist t ‡ ∈ (t i +1 , t i +1 + ε)

nd j ∈ { 1 , . . . , n } such that 

 x j (t ‡ ) − x j (t i ) | > 

n ∑ 

g=1 

� jg | x g (t ‡ ) | (8)

s satisfied, where � = [�i j ] . The dynamics in (a)-(c) call for reset- 

ing the control values at certain times t i , as follows. At time t 0 = 0 ,

e choose the control value u (0) = Kx (0) . Then, we maintain the

ontrol value at u (t) = Kx (0) as long as | x (t) − x (0) | ≤ �| x (t) | con-

inues to hold, which produces an interval [0 , t ∗] with t ∗ ≥ ν dur-

ng which the control value stays at u (t) = Kx (0) , by Lemma 1 and

9) below. If, at some later time, | x (t) − x (0) | ≤ �| x (t) | is vio-

ated (in the sense of (8) ), then we change the control value to 

 (t 1 ) = Kx (t 1 ) where t 1 is the infimum of all times t > 0 when

uch a violation occurs. We repeat this process with t 0 replaced 

y t 1 , and argue inductively, to define the control for all t ≥ 0 . 

Hence, we have a sampled control, with event-triggered sample 

imes defined by (b). This produces an infinite sequence of trigger- 

ng times t , or only finitely many t ’s. Moreover, after resetting the 
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ontrol values at the times t i , the inequality in (b) will hold for all

 ≥ 0 . Similar reasoning applies for our other theorems below. A 

ey novel feature of our theorems is our use of the matrix of ab-

olute values | · | instead of the usual Euclidean norm (e.g., in (b) 

bove), which can reduce the number of sample times t i on given 

ntervals; see our illustrations below. Our event-triggered control 

a)-(c) can be viewed as a novel combination of emulation (be- 

ause it uses the nominal control Kx in (a)) and co-design (because 

t designs the matrix � in the triggering rule in (b)). Our first the- 

rem is then: 

heorem 1. Consider the system (1) under Assumption 1 and let � > 

 satisfy the requirements of Lemma 1 and K satisfy the requirements 

rom Assumption 1 . Consider the nonnegative t i ’s defined by t 0 = 0

nd (a)-(c) above. Then the closed loop system given by (a)-(c) ad- 

its the origin as a globally exponentially stable equilibrium point on 

 

n . �

roof. First Part. Letting ν be the constant from Lemma 1 , we 

rove that the inter-event times t i +1 − t i are bounded below by ν . 

ore precisely, we prove that either there are only a finite number 

f instants t 0 , . . . , t j and min l∈{ 0 , ... , j−1 } (t l+1 − t l ) ≥ ν when j > 0 ; or

lse there are infinitely many instants t i and inf l∈ Z 0 (t l+1 − t l ) ≥ ν . 

Consider any i ∈ Z ≥0 such that the Zeno phenomenon does not 

ccur on [0 , t i ] . If x (t i ) = 0 , then the theorem on existence and

niqueness of solutions gives x (t) = 0 for all t ≥ t i . Next, consider

he case where x (t i ) � = 0 . This implies that t i +1 = + ∞ or t i +1 is fi-

ite and t i +1 > t i . Consider the case where t i +1 is finite. By inte-

rating the equation in (a) on the interval [ t i , t) with t ∈ [ t i , t i + ν]

rom the initial state x (t i ) , we get 

 (t) = �(t − t i ) x (t i ) (9) 

here � is defined in (3) . From (4) , it follows that, for any

 ∈ [ t i , t i + ν] , the vector inequality 
∣∣I − �(t − t i ) 

−1 
∣∣| x (t) | ≤ �| x (t) |

s satisfied. It follows that 
∣∣x (t) − �(t − t i ) 

−1 x (t) 
∣∣ ≤ �| x (t) | . This 

nequality in combination with (9) gives | x (t) − x (t i ) | ≤ �| x (t) |
or all t ∈ [ t i , t i + ν] . We conclude that t i +1 ≥ t i + ν . Thus, the

eno phenomenon does not occur and the inter-sample times are 

ounded below by ν . 

Second Part. We study the stability of the closed loop system 

rom (a) to (c). The case where there is j such that x (t j ) = 0 is

rivial. Thus, we consider the case where x (t j ) � = 0 for all j ∈ Z ≥0 .

or convenience, we introduce the function μ defined by μ(t) = 

 (t i ) − x (t) for all t ∈ [ t i , t i +1 ) and all i ∈ Z 0 . Then (a)-(c) give 

˙ 
 (t) = A cl x (t) + BKμ(t) 

 μ(t) | ≤ �| x (t) | (10) 

or almost all t ≥ 0 , where A cl = A + BK as before. 

To study (10) , we exploit the fact that A cl is Metzler, to adopt an

nalysis approach that is based on interval observers. We introduce 

he dynamic extension 

 

˙ x (t) = A cl x (t) + (BKμ(t)) + 

˙ x (t) = A cl x (t) − (BKμ(t)) −
(11) 

onsider a solution of (10) with x (0) ∈ R 

n as its initial state and

ny initial states x (0) ∈ R 

n and x (0) ∈ R 

n for (11) such that x (0) <

 (0) < x (0) and x (0) < 0 < x (0) . Observe that e (t) = x (t) − x (t)

nd e (t) = x (t) − x (t) satisfy 
 

˙ e (t) = A cl e (t) + (BKμ(t)) −

˙ e (t) = A cl e (t) + (BKμ(t)) + 
(12) 

ince A cl is Metzler, it follows (e.g., from Mazenc et al. [11 , Lemma

]) that e (t) ≥ 0 and e (t) ≥ 0 for all t ≥ 0 . This gives 

 (t) ≤ x (t) ≤ x (t ) and x (t ) ≤ 0 ≤ x (t) (13) 
65 
or all t ≥ 0 , where the last two inequalities in (13) follow because 

 and −x are solutions of ˙ z = A cl z + (BKμ) ± and from again apply- 

ng [11, Lemma 1] using the Metzler matrix A cl . We deduce from 

13) that x (t) − x̄ (t) ≤ x (t) ≤ x̄ (t) − x (t) , i.e., 

 x (t) | ≤ s (t) (14) 

or all t ≥ 0 , where s (t) = x (t) − x (t) . 

We next analyze the behavior of s . We have 

˙ 
 (t) = A cl s (t) + (BKμ(t)) + + (BKμ(t)) −

= A cl s (t) + | BKμ(t)) | . (15) 

onsider the linear function 

 (s ) = V 

	 s, (16) 

here V satisfies the requirements of Remark 3 . At each t ≥ 0 , the

ime derivative of W along (15) satisfies 

˙ 
 (t) = V 

	 A cl s (t) + V 

	 | BKμ(t)) | 
≤ V 

	 A cl s (t) + V 

	 | BK| �| x (t) | , (17) 

here the last inequality is a consequence of the inequality in (10) . 

ubstituting (14) in (17) , we obtain 

˙ 
 (t) ≤ V 

	 A cl s (t) + V 

	 | BK| �s (t) 

= V 

	 Ms (t) , (18) 

here M is the matrix defined in (2) . Since s is nonnegative valued, 

t follows from (7) that 

˙ 
 (t) ≤ −pV 

	 s (t) = −pW (s (t)) . (19) 

ince V > 0 and s (t) ≥ 0 for all t ≥ 0 , we deduce that s (t) exponen-

ially converges to zero as t → + ∞ . We can now convert the expo-

ential stability estimate for s (t) into the one for x (t) . To this end,

e can assume that s (0) ≤ 4 | x (0) | , e.g., by requiring x̄ (0) ≤ 2 | x (0) |
nd x (0) ≥ −2 | x (0) | . Hence, from (14) , we deduce that x (t) goes

xponentially to the origin as t → + ∞ . �

.2. Output feedback control 

The event-triggered control in Theorem 1 requires measure- 

ents of the state x (t) , and it is nontrivial to generalize it to cases

here the state is not available for measurement. This motivates 

his subsection, where we consider the system (1) with an output, 

amely, 

˙ 
 (t) = Ax (t) + Bu (t ) , y (t ) = Cx (t) (20)

ith y valued in R 

q and C being a constant matrix. We use this 

lassical assumption: 

ssumption 2. The pair (A, C) is observable. �

Assumption 2 provides a matrix L ∈ R 

n ×q such that 

 = A + LC (21) 

s Hurwitz. This allows us to prove the following, where solutions 

o (a’)-(d’) are defined in a recursive way that is analogous to the 

olutions in Theorem 1 : 

heorem 2. Consider the system (20) under Assumptions 1 –2 . Let 

> 0 and ν > 0 satisfy the requirements of Lemma 1 , and K satisfy 

he requirements of Assumption 1 . Consider the sequence of nonnega- 

ive numbers t i and the feedback K ̂  x (t i ) defined by t 0 = 0 , 

(a’) ˙ x (t) = Ax (t) + BK ̂  x (t i ) if t ∈ (t i , t i +1 ) , 

(b’) ˙ ˆ x (t) = A ̂ x (t) + BK ̂  x (t i ) + L [ C ̂  x (t) − y (t)] if t ∈ (t i , t i +1 ) , 

(c’) | ̂ x (t) − ˆ x (t i ) | ≤ �| ̂ x (t) | + B 

∫ t 
max { 0 ,t−ν} | C ̂  x (� ) − y (� ) | d � for all

t ∈ [ t i , t i +1 ) , and 
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(d’) For each ε > 0 , and each i such that t i +1 < + ∞ , there

is a t ‡ ∈ (t i +1 , t i +1 + ε) such that | ̂ x (t ‡ ) − ˆ x (t i ) | � �| ̂ x (t ‡ ) | +
B 

∫ t ‡ 
max { 0 ,t ‡ −ν} | C ̂  x (� ) − y (� ) | d � 

for all i ∈ Z 0 , where ˆ x (0) � = 0 and 

 = sup � ∈ [0 ,ν] 

∣∣�(� ) −1 
∣∣ sup � ∈ [0 ,ν] 

∣∣e �A L 
∣∣. (22) 

hen the system given by (a’)-(d’) admits the origin as a globally ex- 

onentially stable equilibrium on R 

n . �

roof. (Summary.) We only summarize the proof here; see [14] for 

 complete proof. 

First part. We prove that the inter-event times t i +1 − t i 
re bounded below by ν . More precisely, we prove that ei- 

her there are only a finite number of instants t 0 , . . . , t j and

in l∈{ 0 , ... , j−1 } (t l+1 − t l ) ≥ ν when j > 0 ; or there are an infinite 

umber of instants t i and inf l∈ Z 0 (t l+1 − t l ) ≥ ν . 

By integrating the ˆ x -subsystem in (b’) between [ t i , t) with t ∈
 t i , t i + ν) with the initial state ˆ x (t i ) , we can then obtain [14] 

 ̂

 x (t) − ˆ x (t i ) | ≤ �| ̂  x (t) | + B 

∫ t 

max { 0 ,t−ν} 
ˆ C (� )d � (23)

or all t ∈ [ t i , t i + ν] , where 

ˆ 
 (� ) = | C ̂  x (� ) − y (� ) | . (24) 

t follows that t i +1 − t i ≥ ν for all i ∈ Z 0 . 

Second part. This proves exponential stability of the equilibrium 

oint of the closed loop system. It uses the fact that with the 

hoice ˜ x (t) = ˆ x (t) − x (t) , the dynamics 

˙ ˜ 
 (t) = G ̃

 x (t) (25) 

re globally exponentially stable at the origin, where G is the ma- 

rix defined in (21) . For details, see [14] . �

.3. Robustness 

We next generalize our results to cases with an additive distur- 

ance A δ(t) on A , which produces 

˙ 
 (t) = (A + A δ(t )) x (t ) + Bu. (26) 

e impose conditions on A δ that hold when the sup norm of 

 δ is small enough, because our goal is to propose a stabilizing 

eedback that is robust with respect to the term A δ (t) x (t) . This

otivates the next assumption, which will be satisfied under our 

ssumption 1 when the entries of A δ and � are small enough in 

bsolute value: 

ssumption 3. The bounded function A δ : [0 , + ∞ ) → R 

n ×n is lo-

ally Lipschitz. Also, for a matrix K satisfying the requirements of 

ssumption 1 , and for a � satisfying the requirements of Lemma 1 , 

here is a constant a > 0 such that the system 

˙ (t) = 

[
A cl + sup 

t∈ [0 , ∞ ) 

| A δ(t) | + (1 + a ) | BK| �
]
ξ (t) (27) 

ith the choice A cl = A + BK admits the origin as a globally expo-

entially stable equilibrium point on R 

n . �

Using Lemmas A.1 and A.2 from the appendix below, we can 

hen prove the following result, where solutions of the event- 

riggered system (a”)-(c”) are defined in an analogous recursive 

ay, like in the preceding two theorems: 

heorem 3. Let Assumptions 1 and 3 be satisfied for some K and 

= [�i j ] . Assume that K, �, and ν > 0 satisfy the requirements of 

emma 1 . Let A δ be such that 

| A δ|| ∞ 

νe ν(|| A || + || A δ || ∞ ) (1 + ν|| BK|| ) || �−1 || [0 ,ν] < c 0 , (28)
66 
here c 0 ∈ (0 , 1) is any constant such that 

c 0 
1 − c 0 

|| �−1 || [0 ,ν] ≤ a min 

{
�i j : 1 ≤ i ≤ n, 1 ≤ j ≤ n 

}
. (29) 

hen the system with sampling times t i , defined by 

(a”) ˙ x (t) = (A + A δ(t )) x (t ) + BKx (t i ) if t ∈ (t i , t i +1 ) , 

(b”) | x (t) − x (t i ) | ≤ (1 + a )�| x (t) | if t ∈ [ t i , t i +1 ) , and 

(c”) For each ε > 0 , and for each i such that t i +1 < + ∞ , there is a

t ‡ ∈ (t i +1 , t i +1 + ε) such that | x (t ‡ ) − x (t i ) | � (1 + a )�| x (t ‡ ) | 
for all i and t 0 = 0 , admits the origin as a globally exponentially

table equilibrium point on R 

n . �

For a proof of the preceding theorem, see [14] (in the special 

ase where ˆ x = x , �a = �, and �b = a � for the preceding choice of

). 

. Illustrations 

To illustrate Theorem 1 , consider the system 

 

 

 

˙ x 1 (t) = x 1 (t) + 

1 
2 

x 2 (t) + u 

˙ x 2 (t) = 

3 

2 

x 1 (t) + u 

(30) 

here x 1 and x 2 are valued in R and u is the input. Setting K =
 K 1 K 2 ] , Assumption 1 will be satisfied if 

 cl = 

⎡ 

⎢ ⎣ 

1 + K 1 
1 

2 

+ K 2 

3 

2 

+ K 1 K 2 

⎤ 

⎥ ⎦ 

(31) 

s Hurwitz and Metzler. Since (31) is Hurwitz and Metzler if 

 1 + K 2 < −3 / 2 , K 1 ≥ −3 / 2 , and K 2 ≥ −1 / 2 , Assumption 1 is sat-

sfied with K 1 = −4 / 3 and K 2 = −1 / 3 . Then, with the notation of

ection 2 , 

 cl = 

⎡ 

⎢ ⎣ 

−1 

3 

1 

6 

1 

6 

−1 

3 

⎤ 

⎥ ⎦ 

, BK = 

⎡ 

⎢ ⎣ 

−4 

3 

−1 

3 

−4 

3 

−1 

3 

⎤ 

⎥ ⎦ 

, 

nd M = A cl + | BK| �

= 

⎡ 

⎢ ⎣ 

−1 

3 

1 

6 

1 

6 

−1 

3 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

4 

3 

1 

3 

4 

3 

1 

3 

⎤ 

⎥ ⎦ 

�. (32) 

hen simple Mathematica calculations show that the assumptions 

f Lemma 1 and Theorem 1 are satisfied with all entries of � be- 

ng �i j = 0 . 045 and the lower bound ν = 0 . 122 on the sampling

ntervals t i +1 − t i . 

We next compare the preceding lower bound with one that can 

e obtained from Jiang and Liu [7 , p.72, Theorem 5.2] using the 

mall gain approach. In the linear time invariant case, the trigger- 

ng times in [7, Theorem 5.2] are such that when t i +1 is finite, it is

he smallest time t ≥ t i such that ρ(|| x (t) || ) = || x (t) − x (t i ) || when

 (t i ) � = 0 , for any class K function ρ such that ρ(γ (s )) < s for all

 > 0 , where γ ∈ K ∞ 

is the overshoot function in a suitable input-

o-state stability estimate for 

˙ 
 = (A + BK) x + BKw, (33) 

.e., there is a class KL function β such that along all solutions of 

33) for all t ≥ 0 , we have || x (t) || ≤ max { β(|| x (0) || , t) , γ (|| w || ∞ 

) } ;
ee [7] for the standard definitions of input-to-state stability and 

he classes K, K ∞ 

, and KL of comparison functions. In the linear 

ase, we can apply variation of parameters to (33) to show that the 
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Fig. 1. MATLAB simulation results. 
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east conservative choice of γ that satisfies the preceding require- 

ents is γ (s ) = 2 M s , where 

M = sup t≥0 

∫ t 
0 || e �A cl BK|| d �. (34) 

ence, the least conservative choice of ρ is ρ(s ) = s/ (2 M ) , so

hen t i +1 is finite, it is the supremum of all t > t i such that

up � ∈ [ t i ,t] || I − �−1 (� − t i ) || ≤ 1 / (2 M ) , by (9) . Thus, the lower bound

n the inter-sample times t i +1 − t i guaranteed in this case is the 

argest q such that sup � ∈ [0 ,q ] || I − �−1 (� ) || ≤ 1 / (2 M ) , which we

omputed to be q = 0 . 0838 , using Mathematica. Since this is sig-

ificantly below the lower bound ν = 0 . 122 that we obtained from 

ur positive systems approach, it illustrates a potential advantage 

f our positive systems approach, namely, its ability to ensure less 

requent event triggering times. If we had instead used [17, Corol- 

ary IV.1] to obtain a lower bound on the t i +1 − t i ’s (with σ =
in { �i j : 1 ≤ i ≤ n, 1 ≤ j ≤ n } = 0 . 045 in [17, Corollary IV.1] , which

orresponds to our trigger condition | e | ≤ �| x | ), then we would

ave obtained ν = 0 . 0811 , so again our method provides a larger

. 

In Fig. 1 , we used MATLAB to compare the performance of the 

vent-triggered controller from our Theorem 1 with the event- 

riggered control method from Jiang and Liu [7 , p.72, Theorem 5.2], 

sing the above parameter values. For our 20 s time horizon, our 

ontroller from Theorem 1 produced 73 sample times when the 

ontrol value was recomputed, while the small gain approach pro- 

uced 198 sample times. Therefore, although the settling times 

ere slightly larger for our control, our simulations illustrate the 

ubstantial savings in control recomputation times that is afforded 

y our method. Also, the undershoot in our approach is signifi- 

antly less, as compared to the small gain method, which speaks 

o the viability of our method for real-world applications. See also 

14] for a scalar example where our approach performs better than 

he small gain approach. 

To illustrate the effects of different choices of the matrix K in an 

pplied example, we next illustrate Theorem 1 using a linearized 

epresentation of the BlueRov2 Heavy underwater vehicle. Consider 

he case of two degrees-of-freedom being actuated, namely, the 

-axis and yaw φ of the vehicle. We obtained the model param- 

ters using the approach in [19] , leading to the diagonal matrix 

 = diag {−0 . 387 , −1 . 800 } and B = [0 . 038 1 . 500] 	 . We chose the

ntries �11 = 0 . 195 �12 = 0 . 795 , �21 = 0 . 995 , and �22 = 0 . 590 of

he matrix � = [�i j ] for our control. With the preceding choices 

nd K = [ −1 . 49 − 1 . 37] , the largest ν for which the requirements

f Theorem 1 are satisfied is ν = 0 . 105 , which is our guaranteed

ower bound on the inter-sample intervals t i +1 − t i . Our MATLAB 

imulation in Fig. 1 c shows the resulting performance of our event- 

riggered control from Theorem 1 with these parameters. If we 

hange K to K = [ −0 . 65201 − 0 . 845482] and keep all other param-

ters the same, then the largest ν for which our assumptions are 

atisfied is ν = 0 . 136 , hence a 29 . 52% increase from ν = 0 . 105 by
67 
hanging K. With this change in K, the simulation was similar to 

ig. 1 c. 

. Conclusion 

We proposed new event-triggered control designs, where in- 

tead of small gain or other standard approaches, we used posi- 

ive systems and interval observers. This allowed us to cover large 

lasses of linear systems with outputs, or with time-varying un- 

ertainty in the coefficients of the systems. Our main example il- 

ustrated the trade-off between performance and control updat- 

ng, by producing a significantly larger lower bound on the inter- 

ampling times, significantly less frequent control updates (which 

s an advantage in applications), slower convergence, but less un- 

ershoot, compared with the small gain method. We aim to study 

uch trade-offs in more cases, and ways to change coordinates (to 

eet our Hurwitzness and Metzler requirements) or to tune the 

esign parameters K and � to further reduce the number of con- 

rol update times t i . We also aim to study applications to adaptive 

ynamic programming [21] . 
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ppendix A. Lemmas from Mazenc et al. [10] 

We used the following lemmas (which are Lemmas 1 –2 from 

azenc et al. [10] , respectively) in our proof of Theorem 3 : 

emma A.1. Let M 0 ∈ R 

n ×n be an invertible matrix. Let N 0 ∈ R 

n ×n be

 matrix. Let n and m be two constants such that || M 

−1 
0 

|| ≤ m and 

| N 0 || ≤ n . Assume that m n < 1 . Then M 0 + N 0 is invertible and ∣∣M 

−1 
0 

− (M 0 + N 0 ) 
−1 

∣∣∣∣ ≤ m 

2 
n 

1 − m n 
(A.1) 

s satisfied. �

emma A.2. Let A ∈ R 

n ×n . Consider the system 

˙ (t) = [ A + E(t) ] ζ (t) (A.2) 

here ζ is valued in R 

n and E : [0 , + ∞ ) → R 

n ×n is a bounded lo-

ally Lipschitz function. Let φ denote the fundamental solution of the 

ystem (A.2) . Then for all t 1 ∈ R and t 2 ∈ R such that t 1 ≥ t 2 ≥ 0 , the

nequality ∣∣φ(t 1 , t 2 ) − e A (t 1 −t 2 ) 
∣∣∣∣

≤ ||E|| ∞ 

(t 1 − t 2 ) e 
(||A|| + ||E|| ∞ )(t 1 −t 2 ) (A.3) 

is satisfied. �
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