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We provide a new event-triggered control strategy that relies on the notion of positive systems. Our re-
sults cover output feedback, and robustness with respect to uncertain dynamics. Our proofs are based on
interval observers. Our examples show potential advantages of our approach over earlier event-triggered
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1. Introduction

Event-triggered control has played an increasingly important
role in control theoretic research; see, for instance, the works
[6,8,9,15,17,18]. One advantage of using event-triggered control is
that it can reduce the computational burden associated with im-
plementing controls, by only changing the value of the control
when there is a significant event. These events can be character-
ized as times when the state enters some prescribed region of the
state space. This contrasts with standard zero-order hold strategies,
where the times at which the control values are recomputed are
usually independent of the state. Much event-triggered control lit-
erature can be reformulated as an interconnected control system
problem to which small gain methods can be applied; see, e.g., [7].
Small gain methods have the desirable advantage of ensuring ro-
bustness to uncertainty, but can sometimes be conservative, insofar
that they can lead to unnecessarily frequent control recomputation
times.

Although emerging computing methods can facilitate recom-
puting control values, the increasing use of shared wireless (or
shared wired) networked systems calls for designing controls that
take computation, communication, and energy constraints into
account [6]. This led to systematic designs for event-triggered
controls, e.g., in [1,2,17,20]. At the same time, much research
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has been done on positive systems, i.e., systems where the non-
negative orthant is positively invariant, leading to new control
analysis and designs that overcome some challenges of using
traditional Lyapunov methods. Some works on positive systems
use interval observers (as defined, e.g., in [3,12,16]), which provide
intervals containing values of unknown states when the inequal-
ities involving vector solutions are viewed componentwise; see
[12,13]. Positive systems and interval observers led to advances in
aerospace engineering, mathematical biology, and other areas.

This motivates our work, where we use a new positivity based
event-triggered control technique to design control strategies that
yield less conservative triggering conditions than those in litera-
ture such as [7], and where we also provide a robustness result
that removes the requirement that there be a constant C > 0 such
that there is a bound ||5(t)|| < C||x(t)|| relating the state x(t) and
the uncertainty §(t) at each time t > 0 that was present in impor-
tant works such as [18]. We establish an output feedback and a
robustness result, covering cases where there may be time-varying
uncertainties in the dynamics. Our stability proofs use interval ob-
servers as comparison systems, and are reminiscent of the results
of [13] insofar that they are based on linear Lyapunov functions
for positive systems. However, [13] did not cover event-triggering,
and to the best of our knowledge, our work is the first system-
atic use of interval observers and positive systems to design event-
triggered controls.

We provide our notation and preliminaries and introduce our
main class of systems in Section 2. Then, in Section 3, we pro-
vide our main stability theorem, our extension to output feedback
control using an observer, and our robustness theorem for uncer-
tain models. In Section 4, we illustrate potential advantages of our
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method using an example where our method ensures less frequent
control recomputations than the main small gain event-triggered
result in [7] and also less than a result from [17]. We close
in Section 5 by summarizing our findings and suggesting future
research directions.

2. Preliminaries

We use the following notation, where the dimensions of our
Euclidean spaces are arbitrary unless otherwise noted. The argu-
ments of functions are omitted when no confusion can arise from
the context. Set Zg={0,1,2,...} and N =Z,\{0}. For a matrix
G =[gij] e R™, we set |G| =[l|g;l], i.e, the entries of |G| are the
absolute values of the corresponding entries g;; of G. Similarly, we
set Gt =[max{g;;,0}] and G~ =G -G, and sup,|G(¢)| = [m;;]
where m;; = sup,; |g;;(¢)| when G is time-varying and bounded
matrix valued function and J is an interval in the domain of G.
A square matrix is called Metzler provided all of its off-diagonal
entries are nonnegative. For two matrices D = [d;;] and E = [e;;]
of the same size, we write D < E (resp., D < E) provided d;; < ¢;;
(resp., d;j < e;;) for all i and j. We also write D & E provided there
is a pair (i, j) such that d;; > e;;. We adopt similar notation for vec-
tors.

A matrix S is called positive provided 0 < S, where 0 is the zero
matrix. Let || - || denote the standard Euclidean 2-norm of vectors
and matrices, and || - || (resp., ||-||;) denote the corresponding
sup norm of matrix valued functions over their entire domain
(resp., over an interval J in their domain). We let I denote the
identity matrix.

We consider the system

x(t) = Ax(t) + Bu(t) (1)

where x is valued in R", u is valued in RP, and the matrices A and
B are constant. We assume:

Assumption 1. There is a matrix K € RP*" such that the matrix
Aq = A+ BK is Hurwitz and Metzler.CO

Remark 1. Assumption 1 is not restrictive because many systems
satisfy it after a change of coordinates. When (A, B) is controllable,
there is a change of coordinates that provides new matrices A and
B that satisfy this assumption. In fact, if (A, B) is controllable, then
there is a K € RP*" such that all eigenvalues of A + BK are negative
real numbers. Then there exists a matrix P € R™*" such that P(A +
BK)P-1 is Metzler because the Jordan canonical form of A+ BK is
Metzler. Thus Assumption 1 is satisfied by the pair (PAP~1, PB). O

Recall that the Zeno phenomenon is that a system with sam-
pling has infinitely many sample times on some interval of finite
length. A key ingredient in our analysis in later sections will be
finding a lower bound v >0 on the inter-sample times t;,1 — ¢
between the event triggering times in all three of our theorems
which will imply that the Zeno phenomenon does not occur, which
will ensure implementability of our control. This constant v will be
provided by the following lemma:

Lemma 1. Let K satisfy Assumption 1. Then there is a positive matrix
I' e R™" such that the matrix

M = Aq + |BK|T 2)

is Metzler and Hurwitz. Also, using the function Q2 : [0, +00) — R™"
that is defined by

Q(s) = e + 5 e" d¢BK, (3)

there exists a constant v > 0 such that for all s € [0, v], the matrix
Q(s) is invertible and such that the inequality

I-Q@s)7!|<T
is satisfied..]

(4)

64

European Journal of Control 62 (2021) 63-68

Proof. First observe that Assumption 1 implies that there exists
a positive matrix I' € R™" such that M as defined in (2) is Met-
zler and Hurwitz. In fact, since 0 < |BK|, it follows that 0 < |BK|T"
if 0 < I', which implies that M is Metzler. Moreover it is Hurwitz
when the entries of I' are sufficiently small (by the continuity of
eigenvalues as functions of the characteristic polynomial’s coeffi-
cients, and so also of the entries of the matrix [5]). We conclude
by observing that 2 is continuous, Q2(0) =, and 0 <I". O

Remark 2. Since e is invertible, the matrix Q(s) in (3) with s > 0
is invertible if and only if I + f; e~Ad¢BK is invertible. Thus, it is
invertible if

|| /o e“AdeBK|| < 1, (5)

which follows by checking that the nullspace of I+ f; e~94d¢BK
is trivial. The inequality (5) is satisfied if BK = 0. If BK # 0, then
for any €y € (0,1), (5) holds if s <s,, where s, is the sup of all r
values such that the left side of (5) is bounded above by ¢; for
all s<[0,r]. A more explicit bound on the allowable s values in
the BK # 0 case can be obtained as follows. If BK # 0, then (5) is
satisfied if

JgeOAIde < L ©6)

If A=0, then this gives the condition s < 1/||BK||. On
the other hand, if A#0, then we instead have the con-
dition (el —1)/||A|| < 1/]|BK|] which is equivalent to
s < (1/[1A1D In (1 + [|A][/11BK]]). O

Remark 3. Notice for later use that since M defined in (2) is Met-
zler and Hurwitz, there are a vector V € R" satisfying 0 <V, and a
constant p € (0, +o00), such that

VIM<—pVT
holds. This follows from Haddad et al. [4, Lemma 2.3, p. 41]. O

(7

3. Main results
3.1. State feedback event-triggered control

We next prove an event-triggered control theorem, whose
event-triggered control and triggering times t; will be defined by

(a) X(t) = AX(t) +BKX(t1) ift e [fi, t,'Jr]),

(b) [x() —x(&)| < Tlx(®)] if t € [t;, t;4q), and

(c) For each € >0, and for each ieZy such that ;<
+o0, there is a t; € (tiyq, tiy1 +€) such that [x(6;) — x(t;)] £
Clx(ty)|

for all i, where tg = 0 and K is from Assumption 1, and where con-
dition (c) means that for each € > 0, there exist t; € (i1, tiy1 +€)
and j e {1,...,n} such that
n
X (ty) —x;(t)] > Zl [jglxg(t)] (8)
g:

is satisfied, where I" = [I';;]. The dynamics in (a)~(c) call for reset-
ting the control values at certain times t;, as follows. At time ty = 0,
we choose the control value u(0) = Kx(0). Then, we maintain the
control value at u(t) = Kx(0) as long as |x(t) — x(0)| < I'|x(t)| con-
tinues to hold, which produces an interval [0, t,] with t, > v dur-
ing which the control value stays at u(t) = Kx(0), by Lemma 1 and
(9) below. If, at some later time, |x(t) —x(0)| < T'|x(t)| is vio-
lated (in the sense of (8)), then we change the control value to
u(t;) = Kx(t;) where t; is the infimum of all times t > 0 when
such a violation occurs. We repeat this process with t; replaced
by t;, and argue inductively, to define the control for all ¢t > 0.

Hence, we have a sampled control, with event-triggered sample
times defined by (b). This produces an infinite sequence of trigger-
ing times t;, or only finitely many t;’s. Moreover, after resetting the
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control values at the times t;, the inequality in (b) will hold for all
t > 0. Similar reasoning applies for our other theorems below. A
key novel feature of our theorems is our use of the matrix of ab-
solute values | - | instead of the usual Euclidean norm (e.g., in (b)
above), which can reduce the number of sample times t; on given
intervals; see our illustrations below. Our event-triggered control
(a)-(c) can be viewed as a novel combination of emulation (be-
cause it uses the nominal control Kx in (a)) and co-design (because
it designs the matrix I' in the triggering rule in (b)). Our first the-
orem is then:

Theorem 1. Consider the system (1) under Assumption 1 and let I" >
0 satisfy the requirements of Lemma 1 and K satisfy the requirements
from Assumption 1. Consider the nonnegative t;’s defined by to =0
and (a)-(c) above. Then the closed loop system given by (a)-(c) ad-
mits the origin as a globally exponentially stable equilibrium point on
R™ O

Proof. First Part. Letting v be the constant from Lemma 1, we
prove that the inter-event times t;,; — t; are bounded below by v.
More precisely, we prove that either there are only a finite number
of instants to, ..., t; and min;gq
else there are infinitely many instants ¢; and infiz (t1 —t) > v.
Consider any i € Z-o such that the Zeno phenomenon does not
occur on [0,¢t;]. If x(t;) =0, then the theorem on existence and
uniqueness of solutions gives x(t) = 0 for all t > t;. Next, consider
the case where x(t;) # 0. This implies that t;,; = +o0 or t;,4 is fi-
nite and t;,; > t;. Consider the case where t;; is finite. By inte-
grating the equation in (a) on the interval [t;, t) with t € [t;, t; + V]
from the initial state x(t;), we get

x(t) = Q(t — t)x(t;) 9)

where Q is defined in (3). From (4), it follows that, for any
t € [t;, t; + v], the vector inequality ‘I —Qt—t;) ! ’lx(t)| < Tx(t)]
is satisfied. It follows that [x(t) — Q(t —t;)~'x(t)| < T'[x(t)|. This
inequality in combination with (9) gives |x(t) —x(t;)| < T'|x(t)]
for all t e[t t;+v]. We conclude that t;,¢ >t;+v. Thus, the
Zeno phenomenon does not occur and the inter-sample times are
bounded below by v.

Second Part. We study the stability of the closed loop system
from (a) to (c). The case where there is j such that x(t;) =0 is
trivial. Thus, we consider the case where x(t;) # 0 for all j € Z.,.
For convenience, we introduce the function p defined by w(t) =
x(t;) — x(t) for all t € [t;, t;,1) and all i € Zy. Then (a)-(c) give

x(t) = Agx(t) + BKu(t)
()] < T)x(t)]

for almost all t > 0, where A = A + BK as before.

To study (10), we exploit the fact that A, is Metzler, to adopt an
analysis approach that is based on interval observers. We introduce
the dynamic extension

X(t) = AqX(t) + (BKu(t))*
x(t) = Aax(t) — (BKu(t))~
Consider a solution of (10) with x(0) € R" as its initial state and
any initial states x(0) € R" and x(0) € R for (11) such that x(0) <
x(0) <x(0) and x(0) <0 < x(0). Observe that e(t) =x(t) — x(t)
and e(t) = x(t) — x(t) satisfy
e(t) = Aqe(t) + (BKu(t))~
e(t) = Aqe(t) + (BKu(t)*

Since A, is Metzler, it follows (e.g., from Mazenc et al. [11, Lemma
1]) that e(t) > 0 and e(t) > 0 for all t > 0. This gives

x(t) <x(t) <x(t) and x(t) <0 <Xx(t)

(10)

(11)

(12)

(13)
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for all t > 0, where the last two inequalities in (13) follow because
x and —x are solutions of Z=Ayz + (BKu)* and from again apply-
ing [11, Lemma 1] using the Metzler matrix Ay. We deduce from
(13) that x(t) — x(t) < x(t) < x(t) —x(t), i.e.,

[x(t)] < s(t)

for all t > 0, where s(t) = x(t) — x(t).
We next analyze the behavior of s. We have

S(t) = Ags(t) + (BKu(t))™ + (BKu(t))~
= Ags(t) + [BKu(t))].
Consider the linear function

W(s) =VTs,

(14)

(15)

(16)

where V satisfies the requirements of Remark 3. At each t > 0, the
time derivative of W along (15) satisfies

W(t) =VTAgs(t) + VT [BKu(t))|
<VTAgs(t) +VT|BK|T|x(t)

. (17)

where the last inequality is a consequence of the inequality in (10).
Substituting (14) in (17), we obtain

W(t) <VTAgs(t) + VT|BK|Ts(t)

=VTMs(t), (18)

where M is the matrix defined in (2). Since s is nonnegative valued,
it follows from (7) that

W(t) < —pVTs(t) = —pW (s(t)). (19)

Since V > 0 and s(t) > 0 for all t > 0, we deduce that s(t) exponen-
tially converges to zero as t — +oo. We can now convert the expo-
nential stability estimate for s(t) into the one for x(t). To this end,
we can assume that s(0) < 4|x(0)], e.g., by requiring x(0) < 2|x(0)|
and x(0) > —2|x(0)|. Hence, from (14), we deduce that x(t) goes
exponentially to the origin as t — +o0o0. O

3.2. Output feedback control

The event-triggered control in Theorem 1 requires measure-
ments of the state x(t), and it is nontrivial to generalize it to cases
where the state is not available for measurement. This motivates
this subsection, where we consider the system (1) with an output,
namely,

x(t) = Ax(t) + Bu(t), y(t) =Cx(t) (20)

with y valued in RY and C being a constant matrix. We use this
classical assumption:

Assumption 2. The pair (A, C) is observable.I
Assumption 2 provides a matrix L € R™*7 such that

G=A+IC (21)

is Hurwitz. This allows us to prove the following, where solutions
to (a')-(d’) are defined in a recursive way that is analogous to the
solutions in Theorem 1:

Theorem 2. Consider the system (20) under Assumptions 1-2. Let
I' > 0 and v > O satisfy the requirements of Lemma 1, and K satisfy
the requirements of Assumption 1. Consider the sequence of nonnega-
tive numbers t; and the feedback KX(t;) defined by ty = 0,

(@) &(t) = AX(£) + BKR(8;) if t € (6 ti11),

(b') R(t) = AR(t) + BKR() + L[CR(E) —y(O] if t € (8, i),

() 1R(t) = R(t)| < TIRO)] + B fax(o.c—v) ICRE) = y(©)]de for all
te [tiv tirq ), and
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(d’) For each € >0, and each i such that t; 1 <-+oo, there
is a ty € (tipq. tiyg +€) such that |R(t) — X(t;)| £ TIR(Ep | +

t: ~
B fomax(0.y-v) 1CR(O) = y(D)]de

for all i € Zg, where X(0) # 0 and

B = sup,g. ’Q(f)*1 ‘ SUP,c(0,v] ‘EML‘» (22)

Then the system given by (a’)-(d’) admits the origin as a globally ex-
ponentially stable equilibrium on R". O

Proof. (Summary.) We only summarize the proof here; see [14] for
a complete proof.

First part. We prove that the inter-event times ¢t 1 —¢;
are bounded below by v. More precisely, we prove that ei-
ther there are only a finite number of instants to,....t; and
number of instants t; and infiz (b q — ) = v.

By integrating the X-subsystem in (b’) between [t;, t) with t €
[t;, t; + v) with the initial state X(t;), we can then obtain [14]

t
%) —&(t)| < TI1X(@O)| + B C(o)de

max{0,t—v}

(23)

for all t € [t;, t; + v], where
C(e) = ICR(0) —y(©)|.

It follows that t;,; —t; > v for all i € Z.

Second part. This proves exponential stability of the equilibrium
point of the closed loop system. It uses the fact that with the
choice X(t) = X(t) — x(t), the dynamics

X(t) = GX(t) (25)

are globally exponentially stable at the origin, where G is the ma-
trix defined in (21). For details, see [14]. O

(24)

3.3. Robustness

We next generalize our results to cases with an additive distur-
bance Ag(t) on A, which produces

X(t) = (A+As (£)x(t) + Bu. (26)

We impose conditions on As that hold when the sup norm of
As is small enough, because our goal is to propose a stabilizing
feedback that is robust with respect to the term Ag(t)x(t). This
motivates the next assumption, which will be satisfied under our
Assumption 1 when the entries of A; and I' are small enough in
absolute value:

Assumption 3. The bounded function A; : [0, +00) — R™" is lo-
cally Lipschitz. Also, for a matrix K satisfying the requirements of
Assumption 1, and for a I satisfying the requirements of Lemma 1,
there is a constant a > 0 such that the system
E(t) = [Ac1+ sup IAa(t)I+(1+a)IBK|F}E(t) (27)
te[0,00)

with the choice A4 = A + BK admits the origin as a globally expo-
nentially stable equilibrium point on R".0J

Using Lemmas A.1 and A.2 from the appendix below, we can
then prove the following result, where solutions of the event-
triggered system (a”)-(c”) are defined in an analogous recursive
way, like in the preceding two theorems:

Theorem 3. Let Assumptions 1 and 3 be satisfied for some K and
I =[Tj;]. Assume that K, ', and v > O satisfy the requirements of
Lemma 1. Let Ag be such that

[1A5] oo ve I (1 4 v IBKIN 1S ljo.0) < Co (28)
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where cg € (0, 1) is any constant such that

Co
1- Co
Then the system with sampling times t;, defined by

(@") x(t) = (A+As(£))x(t) + BKx(t;) if t € (t;, tiq),

(") [x(t) —x(t)| < (L +a)Tx(®)] if t € [t;, t;y1), and

(c") For each € > 0, and for each i such that t;, 1 < +oo, there is a

ty € (Liz1, tipq + €) such that |x(t) —x(&)| £ (1 +a)T[x(tp)]

12 oy <amin{[y:1<i<n1<j<n} (29)

for all i and ty = 0, admits the origin as a globally exponentially
stable equilibrium point on R". O

For a proof of the preceding theorem, see [14] (in the special
case where X =x, 'y =T, and T’ = aI" for the preceding choice of
r).

4. Illustrations

To illustrate Theorem 1, consider the system

X1(t) =x1(t) + 3x2(0) +u
) 3 (30)
X (t) = Exl (t)+u

where x; and x, are valued in R and u is the input. Setting K =
[K;y K3], Assumption 1 will be satisfied if

1
s +K

1+ K 5

Aq = 3 (31)
-+ K K

3 + K 2

is Hurwitz and Metzler. Since (31) is Hurwitz and Metzler if
Ki +Ky < -3/2, K1 > -3/2, and K; > —1/2, Assumption 1 is sat-
isfied with K; = —4/3 and K, = —1/3. Then, with the notation of
Section 2,

11 4 1
Ay = k=] 3 3|
11 4 1
6 3 3 3
and M = A4 + |BK|T
11 4 1
3 6 3 3
— r. 32
IR P G2
6 3 3 3

Then simple Mathematica calculations show that the assumptions
of Lemma 1 and Theorem 1 are satisfied with all entries of I" be-
ing I';; =0.045 and the lower bound v =0.122 on the sampling
intervals t;, 1 — ;.

We next compare the preceding lower bound with one that can
be obtained from Jiang and Liu [7, p.72, Theorem 5.2] using the
small gain approach. In the linear time invariant case, the trigger-
ing times in [7, Theorem 5.2] are such that when t;, is finite, it is
the smallest time t > t; such that p(||x(t)|]) = ||x(t) — x(t;)|| when
x(t;) # 0, for any class K function p such that p(y(s)) < s for all
s > 0, where y € K is the overshoot function in a suitable input-
to-state stability estimate for

% = (A + BK)x + BKw, (33)

i.e., there is a class K££ function § such that along all solutions of
(33) for all ¢ > 0, we have [[x(t)|| < max{B(|[x(0)[[,t), ¥ (|Iw||=)};
see [7] for the standard definitions of input-to-state stability and
the classes K, K, and K£ of comparison functions. In the linear
case, we can apply variation of parameters to (33) to show that the
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0.8 1
—x1:x1(0) = 0.5
——x2:x2(0) = 0.5
0.6 x1:x1(0) = 0.7
—x2:x2(0) = 0.7
0.4 x1:x1(0) = 0.1
< x2: x2(0) = 0.1 x
0.2
0 \W
-0.2 - - .
0 5 10 15 20 0 5
time [sec]

(a) The positive system approach

time [sec]
(b) The small gain approach
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20

15

10 10

time [sec]
(c) AUV: positive systems approach

Fig. 1. MATLAB simulation results.

least conservative choice of y that satisfies the preceding require-
ments is y (s) = 2Ms, where

M = sup,.¢ J; |le"BK]||de. (34)
Hence, the least conservative choice of p is p(s) =s/(2M), so
when t;,; is finite, it is the supremum of all ¢ >¢t; such that
Supyepg, o 11— 7€ —6)]| < 1/(2M), by (9). Thus, the lower bound
on the inter-sample times t;,; —t; guaranteed in this case is the
largest q such that sup,.(oq |ll—2271(¢)|| <1/(2M), which we
computed to be g = 0.0838, using Mathematica. Since this is sig-
nificantly below the lower bound v = 0.122 that we obtained from
our positive systems approach, it illustrates a potential advantage
of our positive systems approach, namely, its ability to ensure less
frequent event triggering times. If we had instead used [17, Corol-
lary IV.1] to obtain a lower bound on the t;,; —t;/'s (with o =
min{l';j : 1 <i<n, 1< j<n}=0.045 in [17, Corollary IV.1], which
corresponds to our trigger condition |e| < I'|x|), then we would
have obtained v =0.0811, so again our method provides a larger
V.

In Fig. 1, we used MATLAB to compare the performance of the
event-triggered controller from our Theorem 1 with the event-
triggered control method from Jiang and Liu [7, p.72, Theorem 5.2],
using the above parameter values. For our 20 s time horizon, our
controller from Theorem 1 produced 73 sample times when the
control value was recomputed, while the small gain approach pro-
duced 198 sample times. Therefore, although the settling times
were slightly larger for our control, our simulations illustrate the
substantial savings in control recomputation times that is afforded
by our method. Also, the undershoot in our approach is signifi-
cantly less, as compared to the small gain method, which speaks
to the viability of our method for real-world applications. See also
[14] for a scalar example where our approach performs better than
the small gain approach.

To illustrate the effects of different choices of the matrix K in an
applied example, we next illustrate Theorem 1 using a linearized
representation of the BlueRov2 Heavy underwater vehicle. Consider
the case of two degrees-of-freedom being actuated, namely, the
z-axis and yaw ¢ of the vehicle. We obtained the model param-
eters using the approach in [19], leading to the diagonal matrix
A = diag{—0.387, —1.800} and B =[0.038 1.500]". We chose the
entries Fl] =0.195 F12 = 0795, Fz] = 0995, and F22 =0.590 of
the matrix I" = [[';] for our control. With the preceding choices
and K = [-1.49 — 1.37], the largest v for which the requirements
of Theorem 1 are satisfied is v = 0.105, which is our guaranteed
lower bound on the inter-sample intervals t;,; —t;. Our MATLAB
simulation in Fig. 1c shows the resulting performance of our event-
triggered control from Theorem 1 with these parameters. If we
change K to K = [-0.65201 — 0.845482] and keep all other param-
eters the same, then the largest v for which our assumptions are
satisfied is v = 0.136, hence a 29.52% increase from v = 0.105 by
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changing K. With this change in K, the simulation was similar to
Fig. 1c.

5. Conclusion

We proposed new event-triggered control designs, where in-
stead of small gain or other standard approaches, we used posi-
tive systems and interval observers. This allowed us to cover large
classes of linear systems with outputs, or with time-varying un-
certainty in the coefficients of the systems. Our main example il-
lustrated the trade-off between performance and control updat-
ing, by producing a significantly larger lower bound on the inter-
sampling times, significantly less frequent control updates (which
is an advantage in applications), slower convergence, but less un-
dershoot, compared with the small gain method. We aim to study
such trade-offs in more cases, and ways to change coordinates (to
meet our Hurwitzness and Metzler requirements) or to tune the
design parameters K and I" to further reduce the number of con-
trol update times t;. We also aim to study applications to adaptive
dynamic programming [21].
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Appendix A. Lemmas from Mazenc et al. [10]

We used the following lemmas (which are Lemmas 1-2 from
Mazenc et al. [10], respectively) in our proof of Theorem 3:

Lemma A.l. Let Mg € R™" be an invertible matrix. Let Ny € R™" be
a matrix. Let n and m be two constants such that ||M51 || <m and

|INg|| < 1. Assume that mn < 1. Then Mg + Ny is invertible and
o

|[Mg" = (Mo +No) || = 1% (A1)
is satisfied.OJ

Lemma A.2. Let A € R™". Consider the system

g(t) =[A+EWM]E () (A2)

where ¢ is valued in R" and € : [0, +o0) — R™" is a bounded lo-
cally Lipschitz function. Let ¢ denote the fundamental solution of the
system (A.2). Then for all t; e R and t, € R such that t; > t; > 0, the
inequality
H¢(f1, ty) - EA(“*[Z)H

< |I€]]oo (t1 — t)eIAIHIEN) (E1—t2)
is satisfied.(]

(A3)
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