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ARTICLE INFO ABSTRACT

Keywords: In this study we introduce and utilize GEOSPH, a Lagrangian particle-based
Accretionary wedges continuum Smoothed Particle Hydrodynamics (SPH) code to simulate the de-
Doubly vergent orogens formation of geologic materials in sandbox-style experiments using an elasto-
Meshfree continuum method plastic constitutive model. Due to the meshfree nature of SPH, our proposed
Geodynamical modeling framework is capable of handling the large deformations characteristic of
Smoothed particle hydrody- sandbox-style experiments. SPH is also able to capture strain localization and
namics discontinuities, allowing us to resolve faulting patterns emerging in the sand-
Critical taper theory box experiments. We successfully validate our SPH implementation against

the benchmark experiments of Buiter and co-workers, and then apply SPH to
understand the deformational processes occurring in doubly vergent orogens
resultant from the S-point experimental setup and from finitely high wedge-
like indenter backstops of different inclinations. We find that the topographic
slope of the prowedge results from the competing processes of vertical uplift
due to the indenter and forward thrusting, while the topographic slope of the
retrowedge is a product of repeated shallow slope failure. Our findings show
that SPH is a promising numerical method which should be added to the cur-
rent palette of computational tools used by structural geologists for solving
problems relating to tectonics and crustal deformation.

1. Introduction

Sandbox-style experiments have enabled the simulation of faulting, the formation of orogenic
wedges, rifting, and other geodynamical phenomena occurring in the Earth’s crust (Buiter et al.,
2006, 2016; Wolf et al., 2003; Herbert et al., 2015), and analogue sandbox experiments using sand
or other frictional materials have been used to study tectonic phenomena since at least the 19
century (Graveleau et al., 2012). However, while it is easy to draw conclusions on the geometry
and structural styles recreated in analogue sandbox experiments, it is difficult to determine the
state of stress within the experiment, to accurately observe strain localization patterns, to freeze
time and gravity, or to backtrack and re-initiate the simulation from a previous state. Numerical
modeling used to solve the initial boundary value problems (IBVP) describing the mechanics of the
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sandbox, can help tackle the geological questions analogue sand-boxes were designed to address,
while overcoming their shortcomings (Gray et al., 2014; Buiter et al., 2006).

Mesh-based continuum methods such as the Finite Element Method (FEM) are perhaps the
most important and best known numerical approach used to solve the IBVPs governing geolog-
ical and geodynamical processes (Borja and Dreiss, 1989; Borja and Aydin, 2004; Crook et al.,
2006; Sanz et al., 2008), but have difficulty simulating the large deformations observed in sandbox-
style experiments due to severe mesh entanglement and distortion. While work-arounds exist such
as Arbitrary Lagrangian Eulerian (ALE) FEM, which require re-meshing, they come with a cer-
tain computational and accuracy penalty (Hu and Randolph, 1998). Mesh-based methods without
enhancements also have difficulty when dealing with processes involving discontinuities such as
faulting, requiring fault paths to be predetermined (Sanz et al., 2007; Gray et al., 2014), unless
enhancements such as strong discontinuities (Simo et al., 1993; Borja, 2000; Borja and Regueiro,
2001; Liu, 2020; Jameei and Pietruszczak, 2020), phase field (Shiozawa et al., 2019; Zhou and
Xia, 2019; Zhou and Zhuang, 2020; Yang et al., 2021), or extended finite elements (Belytschko
and Black, 1999; Liu and Borja, 2008, 2013; Liu et al., 2019; Feng and Gray, 2019) are introduced.
For capturing strain localization, a “seed,” or a material heterogeneity, is usually introduced in the
model to induce strain localization in the first place, rather than occurring naturally (Kaus, 2010;
Borja et al., 2013a,b; Song and Borja, 20144a,b).

Due to the disadvantages of mesh-based methods, certain meshfree methods such as the Dis-
crete Element Method (DEM), which do not rely on element connectivity, are a popular alternative
(Morgan and Boettcher, 1999; Burbidge and Braun, 2001; Naylor and Sinclair, 2005; Egholm et al.,
2007; Gardner and Sitar, 2019; Ma et al., 2019; Zhao and Liu, 2020). However, DEM is computa-
tionally expensive, severely limiting the scale of experiments. Furthermore, if linkage back to the
continuum scale is desired to discern stress or strain fields from the distinct particles, an averaging
process of inter-granular forces or displacements must be performed, involving additional calcula-
tion (Yan and Regueiro, 2019; Shen et al., 2019; Nguyen et al., 2020; Jiang et al., 2020; Wu et al.,
2020). Alternative methods to both FEM and DEM include a class of continuum particle methods
such as the material point method (Chandra et al., 2021; Kularathna et al., 2021), peridynamics
(Sun and Fish, 2021; Song and Menon, 2019), particle finite element method (Yuan et al., 2021;
Wang et al., 2021; Jin et al., 2020), and smoothed particle hydrodynamics, or SPH (Sheikh et al.,
2020; Zhan et al., 2020). Originally developed for astrophysical problems (Gingold and Monaghan,
1977; Lucy, 1977), the SPH method has a number of desirable features that make it suitable for the
problem addressed in this paper.

SPH is a meshfree, continuum-based, Lagrangian method, where particles represent pieces of a
continuum body and thus possess continuum level field variables and properties (i.e., mass, density,
velocity, etc). The values of these fields for each particle are determined by an interpolation from
neighboring particles using a weighted sum and a kernel function. The meshfree nature of SPH
allows it to handle large deformation problems like in DEM, while having improved scalability
over DEM (Peng et al., 2019; Nguyen et al., 2020; Tran et al., 2019; Longo et al., 2019; Xu et al.,
2020a,b). Strain localization and kinematic discontinuities characteristic of faulting have also been
shown to arise naturally in SPH (del Castillo et al., 2021; Favero Neto and Borja, 2018; Favero
Neto et al., 2020; Wang et al., 2020; Su et al., 2021). As explained in del Castillo et al. (2021),
strain localization in the form of shear bands can be roughly considered analogous to faults in the
context of SPH. For this reason, throughout the paper, the terms shear band, fault, or thrust are
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used interchangeably.

In this paper, we apply GEOSPH (del Castillo et al., 2021; Favero Neto, 2020), a parallel SPH
code built on the on the open-source Python-based framework PySPH (Ramachandran et al., 2020),
designed to handle the deformation of geologic materials across scales, for sandbox-style modeling
of accretionary wedges, and doubly vergent orogenic wedges. Deformation of rock in orogens
and accretionary wedges at the field scale and of sand at the sandbox scale, is characterized by
elastic and plastic behavior, large deformations, strain localization, and faulting, which is well
described by non-associative, pressure sensitive elastoplastic constitutive models and the Mohr-
Coulomb or Drucker-Prager yield criteria (Jaeger and Cook, 1979; Panian and Wiltschko, 2007;
Gray et al., 2014). We use the Drucker-Prager yield criterion, which is a two invariant smooth
approximation of the Mohr-Coulomb yield surface. The Drucker-Prager approximation plots as a
circle in the deviatoric plane, while the Mohr-Coulomb yield surface is hexagonal, and thus is easier
to implement and has improved numerical stability especially for three-dimensional problems. The
Drucker-Prager criterion has been successfully employed in a number of other tectonics modeling
studies (Nifio et al., 1998; Cardozo et al., 2003; Panian and Wiltschko, 2007; Stockmal et al., 2007).

While using elastoplasticity for modeling tectonic deformation has become increasingly more
common in the geological and geodynamical modeling communities (Crook et al., 2006; Sanz
et al., 2007, 2008; Nollet et al., 2012; Albertz and Sanz, 2012; Gray et al., 2014; Reber et al.,
2020; Scovazzi et al., 2021) primarily at the reservoir or fault scale, or whenever high fidelity
projections of stress or strain are needed, this approach is currently less prevalent than Stokes flow
modeling. Initially gaining popularity for its successful application to modeling mantle convection
(Fullsack, 1995; Gerya and Yuen, 2007), and also for its relatively simpler implementation, tectonic
crust is treated as a nonlinear fluid governed by the Stokes flow equations, and is used especially
on the basin as opposed to the reservoir scale (Simpson, 2006; Ruh et al., 2012; Buiter et al.,
2016). The effects of plasticity are usually incorporated into the equations via a nonlinear viscosity
term. The only effort to model tectonic deformation to date using SPH (the doctoral thesis of
Schwaiger (Schwaiger, 2007)), followed this approach by discretizing and solving the Stokes flow
equations, but encountered difficulties resolving strain localization, and the results only achieved
rough qualitative agreement with other modeling attempts using, for example, DEM.

GEOSPH is able to reproduce the expected geometry and kinematics of other analogue and nu-
merical sandbox experiments, while providing useful stress, strain, and strain rate data often absent
from most non-continuum simulations. We show that modeling crust as an elastoplastic medium
yields considerably improved results across all geological dimension scales compared with pre-
vious attempts solving the Stokes equations with SPH. In this paper, we first validate our SPH
implementation against a number of benchmark experiments from Buiter et al. (2006) and Buiter
et al. (2016), namely, the stable wedge experiment in Section 4.1, the accretionary wedge shorten-
ing experiment in Section 4.2, and the S-point experiment in Section 4.3. In addition to performing
these benchmark experiments showcasing the potential of SPH towards modeling large deforma-
tion mechanical problems in the geological sciences, our results also provide new insights into the
role the backstop geometry in forearc basins plays in dictating the structural styles and strain lo-
calization patterns that emerge in sandbox models of doubly vergent wedges. We begin with brief
overviews of critical taper theory and different orogenic wedge types in Section 2, and then of the
governing equations solved in our SPH implementation and of the SPH method itself in Section
3. For a full description of SPH and our proposed framework, the reader is referred to del Castillo
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et al. (2021) and Favero Neto (2020).

2. Accretionary Wedges, Critical Taper Theory, and Doubly Vergent Wedges

In contractional tectonic settings, crustal material accretes as sequences of successive thrust
sheets forming an overall wedge-shaped mountain belt or orogenic wedge (alternatively accre-
tionary wedge or thrust wedge) above the décollement, the weak basal detachment. The formation
of mountain belts and orogenic wedges is arguably one of the most widely studied and complex
processes in structural geology, and orogenic wedges are also the setting for important hydrocarbon
deposits, and megathrust earthquakes (Bilotti and Shaw, 2005; Pollard and Fletcher, 2005; Elliott
et al., 2016). At a broad level, the dynamics of accretionary wedge growth and formation is well
understood through the classic bulldozer analogy of Davis et al. (1983). As a bulldozer pushes
up a snow covered ramp or driveway, snow begins to accumulate at the front of the bulldozer’s
plow, and a snow wedge will form in front of the plow, growing until a constant wedge “taper” is
reached. At this point the wedge reaches the so-called state of “critical taper”, and the wedge grows
self-similarly with internal deformation such as faulting helping to maintain the taper (Davis et al.,
1983).

To first order, the overall geometry or taper of wedges can be described by an elegant analytical
solution, known as the critical taper model, formally presented in the work of Dahlen (1984). The
wedge’s taper is defined as the sum of the angles a« + f, where f is the basal angle, or the angle
between the horizontal and the décollement or base, while a, or the topographic angle, is the angle
between the horizontal and the top surface of the wedge. The critical taper equations describe the
possible range of tapers orogenic wedges can take for the wedges to remain mechanically stable. In
the solution, the wedges are assumed to be at the critical state where the wedge grows self-similarly,
and the material inside the wedge is assumed to be entirely at the point of failure. In the critical
taper solution, the wedge taper @ + f is a function of the strength of the wedge and base, and also
of the pore fluid ratios of the wedge and base. When the wedge is dry, or there is no pore fluid, the
taper reduces to a function of wedge and basal strength, as seen in the following equations:

a+p=Y,-Y, (1)

where )
Y, = %arcsin <S;::1d(;b> - %4’;, )

and .
Y, = %arcsin <:$:;> - %a. 3)

In Equations (1-3), P, is the angle between the maximum principal stress ¢, and the base, and
¥, is the orientation of ¢, with respect to the wedge top. Parameters ¥, and ¥, depend on ¢
and ¢,, which are the internal angle of friction of the wedge and the base, respectively, and P,
also depends implicitly on the topographic slope a@ (Dahlen, 1984). The critical taper solution is
graphically displayed as a “flounder” or envelope diagram with two “branches” of tapers for a given
¢ and ¢,, where the wedge is on the verge of failure throughout, with tapers on the upper branch of
the envelope in extensional failure, and tapers on the lower branch in compressional failure. Inside
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the envelope, wedges are stable and can slide along the décollement without internal deformation
as long as no new material is accreted. In general, there has been good agreement between tapers
observed in the field and those measured from analogue and numerical experiments, with those
predicted by the critical taper solution (Davis et al., 1983). Nevertheless, the critical taper model
provides little insight into the internal deformation of the wedge, and also fails to account for the
more complicated deformation processes arising in continental collisions or forearcs as pointed out
by Koons (1990). In the critical taper model, the backstop (also indenter), or crust, of higher rigidity
compressing the accreting sediment or rock (i.e. the bulldozer) is assumed to be of considerably
greater height than the material being accreted. However, this is rarely the case, and usually mass
flow over the backstop occurs, resulting in a two-sided wedge or doubly vergent wedge.

Significant progress has been made over the last few decades concerning the mechanics of dou-
bly vergent wedges thanks to a combination of analogue and numerical sandbox-style experimental
studies (Byrne et al., 1993; Willett et al., 1993; Beaumont et al., 1996; Wang and Davis, 1996; Wil-
lett, 1999; Bonini et al., 1999; Persson, 2001; Naylor and Sinclair, 2005; Simpson, 2011). However,
unanswered questions remain regarding the applicability of the critical taper model to the distinct
parts of the doubly vergent wedge, namely, the prowedge (forward facing towards the direction of
shortening) or retrowedge (backwards facing) (Buiter et al., 2016).

3. Numerical Implementation

The SPH method solves the conservation of mass and momentum equations (Equations 4 and
5, respectively), which are the governing equations of the purely mechanical initial boundary value
problem over domain €2 and time #:

p+pV-v=0 VxinQXt (@)

V.-o+b=pv VxinQxt ®))

where p is the material time derivative of the density field, v is the material time derivative of the
velocity field, b is a body force vector, and o is the Cauchy stress tensor.

In the SPH method, the continuous problem domain is discretized into a series of particles
which possess continuum level properties such as mass, density, velocity, etc. The value of each
material property, denoted f(x), is found for a particular particle using the following convolution
integral over the domain Q:

(f(x) = /f(X')W(x —x', hydx". (6)
Q

Here, W is the kernel (or smoothing function), which serves as a weighting function, and A is
the smoothing length, which controls the size of the integration domain €. The smoothing length
serves as a numerical characteristic length scale leading to non-local properties in SPH. Ensuring
that the smoothing length is maintained fixed as the discretization refinement changes, removes
any discretization dependance of the solution, which is a significant advantage of the SPH method,
and renders non-local constitutive models which might otherwise be employed to regularize the
solution, redundant (Vignjevic et al., 2014).

The continuous integral for the material property f(x) for a particle i at position x can be
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approximated by the summation
N o
(FO) ~ ) =L f)W (x = x;. h) (7)
Jj=1 Pj
over all particles j in the support domain of i. Likewise, d f(x)/dx can be approximated by

Nom, OW (x —x;,h
<0f(x)>i ~ Z %f(xj) lM] ) (8)
J i

ox - o0x
j=1

Using the approximations of generic material properties f(x) and of their derivatives d f(x)/dx,
the governing equations (Equations 4 and 5) can be deconstructed and similarly approximated.

In our SPH formulation, the geomaterial is modeled as an elastic-perfectly plastic material
with a non-associative flow rule on the Drucker-Prager yield criterion. In this model, the material
deforms elastically until its state of stress satisfies the yield criterion, and henceforth the material
deforms plastically. To determine the appropriate deformation regime for the elastoplastic material,
the Drucker-Prager criterion is introduced, and is given by

where J, = IIslI? /2 is the second invariant of the deviatoric stress tensor, s, and I, = tr[o] is

the first invariant of the Cauchy stress tensor. The parameters a,, and k, are the Drucker-Prager
parameters, which can be related back to the Mohr-Coulomb parameters, namely, the angle of
internal friction ¢ and the cohesion ¢ of the material, respectively. For expressions of a and k, as
functions of the Mohr-Coulomb parameters, see Borja (2013).

In sandbox-style experiments, walls or solid boundaries usually delimit the analogue or compu-
tational particles and multiple approaches exist for handling these types of boundary conditions in
SPH (Liu and Liu, 2003; Violeau, 2012; Favero Neto, 2020). In our SPH code, the dynamic bound-
ary condition formulation of Adami et al. (2012) is used. The solid boundaries are discretized into
layers of so-called boundary particles, which are fixed or move at a prescribed velocity, and help
avoid penetration of the boundaries by the domain particles. However, the formulation of Adami
et al. (2012) is not a perfect Coulomb boundary condition, and we are also not able to control the
effective friction angle at the boundary interface ¢,. Another limitation of these boundary condi-
tions specific to sandbox experiments, is that it is not possible to prevent slippage from occurring
along the boundary-sand interface, which is generally not desired along the backstop. For these
reasons, and given the importance of the basal friction angle along the décollement in orogenic
wedges and critical taper theory, it is important to determine the effective basal friction angle in
our simulations.

For this purpose, we performed a series of numerical experiments of infinite slopes where the
solid boundary at the bottom of the slope is modeled using Adami et al. (2012)’s formulation and
periodic boundary conditions are used in the x-direction (the slope plane). Two slope models with
inclinations @ = 30° and 60° were created, and the Mohr-Coulomb internal friction angle parameter
¢ was varied from ¢ = 20° to 50° for each slope inclination. In all of our simulations in this paper,
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a very small rate of loading (and strain) is used, so we have quasi-static conditions (see Section 4).
Hence, the static basal friction angle ¢, is determined at each value of ¢ in the two slope models.

To find the static basal friction angle, the average state of stress ¢ in the layers adjacent to the
bottom boundary was determined, and the Coulomb friction angle was calculated as

¢, = arctan (%) (10)

where N and T are, respectively, the normal and shear components of traction on the boundary
surface, given as

N=0c: (n®n) (11)
T=06: (n®n,). (12)

In the previous equations, n and n, are the unit normal and unit tangential vectors to the boundary
surface, respectively. Using linear regressions of the measured ¢, with respect to ¢ in the a = 30°
and 60° infinite slopes, a relation between the static basal friction and the internal angle of friction

was determined to be:
¢, = 0.79¢. (13)

Figure 1 shows the variation of the basal friction angle versus the internal friction angle of the
material simulated, as well as the computed linear regressions used to find Equation 13. We use
Equation 13 to calculate the expected basal friction ¢, given a particular ¢, which we assign to the
soil or wedge particles in our subsequent simulations.

45
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Figure 1: Variation of basal friction angle with internal friction angle for Adami et al. (2012)’s boundary
formulation. Here, « is the inclination of the infinite slope. Best fit lines were selected to pass through
the origin.

The workflow of GEOSPH, is as follows: The domain of interest is discretized into SPH particles,
surrounded by boundary particles, and a list of nearest neighbor particles in the support domain
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of each particle is created using a linked list based sorting algorithm. Next, the SPH particles are
relaxed under gravity making use of a damping term such that a geostatic state of stress is achieved,
and the particles reach their equilibrium positions. GEOSPH is a displacement driven code, so a
prescribed velocity is applied to the boundary particles. Alternatively, the boundaries can be fixed.
From the particle velocities, the velocity gradients and then the deformation rate tensors for each
particle are found. A constitutive update is subsequently performed, and the stresses are integrated
at each particle using an implicit return mapping algorithm for the Drucker-Prager model described
in Borja (2013), which is modified to preserve objectivity in the presence of large deformations by
way of the Jaumann stress rate. The integration of the stresses at each particle makes SPH a fully
collocational method, in contrast to FEM for example, where the constitutive update is performed
at the Gauss points while the displacement field is determined at the nodes. With knowledge of
the stresses, the discretized version of the conservation of momentum equation is now solved, and
from it, the particle velocities and displacements are computed via a variation of the forward Euler
scheme to then march the simulation forward in time. More details on the exact equations solved
and the SPH discretization process can be found in our previous paper (del Castillo et al., 2021).

4. Benchmarking

Both analogue and numerical sandbox-style modeling has historically suffered from low re-
producibility and difficulty in comparing different modeling results due to variability in modeling
materials, numerical methods, or constitutive relations, as well as due to the natural heterogeneity
of analogue modeling materials. The works by Buiter et al. (2006) and Buiter et al. (2016) created
useful benchmark tests for both shortening and extensional experiments, standardizing the simu-
lation dimensions, material parameters, boundary conditions, etc., while the companion papers of
Schreurs et al. (2006) and Schreurs et al. (2016) have sought to accomplish the same with analogue
experiments. In Buiter et al. (2006) and Buiter et al. (2016), various different numerical codes
perform the same benchmarking experiments and are evaluated against each other. Some of the
codes mentioned in Buiter et al. (2006) include (to name a few): Microfem (Fullsack, 1995) an
ALE FEM code solving the Stokes equations for incompressible flows; LAPEX-2D (Babeyko et al.,
2002) a Lagrangian finite difference code; PFC2D (Itasca, 1999) a DEM code; I2ELVIS (Gerya
and Yuen, 2007) a finite difference staggered grid marker-in-cell code solving the Stokes equations
with visco-elastoplastic or viscoplastic constitutive models. Moreover, in Buiter et al. (2016) the
following numerical codes were evaluated: Eflen a Lagrangian FEM code solving the conserva-
tion of momentum equation (Rockfield, 2017); Gale an FEM-particle-in-cell code also solving the
Stokes equations; Sdvig an FEM code solving the Stokes equations; I3VIS the successor code and
similar to I2ELVIS; and in both Buiter et al. (2006) and Buiter et al. (2016), Sopale, an ALE FEM
code that solves the conservation of momentum equation. With the exception of Ef 1en, which uses
the SR3 elastoplastic constitutive model based on critical state soil mechanics, the other codes use
Mohr-Coulomb to capture plastic behavior.

We perform three different benchmarking tests in this study. The stable wedge experiment from
Buiter et al. (2016) (Section 4.1), the shortening experiment from Buiter et al. (2006) (Section 4.2),
and the S-point experiment from Buiter et al. (2016) (Section 4.3). The setups for these benchmark-
ing experiments are visualized in Figure 2 along with their respective dimensions. We qualitatively
compare the structural styles from our results against those of the aforementioned codes in both
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papers as well as against reported analogue experiments from Schreurs et al. (2006) and Schreurs
et al. (2016). Additionally, we make quantitative comparisons in terms of topographic slopes and
the location and orientation of thrusts that form in the various wedges in the aforementioned works.

Quartz sand is the principal material component of the sandboxes, which we simulate as an
elastoplastic material with a density of p = 1560 kg/m?, a cohesion of ¢ = 10 Pa, an angle of
internal friction of ¢ = 32°, an angle of dilation of y = 0°, a Young’s Modulus of E = 5,000 kPa,
and a Poisson’s ratio of v = 0.3. In the shortening experiment, a layer of weak glassy microbeads
is used. We assign the microbeads the same parameters as the quartz sand, except with a decreased
internal friction angle of ¢ = 21°. As described in Section 3, the boundaries have a static friction
of ¢, = 0.79¢, which corresponds to ¢, = 25.3° when quartz sand is in contact with the boundary
particles. The chosen values of the material properties are based on those used in Buiter et al.
(2006) and Buiter et al. (2016) to facilitate comparison of our results, and are summarized in Table 1
alongside some other useful simulation parameters. We note that although the density of the quartz
sand is initially assumed to be constant throughout the sandbox, once the stresses are initialized
in the simulations, the sand is compacted and the density will be nonuniform, increasing with
depth. In this way, the effects of sand packing are considered. The small but non-zero cohesion
value (¢ = 10 Pa) for the quartz sand in our simulations is based on the measured cohesion of quartz
sands used in the analogue experiments of Schreurs et al. (2006). Sand and other geologic materials
dilate inelastically during failure, but the degree of dilatancy of the material depends on the level of
deformation. Particularly, in areas of very high deformation, the angle of dilation rapidly decreases
from its initial value to zero (Roscoe and Burland, 1968). Because the sandbox domain in our
simulations is subjected to large deformations, the adopted angle of dilation of y = 0° is reasonably
justified since in the Drucker-Prager model the dilatancy angle is assumed constant, and a constant
non-zero value will lead to continuous expansion of the domain. While the chosen cohesion value
is accurate for quartz sands, we may expect the cohesion to be higher in other analogue materials
such as clays which more accurately model certain orogens in the field (Graveleau et al., 2012).
A parametric study showing the effect of varying dilatancy angle and cohesion is included in the
Appendix for the accretionary wedge shortening benchmark experiment.

4.1. Preliminary Stable Wedge Experiment

The stable wedge experiment proposed by Buiter et al. (2016) consists of pushing a two-
dimensional plane-strain wedge of sediment particles with initial surface slope a; = 20° across
a flat surface (f = 0°) that is stable according to critical taper theory. Note the previously dis-
cussed material properties chosen for the particles (tabulated in Table 1) were selected to represent
sand typically used in sandbox experiments. The wedge is pushed for a distance of 4.0 cm by a
mobile wall of boundary particles with constant velocity V. Because the wedge is mechanically
stable, it should maintain a constant taper throughout the push and not experience any internal
deformation (Buiter et al., 2016). To understand the sensitivity of our simulations to the pushing
velocity, we plot the pressure and deformation rate fields of the wedge after the 4.0 cm horizontal
displacement for different pushing velocities V' in Figure 3. In the same figure, we also plot the
colored material layers at the end of the 4.0 cm displacement. Starting off as straight parallel lay-
ers, the colored layer or material markers are commonly used in sandbox-style experiments to help
visualize deformation patterns and can be thought of as different colored strata, as they carry no
differing material properties and thus have no mechanical significance. It has been noted that the
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( a) Stable Wedge Experiment
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Figure 2: Setups of benchmarking tests. (a) Stable wedge, (b) Shortening experiment, and (c) S-point

experiment.

dynamic nature of SPH creates a strong rate-dependency in the solutions with respect to the loading
or pushing velocity applied to boundaries. Wang et al. (2019) found that for strain rates less than 0.1
s™!, quasi-static solutions can be achieved, greatly reducing the effect of strain rate (or the pushing
velocity). The pushing velocities V' selected in the series of tests performed (V' = 0.2,0.1,0.01,

and 0.001 cm/s), all have corresponding equivalent strain rates less than 0.1 s™".

Table 1

1

Material parameters used throughout the GEOSPH simulations unless otherwise specified.

Parameter Value
Density, p [kg/m’] 1,560
Particle mass, m [kg] 0.0024375
Time step, At [s] 3.3x107°
Initial inter-particle distance, A [cm] 0.125
Poisson’s Ratio, v 0.3
Young's Modulus, E [kPa] 5,000
Artificial viscosity parameters, a, and f, 1.0
Cohesion, ¢ [Pa] 10

Angle of dilation of sand, y [°] 0

Angle of internal friction of sand, ¢ [°] 32

Angle of internal friction of microbeads, ¢ [°] | 21

Angle of internal friction of base, ¢, [°] 25.3
Pushing velocity, V' [cm/s] 0.01

In addition, we also evaluate the performance of the simulations at different pushing rates quan-
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titatively using the measures employed by Buiter et al. (2016). For the plane-strain wedge of domain
Q, the internal rate of dissipation of energy W, is defined as

mzl/(a: d)dQ (14)
2 o

where d = (l + lT) /2 is the rate of deformation tensor and I = dv/odx is the velocity gradient
tensor. The gravitational rate of work Wg is calculated with

W, =- / (pg,v)dA (15)
A

where A is the area of the wedge, g, and v are the components of g and velocity in the y direction,
respectively. Lastly, the root-mean-square velocity v,,,, is found using

-1
Upps = \/A /A(u2 + 0v?)dA (16)

where u is the magnitude of velocity in the x direction. Because there should be no internal de-
formation in the wedge, the deformation rate d equals zero, and so the rate of change of internal
energy is W, = 0. Furthermore, we would also expect the gravitational rate of work to equal zero,
VVg = 0, since there should be no vertical motion given that the surface slope is constant, and
the root-mean-square velocity v,,,. should be equal to the applied velocity V. These quantities are
displayed throughout the duration of the simulations for varying V' in Figure 4.

V =0.001 cm/s V =0.01 em/s V =0.1 cm/s V=02cm/s

R iy Py ity
s R Ty ey
i AN T, S

1000 _

500 %

— - R
xlur“
0.5 %

0

Figure 3: From the stable wedge experiment, material markers (first row), pressure (second row) and
shear deformation rate fields (third row) are plotted for varying pushing velocities V' after 4.0 cm of
shortening. The material markers are purely for the purpose of visualizing deformation within the wedge
and the different colors do not represent any material or mechanical distinctions.

From Figures 3 and 4, it is evident that the different measured fields and quantities exhibit a
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rate dependency with respect to the pushing velocity V. Overall, as V' decreases, the magnitudes
of the shear deformation rate d,, and the pressure field p = tr[c]/3 decrease, as well as the amount
of deformation qualitatively visualized by the thinned, bent, and rotated final configurations of the
colored layers in the wedge as seen in Figure 3. Furthermore, the internal rate of dissipation of en-
ergy W, and the gravitational rate of work W'g decrease with slower V', and approach the expected
value of zero. Lastly, the root-mean-squared velocity v,,,, most closely matches the pushing veloc-
ity V as is expected, for slower V. Likewise, in the case of the topographic or surface slope angle
a, the ultimate « obtained at the end of the 4 cm push is closest to the expected initial a; = 20°
for slower pushing rates V. For all subsequent simulations in this paper, a pushing velocity of
V' = 0.01 cm/s is considered satisfactory and used going forward, as it balances computational
efficiency and accuracy of the results.
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5 5 =
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g 4 1 % /1 —TL‘V’T"/T-'-\ RIS
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o g N

B 9 1 5.

) +
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B | i en e et B

g Okt b 6
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0 0.5 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5
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035 ——V=00lcm/s || — =V =0.01cm/s
3 —-—=V=01cm/s Uy —-=-V=01cm/s
=2 —V=02cm/s —V=02cm/s

Root-mean-square velocity, v,,

0.05

Topographic slope, « [°]

L5 2
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Figure 4: The internal rate of dissipation of energy W, (a), the gravitational rate of work I/Vg (b) the
root-mean-square velocity v,,,, (c), and the topographic or surface slope angle a (d) are plotted with
respect to shortening (distance the wedge is pushed) for various pushing velocities V.
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4.2. Accretionary Wedge Shortening Experiment

The accretionary wedge shortening benchmark experiment from Buiter et al. (2006) is a classic
setup for simulating the formation of a thrust or accretionary wedge (for example see also the works
of Davis et al. (1983); Burbidge and Braun (2001); Morgan (2015)), where a 35 cm long by 3.5 cm
deep layer of quartz sand (¢ = 32°) surrounded by walls is compressed or shortened by moving a
mobile wall at a constant velocity V' (see Figure 2 (b)). Like in the stable wedge experiment we take
V = 0.01 cm/s, and the walls are all discretized as boundary particles. In total, approximately 8700
particles are used to discretize the sandbox system. Along the mobile wall, there is a pre-existing
formed sand wedge which is 10 cm long and has a slope of 10°, and 0.5 cm above the base there is a
0.5 cm deep layer of microbeads. The microbeads have an internal friction angle of ¢ = 21.0°, but
otherwise have the same properties as the quartz sand. The inclusion of a weak material layer in
the sand pack in the form of microbeads has the practical effect of serving as an agent for carrying
the deformation forward and promoting the propagation of thrusts. The weak layer is intended to
represent an intermediate detachment layer above the basal décollements typically consisting of
weaker evaporites or shales as observed in a number of locations worldwide such as the Zagros
of Iran (Nilfouroushan et al., 2012), the Northern Apennines of Italy (Massoli et al., 2006), or the
Canadian Rocky Mountains (Stockmal et al., 2007).

In Figure 5, snapshots from the shortening experiments are shown at different amounts of hor-
izontal contraction. The maximum shortening achieved is 14.0 cm, in line with the procedure of
Buiter et al. (2006). Figure 5 (a), shows colored material layers to highlight the deformation pat-
terns occurring in the wedge, particularly forward thrusting. As seen in Figure 5 (b), the weak mi-
crobead detachment initially sustains higher amounts of plastic strain than the neighboring quartz
sand, and it is here where strain localization occurs first. Beginning by 1.0 cm and ending by 6.0 cm
shortening, the first thrust propagates from the microbead detachment rather than from the basal
décollement, close to the mobile wall at the bottom right corner of the model, connecting with a
cluster of strain localization at the top surface near the kink in topographic slope. As shortening
continues, more forward thrusts propagate from the microbead detachment layer, with an occa-
sional backthrust. The majority of the backthrusts also experience far lower accumulated plastic
strains than do the forward thrusts. An exception to this rule is a backthrust forming at the top right
of the model which propagates downwards to the microbead detachment. This backthrust may be
caused in part by stress concentrations resulting from the boundary conditions along the backstop
native to SPH, which do not prevent frictional slip along this interface. Similar backthrusts along
the backstop were observed in certain simulations in Buiter et al. (2006) which also did not prevent
friction along the backstop, or in some of the analogue experiments of Schreurs et al. (2006), as it
is generally very difficult to avoid friction along the backstop in analogue setups (Graveleau et al.,
2012). Overall, qualitatively, the wedges produced by GEOSPH closely resemble those reported in
Buiter et al. (2006), particularly using the LAPEX-2D, Sopale, and I2ELVIS codes.

Because of the velocity discontinuity along the mobile wall at the bottom right corner, high
pressure p = tr[o]/3 is achieved (see Figure 6 (a)). On the other hand, in panel (b), the deviatoric
(or von Mises) stress g given by g = \/E is also highest in the bottom right corner and in the region
surrounding the weak microbead detachment, but is relatively lower in the detachment itself. The
vertical component of the velocity field v, is highest above the microbead detachment, and shows
how the sand behaves rigidly sliding upwards along the shear band or thrust fault planes. In panel
(a), superimposed over the pressure field p are vectors indicating the directions of the maximum
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(a) (b)
2.0 cm 2.0 cm
L
6.0 cm 6.0 cm

Figure 5: Snapshots of the shortening experiments. On the left in (a) colored material layers are plotted
for different amounts of shortening, and on the right in (b), contours of the accumulated plastic strain
gP . are plotted. The accumulated plastic strain is calculated by time integrating the norm of the plastic
deformation rate tensor ||d?||.

principal stress o,. In the sand preceding the wedge toe, the direction of o, is horizontal, whereas
within the wedge o, points in a direction roughly parallel to the inclined surface of the wedge. The
average orientation of ¢, within the wedge with respect to the base closely matches the prediction
given by ¥, from critical taper theory. There is considerable heterogeneity in the direction of o,
within the wedge however, and the direction of o, is deflected across the shear bands, where they
undergo a mild rotation.

We also compare our SPH results against those of the Buiter et al. (2006) codes in a quantitative
way by looking at the variation of the topographic slope a throughout the duration of the simulation,
as well as the location and orientation of the thrusts or shear bands. In Figure 7, we plot a obtained
from the SPH simulations up to the maximum 14.0 cm shortening against the topographic slopes of
the codes from Buiter et al. (2006) and from the analogue sandbox experiments from the companion
paper of Buiter et al. (2006), Schreurs et al. (2006). We also plot the expected maximum and
minimum topographic slopes predicted by critical taper theory as horizontal dashed lines, for the
basal frictions prescribed in the different codes and experiments. Note those in Buiter et al. (2006)
and Schreurs et al. (2006) had a ¢, = 19.0°, while that in GEOSPH was determined to be ¢, = 25.3°.
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Figure 6: In (a) the vectors at every 3 particles indicate the direction of &, plotted superimposed over
the pressure p field. In (b) the von Mises stress g field and in (c) v, the vertical component of velocity
are plotted, respectively. Plots are shown after 10.0 cm shortening.
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Alongside the Sopale, I2ELVIS, and LAPEX-2D results, GEOSPH produces topographic angles
a close to the bottom range of the angles produced by the analogue experiments. Furthermore, by
14.0 cm of shortening, the topographic slope of the wedge closely approaches the minimum critical
taper value.

In Figure 8, the dip angles of the thrusts with respect to the base are plotted in (a) comparing the
results of our SPH simulations against the numerical results of Buiter et al. (2006) and the analogue
experiments of Schreurs et al. (2006). In dashed lines we display the theoretical predictions for the
orientations of the thrusts with respect to the maximum principal stress ¢, direction given by the
Roscoe angle ®, = 45° —y /2 (Roscoe, 1970), Arthur angle ® , = 45° — (¢ + w)/4 (Arthur et al.,
1977), and Coulomb angle ® = 45° — ¢/2 (Coulomb, 1776) for shortening experiments (passive
loading condition). However, since these theoretical predictions are with respect to ¢, and we
measure the fault dip with respect to the horizontal, while from Figure 6 (a), o, is not parallel to
the horizontal within the wedge, we must correct the predictions for the angles by the factor of ¥,
(Equation 2) from critical taper theory, which is the analytical prediction for the orientation of o,
with respect to the base. For the material parameters used in the simulations, ¥, = 14.23°. Note
that the first three thrusts form within the wedge itself so ® ,, ©, and O for the first three thrusts
are lower than for the next four thrusts by ¥,. The dip angles of the thrusts from our simulations
agree well with the benchmarks, and overall are closest to the predictions from the Arthur angle.
This result is consistent with the orientations of shear bands produced in a simpler problem setup,
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Figure 7: Variation of the topographic slope with shortening distance for the benchmarking accretionary
wedge shortening experiment. The results of GEOSPH are compared against those from the numerical
simulations of Buiter et al. (2006) and the analogue experiments of Schreurs et al. (2006).

that of a backfill behind a retaining wall using our same SPH formulation and constitutive model
(del Castillo et al., 2021).

In panel (b) of Figure 8, the amount of shortening at which each thrust propagates in the SPH
simulations is again compared against the values of Buiter et al. (2006) and Schreurs et al. (2006).
Initially, the amount of shortening required for each thrust remains constant up to thrust 4, but
subsequently after, this amount of shortening decreases, and the thrust spacing is less for the last
two thrusts. These results agree well with the benchmarking experiments.

As a final check of our SPH simulation results we further evaluate our simulated topographic
slopes (tapers) against those predicted by the critical taper solutions at different décollement dips
p in Figure 9. For this purpose, shortening simulations with f = -5,5, 10, 15, 20° are performed
in addition to f = 0°, and the varying décollement dips are achieved by tilting the direction of
the gravity vector accordingly. Note for these simulations the layer of microbeads is removed and
the entire wedge is made of quartz sand, to more accurately compare against the critical taper
solutions which assume a constant internal angle of friction ¢. In addition to these simulations,
which have a basal friction angle of 25.3°, we experiment with a method to change the effective
basal friction by adding a weak material layer of 0.5 cm height with prescribed internal friction
¢ = 10°, similar to the microbead layer, but this time directly facing the bottom basal boundary.
This procedure, similar to that employed by Simpson (201 1), shifts the décollement upwards to the
interface between the microbead and quartz sand layers providing an effective basal friction angle
of ¢, = 10.0° for the entire wedge. To ensure that simulated wedges with this setup take the tapers
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Figure 8: The dip angles of thrusts or shear bands ordered as they emerge are shown in panel (a), while
in (b) the amount of shortening required for each particular thrust to fully propagate is shown.

(or topographic slopes) predicted by critical taper theory given ¢, = 10.0°, like in the ¢, = 25.3°
case, we similarly perform shortening experiments for varying décollement dips.

The tapers measured from the SPH simulations of accretionary wedges closely follow the crit-
ical taper analytical solutions for both values of the basal friction. This result indicates that adding
the weak layer with ¢ = 10.0° along the base succeeds in designating an effective basal friction
angle of ¢, = 10.0° for the wedge.

4.3. S-point Experiment

The problem setup of the S-point experiment based on that of Buiter et al. (2016) consists of a
35.0 cm long by 3.5 cm high quartz sand layer that is pushed by a mobile wall attached to a thin
basal film running along the length of the base for a total length of 12.0 cm all of which is pushed
at a velocity V. The complex of basal film and mobile wall is denoted the mobile backstop or
backstop, and the thin basal film is modeled as a continuation of the boundary walls and in the

del Castillo et al.: Preprint submitted to Elsevier Page 17 of 41



A Continuum Meshfree Method for Sandbox-style Numerical Modeling

T T T
. ¢ =32°, ¢y, = 25.3° or 10.0°
30 -

20 +

supercritical unstable

° N
@ AN
2, 10+ N |
2 N
@ N
L oL ¢ \’ stable region ~ N |
< N ° N
g z N
g e N

h N
P10+ K4 ,
o subcritical unstable region N
o N
= N

-20 —— CTW solution, ¢, = 25.3°

— — CTW solution, ¢, = 10.0°
e GEOSPH, ¢, = 25.3°

-30 )
¢ GEOSPH, ¢, = 10.0°

-20 0 20 40 60 80 100
Décollement dip 3[°]

Figure 9: Measured tapers from accretionary wedge shortening simulations with varying g using ¢, =
25.3° or ¢, = 10.0° after 14.0 cm shortening compared against the critical taper solutions for each
respective basal friction value.

SPH discretization is 2 boundary particles in height. The tip of the basal film thus represents a
moving velocity discontinuity denoted as the S-point. Differing from the experimental setup of
Buiter et al. (2016) where the backstop is rigid and a basal film drags the sand to the S-point, here
the backstop indents the sand layers, like in the setup of Wang and Davis (1996). Other studies
have indicated that the direction of sand movement does not affect the overall system kinematics
or mechanics and that both problem setups are equivalent (Graveleau et al., 2012). The S-point is
intended to model the velocity discontinuity that forms during subduction at a convergent margin,
although the actual subduction process is omitted in the simplified model, and a doubly vergent
wedge forms as the sand layers are shortened (Beaumont et al., 1996).

In Figure 10, colored material layers in column (a) and the accumulated plastic strain €7 = in
(b) are displayed at various amounts of shortening, until the final simulation shortening of 10.0
cm is reached, according to Buiter et al. (2016). Initial strain localization occurs early on after
1.0 cm shortening at the S-point parallel to the base, and by 2.0 cm, diffuse conjugate shear bands
propagate from the S-point to the surface, and refine as shortening progresses. The forward vergent
(pointing in the direction of shortening) band forms first and is quickly followed by the backward
vergent one. By 2.0 cm shortening, significant surface uplift between the bands can be observed,
and this continued uplift forms an initial pop-up structure. As more forward vergent bands form
they are pushed upwards and by 10.0 cm a distinct doubly vergent wedge has formed. Comparing
our results qualitatively with the benchmarks of Buiter et al. (2016), initial localization is observed
roughly after the same amount of shortening and only one main backward vergent band or thrust
forms. After 10.0 cm shortening, however, the final configuration of the doubly vergent wedge
resembles those of the sandbox experiments from the companion paper Schreurs et al. (2016) more
than those from various of the numerical codes in Buiter et al. (2016) some of which produce
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multiple pop up structures in front of the main doubly vergent wedge rather than just the doubly
vergent wedge itself. However, like some of the numerical codes, the GEOSPH-produced wedge
lacks the completely flat surface of the axial zone seen in many of the sandbox experiments.

4.0 cm

6.0 cm

acc

Figure 10: Snapshots of the S-point experiment at different amounts of shortening. (a) deformation
patterns, and (b) accumulated plastic strain.

The anatomy of a doubly vergent wedge can be divided into three primary regions, the
prowedge, i.e., the doubly vergent wedge toe pointing in the direction of shortening, the retrowedge,
the toe of the doubly vergent wedge pointing in the direction opposite that of shortening, and a rel-
atively flat area of the top surface between prowedge and retrowedge known as the axial zone. Like
in the accretionary wedge shortening benchmark experiment, the direction of o, is parallel to the
surface or horizontal in the sand in front of the S-point and doubly vergent wedge, while in the
prowedge it is mostly inclined with respect to the top surface as is the case in the retrowedge, and
the directions are altered and rotated across shear bands (see Figure 11 (a)). However, in the axial
zone, o, points vertically downwards, especially close to the surface. The significant downwards
vertical o, direction is compounded with great upwards vertical motion as seen by the plot of v in
panel (c) and results in horizontal extension along the axial zone. The von Mises stress g in panel
(c) once again shows that it is highest in the vicinity of initial shear band nucleation close to the
S-point.

We also compare the topographic slopes of the prowedge a, from our simulations against those
of various codes used in Buiter et al. (2016) and the analogue experiments of Schreurs et al. (2016).
We note that both analogue and numerical benchmarks used a lower basal friction of ¢, = 14.0°,
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Figure 11: For the S-point experiment, in (a) the vectors at every 3 particles indicate the direction of
o, plotted superimposed over the pressure p field. In (b) the von Mises stress ¢ field and in (c) v, the
vertical component of velocity are plotted, respectively. Plots are shown after 10.0 cm shortening.

and so we compare the results against the critical taper solutions for both corresponding basal
frictions. The GEOSPH a, values closely follow those of the analogue experiments and along with
all the other experimental results, numerical or analogue, the prowedge slopes do not approach the
critical taper solutions after 10.0 cm shortening (see Figure 12). It remains unclear, however, if the
prowedge topographic angle or the retrowedge topographic angle should be at the values prescribed
by critical taper theory, the angle of repose, or some value lower than both of these. Because of the
significant vertical uplift of newly formed thrusts or forward vergent shear bands, the presence of
a retrowedge and an axial zone, the radically different directions of the maximum principal stress
o,, and the lack of clarity regarding which surface should be the décollement, application of the
critical taper model to doubly vergent orogens is a subject of debate (Buiter et al., 2016). In Section
5.1, a model of double the length of the original S-point experiment (70.0 cm long) is considered
to see if after additional shortening, either the prowedge topographic angle a, or the retrowedge
topographic angle @, approach the critical taper predictions or the angle of repose for the material
parameters used in the simulation.

In Figure 13, the dip angles of the forward vergent shear bands or forward thrusts are plotted
in the left panel for each one that emerges, and the backward vergent bands or backward thrusts
are shown in the right panel. The dips are measured at the top of the band close to the surface,
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Figure 12: Variation of the prowedge topographic slope with shortening distance for the benchmarking

S-point experiment. The results of GEOSPH are compared against those from the numerical simulations
of Buiter et al. (2016) and the analogue experiments of Schreurs et al. (2016).

and immediately after the thrusts or bands form and propagate to the surface, to avoid the back
rotation and uplifting of the bands as shortening proceeds. The GEOSPH values generally agree
well with those of the numerical codes from Buiter et al. (2016) in both cases, and for the forward
thrusts show that the first thrusts take the Arthur orientation ® , and gradually become shallower,
approaching a Coulomb orientation ®. over continued shortening.

5. Discussion

5.1. Double Length S-point Experiment

As mentioned in Section 4.3, explaining the slopes of the prowedge and retrowedge of doubly
vergent wedges using critical taper theory faces considerable theoretical hurdles. Nevertheless, in
the sandbox experiments of Wang and Davis (1996), the prowedge topographic slope converged to
the minimum critical taper topographic slope, while the retrowedge slope achieved a value below
the maximum critical taper value, and the angle of repose. A similar result was observed in the
FEM simulations of Simpson (2011). Willett et al. (1993) and Willett (1999) observed that a, was
oriented at the minimum critical taper, while the retrowedge side ultimately obtained a kinked slope
with the top half at the maximum taper angle, and the second part towards the toe at the minimum
taper. The works of Koons (1990), Bonini et al. (1999), Storti and Salvini (2000), Persson (2001),
Soto et al. (2006), among others, however, noted the deficiencies of the critical taper model in
predicting the topographic slope of the prowedge, and found that the dominant mechanical process
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Figure 13: The dip angles of thrusts or shear bands ordered as they emerge in the S-point experiment.
In the left panel, the forward vergent thrusts are shown, and on the right, the backward vergent thrusts
are displayed.

in retrowedges was not thrusting or gravity spreading but rather shallow mass wasting or slope
failure, with a, at the angle of repose.

To investigate the variation of the slopes a,, and a, beyond 10.0 cm shortening like in Figure 12,
we use an S-point experiment setup with double the length of that of Buiter et al. (2016) to allow
for shortening of up to 30.0 cm without any interference from the rigid wall at the far end of the
model setup (see Figure 14 (a)). We also consider a second model setup with a weak 0.5 cm deep
layer above the base with ¢ = 10°, giving the model a basal friction of ¢, = 10°, to compare the
effect of varying the basal friction (see Figure 14 (b)). In Figure 15, the slopes of a, and a,, for the
original ¢, = 25.3° and the ¢, = 10.0° models are plotted up to 30.0 cm shortening. The analogue
experimental results of Schreurs et al. (2016) are included up to 10.0 cm for reference, as are the
maximum and minimum critical taper values and the angle of repose.

From our results in Figure 15, the prowedge topographical angle a, does not approach the
critical taper values, and instead takes a value close to a, = 19.0° in the ¢, = 25.3° case, and
a, = 7.0° in the ¢, = 10.0° case. The retrowedge slopes a,, approach the angle of repose but
do not ultimately reach its inclination, instead being closer to the maximum critical taper values.
However, there is no evidence of any thrusts or of the distinctive strain localization patterns of
progressive failure and gravity spreading which would be expected if the retrowedge were forming
at the maximum critical taper, and instead, there seems to be considerable amount of debris at
the toe of the retrowedge suggesting the retrowedge slope is an exclusive product of shallow slope
failure. We return to this issue in greater detail at the end of the next subsection.
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Figure 14: In (a) and (b), the colored material layers and .. are displayed for the ¢, = 25.3° and
¢, = 10.0° double length S-point simulations respectively at 30.0 cm shortening.

5.2. Role of Varying Backstop Geometry in Forearc Basins

The doubly vergent wedges emerging from the S-point experimental setup are best suited for
modeling systems forming as a result of continental collision or in active margins when both plates
have the same material properties and there is no region of stronger or more rigid material acting as
an indenter (Beaumont et al., 1996). However, in many active margins, continental crust or plates
experience varying strength and rigid indenters compressing weaker sediment may be present. In
volcanic forearcs, strong volcanic basement rock forming a backstop compresses weaker sediment
located just forward of the backstop, forming a doubly vergent wedge. In the indenter modeling
framework, as noted by Persson (2001), the S-point experimental setup is actually a special case
of an indentation experiment where the indenter and the indented sediment layers have the same
material properties. In fact, we observe that a natural indenter forms in the sand layers before the
S-point velocity discontinuity as the area behind the S-point is relatively undeformed and behaves
rigidly (see Figure 14 (a)).

Byrne et al. (1993) pointed out that from reflection seismic profiles, three clear types of back-
stop indenter geometries could be observed. In the first, denoted Type I (see Figure 16 (a)), the
backstop is inclined pointing in the forward direction, and the toe of the backstop lies along the
décollement plane. With this positioning of the backstop, the backstop scrapes or plows through
the forward lying weak sediment causing it to accrete above the backstop. The type I backstop
is the most commonly observed in nature, found for example in the Lesser Antilles (Byrne et al.,
1993), the Alps indented by the Adriatic plate (Bonini et al., 1999), the Urals (Persson, 2001), and
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Figure 15: The variation of the prowedge and retrowedge topographic angles for the double length
S-point simulations is shown up to 30.0 cm shortening, and compared with the critical taper values.

also produces the most visible and cleanest accretion patterns. For these reasons, studies of type I
backstops have been most prevalent in the literature. The work of Persson (2001) and Bonini et al.
(1999) found that the inclination of the type I backstop caused profound structural differences in the
doubly vergent wedges. For inclinations greater than 45°, the foreshear and retroshear bands did
not propagate from the tip of the indenter, or the S-point, the location of the velocity discontinuity,
and rather propagated from a location they labeled the P-point, located slightly further forward than
the tip of the indenter. Therefore, the area between the S and P-points was considered an effective
indenter, or simply being pushed along by the indenter in the backstop, as if it were a part of it. For
inclinations less than 15°, Persson (2001) and Bonini et al. (1999) found that the S and P-points
matched in location, but that this time an effective indenter formed above the backstop, while for
inclinations between 15° and 45°, the S and P-points matched in location, and no effective indenter
formed, so the retroshear band hugged the backstop indenter.

In the type Il indenter, the indenter is also inclined pointing forwards, but inverted with respect
to the type I indenter, and the toe of the indenter is located significantly above the décollement
leading to underthrusting of weak sediment (and some accretion above too) as the backstop ad-
vances. The type III indenter consists of a taper-shaped wedge geometry, located with its toe at
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an intermediate depth. Examples of type II and type III indenters include the Vancouver Island
convergent margin, and the Peru margin respectively (Byrne et al., 1993).

Byrne et al. (1993) conducted a series of coarse FEM simulations using the von-Mises yield
criterion and determined that doubly vergent wedges should form in all three backstop types, re-
gardless of the significant underthrusting expected in types II and III. However, their analysis did
not realistically recreate the shape of doubly vergent wedges observed in seismic profiles, balanced
cross section reconstructions, or in sandbox experiments. Furthermore, their simulations could not
accurately predict the paths of strain localization within the wedges. The sandbox experiments of
Bonini et al. (1999) and Persson (2001) suffered from this same limitation, and tracked the forma-
tion of shear bands using offsets in the colored material marker layers of the sand. We recreate
the simulations of Byrne et al. (1993) using inclinations of the backstop indenter from each of the
three regimes identified by Persson (2001) and Bonini et al. (1999) (15°, 30°, and 75°) and with
the advantage of the SPH method which easily provides not only colored material markers as do
sandbox experiments, but also detailed strain and strain rate fields.

In Figures 16 and 17, the results with different indenter geometries for simulations with
¢, = 25.3° and ¢, = 10.0° are plotted respectively after 30.0 cm shortening. Here we show
the colored material layers in panel (a) and the accumulated plastic strain €7~ in panel (b). In Fig-
ure 18 we show snapshots in different moments in time of the volumetric deformation rate d,,, and
the vertical component of the velocity v. Shear bands are intermittent and undergo an active phase
when initially forming where they exhibit high strain rates, so we plot the volumetric deformation
rate in panel (a) to show the instantaneous active shear banding as opposed to the accumulated
plastic strain which shows the historical deformation of the material. In panel (b) we plot the ver-
tical component of the velocity field v, which together with d,, helps us to determine the shape
of the effective indenters in our simulations. We determine the effective indenters to be areas near
the backstop indenter with close to zero v behaving rigidly, and that are bounded by continuously
active shear banding. We display the effective indenters (E.I.) in Figure 18 as the area delimited
by black circular dots.

Overall, doubly vergent wedges form in all cases of backstop geometry types and inclinations,
like in the work of Byrne et al. (1993). Furthermore, in the type II and to a lesser extent in the
type III backstop types, also like in the simulations of Byrne et al. (1993), the material being
underthrusted beneath the backstop undergoes high amounts of deformation as quantified by the
accumulated plastic strain.

The doubly vergent wedges forming in the original S-point experiment most closely resem-
ble those from the type I backstop at 30° inclination experiment. The S-point experiment can be
thought of as generating a roughly 30° inclined natural indenter, as the material behind the ret-
roshear band is mostly undeformed, and acts rigidly. A notable difference between the S-point
experiment and the rigid 30° type I backstop is that the natural indenter of the former is subject to
deformation and shear banding, while in that of the later, it is made of boundary particles, and thus
no shear banding or faulting can occur.

Additionally, like in the results of Bonini et al. (1999) and Persson (2001), three main regimes
are observed for the type I backstop, that of inclinations between 0° and 30°, between 30° and 45°,
and lastly for inclinations between 45° and 90°. In the 15° and 30° simulations for type I, the S and
P-points match. However, we note that in the 30° case a very thin effective indenter forms along the
inclined plane of the rigid indenter, which was not detected in the sandbox experiments of Bonini
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Figure 16: For the ¢, = 25.3° simulations, colored material layers are shown in the left column, and
contours of the accumulated plastic strain are displayed in the right column after 30.0 cm shortening for
the three different backstop types and inclinations of the indenter.

et al. (1999) and Persson (2001) (see Figure 18 panel a).

We also observe that the structural styles of the shear bands and material layers of the type 11
and type III experiments for the ¢, = 25.3° case (Figure 16) highly resemble that of the 75° type
I case, with significant vertical motion of the sand causing distortion of the uplifted shear bands,
extensional faulting in the axial zone of the wedge, and steep slopes on the pro side, occasionally
close to the angle of repose along the top half. In all three inclinations of the type II backstop,
(only 15° is shown in Figure 18 (a) for brevity) the effective indenter takes the inclination of 70°,
which is close to the inclination of the effective indenter in the 75° inclination type I setup, which
is 62°. This steep effective indenter in the type II experiments, regardless of the inclination of the
actual backstop indenter itself, leads to the large vertical uplift of the sand and a doubly vergent
wedge resembling that of the type I case with an inclination of 75°. In the type III backstops, the
inclination of the effective indenter depends on the inclination of the actual backstop indenter. For a
backstop indenter inclination of 15°, the effective indenter has an inclination of 40°; for a backstop
indenter of 30°, the effective indenter has an inclination of 45°; and for 75°, the effective indenter
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Figure 17: For the ¢, = 10.0° simulations, colored material layers are shown in the left column, and
contours of the accumulated plastic strain are displayed in the right column after 30.0 cm shortening for
the three different backstop types and inclinations of the indenter.

has an inclination of 67°.

While in the type I backstop for inclinations of 15° and 30°, shear bands propagate from the P-
point, which overlaps the S-point, for the 75° inclination case, shear bands initially form at the top
left corner of the indenter and propagate downwards until reaching the base where they then reflect
forming forward vergent bands or thrusts. The reflected forward verging bands are occasionally
active alongside the original backward vergent band forming a conjugate pair, or alternatively,
can also be active alone. We also note that in the simulations with type I backstops of 15° and
30° inclination, the main backshear band is continuously active throughout the duration of the
simulation. A similar occurrence is observed in all type II simulations, where the bands propagate
from the top-most forward corner of the indenter. In the type III backstops, for inclinations of 15°
and 30°, the shear bands form at the mid-height furthest forward point of the indenter, while in the
type III backstop inclined at 75°, the bands propagate from the top-most corner like in the type II
and the 75° inclined type I simulations.

In the simulations with a lower basal friction of ¢, = 10° (see Figure 17), similar effective

del Castillo et al.: Preprint submitted to Elsevier Page 27 of 41



A Continuum Meshfree Method for Sandbox-style Numerical Modeling

(a) Type I backstop EL

T -
15° Indenter

- -—

extensional faulting
\ slope failure

75° Indenter

(b) Type I baﬂkStOP tupduwiiropagation e

15° Indenter

reflected shear band

(C) Type III backstop - -

15° Indenter o
o = 25.3°

pop-up structure

15° Indenter
¢ = 10.0°

v [em/s]

%1072
-0.05 -0.025 0 0025 0.05 05 02 0 025 05

Figure 18: In the left column the volumetric deformation rate d,,; and in the right column the vertical
component of the velocity v are displayed for different indenter inclinations and backstop types to identify
the various effective indenter (abbreviated as E.l.) shapes, and shear band propagation and deformation
patterns. All simulations use ¢, = 25.3° except the last type Ill 15° indenter with ¢, = 10.0°. Note
the panels represent snapshots in time corresponding to different amounts of shortening to highlight the
patterns we seek to illustrate. The first and second rows are shown after 4.25 cm shortening, the third
after 9.25 cm, the fourth after 2.0 cm, the fifth after 4.5 cm, and the sixth after 12.0 cm.

indenter inclinations form, indicating that these are a product of the backstop indenter shape and
inclination, not of any basal properties. However, the weaker base has the effect of carrying defor-
mation forwards, and while the initial shear banding pattern is similar to the ¢, = 25.3° simulations,
conjugate shear bands subsequently form from the weak basal layer resulting in consecutive pop-up
structures (see Figure 18 panel c). From Figure 17 (b), the forward vergent pair accumulates more
plastic strain than the retro vergent over the course of 30.0 cm shortening. The addition of a weaker
basal layer shallows the prowedge topographic slopes ranging from 7.5° to 10.8°, but they are still
greater than the expected minimum critical taper values, while the retrowedge slopes ranging from
28.0° to 30.6° lie between the angle of repose and the maximum critical taper angle (see Table
3). In the ¢, = 25.3° models, the slopes for the prowedge after 30.0 cm shortening vary between

del Castillo et al.: Preprint submitted to Elsevier Page 28 of 41



A Continuum Meshfree Method for Sandbox-style Numerical Modeling

Table 2
Prowedge and retrowedge topographic slopes a, and «, after 30.0 cm indentation for the ¢, = 25.3°
model.

Indenter type a, [°] a, [°]
S-point 18.9 29.5
type I, 15° inclination 20.1 29.6
type |, 30° inclination 22.0 31.4
type |, 75° inclination 28.3 31.9
type I, 15° inclination 26.7 31.5
type Il, 30° inclination 27.0 30.5
type Il, 75° inclination 28.0 31.2
type I, 15° inclination 25.6 30.2
type Il1, 30° inclination 26.0 31.0
type I, 75° inclination 29.0 315
Table 3

Prowedge and retrowedge topographic slopes a, and «, after 30.0 cm indentation for the ¢, = 10.0°
model.

Indenter type a, [°] a, [°]
S-point 6.8 26.8
type |, 15° inclination 7.5 28.0
type I, 30° inclination 8.3 28.0
type |, 75° inclination 8.5 29.0
type Il, 15° inclination 9.0 30.2
type Il, 30° inclination 8.8 29.7
type I, 75° inclination 10.5 30.4
type Ill, 15° inclination 8.2 30.0
type I, 30° inclination 10.0 30.5
type I, 75° inclination 10.8 30.6

20.1° and 29.0° (see Table 2) which is significantly above the minimum taper angle but still below
the maximum taper angle, while the retrowedge slopes vary between 29.6° and 31.9° closer to the
angle of repose of 32°.

The topographic slopes from the prowedges and retrowedges suggest that critical taper theory
does not describe the geometry of doubly vergent wedges particularly well. As seen from our
simulations, forward thrusting is not the only deformation mechanism within the doubly vergent
wedges, as uplift due to the ramp-like indenter, and slope failure along the wedge flanks, also occur
on both retro and pro sides. In the retrowedge, slope failure is observed continuously as seen from
the shallow logarithmic spiral-like failure surfaces, and a zone of debris with very high accumulated
plastic strain resulting from these slope failures gathers above the rigid backstop indenter at the toe
of the retrowedge. Slope failure is also visible in the prowedge of every type II and III indenter
simulation as well as in the type I indenter with an inclination of 75° case, roughly after 10.0 cm
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of shortening whenever the local surface slope near the top of the prowedge approaches the angle
of repose. In the prowedge, forward thrusting actually reduces the topographic angle, because the
thrust sheets (or occasionally pop-up structures), which are uplifted slightly as material accretes,
force the prowedge to grow horizontally, thus having the effect of shallowing the surface slope of
the entire prowedge. In the ¢, = 10.0° simulations where forward thrusting is facilitated by the
weak base, thrusting dominates, and slope failure is seldom seen as the prowedge slope is never
close to the angle of repose at any point. These observations suggest that forward thrusting and
vertical uplift as a result of the indentation process act as opposing forces, in turn reducing and
increasing the prowedge slope angle a, respectively, with shallow slope failure manifesting itself
whenever vertical uplifting presides over forward thrusting to ensure the slope never exceeds the
angle of repose.

In traditional accretionary or thrust wedges, forward thrusting maintains the wedge taper at the
minimum critical taper. In a doubly vergent wedge, however, the presence of vertical uplift due to
the indenter leads to prowedge tapers that are considerably greater than the minimum critical taper,
as the effect of forward thrusting is generally insufficient to produce prowedge tapers predicted by
critical taper theory. At the same time, in the retrowedge, we also do not observe strain localization
patterns characteristic of progressive failure and gravity spreading, which are the mechanisms by
which a wedge usually achieves the maximum critical taper (Dahlen, 1984; Mourgues et al., 2014),
whereas we do see continuous shallow slope failure. This suggests that the topographic slope
of the retrowedge with values generally lying between the maximum critical taper and the angle
of repose, is purely a product of slope failure, occurring whenever the retrowedge slope locally
exceeds the angle of repose. It is also important to note that the inclination of the indenter plays
an important role as well, as steeper indenters, especially for type I and III backstops, tend to have
steeper topographic slopes on both retro and pro sides, and more frequent slope failures over the
course of the simulations.

6. Closure

We have applied a meshfree fully Lagrangian smoothed particle hydrodynamics (SPH) code to
successfully handle the large deformation and strain localization phenomena of geologic materi-
als in sandbox-style experiments. The SPH method avoids mesh entanglement and the complex-
ities that finite element method (FEM) codes encounter when modeling large scale geodynamic
processes, and is also more computationally efficient and scalable than non-continuum meshfree
methods such as the discrete element method (DEM), while easily providing continuum level stress,
strain, and strain rate information like in FEM simulations. To the authors’ best knowledge, this is
the first time SPH has been applied to simulate accretionary and doubly vergent wedges using the
purely mechanical IBVP and elastoplastic constitutive models, as is routine in simulations using
FEM.

In simulations of accretionary wedges and doubly vergent wedges, SPH accurately reproduces
results from the benchmarking experiments proposed by Buiter et al. (2006) and Buiter et al. (2016)
in terms of overall deformation patterns, topographic slopes, thrust dips, and number of thrusts.
In accretionary wedges thrust dips or shear bands are oriented at the Arthur angle ®, = 45° —
(¢ +w)/4, while in doubly vergent wedges, the first few forward vergent thrusts form at the Arthur
angle, but as shortening progresses, bands begin to form closer to the orientation of the Coulomb
angle O, = 45° — ¢ /2. After 14.0 cm shortening, the accretionary wedge taper approaches the
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minimum critical taper value. Furthermore, in the doubly vergent wedges, we find the retrowedge’s
topographic slope to be close to the angle of repose and controlled by repeated shallow slope failure,
while on the prowedge side, the slope is determined by the competing processes of forward thrusting
and vertical uplift caused by the indenter.

In simulations of doubly vergent wedges using a rigid backstop indenter, effective indenters
form in the three different backstop types of Byrne et al. (1993) and in the three main inclination
groups of Bonini et al. (1999) and Persson (2001). We find that simulations with type II and III
backstops generate similar results to simulations with a type I backstop with an inclination of 75°,
due to the similar inclinations taken by the type II and III effective indenters to that of type I with
an inclination of 75°. The effective indenters are characterized by zones of low deformation in type
I and very high deformation in type II and III indenters, that move rigidly, and are delimited by
continously active shear bands. It is worth mentioning that in type II and III indenters, we find that
shear bands do not form at the P-point but rather at one of the protruding tips of the indenter, then
propagate downwards and reflect at the perceived P-point on the basal detachment. This represents
a considerably different propagation process than that observed by Bonini et al. (1999) and Persson
(2001) with their analogue sandbox experiments.

As mentioned before, one of the limitations of the current work is the inability to control the
contrast between the internal angle of friction of sediment particles and of the boundary parti-
cles. Improved boundary conditions that capture frictional sliding more accurately, and which are
a current ongoing topic of SPH research, should be implemented in future work. For now, the
work-around of adding a weak material layer along the base has permitted changing the effective
basal friction in the context of critical taper theory. Since most orogenic wedges in the field are not
completely dry, but rather have pores filled with water, modeling the effect of pore fluid in conjunc-
tion with solid deformation would also be valuable (Zhao and Borja, 2020, 2021; Zhang and Borja,
2021). The Drucker-Prager model may not be appropriate for such condition, and critical state mod-
els capable of representing plastic volumetric compaction, such as the family of Cam-Clay models
(Semnani et al., 2016; Zhao et al., 2018; Borja et al., 2020; Yin et al., 2021), or other models en-
dowed with a compression cap (Lade and Kim, 1988; Aydin et al., 2006), may be more suitable for
representing the buildup of fluid pressures under tectonic compression (Bekins and Dreiss, 1992;
Saffer and Bekins, 2002; Cutillo et al., 2003; Saffer and Bekins, 2006; Rowe et al., 2012). From a
modeling perspective, simulating more faithful representations of fold-and-thrust systems in three
dimensions reconstructed from field data, not just considering the simplified plane-strain wedge
case common in sandbox experiments, is worthy of tackling with SPH going forward. Adding
the physics of erosion and deposition to our models would also be possible because SPH can cap-
ture free surfaces naturally without any additional formulations, and several models to account for
strata erosion/deposition adaptable to SPH have been proposed (Zubeldia et al., 2018; Nikooei and
Manzari, 2021). Incorporation of some these factors into our models is currently underway.
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Appendix

As an additional exercise, a brief parametric study to consider the effects of varying the angle of
dilation or the cohesion on the overall wedge geometry and deformation patterns in the accretionary
wedge shortening benchmark (Section 4.2) is performed. In the first set of simulations, the angle
of dilation is varied from the original value of y = 0° to 5° and then to 11°, while keeping all other
material parameters, dimensions, setup, etc., the same as in the previously discussed accretionary
wedge shortening benchmark experiment. In the second set of simulations, the cohesion value is
increased from the original value of ¢ = 10 to 50 and then to 100 Pa, while keeping all other
parameters unchanged from those of the original benchmark. The simulations varying the angle of
dilation are displayed in Figure 19 whereas those varying cohesion are plotted in Figure 20 at two
different amounts of shortening.

P =11°

Figure 19: For purposes of a parametric study, the accretionary wedge shortening benchmark simulations
from Section 4.2 are performed with varying angles of dilation (y = 0°, 5° and 11°), while keeping
the setup and other parameters the same as the original benchmark. Snapshots at 10.0 and 14.0 cm
shortening are displayed.
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c =10 Pa
¢ = 50 Pa
c = 100 Pa

Figure 20: Same as Figure 19, except here simulations are performed with varying cohesion (¢ =10, 50,
and 100 Pa), while keeping all other parameters the same as the original benchmark.

As seen from Figure 19, increasing the angle of dilation results in more extensive volume ex-
pansion of the sand. Despite the fact that the sand is being compressed by the shortening, the
compressive elastic volume change is offset by the considerably greater plastic dilative volume
change, resulting in overall volumetric expansion. The volumetric expansion smoothens the to-
pographic slope, eliminating any protruding sheets caused by propagating thrusts. As seen in the
panels in Figure 19, the dilatancy angle cannot be constant, otherwise, the domain will keep on
expanding aphysically. For this reason, a zero value of the angle of dilation is preferred for our
sandbox simulations undergoing large deformations.

From our parametric study, it is also evident that in simulations with dilatancy angles approach-
ing the friction angle of the soil (¢ = 32°), the degree of non-associativity decreases in the plastic
flow, rendering less pronounced shear bands. Increasing cohesion as seen in Figure 20, on the other
hand, steepens the wedge slope, and enhances the protrusion of the thrust sheets, which concords
with other numerical modeling studies (Nilfouroushan et al., 2012; Morgan, 2015). Furthermore,
the shear bands become more refined, and regions between the bands undergo less plastic defor-
mation over the course of the simulation.
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