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ABS TRACT 

Many sequential decision making tasks can be viewed as combinatorial optimiza-
tion problems over a large number of actions. When the cost of evaluating an ac-
tion is high, even a greedy algorithm, which iteratively picks the best action given 
the history, is prohibitive to run. In this paper, we aim to learn a greedy heuris-
tic for sequentially selecting actions as a surrogate for invoking the expensive 
oracle when evaluating an action. In particular, we focus on a class of combinato-
rial problems that can be solved via submodular maximization (either directly on 
the objective function or via submodular surrogates). We introduce a data-driven 
optimization framework based on the submodular-norm loss, a novel loss func-
tion that encourages the resulting objective to exhibit diminishing returns. Our 
framework outputs a surrogate objective that is efficient to train, approximately 
submodular, and can be made permutation-invariant. The latter two properties al-
low us to prove strong approximation guarantees for the learned greedy heuristic. 
Furthermore, our model is easily integrated with modern deep imitation learning 
pipelines for sequential prediction tasks. We demonstrate the performance of our 
algorithm on a variety of batched and sequential optimization tasks, including set 
cover, active learning, and data-driven protein engineering. 

1 INTRODUCTION 

In real-world automated decision making tasks we seek the optimal set of actions that jointly achieve 
the maximal utility. Many of such tasks — either deterministic/non-adaptive or stochastic/adaptive 
— can be viewed as combinatorial optimization problems over a large number of actions. As an 
example, consider the active learning problem where a learner seeks the maximally-informative set 
of training examples for learning a classifier. The utility of a training set could be measured by 
the mutual information (Lindley, 1956) between the training set and the remaining (unlabeled) data 
points, or by the expected reduction in generation error if the model is trained on the candidate 
training set. Similar problems arise in a number of other domains, such as experimental design 
(Chaloner and Verdinelli, 1995), document summarization (Lin and Bilmes, 2012), recommender 
system (Javdani et al., 2014), and policy making (Runge et al., 2011). 

Identifying the optimal set of actions (e.g., optimal training sets, most informative experiments) 
amounts to evaluating the expected utility over a combinatorial number of candidate sets. When 
the underlying model class is complex and the evaluation of the utility function is expensive, these 
tasks are notoriously difficult to optimize (Krause and Guestrin, 2009). For a broad class of deci-
sion making problems whose optimization criterion is to maximize the decision-theoretic value of 
information (e.g., active learning and experimental design), it has been shown that it is possible to 
design surrogate objective functions that are (approximately) submodular while being aligned with 
the original objective at the optimal solutions (Javdani et al., 2014; Chen et al., 2015b; Choudhury 
et al., 2017). Here, the information gathering policies no longer aim to directly optimize the target 
objective value, but rather choose to follow a greedy trajectory governed by the surrogate function 
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that is much cheaper to evaluate. These insights have led to principled algorithms that enable sig-
nificant gains in the efficiency of the decision making process, while enjoying strong performance 
guarantees that are competitive with the optimal policy. 

Despite the promising performance, a caveat for these “submodular surrogate”-based approaches 
is that it is often challenging to engineer such a surrogate objective without an ad-hoc design and 
analysis that requires trial-and-error (Chen et al., 2015b; Satsangi et al., 2018). Furthermore, for 
certain classes of surrogate functions, it is NP-hard to compute/evaluate the function value (Jav-
dani et al., 2014). In such cases, even a greedy policy, which iteratively picks the best action given 
the (observed) history, can be prohibitively costly to design or run. Addressing this limitation re-
quires more automated or systematic ways of designing (efficient) surrogate objective functions for 
decision making. 

Overview of main results. Inspired by contemporary work in data-driven decision making, we aim 
to learn a greedy heuristic for sequentially selecting actions. This heuristic acts as a surrogate for 
invoking the expensive oracle when evaluating an action. Our key insight is that many practical 
algorithms can be interpreted as greedy approaches that follow an (approximate) submodular surro-
gate objective. In particular, we focus on the class of combinatorial problems that can be solved via 
submodular maximization (either directly on the objective function or via a submodular surrogate). 
We highlight some of the key results below: 

• Focusing on utility-based greedy policies, we introduce a data-driven optimization framework 
based on the “submodular-norm” loss, which is a novel loss function that encourages learning 
functions that exhibit “diminishing returns”. Our framework, called LEASURE (Learning with 
Submodular Regularization), outputs a surrogate objective that is efficient to train, approximately 
submodular, and can be made permutation-invariant. The latter two properties allow us to prove 
approximation guarantees for the resulting greedy heuristic. 

• We show that our approach can be easily integrated with modern imitation learning pipelines for 
sequential prediction tasks. We provide a rigorous analysis of the proposed algorithm and prove 
strong performance guarantees for the learned objective. 

• We demonstrate the performance of our approach on a variety of decision making tasks, including 
set cover, active learning for classification, and data-driven protein design. Our results suggest 
that, compared to standard learning-based baselines: (a) at training time, LEASURE requires 
significantly fewer oracle calls to learn the target objective (i.e., to minimize the approximation 
error against the oracle objective); and (b) at test time, LEASURE achieves superior performance 
on the corresponding optimization task (i.e., to minimize the regret for the original combinatorial 
optimization task). In particular, LEASURE has shown promising performance in the protein 
design task and will be incorporated into a real-world protein design workflow. 

2 RELATED WORK 

Near-optimal decision making via submodular optimization. Submodularity is a property of 
a set function that has a strong relationship with diminishing returns, and the use of submodular-
ity has wide applications from information gathering to document summarization (Leskovec et al., 
2007; Krause et al., 2008; Lin and Bilmes, 2011; Krause and Golovin, 2014). The maximization 
of a submodular function has been an active area of study in various settings such as centralized 
(Nemhauser et al., 1978; Buchbinder et al., 2014; Mitrovic et al., 2017), streaming (Badanidiyuru 
et al., 2014; Kazemi et al., 2019; Feldman et al., 2020), continuous (Bian et al., 2017b; Bach, 2019) 
and approximate (Horel and Singer, 2016; Bian et al., 2017a). Variants of the greedy algorithm, 
which iteratively selects an element that maximizes the marginal gain, feature prominently in the 
algorithm design process. For example, in the case of maximizing a monotone submodular function 
subject to a cardinality constraint, it is shown that the greedy algorithm achieves an approximation 
ratio of (1 − 1/e) of the optimal solution (Nemhauser et al., 1978). 

In applications where we need to make a sequence of decisions, such as information gathering, we 
usually need to adapt our future decisions based on past outcomes. Adaptive submodularity is the 
corresponding property where an adaptive greedy algorithm enjoys a similar guarantee for maxi-
mizing an adaptive submodular function (Golovin and Krause, 2011). Recent works have explored 
optimizing the value of information (Chen et al., 2015b) and Bayesian active learning (Javdani et al., 
2014; Chen et al., 2017a) with this property. Another line of related work is online setting (typically 
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bandits), which is grounded in minimizing cumulative regret (Radlinski et al., 2008; Streeter et al., 
2009; Yue and Guestrin, 2011; Ross et al., 2013; Yu et al., 2016; Hiranandani et al., 2020). 

Learning submodular functions. Early work focused on learning non-negative linear combinations 
of submodular basis functions (Yue and Joachims, 2008; El-Arini et al., 2009; Yue and Guestrin, 
2011; Sipos et al., 2012), which was later generalized to mixtures of “submodular shells” (Lin and 
Bilmes, 2012). Deep submodular functions (Dolhansky and Bilmes, 2016) extend these ideas to 
more expressive compositional function classes by using sums of concave composed with modular 
functions. The theoretical question of the learnability of general submodular functions is analyzed 
in Balcan and Harvey (2018). Our goal is to encourage submodularity via regularization, rather than 
via hard constraints on the function class design. 

Learning to optimize via imitation learning. Rather than first learning a submodular function and 
then optimizing it, one can instead learn to directly make decisions (e.g., imitate the oracle greedy 
algorithm). This area builds upon imitation learning, which learns a policy (i.e., a mapping from 
states to actions) directly from examples provided by an expert (e.g., an expensive computational 
oracle, or a human instructor) (Chernova and Thomaz, 2014). Classic work on imitation learning 
(e.g., the Dataset Aggregation (DAgger) algorithm (Ross et al., 2011)) reduce the policy learning 
problem to the supervised learning setting, which has been extended to submodular optimization by 
imitating the greedy oracle method (Ross et al., 2013). More generally, learning to optimize has 
been applied generically to improve combinatorial optimization solvers for focused distributions 
of optimization problems (He et al., 2014; Song et al., 2018; Khalil et al., 2016; Balunovic et al., 
2018; Gasse et al., 2019; Song et al., 2020). Our approach bridges learning to optimize and learning 
submodular functions, with a focus on learning surrogate utilities using submodular regularization. 

Learning active learning. Our approach is applicable to active learning, and so is related to work 
on learning active learning. The closest line of work learns a utility function as a surrogate for 
improvement in classifier accuracy (Konyushkova et al., 2017; Liu et al., 2018), which is then used 
as the decision criterion. However, prior work either used restricted function classes (Konyushkova 
et al., 2017), or very expressive function classes that can be hard to fit well (Liu et al., 2018). 
Our work can be viewed as a direct extension of this design philosophy, where we aim to reliably 
learn over expressive function classes using submodular regularization. Other related work do not 
directly learn an active learning criterion, instead encouraging sample diversity using submodularity 
(Wei et al., 2015) or the gradient signal from the classifier (Ash et al., 2020). 

3 BACKGROUND AND PROBLEM STATEMENT 

3.1 DECISION MAKING VIA SUBMODULAR SURROGATES 

Given a ground set of items V to pick from, let u : 2
V

 -+ R be a set function that measures the 
value of any given subset

1
 A  V. For example, for experimental design, u( A ) captures the utility 

of the output of the best experiment; for active learning u( A ) captures the generalization error after 
training with set A. We denote a policy π : 2

V
 -+ V to be a partial mapping from the set/sequence 

of items already selected, to the next item to be picked. We use Π to denote our policy class. Each 
time a policy picks an item e  V, it incurs a unit cost. Given the ground set V, the utility function 
u, and a budget k for selecting items, we seek the optimal policy π that achieves the maximal utility: 

π   arg max u( Sπ,k ). (1) 
π Π 

Sπ,k is the sequence of items picked by π: Sπ,i = Sπ,i−1  {π ( Sπ,i−1 )} for i > 0 and Sπ  ,0 = . 

As we have discussed in the previous sections, many sequential decision making problems can be 
characterized as constrained monotone submodular maximization problem. In those scenarios u is: 

• Monotone: For any A  V and e  V \ A, u( A ) ≤ u( A  {e}). 

• Submodular: For any A  B  V and e  V \ B, u( A  {e}) − u( A ) ≥ u( B  {e}) − u( B ). 

1

For simplicity, we focus on deterministic set functions in this section. Note that many of our results can 
easily extent to the stochastic, by leveraging the theory of adaptive submodularity (Golovin and Krause, 2011) 
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In such cases, a mypopic algorithm following the greedy trajectory of u admits a near-optimal policy. 
However, in many real-world applications, u is not monotone submodular. Then one strategy is to 
design a surrogate function f : 2

V
 → R which is: 

• Globally aligning with u: For instance, f lies within a factor of u: f ( A )  [c1 · u( A ), c2 · u( A ))] 
for some constants c1, c2 and any set A  V; or within a small margin with u: f ( A )  [u( A ) − 
, u( A ) + ] for a fixed  > 0 and any set A  V ; 

• Monotone submodular: Intuitively, a submodular surrogate function encourages selecting items 
that are beneficial in the long run, while ensuring that the decision maker does not miss out any 
actions that are “surprisingly good” by following a myopic policy (i.e., future gains for any item 
are diminishing). Examples that fall into this category include machine teaching (Singla et al., 
2014), active learning (Chen et al., 2015a), etc. 

We argue that in real-world decision making scenarios—as validated later in Section 6—the decision 
maker is following a surrogate objective that aligns with the above characterization. In the following 
context, we will assume that such surrogate function exists. Our goal is thus to learn from an expert 
policy that behaves greedily according to such surrogate functions. 

3.2 LEARNING TO MAKE DECISIONS 

We focus on the regime where the expert policy is expensive to evaluate. Let g : 2
V

 × V → R be 
the score function that quantifies the benefit of adding a new item to an existing subset of V . For the 
expert policy and submodular surrogate f discussed in Section 3.1, A  V and e  V: 

g
exp

( A, e ) = f ( A  {e }) − f ( A ). 

For example, in the active learning case, g
ex

p ( A, e ) could be the expert acquisition function that 
ranks the importance of labelling each unlabelled point, given the currently labelled subset. In the 
set cover case, g

ex
p ( A, e ) could be the function that gives the score to each vertex and determines 

the next best vertex to add to the cover set. Given a loss function ̀ , our goal is to learn a score 
function ĝ that incurs the minimal expected loss when evaluated against the expert policy: ĝ = 
arg ming  EA,e [̀ (g( A, e ), g

ex
p ( A, e ))]. Subsequently, the utility by the learned policy is u(Sπ̂,k ), 

where for any given history A  V , π̂(A )  arg max e V  ĝ( A, e ). 

4 LEARNING WITH SUBMODULAR REGULARIZATION 

To capture our intuition that a greedy expert policy tends to choose the most useful items, we intro-
duce LEASURE, a novel regularizer that encourages the learned score function (and hence surrogate 
objective) to be submodular. We describe the algorithm below. 

Given the groundset V , let f : 2
V

 → R be any approximately submodular surrogate such that f ( A ) 
captures the “usefulness” of the set A. The goal of a trained policy is to learn a score function 
g : 2

V
 × V → R that mimics g

ex
p ( A, x ) = f ( A  {x }) − f ( A ), which is often prohibitively 

expensive to evaluate exactly. Then, given any such g, we can define a greedy policy π( A ) = 
argmaxx Vg( A, x ). With LEASURE, we aim to learn such function g that approximates g

ex
p well 

while being inexpensive to evaluate at test time. Let Dreal = {(( A, x ), y
ex

p = g
ex

p( A, x ))}m  be the 
gathered tuple of expert scores for each set-element pair. If the set 2

V
 × V was not too large, the 

LEASURE could be trained on the randomly collected tuples Dreal. However, 2
V

 tends to be too 
large to explore, and generating ground truth labels could be very expensive. To leverage that, for a 
subset of set-element pairs in Dreal we generate a set of random supersets to form an unsupervised 
synthetic dataset of tuples Dsynth = {(( A, x ), ( A' , x ))|A - A' , ( A, x )  Dreal }n where A' denote 
a randomly selected superset of A. Define: 

Loss(g, g
ex

p ) = 
X X  

( y
ex

p − g( A, x ))
2

 + λ σ([g( A' , x ) − g( A, x )]), 
(A,x) ,yexp Dreal ((A,x) , (A' ,x) ) Dsynth 

where λ > 0 is the regularization parameter and σ is the sigmoid function. Intuitively, such regu-
larization term will force the learned function g to be close to submodular, as it will lead to larger 
losses every time g( A' , x ) > g( A, x ). If we expect f to be monotonic, we also introduce a second 
regularizer ReLu(−g( A' , x )) which pushes the learned function to be positive. Combined, the loss 
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function becomes (used in Line 11 in Algorithm 1): 

Loss( g, g
ex

p ) = 
X X  

( y
ex

p − g ( A, x ))
2

 + λ σ ([ g ( A', x ) − g ( A, x )]) 
( A,x ),yexp Dreal ( ( A,x ),( A ' ,x ) ) Dsynth 

+ γ
X

ReLu(−g ( A', x )), 
( A

'
,x ) Dsynth 

where γ is another regularization strength parameter. Such loss should push g to explore a set of 
approximately submodular, approximately monotonic functions. Thus, if f exhibits the submodular 
and monotonic behavior, g trained on this loss function should achieve a good local minima. 

We next note that since 2
V

 is too large to explore, instead of sampling random tuples for Dreal, we 
use modified DAgger. Then g can learn not only from the expert selections of ( A, x ), but it can also 
see the labels of the tuples the expert would not have chosen. 

Algorithm 1 Learning to make decisions via Submodular Regularization (LEASURE) 

1: Input: Ground set V , expert score function g
ex

p, 
2: regularization parameters λ, γ, DAgger constant β, the length of trajectories T. 
3: initialize Dreal  
4: initialize g to any function. 
5: for i = 1 to N do 
6: Let gi = g

ex
p with probability β. 

7: Sample a batch of T−step trajectories using 7ri ( A ) = xi = argmaxx Vgi ( A, x ). 
8: Get dataset Di = {( Ai , xi ), g

ex
p ( Ai , xi )} of labeled tuples on actions taken by 7ri . 

9: Dreal Dreal U Di . 
10: Generate synthetic dataset Dsynth 

from  Dreal. 
11: Train gi +1 

on  Dreal 
and  Dsynth using the loss function above. 

12: Output: gN+1 

Algorithm 1 above describes our approach. A trajectory in Line 7 is a sequence of iteratively chosen 
tuples, (( , x1 ), ({ x1 }, x2 ), ({ x1 , x2 }, x3 )..., ({ x1 , ..., x T −1},  xT )), collected using a mixed policy 
7ri . In Line 8, expert feedback of selected actions is collected to form Di . Note that in some settings, 
even collecting exact expert labels g

ex
p at train time could be too expensive. In that case, g

ex
p can 

be replaced with a less expensive, noisy approximate expert g
exp

 ≈ g
ex

p. In fact, all three of our 
experiments use noisy experts in one form or another. 

5 ANALYSIS 

Estimating the expert’s policy. We first consider the bound on the loss of the learned policy mea-
sured against the expert’s policy. Since LEASURE can be viewed as a specialization of DAGGER 

(Ross et al., 2011) for learning a submodular function, it naturally inherits the performance guaran-
tees from DAGGER, which show that the learned policy efficiently converges to the expert’s policy. 
Concretely, the following result, which is adapted from the original DAgger analysis, shows that the 
learned policy is consistent with the expert policy and thus is a no-regret algorithm: 

Theorem 1 (Theorem 3.3, Ross et al. (2011)). Denote the loss of 7r̂ at history state H as l ( H, 7r̂) := 
£( g ( H, 7r̂( H )), g

exp ( H, 7r
exp ( H ))). Let dπ ˆ be the average distribution of states if we follow 7r̂ for a 

finite number of steps. Furthermore, let Di be a set of m random trajectories sampled with 7ri at 
round i  {1, ... , N }, and ˆN = minπ 

1 ~ N 

policy on the sampled trajectories. If N is O 
(
T

2
 log(1/δ )

) 
and m is O (1) then with probability at 

N i=1 EHi Di [l ( Hi , 7r̂)] be the training loss of the best 

least 1 − δ there exists a 7r̂ among the N policies, with EH dπ̂  [l ( H, 7r̂)] ≤ ˆN + O 
( 

1  ). T 

Approximating the optimal policy. Note that the previous notion of regret corresponds to the 
average difference in score function between the learned policy and the expert policy. While this 
result shows that LEASURE is consistent with the expert, it does not directly address how well the 
learned policy performs in terms of the gained utility. We then provide a bound on the expected value 
of the learned policy, measured against the value of the optimal policy. For specific decision making 
tasks where the oracle follows an approximately submodular objective, our next result, which is 
proved in the appendix, shows that the learned policy behaves near-optimally. 
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Theorem 2. Assume that the utility function u is monotone submodular. Furthermore, assume the 
expert policy π

ex
p follows a surrogate objective f such that for all A  V, | f (A) − u( A)| < EE ~N  where EE > 0. Let ~̂N = minπ 

1

 i=1 l (Hi , π̂) be the training loss of the best policy on the 
sampled trajectories. If N is O 

(
T

2
 log(1/δ)

) 
then with probability at least 1 − δ, the expected N 

utility achieved by running π̂ for k steps is 

E[u(Sπ̂,k )] ≥ (1 − 1/e)E[u(Sπ ,k)] − k (EE + Δmax fN) − O(1) . 

A closely related work in approximate policy learning is by Ross et al. (2013), which also builds 
upon DAGGER to tackle policy learning for submodular optimization, via directly imitating the 
greedy oracle decision rather than learning a surrogate utility. One key difference is that their ap-
proach can only yield guarantees against an artificial benchmark (a set or list of simpler policies that 
each independently selects an item to add to the action set), whereas our theoretical guarantees are 
with respect to the optimal policy in our class. 

6 EXPERIMENTS 

In this section, we demostrate the performance of LEASURE on three diverse sequential decision 
making tasks, namely set cover (SC), learning active learning (LAL) and protein engineering (PE). 

Baselines. We compare our approach to the Deep Submodular Function (DSF (Dolhansky and 
Bilmes, 2016)) and Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds 
(BADGE (Ash et al., 2020)). The DSF approach learns a submodular surrogate function f : 2

V
 → R 

that produces a score for each set A  V. The architecture of the DSF forces the function f to be 
exactly submodular, as opposed to LEASURE, which is only encouraged to be submodular through 
a regularizer. However, the architecture and the training procedure of the DSF are quite restrictive, 
which does not allow the DSF to explore a large domain during training and restricts how expressive 
it can be compared to a standard neural network. Moreover, DSF are restricted to small V, and the 
number of parameters increases with the cardinality of V. That is not true for LEASURE, which 
number of parameters grows with the dimensionality of elements in V. This makes DSF useful for 
small datasets, but makes it prohibitively expensive to use on larger problems. In fact, we could not 
compare LEASURE to DSF on LAL or PE tasks, as it was not feasible to train DSF on these sets. For 
LAL experiment, we also compare with a recent deep active learning approach (Ash et al., 2020). 
Finally, we want to add that LEASURE can be seamlessly integrated with any standard Machine 
Learning library, and since the architecture of the learned policy in LEASURE is not restrictive, any 
available optimization trick can be used to achieve better performance. In fact, existing ‘imitation 
learning’-based approaches for LAL, such as Liu et al. (2018), can be viewed as special cases of 
LEASURE (i.e. without regularization). On the other hand, DSF cannot be as easily implemented, 
and the standard libraries are not optimized for the DSF architecture. 

6.1 SET COVER 

Before testing our approach on a real-world scenario, we showcase its performance on a simple 
submodular and monotonic maximization problem. Set cover is a classical example: given a set of 
elements U = {1, 2 , ..., n} (called the universe) and a collection of m sets S = {s1 , .., sm} whose 
union equals the universe, the set cover problem is to identify the smallest sub-collection of S whose 
union equals the universe. Formulated as a policy learning problem, the goal is to learn the score 
function g : 2

S
 × S → R such that for any Sl  S, x  S, 

g (Sl , x) ≈ g
ex

p (Sl , x) = | s Sl 
s  x| − | s Sl 

s| . 

Given g, we can then define a policy π : 2
s

 → S as π (Sl ) = argmaxx Sg (Sl , x). During train-
ing, tuples {(Sl , x) , g

ex
p} are collected, and then g is trained on this set. We trained four different 

policies: a function g parametrized by a neural network with MSE (g, g
ex

p) as the loss, a func-
tion g with the same MSE loss and just a monotonicity regularizer, a function g trained using both 
monotonicity and submodular regularizers (LEASURE), as well as the Deep Submodular Function 
baseline (Dolhansky and Bilmes, 2016). We use a modified Deepset architecture (Zaheer et al., 
2017) for modeling the permutation-invariant score networks g in both the SC and the LAL tasks, 
and provide the details in Appendix B. Our dataset is the subset of the Mushroom dataset (Lim, 
2015), consisting of 1000 sets. Each set contains 23 mushroom species, and there are a total of 119 
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(a) (b) 

Figure 1: Evaluating LEASURE against baselines on set cover instances 

species. The goal is to train a policy to select the largest superset of these sets. We evaluate in two 
settings: Exact Set Cover, where we collect tuples { (Sl , x) , g

ex
p } for training, and Noisy Set Cover, 

where we have access only to { (Sl , x) , gexp 
 }, where gexp 

 is a noisy score. The networks are trained 
on rollouts of length 20 (i.e. on sets {Sl : |Sl | ≤ 20}), and tested on rollout of length up to 100. 

Figure 1 show the value of set cover as a function of the size of the superset. LEASURE significantly 
outperforms other learned policies, although Deep Submodular Function generalizes better to larger 
rollout lengths – LEASURE gets most of its set cover gains in the first 10-20 selected points, while 
Deep Submodular Function continues to noticeably improve past the training rollout length. Note 
that in Figures 1a & 1b, the competing baselines all exhibit a “diminishing returns” effect, result-
ing in a concave-shaped value function. With a submodular-norm regularizer, LEASURE quickly 
identified the sets with large marginal gains. This observation aligns with our analysis in Section 5. 

6.2 LEARNING ACTIVE LEARNING ON FASHION MNIST 

In this section we demonstrate the performance of LEASURE on a real-world task that is not sub-
modular or monotonic, but usually exhibits submodular and monotonic behaviour. 

In active learning, there is a partially labelled dataset 
S = {Sl , Su }, where Sl is labelled and Su is un-
labelled, and a policy π : 2

S
 → S. The labelled 

subset Sl can be used to infer from data (learn the 
image classifier, predict unlabelled protein fitness, 
etc). The goal of the policy is to select the smallest 
subset Sπ  Su to label such that the accuracy of su-
pervised learning from Sπ  Sl is maximized. Since 
selecting a subset is a prohibitively expensive combi-
natorial task, the policy is usually sequential. In par-
ticular, it selects points to add to Sπ one by one (or 
in batches) using some score function g (Sπ  Sl , · ) : 
Su  → R to score each point x  Su and then the 
policy labels the point with the largest score. If g 
were to be the first order difference of a submodu-
lar function f , i.e. g (A, e) = f (A  {e}) − f (A), 
then the policy would be near-optimal. Moreover, as 
discussed above, intuitively we expect g to have this 
property in most cases, since adding an extra point 
to a larger set usually has less effect than adding the 
same point to a smaller subset of the set. 

Figure 2: Combining submodular regularization 
with a learned active learning policy for 10-class 
Fashion-MNIST classification. The figure sum-
marizes the classification error of a neural net-
work trained on labelled images, as a function of 
the number of labelled images. Originally, ran-
dom set of 20 images is selected, and then each 
policy greedily chooses the next image to label. 
The learned policies were trained on rollouts of 
length up to 30, and tested on rollouts of length 
200. The “no regularizer” policy corresponds to 
Konyushkova et al. (2017), only in this case the 
features are parametrized by the neural network 
instead of being hand-engineered. “BADGE” cor-
responds to a sequential modification of (Ash 
et al., 2020). The results are averaged between 
500 experiments, with standard error reported. 

The above motivates the use of LEASURE in active 
learning (Figure 2). In this experiment, the set S is 
the Fashion-MNIST dataset consisting of greyscale 
images from one of 10 clothes classes (Xiao et al. 
(2017)). The goal was to learn a policy that greedily selects “the best” point x

*  Su to label, such 
that a neural network classifier trained on the labelled set Sl  {x

*
} produces the most accurate 

classification of the unlabelled images. In particular, we trained the above function g to predict the 
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(a) Comparison to baseline methods (b) Effect of scaling parameter lambda 

Figure 3: Combining submodular regularization with a learned active learning policy for a protein 
engineering task. In (b), Lambda = 0 corresponds to the unregularized case. Error bars are plotted 
as standard error of the mean across 50 replicates. 

accuracy gain g
ex

p from labelling a point. The accuracy gain g
ex

p was measured by training the 
neural network classifier on both Sl and Sl  {x} and then recording the difference in validation set 
classification accuracy. Since obtaining exact g

ex
p for each datapoint is very expensive, we instead 

collected noisy labels gexp ≈ g
ex

p, obtained by training the classifier for only 10 epochs. The tuples 
{(Sl , x), gexp 

 )} were collected using DAgger with rollouts of length 30 (starting from a random 
batch of 20 images). For training, we used an initially unlabelled dataset with 60000 images, 2000 
of which were set aside to use for evaluating validation accuracy. We trained two neural networks to 
approximate g - an unregularized one, and one with a monotonicity and a submodularity regularizer 
(i.e. LEASURE). See Appendix B for details on architecture and training procedure. 

The trained policies were tested on a set of 8000 images, with additional 2000 set aside for vali-
dation. Attest time, we again started with a random batch of size 20 and then used each policy 
to sequentially select additional 200 images to label (Figure 2). The recorded test error rate was 
collected using real g

ex
p, i.e. a classifier trained until training loss reaches a certain threshold. The 

experiment was benchmarked against the “random” policy that randomly picked the next point, the 
“uncertainty” policy that selected the next point by maximizing uncertainty, the “no regularizer” 
policy that used DAgger with MSE loss, and “BADGE” from Ash et al. (2020). See Appendix B 
for details. Even though LEASURE was trained on much shorter rollouts using very noisy labels, 
it still outperformed all other baselines. This confirms our intuition that the submodular regularizer 
allowed the learned score function g to find a local minima that generalizes well to out of sample. 

6.3 PROTEIN ENGINEERING 

By employing a large protein engineering database containing mutation-function data (Wang et al., 
2019), we demonstrate that LEASURE enables the learning of an optimal policy for imitating expert 
design of protein sequences (see Appendix for detailed discussion of datasets). As in Liu et al. (2018) 
we construct a fully data-driven expert which evaluates via 1-step roll-out the effect of labeling each 
candidate data (in our case a protein mutant) with the objective of minimizing loss on a downstream 
regression task (predicting protein fitness). 

When training the policy to emulate the algorithmic expert via imitation learning, we represent each 
state as two merged representations: (1) a fixed dimensional representation of the protein being 
considered (as the last dense layer of the network described in Appendix C), and (2) a similar 
fixed dimensional representation of the data already included in the training set (as a sum of their 
embeddings), including their average label value. At each step a random pool of data is drawn from 
the state space and the expert policy greedily selects a protein to label, which minimizes the expected 
regression loss on the downstream regression task (prediction of protein fitness). Once the complete 
pool of data has been evaluated, the states are stored along with their associated preference score, 
taken as their ability to reduce the loss in the 1-step roll out. Using these scores, the expert selects a 
protein sequence to add into the training set, and we retrain the model and use the updated model to 
predict a protein with the maximum fitness. This paired state action data is used to train the policy 
model at the end of each episode, as described in Liu et al. (2018). As we observe in Figure 3a, this 
method trains a policy which performs nearly identically to this 1-step oracle expert. 

The use of submodular regularization enables the learning of a policy which generalizes to a fun-
damentally different protein engineering task. In our experiments, LEASURE is trained to emulate 
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a greedy oracle for maximizing the stability of protein G, a small bacterial protein used across a 
range of biotechnology applications (Sjbring et al., 1991). We evaluate our results by applying the 
trained policy to select data for the task of predicting antibody binding to a small molecule. As is 
the case with all protein fitness landscapes, the evaluation dataset is highly imbalanced, with the vast 
majority of mutants conferring no improvement at all. Because data is expensive to label in biolog-
ical settings (proteins must be synthesized, purified and tested), we are often limited in how many 
labels can feasibly be generated, and the discriminative power among the best results is often more 
important than among the worst. To construct a metric with real-world applicability we assess each 
model by systemically examining the median Kd of the next ten data points selected at each budget, 
from 10 to 110 total labels. This method is utilized in recognisance of the extreme ruggedness of 
protein engineering landscapes, wherein the vast majority of labels are of null fitness, and the ability 
to select rare useful labels for the next experimental cycle is of key importance. 

We observe that LEASURE outperforms all evaluated baselines, and that the inclusion of submodular 
optimization is mandatory to its success (Figure 3a). A greedy active learner which labels the anti-
body mutation with the best predicted Kd (the smallest) preforms approximately equivalently with 
selecting random labels. Use of dropout as an approximation of model uncertainty as in Gal and 
Ghahramani (2016) improves upon these baselines, although significant betterment is not achieved 
until approximately 35 labels are added. In comparison, the results from LEASURE diverge from 
all others nearly immediately, and the best model, which uses a lambda of 0.1, achieves a notable 
improvement in Kd, 5.81 µM, vs 7.27 µM achieved by entropy sampling. In support of methods 
success, we note that the learned policy preforms approximately as well as the greedy oracle which 
it emulates (Appendix Figure 7a). We observe that the results are robust within a range of possible 
lambda values (Figure Figure 3b and Appendix Figure 7b), and that without the use of submodular 
regularization the trained policy fails to learn a policy better than the selection of random labels. 
This is an important finding, as the method proposed by Liu et al. (2018) without LEASURE, has 
been shown to be a state-of-the-art method for imitation learning. 

Based on these empirical results, LEASURE demonstrates significant potential as computational 
tool for real-world automated experimental design tasks: In particular, in the protein engineering 
task, LEASURE achieves the SOTA on the benchmark data-sets considered in this work. While 
LEASURE does involve repeated retraining of the protein engineering network, we observe that 
it returns strong results even with a single step of training. Additionally, the networks that are 
employed are very simple (Appendix C). This allows for reasonable training time (36 hours) and 
nearly instantaneous inference. Given the considerable time and cost of protein engineering, these 
computational budgets are quite modest. Protein engineering is a time consuming (months to years) 
and expensive undertaking (10’s of thousands to millions of dollars). These projects usually strive to 
achieve the best possible results given a fixed budget. We have demonstrated in our work the ability 
deliver significant improvements in protein potency for the modest fixed budgets. Although the cost 
savings of engineering and testing an individual protein (or label) vary significantly based on the 
system, ranging tens to hundreds of dollars, we observe that to achieve a Kd of 8e-6 M LEASURE 
delivers an approximate cost savings of 65%, or 40 fewer labels than the next best method. The 
sequential synthesis and evaluation of each of these labels would likely span several months and 
additionally incur several thousands of dollars of materials costs. 

7 CONCLUSION 

In this paper, we introduce LEASURE, a data-driven decision making framework based on a novel 
submodular-regularized loss function. The algorithm was inspired by the recent developments 
of submodular-surrogate-based near-optimal algorithms for sequential decision making. We have 
demonstrated LEASURE on several diverse set of decision making tasks. Our results suggest 
that LEASURE can be easily integrated with modern deep imitation learning pipelines, and that 
it is efficient to run, while still reaching the best performance among the competing baselines. 
In addition to demonstrating the strong empirical performance on several use cases, we believe 
our work also provides useful insights in the design and analysis of novel information acquisition 
heuristics where traditional ad-hoc approaches are not feasible. 
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A P ROOF FOR SECTION 5 

A.1 PROOF OF THEOREM 2 

Proof. The high-level idea is to first connect the total expected utility of the learned policy π̂ with 
the expected utility of the expert policy π

ex
p, following the analysis in DAgger (Ross et al., 2011). 

Then, we will use the fact that π
ex

p is greedy with respect to f , an approximation to the submodular 
utility function u, to bound the one step gain of the π

ex
p against the k step gain of running the 

optimal policy, and subsequently bound the total utility of the expert policy against the optimal 
policy. We would eventually obtain a similar result as Theorem 2, detailed as follows. 

More concretely, following Theorem 3.4 in DAgger, we obtain that 

E [u( Sπ̂ ,k )] ≥ E [u( Sπexp ,k )] − ΔmaxkEN − O(1) 

Here Δmax is the largest one-step deviation from π
ex

p that π̂ can suffer. It is equivalent to the term 
u in the DAgger paper. Since f is e-close to a monotone submodular function u, we know that 
Δmax ≤ maxA V ,|A|=k f ( A ) ≤ maxA V ,|A|=k u( A ) + EE , which is a constant once u is given. 

Next, since π
ex

p is greedily optimizing an E E-approximation to a monotone submodular function u, 
we know that 

E [u( Sπexp ,k )] ≥ (1 − 1/e )E [u( Sπ* ,k )] − keE 

following the proof from Theorem 5 in (Chen et al., 2017b). 

Combining both steps, we have that 

E [u( Sπ̂ ,k )] ≥ (1 − 1/e )E [u( Sπ* ,k )] − k ( f E + Δmax f N ) − O(1) 

which completes the proof. 
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B SUPPELEMENTAL DETAILS FOR THE SET COVER AND MNIST ACTIVE 
LEARNING EXPERIMENTS 

We provide additional results for the set cover experiments, under the same experimental setup as 
Figure 1a and 1b. The subplots 4a and 4b show the mean square error of learned policy g as a 
function of the size of Sl. We provide a zoomed-in version of 4b in Figure 4c. In Figure 4c, we 
show it is clear that training the neural network on the monotonicity regularizer only does not help 
it learn out of sample - the error rapidly increases as soon as the test rollout length becomes larger 
than the training rollout length. 

In Noisy Set Cover experiment (Figure 4a), each label of the element added to the superset was 
perturbed with N (0, 1) noise. As a result, the variance of the total noise is linear in the number of 
sets. So, it is reasonable that the MSE error grows with number of sets - the policies cannot learn to 
predict random noise. While stochastic MSE of LEASURE and the no-regularizer policy are similar, 
LEASURE outperforms in the number of elements added, which is what matters in practice (Fig-
ure 1). These two figures confirm our intuition that when the problem is not exactly submodular, 
Leasure will still generalize better than no regularizer by learning to ignore small deviations from 
submodularity. Finally, it is also expected that DSF has a lower MSE than Leasure when the label 
noise is too large - Deep Submodular Functions are required to be submodular. When the stochastic-
ity in the MSE becomes overwhelmingly large, that restrictive requirement becomes an advantage. 
However, when the MSE variance is not too large, the lack of expressiveness and the difficulty of 
optimization of DSF make it lose its advantage compared to Leasure. 

(c) 

Figure 4: Supplemental results: Set cover 

For completion, we also provide our architecture and parameter choices for both set cover and 
Learning Active Learning (LAL) on MNIST experiments. For set cover, the problem is too simple to 
require DAGGER (Ross et al., 2011). Instead, the tuples are generated randomly. For active learning 
on MNIST, the tuples are indeed generated using Algorithm 1. For MNIST, we first preprocessed 
our dataset with PCA, leaving the number of vectors necessary to achieve 80% covariance on the 
training set (24 vectors). That was necessary to allow the comparison with DSF. For set cover, each 
element was a set v containing 23 elements v

1
, v

2
, .., v

23
, where v

i
 was an integer corresponding 

to the label of the species. As a neural network input, v was simply represented as a vector of 
[v

1
 ,..., v

23
]. 
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Both set cover and MNIST used a modified Deepset architecture (Zaheer et al., 2017) for score net-
works as follows: Given a set A = {v0 , ..., vk}  V and a datapoint v  V , the score network g first 
preprocesses all inputs v0 , ..., vk , v to obtain learned embeddings v̄0 , .., v̄k , v̄. (See Figure 5) Then, 
the elements in A are combined using Deepsets architecture to produce a learned set embedding A

¯
. 

Finally, A
¯

 and v̄  are concatenated and then a learned linear layer and a Leaky ReLu nonlinearity are 
applied to produce g (A, v). (See Figure 6). All dense layers have 64 neurons and a bias term. Using 
this Deepsets-like framework, we achieve permutation invariance of elements in set A while also 
keeping the network expressive enough to learn a wide range of functions. 

Learning element representation 

Input v  V  Dense Layer 
+ Tanh  

Dense Layer  Embedding v̄ 
+ Tanh 

Figure 5: Score neural network architecture illustration 

Combining element representation using DeepSets 

¯ v  
Dense 

Layer + 
Leaky ReLu 

g(A, v) 
 

Figure 6: Score neural network architecture illustration. 

For both tasks, the score networks are trained using ADAM with a learning rate of 1e-3. Beta 
parameter from Line 2 in LEASURE was picked randomly to be 

5

4
. From experiments, the exact 

value of the parameter did not matter as long as it starts with at least 21  and degrades towards almost 
0 after N iterations. The λ and γ parameters were picked using a hyperparameter sweep in log space. 
As per our intuition, we have found that the strength of the parameters should reflect your certainty 
that the task is submodular and/or monotone. For set cover, λ = 0.1, γ = 0.5, while for active 
learning λ = 0.001 and γ = 0.001. Notice that the values are not comparable between different 
experiments: for MNIST Learning Active Learning (LAL), g

ex
p (A, v)  [0 , 1) outputs the accuracy 

gain of adding v to A and training a supervised model on it; for set cover, g
ex

p(A, v)  {0, 1} 
outputs the number of new elements added to the set by adding x to A. For LAL, the values of gexp 

are usually much smaller than 1, particularly for larger sets. Thus, the values for the two regularizers 
had to be smaller so that the model learns not just the regularizer. 

Finally, we wanted to discuss our baselines in Fashion MNIST experiments. In Figure 2, we have 
four baselines: random, uncertainty, BADGE (Ash et al., 2020), and no regularizer. The no regu-
larizer baseline was trained identically to LEASURE, except for the absense of submodularity and 
monotonicity regularizers. The no regularizer baseline performed well on the sets with up to 30 
additional points - corresponding exactly to the length of the training rollouts. However, it failed to 
generalize. On the other hand, the submodular regularizer allowed the learned score function to find 
a local minima that generalized well to out of sample. Finally, BADGE did not seem to perform well 
when the number of datapoints in the set was large, likely because the gradient signal from adding 
any one additional datapoint was too weak and thus the selection of the next best datapoint was too 
noisy. 

Some more details regarding BADGE (Ash et al., 2020). The authors do not learn a policy, instead, 
they use gradients of the classifier (gradient embedding) to select a useful, diverse batch. Although 
BADGE was originally made for a batch setting, the authors’ main idea is still applicable to our 
case: they argued that the next datapoint(s) can be selected by looking at which fictitious labels 
would produce the largest gradients in the classifier network. Therefore, we replaced the kmeans++ 
algorithm the authors suggested with simply selecting the datapoint that corresponds to the largest 
gradient norm. This algorithm has an advantage that it does not require a trained policy network. 
However, it provides no guarantees about submodularity of the resulting policy, and, in our exper-
iments, the performance degrades with the size of the set - likely because the gradient signal from 
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adding any one additional datapoint was too weak and thus the selection of the next best datapoint 
was too noisy. Since BADGE requires a neural network classifier/regressor, we could not use it as a 
baseline for Set Cover (Set Cover regression function is simply adding all elements in the superset). 

The no-regularizer baseline is similar to that of Konyushkova et al. (2017). However, the problem 
considered in Konyushkova et al. (2017) is not compatible with most of the tasks we considered here 
(for MNIST, yes if we use random forest classifiers; but for others not). Furthermore, Konyushkova 
et al. (2017) treated the problem under a classical supervised learning setting this is often not 
desirable, given that we are learning a policy from non i.i.d. data samples. 
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C SUPPLEMENTAL DETAILS FOR THE PROTEIN ENGINEERING 
EXPERIMENTS 

Dataset Our datasets were identified in Protabank (Wang et al., 2019) for training of active learn-
ing policies and benchmarking of performance. In selecting datasets upon which to train our active 
learning models several factors were considered. As the state space of possible protein variants for 
typical engineering application is very large, size is our foremost criteria. Additionally it will be ad-
vantageous to use datasets which characterize mutations to all amino acids (as opposed to Alanine 
scans), and those which include epistatic interactions. We also desire to identify datasets which have 
a high quality, quantitative readout, such as calorimetry, fluorescence, or SPR data. 

Protein Engineering Methods Embeddings of protein sequences were created using the TAPE 
repository (Rao et al., 2019) according to the UniRep system as first proposed in Alley et al. (2019). 
UniRep produces protein embeddings as a matrix of shape (length protein sequence, 1900), although 
we average together the embeddings only of positions being engineered to produce a consistent 
embedding of shape (1900,). We have implemented the active learning imitation learning algorithm 
proposed in Liu et al. (2018) to work with the protein embedding representations described above. 
Pseudocode for this method is presented in Algorithms 1 and 2 from the original work. As in Liu 
et al. (2018), our policy network consists of a single dense unit which acts sequentially on the pool 
of samples being considered to produce a preference score. Our downstream protein engineering 
network (which was used to compute the preference score of the expert policy) acts on the protein 
embeddings prepared using TAPE. The network consists of an attention layer, followed by a 1-
dimensional convolution layer (128 filters, kernel size 3), before being flattened and applying two 
fully connected layers of 128 units each. When predicting protein fitness, dropout is applied with a 
probability of 0.5 and an additional dense layer is applied with one unit and linear activation. Both 
networks are trained using ADAM with a learning rate of 1e-3. The implementation of this part 
of the project is nearly identical to Liu et al. (2018), only changing the data representation, protein 
fitness network structure, and values of K (30), B (100) and T (20) as listed in the appendix of our 
work. Beta is fixed at 0.5, although the method was shown to be robust to a range of values. At 
training time, 100 labels are randomly selected for evaluating the effect of the greedy oracle, and 10 
data are randomly selected to form the initial data set for learning. The superset is appended at each 
step of training the policy to maintain a size of 2x the labeled dataset. The training of a policy using 
these settings takes 36 hours on a modern multiprocessor computer equipped with an NVIDIA Titan 
V GPU. 

(a) Comparison of policy to greedy oracle which it em-
ulates 

(b) Effect of scaling parameter lambda and empirical 
evidence for selecting its value 

Figure 7: Supplemental results for the protein engineering experiments of Section 6.3: (a) We ob-
serve that the policy learned by LEASURE preforms approximately as well as the greedy oracle 
which it emulates. In this experiment the policy was derived from the training set, but the greedy 
oracle is operating on the test set. (b) Lambda linearly scales the value of the regularizer term. When 
lambda takes value 0.01, the magnitude of the (scaled) regularizer term (represented by the blue bar) 
aligns the best with the magnitude of the cross entropy loss (represented by the orange bar). This 
is consistent with what we observed in Figure 3b where λ = 0.01 leads to well-regularized model 
behavior. 
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