
Published as a conference paper at ICLR 2021

LEARNING TO MAKE DECISIONS VIA SUBMODULAR

REGULARIZATION

Ayya Alieva
Stanford University
ayya@stanford.edu

Stephen Mayo
Caltech
steve@caltech.edu

Aiden Aceves
Caltech
aaceves@caltech.edu

Yisong Yue
Caltech
yyue@caltech.edu

Jialin Song
Caltech
jssong@caltech.edu

Yuxin Chen
University of Chicago
chenyuxin@uchicago.edu

ABS TRACT

Many sequential decision making tasks can be viewed as combinatorial optimiza-
tion problems over a large number of actions. When the cost of evaluating an ac-
tion is high, even a greedy algorithm, which iteratively picks the best action given
the history, is prohibitive to run. In this paper, we aim to learn a greedy heuris-
tic for sequentially selecting actions as a surrogate for invoking the expensive
oracle when evaluating an action. In particular, we focus on a class of combinato-
rial problems that can be solved via submodular maximization (either directly on
the objective function or via submodular surrogates). We introduce a data-driven
optimization framework based on the submodular-norm loss, a novel loss func-
tion that encourages the resulting objective to exhibit diminishing returns. Our
framework outputs a surrogate objective that is efficient to train, approximately
submodular, and can be made permutation-invariant. The latter two properties al-
low us to prove strong approximation guarantees for the learned greedy heuristic.
Furthermore, our model is easily integrated with modern deep imitation learning
pipelines for sequential prediction tasks. We demonstrate the performance of our
algorithm on a variety of batched and sequential optimization tasks, including set
cover, active learning, and data-driven protein engineering.

1 INTRODUCTION

In real-world automated decision making tasks we seek the optimal set of actions that jointly achieve
the maximal utility. Many of such tasks — either deterministic/non-adaptive or stochastic/adaptive
— can be viewed as combinatorial optimization problems over a large number of actions. As an
example, consider the active learning problem where a learner seeks the maximally-informative set
of training examples for learning a classifier. The utility of a training set could be measured by
the mutual information (Lindley, 1956) between the training set and the remaining (unlabeled) data
points, or by the expected reduction in generation error if the model is trained on the candidate
training set. Similar problems arise in a number of other domains, such as experimental design
(Chaloner and Verdinelli, 1995), document summarization (Lin and Bilmes, 2012), recommender
system (Javdani et al., 2014), and policy making (Runge et al., 2011).

Identifying the optimal set of actions (e.g., optimal training sets, most informative experiments)
amounts to evaluating the expected utility over a combinatorial number of candidate sets. When
the underlying model class is complex and the evaluation of the utility function is expensive, these
tasks are notoriously difficult to optimize (Krause and Guestrin, 2009). For a broad class of deci-
sion making problems whose optimization criterion is to maximize the decision-theoretic value of
information (e.g., active learning and experimental design), it has been shown that it is possible to
design surrogate objective functions that are (approximately) submodular while being aligned with
the original objective at the optimal solutions (Javdani et al., 2014; Chen et al., 2015b; Choudhury
et al., 2017). Here, the information gathering policies no longer aim to directly optimize the target
objective value, but rather choose to follow a greedy trajectory governed by the surrogate function

1

mailto:ayya@stanford.edu
mailto:steve@caltech.edu
mailto:aaceves@caltech.edu
mailto:yyue@caltech.edu
mailto:jssong@caltech.edu
mailto:chenyuxin@uchicago.edu

Published as a conference paper at ICLR 2021

that is much cheaper to evaluate. These insights have led to principled algorithms that enable sig-
nificant gains in the efficiency of the decision making process, while enjoying strong performance
guarantees that are competitive with the optimal policy.

Despite the promising performance, a caveat for these “submodular surrogate”-based approaches
is that it is often challenging to engineer such a surrogate objective without an ad-hoc design and
analysis that requires trial-and-error (Chen et al., 2015b; Satsangi et al., 2018). Furthermore, for
certain classes of surrogate functions, it is NP-hard to compute/evaluate the function value (Jav-
dani et al., 2014). In such cases, even a greedy policy, which iteratively picks the best action given
the (observed) history, can be prohibitively costly to design or run. Addressing this limitation re-
quires more automated or systematic ways of designing (efficient) surrogate objective functions for
decision making.

Overview of main results. Inspired by contemporary work in data-driven decision making, we aim
to learn a greedy heuristic for sequentially selecting actions. This heuristic acts as a surrogate for
invoking the expensive oracle when evaluating an action. Our key insight is that many practical
algorithms can be interpreted as greedy approaches that follow an (approximate) submodular surro-
gate objective. In particular, we focus on the class of combinatorial problems that can be solved via
submodular maximization (either directly on the objective function or via a submodular surrogate).
We highlight some of the key results below:

• Focusing on utility-based greedy policies, we introduce a data-driven optimization framework
based on the “submodular-norm” loss, which is a novel loss function that encourages learning
functions that exhibit “diminishing returns”. Our framework, called LEASURE (Learning with
Submodular Regularization), outputs a surrogate objective that is efficient to train, approximately
submodular, and can be made permutation-invariant. The latter two properties allow us to prove
approximation guarantees for the resulting greedy heuristic.

• We show that our approach can be easily integrated with modern imitation learning pipelines for
sequential prediction tasks. We provide a rigorous analysis of the proposed algorithm and prove
strong performance guarantees for the learned objective.

• We demonstrate the performance of our approach on a variety of decision making tasks, including
set cover, active learning for classification, and data-driven protein design. Our results suggest
that, compared to standard learning-based baselines: (a) at training time, LEASURE requires
significantly fewer oracle calls to learn the target objective (i.e., to minimize the approximation
error against the oracle objective); and (b) at test time, LEASURE achieves superior performance
on the corresponding optimization task (i.e., to minimize the regret for the original combinatorial
optimization task). In particular, LEASURE has shown promising performance in the protein
design task and will be incorporated into a real-world protein design workflow.

2 RELATED WORK

Near-optimal decision making via submodular optimization. Submodularity is a property of
a set function that has a strong relationship with diminishing returns, and the use of submodular-
ity has wide applications from information gathering to document summarization (Leskovec et al.,
2007; Krause et al., 2008; Lin and Bilmes, 2011; Krause and Golovin, 2014). The maximization
of a submodular function has been an active area of study in various settings such as centralized
(Nemhauser et al., 1978; Buchbinder et al., 2014; Mitrovic et al., 2017), streaming (Badanidiyuru
et al., 2014; Kazemi et al., 2019; Feldman et al., 2020), continuous (Bian et al., 2017b; Bach, 2019)
and approximate (Horel and Singer, 2016; Bian et al., 2017a). Variants of the greedy algorithm,
which iteratively selects an element that maximizes the marginal gain, feature prominently in the
algorithm design process. For example, in the case of maximizing a monotone submodular function
subject to a cardinality constraint, it is shown that the greedy algorithm achieves an approximation
ratio of (1 − 1/e) of the optimal solution (Nemhauser et al., 1978).

In applications where we need to make a sequence of decisions, such as information gathering, we
usually need to adapt our future decisions based on past outcomes. Adaptive submodularity is the
corresponding property where an adaptive greedy algorithm enjoys a similar guarantee for maxi-
mizing an adaptive submodular function (Golovin and Krause, 2011). Recent works have explored
optimizing the value of information (Chen et al., 2015b) and Bayesian active learning (Javdani et al.,
2014; Chen et al., 2017a) with this property. Another line of related work is online setting (typically

2

Published as a conference paper at ICLR 2021

bandits), which is grounded in minimizing cumulative regret (Radlinski et al., 2008; Streeter et al.,
2009; Yue and Guestrin, 2011; Ross et al., 2013; Yu et al., 2016; Hiranandani et al., 2020).

Learning submodular functions. Early work focused on learning non-negative linear combinations
of submodular basis functions (Yue and Joachims, 2008; El-Arini et al., 2009; Yue and Guestrin,
2011; Sipos et al., 2012), which was later generalized to mixtures of “submodular shells” (Lin and
Bilmes, 2012). Deep submodular functions (Dolhansky and Bilmes, 2016) extend these ideas to
more expressive compositional function classes by using sums of concave composed with modular
functions. The theoretical question of the learnability of general submodular functions is analyzed
in Balcan and Harvey (2018). Our goal is to encourage submodularity via regularization, rather than
via hard constraints on the function class design.

Learning to optimize via imitation learning. Rather than first learning a submodular function and
then optimizing it, one can instead learn to directly make decisions (e.g., imitate the oracle greedy
algorithm). This area builds upon imitation learning, which learns a policy (i.e., a mapping from
states to actions) directly from examples provided by an expert (e.g., an expensive computational
oracle, or a human instructor) (Chernova and Thomaz, 2014). Classic work on imitation learning
(e.g., the Dataset Aggregation (DAgger) algorithm (Ross et al., 2011)) reduce the policy learning
problem to the supervised learning setting, which has been extended to submodular optimization by
imitating the greedy oracle method (Ross et al., 2013). More generally, learning to optimize has
been applied generically to improve combinatorial optimization solvers for focused distributions
of optimization problems (He et al., 2014; Song et al., 2018; Khalil et al., 2016; Balunovic et al.,
2018; Gasse et al., 2019; Song et al., 2020). Our approach bridges learning to optimize and learning
submodular functions, with a focus on learning surrogate utilities using submodular regularization.

Learning active learning. Our approach is applicable to active learning, and so is related to work
on learning active learning. The closest line of work learns a utility function as a surrogate for
improvement in classifier accuracy (Konyushkova et al., 2017; Liu et al., 2018), which is then used
as the decision criterion. However, prior work either used restricted function classes (Konyushkova
et al., 2017), or very expressive function classes that can be hard to fit well (Liu et al., 2018).
Our work can be viewed as a direct extension of this design philosophy, where we aim to reliably
learn over expressive function classes using submodular regularization. Other related work do not
directly learn an active learning criterion, instead encouraging sample diversity using submodularity
(Wei et al., 2015) or the gradient signal from the classifier (Ash et al., 2020).

3 BACKGROUND AND PROBLEM STATEMENT

3.1 DECISION MAKING VIA SUBMODULAR SURROGATES

Given a ground set of items V to pick from, let u : 2
V

 -+ R be a set function that measures the
value of any given subset

1
 A V. For example, for experimental design, u(A) captures the utility

of the output of the best experiment; for active learning u(A) captures the generalization error after
training with set A. We denote a policy π : 2

V
 -+ V to be a partial mapping from the set/sequence

of items already selected, to the next item to be picked. We use Π to denote our policy class. Each
time a policy picks an item e V, it incurs a unit cost. Given the ground set V, the utility function
u, and a budget k for selecting items, we seek the optimal policy π that achieves the maximal utility:

π arg max u(Sπ,k). (1)
π Π

Sπ,k is the sequence of items picked by π: Sπ,i = Sπ,i−1 {π (Sπ,i−1)} for i > 0 and Sπ ,0 = .

As we have discussed in the previous sections, many sequential decision making problems can be
characterized as constrained monotone submodular maximization problem. In those scenarios u is:

• Monotone: For any A V and e V \ A, u(A) ≤ u(A {e}).

• Submodular: For any A B V and e V \ B, u(A {e}) − u(A) ≥ u(B {e}) − u(B).

1

For simplicity, we focus on deterministic set functions in this section. Note that many of our results can
easily extent to the stochastic, by leveraging the theory of adaptive submodularity (Golovin and Krause, 2011)

3

Published as a conference paper at ICLR 2021

In such cases, a mypopic algorithm following the greedy trajectory of u admits a near-optimal policy.
However, in many real-world applications, u is not monotone submodular. Then one strategy is to
design a surrogate function f : 2

V
 → R which is:

• Globally aligning with u: For instance, f lies within a factor of u: f (A) [c1 · u(A), c2 · u(A))]
for some constants c1, c2 and any set A V; or within a small margin with u: f (A) [u(A) −
, u(A) +] for a fixed > 0 and any set A V ;

• Monotone submodular: Intuitively, a submodular surrogate function encourages selecting items
that are beneficial in the long run, while ensuring that the decision maker does not miss out any
actions that are “surprisingly good” by following a myopic policy (i.e., future gains for any item
are diminishing). Examples that fall into this category include machine teaching (Singla et al.,
2014), active learning (Chen et al., 2015a), etc.

We argue that in real-world decision making scenarios—as validated later in Section 6—the decision
maker is following a surrogate objective that aligns with the above characterization. In the following
context, we will assume that such surrogate function exists. Our goal is thus to learn from an expert
policy that behaves greedily according to such surrogate functions.

3.2 LEARNING TO MAKE DECISIONS

We focus on the regime where the expert policy is expensive to evaluate. Let g : 2
V

 × V → R be
the score function that quantifies the benefit of adding a new item to an existing subset of V . For the
expert policy and submodular surrogate f discussed in Section 3.1, A V and e V:

g
exp

(A, e) = f (A {e }) − f (A).

For example, in the active learning case, g
ex

p (A, e) could be the expert acquisition function that
ranks the importance of labelling each unlabelled point, given the currently labelled subset. In the
set cover case, g

ex
p (A, e) could be the function that gives the score to each vertex and determines

the next best vertex to add to the cover set. Given a loss function ̀ , our goal is to learn a score
function ĝ that incurs the minimal expected loss when evaluated against the expert policy: ĝ =
arg ming EA,e [̀ (g(A, e), g

ex
p (A, e))]. Subsequently, the utility by the learned policy is u(Sπ̂,k),

where for any given history A V , π̂(A) arg max e V ĝ(A, e).

4 LEARNING WITH SUBMODULAR REGULARIZATION

To capture our intuition that a greedy expert policy tends to choose the most useful items, we intro-
duce LEASURE, a novel regularizer that encourages the learned score function (and hence surrogate
objective) to be submodular. We describe the algorithm below.

Given the groundset V , let f : 2
V

 → R be any approximately submodular surrogate such that f (A)
captures the “usefulness” of the set A. The goal of a trained policy is to learn a score function
g : 2

V
 × V → R that mimics g

ex
p (A, x) = f (A {x }) − f (A), which is often prohibitively

expensive to evaluate exactly. Then, given any such g, we can define a greedy policy π(A) =
argmaxx Vg(A, x). With LEASURE, we aim to learn such function g that approximates g

ex
p well

while being inexpensive to evaluate at test time. Let Dreal = {((A, x), y
ex

p = g
ex

p(A, x))}m be the
gathered tuple of expert scores for each set-element pair. If the set 2

V
 × V was not too large, the

LEASURE could be trained on the randomly collected tuples Dreal. However, 2
V

 tends to be too
large to explore, and generating ground truth labels could be very expensive. To leverage that, for a
subset of set-element pairs in Dreal we generate a set of random supersets to form an unsupervised
synthetic dataset of tuples Dsynth = {((A, x), (A' , x))|A - A' , (A, x) Dreal }n where A' denote
a randomly selected superset of A. Define:

Loss(g, g
ex

p) =
X X

(y
ex

p − g(A, x))
2

 + λ σ([g(A' , x) − g(A, x)]),
(A,x) ,yexp Dreal ((A,x) , (A' ,x)) Dsynth

where λ > 0 is the regularization parameter and σ is the sigmoid function. Intuitively, such regu-
larization term will force the learned function g to be close to submodular, as it will lead to larger
losses every time g(A' , x) > g(A, x). If we expect f to be monotonic, we also introduce a second
regularizer ReLu(−g(A' , x)) which pushes the learned function to be positive. Combined, the loss

4

Published as a conference paper at ICLR 2021

function becomes (used in Line 11 in Algorithm 1):

Loss(g, g
ex

p) =
X X

(y
ex

p − g (A, x))
2

 + λ σ ([g (A', x) − g (A, x)])
(A,x),yexp Dreal ((A,x),(A ' ,x)) Dsynth

+ γ
X

ReLu(−g (A', x)),
(A

'
,x) Dsynth

where γ is another regularization strength parameter. Such loss should push g to explore a set of
approximately submodular, approximately monotonic functions. Thus, if f exhibits the submodular
and monotonic behavior, g trained on this loss function should achieve a good local minima.

We next note that since 2
V

 is too large to explore, instead of sampling random tuples for Dreal, we
use modified DAgger. Then g can learn not only from the expert selections of (A, x), but it can also
see the labels of the tuples the expert would not have chosen.

Algorithm 1 Learning to make decisions via Submodular Regularization (LEASURE)

1: Input: Ground set V , expert score function g
ex

p,
2: regularization parameters λ, γ, DAgger constant β, the length of trajectories T.
3: initialize Dreal
4: initialize g to any function.
5: for i = 1 to N do
6: Let gi = g

ex
p with probability β.

7: Sample a batch of T−step trajectories using 7ri (A) = xi = argmaxx Vgi (A, x).
8: Get dataset Di = {(Ai , xi), g

ex
p (Ai , xi)} of labeled tuples on actions taken by 7ri .

9: Dreal Dreal U Di .
10: Generate synthetic dataset Dsynth

from Dreal.
11: Train gi +1

on Dreal
and Dsynth using the loss function above.

12: Output: gN+1

Algorithm 1 above describes our approach. A trajectory in Line 7 is a sequence of iteratively chosen
tuples, ((, x1), ({ x1 }, x2), ({ x1 , x2 }, x3)..., ({ x1 , ..., x T −1}, xT)), collected using a mixed policy
7ri . In Line 8, expert feedback of selected actions is collected to form Di . Note that in some settings,
even collecting exact expert labels g

ex
p at train time could be too expensive. In that case, g

ex
p can

be replaced with a less expensive, noisy approximate expert g
exp

 ≈ g
ex

p. In fact, all three of our
experiments use noisy experts in one form or another.

5 ANALYSIS

Estimating the expert’s policy. We first consider the bound on the loss of the learned policy mea-
sured against the expert’s policy. Since LEASURE can be viewed as a specialization of DAGGER

(Ross et al., 2011) for learning a submodular function, it naturally inherits the performance guaran-
tees from DAGGER, which show that the learned policy efficiently converges to the expert’s policy.
Concretely, the following result, which is adapted from the original DAgger analysis, shows that the
learned policy is consistent with the expert policy and thus is a no-regret algorithm:

Theorem 1 (Theorem 3.3, Ross et al. (2011)). Denote the loss of 7r̂ at history state H as l (H, 7r̂) :=
£(g (H, 7r̂(H)), g

exp (H, 7r
exp (H))). Let dπ ˆ be the average distribution of states if we follow 7r̂ for a

finite number of steps. Furthermore, let Di be a set of m random trajectories sampled with 7ri at
round i {1, ... , N }, and ˆN = minπ

1 ~ N

policy on the sampled trajectories. If N is O
(
T

2
 log(1/δ)

)
and m is O (1) then with probability at

N i=1 EHi Di [l (Hi , 7r̂)] be the training loss of the best

least 1 − δ there exists a 7r̂ among the N policies, with EH dπ̂ [l (H, 7r̂)] ≤ ˆN + O
(

1). T

Approximating the optimal policy. Note that the previous notion of regret corresponds to the
average difference in score function between the learned policy and the expert policy. While this
result shows that LEASURE is consistent with the expert, it does not directly address how well the
learned policy performs in terms of the gained utility. We then provide a bound on the expected value
of the learned policy, measured against the value of the optimal policy. For specific decision making
tasks where the oracle follows an approximately submodular objective, our next result, which is
proved in the appendix, shows that the learned policy behaves near-optimally.

5

Published as a conference paper at ICLR 2021

Theorem 2. Assume that the utility function u is monotone submodular. Furthermore, assume the
expert policy π

ex
p follows a surrogate objective f such that for all A V, | f (A) − u(A)| < EE ~N where EE > 0. Let ~̂N = minπ

1

 i=1 l (Hi , π̂) be the training loss of the best policy on the
sampled trajectories. If N is O

(
T

2
 log(1/δ)

)
then with probability at least 1 − δ, the expected N

utility achieved by running π̂ for k steps is

E[u(Sπ̂,k)] ≥ (1 − 1/e)E[u(Sπ ,k)] − k (EE + Δmax fN) − O(1) .

A closely related work in approximate policy learning is by Ross et al. (2013), which also builds
upon DAGGER to tackle policy learning for submodular optimization, via directly imitating the
greedy oracle decision rather than learning a surrogate utility. One key difference is that their ap-
proach can only yield guarantees against an artificial benchmark (a set or list of simpler policies that
each independently selects an item to add to the action set), whereas our theoretical guarantees are
with respect to the optimal policy in our class.

6 EXPERIMENTS

In this section, we demostrate the performance of LEASURE on three diverse sequential decision
making tasks, namely set cover (SC), learning active learning (LAL) and protein engineering (PE).

Baselines. We compare our approach to the Deep Submodular Function (DSF (Dolhansky and
Bilmes, 2016)) and Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds
(BADGE (Ash et al., 2020)). The DSF approach learns a submodular surrogate function f : 2

V
 → R

that produces a score for each set A V. The architecture of the DSF forces the function f to be
exactly submodular, as opposed to LEASURE, which is only encouraged to be submodular through
a regularizer. However, the architecture and the training procedure of the DSF are quite restrictive,
which does not allow the DSF to explore a large domain during training and restricts how expressive
it can be compared to a standard neural network. Moreover, DSF are restricted to small V, and the
number of parameters increases with the cardinality of V. That is not true for LEASURE, which
number of parameters grows with the dimensionality of elements in V. This makes DSF useful for
small datasets, but makes it prohibitively expensive to use on larger problems. In fact, we could not
compare LEASURE to DSF on LAL or PE tasks, as it was not feasible to train DSF on these sets. For
LAL experiment, we also compare with a recent deep active learning approach (Ash et al., 2020).
Finally, we want to add that LEASURE can be seamlessly integrated with any standard Machine
Learning library, and since the architecture of the learned policy in LEASURE is not restrictive, any
available optimization trick can be used to achieve better performance. In fact, existing ‘imitation
learning’-based approaches for LAL, such as Liu et al. (2018), can be viewed as special cases of
LEASURE (i.e. without regularization). On the other hand, DSF cannot be as easily implemented,
and the standard libraries are not optimized for the DSF architecture.

6.1 SET COVER

Before testing our approach on a real-world scenario, we showcase its performance on a simple
submodular and monotonic maximization problem. Set cover is a classical example: given a set of
elements U = {1, 2 , ..., n} (called the universe) and a collection of m sets S = {s1 , .., sm} whose
union equals the universe, the set cover problem is to identify the smallest sub-collection of S whose
union equals the universe. Formulated as a policy learning problem, the goal is to learn the score
function g : 2

S
 × S → R such that for any Sl S, x S,

g (Sl , x) ≈ g
ex

p (Sl , x) = | s Sl
s x| − | s Sl

s| .

Given g, we can then define a policy π : 2
s

 → S as π (Sl) = argmaxx Sg (Sl , x). During train-
ing, tuples {(Sl , x) , g

ex
p} are collected, and then g is trained on this set. We trained four different

policies: a function g parametrized by a neural network with MSE (g, g
ex

p) as the loss, a func-
tion g with the same MSE loss and just a monotonicity regularizer, a function g trained using both
monotonicity and submodular regularizers (LEASURE), as well as the Deep Submodular Function
baseline (Dolhansky and Bilmes, 2016). We use a modified Deepset architecture (Zaheer et al.,
2017) for modeling the permutation-invariant score networks g in both the SC and the LAL tasks,
and provide the details in Appendix B. Our dataset is the subset of the Mushroom dataset (Lim,
2015), consisting of 1000 sets. Each set contains 23 mushroom species, and there are a total of 119

6

Published as a conference paper at ICLR 2021

(a) (b)

Figure 1: Evaluating LEASURE against baselines on set cover instances

species. The goal is to train a policy to select the largest superset of these sets. We evaluate in two
settings: Exact Set Cover, where we collect tuples { (Sl , x) , g

ex
p } for training, and Noisy Set Cover,

where we have access only to { (Sl , x) , gexp
 }, where gexp

 is a noisy score. The networks are trained
on rollouts of length 20 (i.e. on sets {Sl : |Sl | ≤ 20}), and tested on rollout of length up to 100.

Figure 1 show the value of set cover as a function of the size of the superset. LEASURE significantly
outperforms other learned policies, although Deep Submodular Function generalizes better to larger
rollout lengths – LEASURE gets most of its set cover gains in the first 10-20 selected points, while
Deep Submodular Function continues to noticeably improve past the training rollout length. Note
that in Figures 1a & 1b, the competing baselines all exhibit a “diminishing returns” effect, result-
ing in a concave-shaped value function. With a submodular-norm regularizer, LEASURE quickly
identified the sets with large marginal gains. This observation aligns with our analysis in Section 5.

6.2 LEARNING ACTIVE LEARNING ON FASHION MNIST

In this section we demonstrate the performance of LEASURE on a real-world task that is not sub-
modular or monotonic, but usually exhibits submodular and monotonic behaviour.

In active learning, there is a partially labelled dataset
S = {Sl , Su }, where Sl is labelled and Su is un-
labelled, and a policy π : 2

S
 → S. The labelled

subset Sl can be used to infer from data (learn the
image classifier, predict unlabelled protein fitness,
etc). The goal of the policy is to select the smallest
subset Sπ Su to label such that the accuracy of su-
pervised learning from Sπ Sl is maximized. Since
selecting a subset is a prohibitively expensive combi-
natorial task, the policy is usually sequential. In par-
ticular, it selects points to add to Sπ one by one (or
in batches) using some score function g (Sπ Sl , ·) :
Su → R to score each point x Su and then the
policy labels the point with the largest score. If g
were to be the first order difference of a submodu-
lar function f , i.e. g (A, e) = f (A {e}) − f (A),
then the policy would be near-optimal. Moreover, as
discussed above, intuitively we expect g to have this
property in most cases, since adding an extra point
to a larger set usually has less effect than adding the
same point to a smaller subset of the set.

Figure 2: Combining submodular regularization
with a learned active learning policy for 10-class
Fashion-MNIST classification. The figure sum-
marizes the classification error of a neural net-
work trained on labelled images, as a function of
the number of labelled images. Originally, ran-
dom set of 20 images is selected, and then each
policy greedily chooses the next image to label.
The learned policies were trained on rollouts of
length up to 30, and tested on rollouts of length
200. The “no regularizer” policy corresponds to
Konyushkova et al. (2017), only in this case the
features are parametrized by the neural network
instead of being hand-engineered. “BADGE” cor-
responds to a sequential modification of (Ash
et al., 2020). The results are averaged between
500 experiments, with standard error reported.

The above motivates the use of LEASURE in active
learning (Figure 2). In this experiment, the set S is
the Fashion-MNIST dataset consisting of greyscale
images from one of 10 clothes classes (Xiao et al.
(2017)). The goal was to learn a policy that greedily selects “the best” point x

* Su to label, such
that a neural network classifier trained on the labelled set Sl {x

*
} produces the most accurate

classification of the unlabelled images. In particular, we trained the above function g to predict the

7

Published as a conference paper at ICLR 2021

(a) Comparison to baseline methods (b) Effect of scaling parameter lambda

Figure 3: Combining submodular regularization with a learned active learning policy for a protein
engineering task. In (b), Lambda = 0 corresponds to the unregularized case. Error bars are plotted
as standard error of the mean across 50 replicates.

accuracy gain g
ex

p from labelling a point. The accuracy gain g
ex

p was measured by training the
neural network classifier on both Sl and Sl {x} and then recording the difference in validation set
classification accuracy. Since obtaining exact g

ex
p for each datapoint is very expensive, we instead

collected noisy labels gexp ≈ g
ex

p, obtained by training the classifier for only 10 epochs. The tuples
{(Sl , x), gexp

)} were collected using DAgger with rollouts of length 30 (starting from a random
batch of 20 images). For training, we used an initially unlabelled dataset with 60000 images, 2000
of which were set aside to use for evaluating validation accuracy. We trained two neural networks to
approximate g - an unregularized one, and one with a monotonicity and a submodularity regularizer
(i.e. LEASURE). See Appendix B for details on architecture and training procedure.

The trained policies were tested on a set of 8000 images, with additional 2000 set aside for vali-
dation. Attest time, we again started with a random batch of size 20 and then used each policy
to sequentially select additional 200 images to label (Figure 2). The recorded test error rate was
collected using real g

ex
p, i.e. a classifier trained until training loss reaches a certain threshold. The

experiment was benchmarked against the “random” policy that randomly picked the next point, the
“uncertainty” policy that selected the next point by maximizing uncertainty, the “no regularizer”
policy that used DAgger with MSE loss, and “BADGE” from Ash et al. (2020). See Appendix B
for details. Even though LEASURE was trained on much shorter rollouts using very noisy labels,
it still outperformed all other baselines. This confirms our intuition that the submodular regularizer
allowed the learned score function g to find a local minima that generalizes well to out of sample.

6.3 PROTEIN ENGINEERING

By employing a large protein engineering database containing mutation-function data (Wang et al.,
2019), we demonstrate that LEASURE enables the learning of an optimal policy for imitating expert
design of protein sequences (see Appendix for detailed discussion of datasets). As in Liu et al. (2018)
we construct a fully data-driven expert which evaluates via 1-step roll-out the effect of labeling each
candidate data (in our case a protein mutant) with the objective of minimizing loss on a downstream
regression task (predicting protein fitness).

When training the policy to emulate the algorithmic expert via imitation learning, we represent each
state as two merged representations: (1) a fixed dimensional representation of the protein being
considered (as the last dense layer of the network described in Appendix C), and (2) a similar
fixed dimensional representation of the data already included in the training set (as a sum of their
embeddings), including their average label value. At each step a random pool of data is drawn from
the state space and the expert policy greedily selects a protein to label, which minimizes the expected
regression loss on the downstream regression task (prediction of protein fitness). Once the complete
pool of data has been evaluated, the states are stored along with their associated preference score,
taken as their ability to reduce the loss in the 1-step roll out. Using these scores, the expert selects a
protein sequence to add into the training set, and we retrain the model and use the updated model to
predict a protein with the maximum fitness. This paired state action data is used to train the policy
model at the end of each episode, as described in Liu et al. (2018). As we observe in Figure 3a, this
method trains a policy which performs nearly identically to this 1-step oracle expert.

The use of submodular regularization enables the learning of a policy which generalizes to a fun-
damentally different protein engineering task. In our experiments, LEASURE is trained to emulate

8

Published as a conference paper at ICLR 2021

a greedy oracle for maximizing the stability of protein G, a small bacterial protein used across a
range of biotechnology applications (Sjbring et al., 1991). We evaluate our results by applying the
trained policy to select data for the task of predicting antibody binding to a small molecule. As is
the case with all protein fitness landscapes, the evaluation dataset is highly imbalanced, with the vast
majority of mutants conferring no improvement at all. Because data is expensive to label in biolog-
ical settings (proteins must be synthesized, purified and tested), we are often limited in how many
labels can feasibly be generated, and the discriminative power among the best results is often more
important than among the worst. To construct a metric with real-world applicability we assess each
model by systemically examining the median Kd of the next ten data points selected at each budget,
from 10 to 110 total labels. This method is utilized in recognisance of the extreme ruggedness of
protein engineering landscapes, wherein the vast majority of labels are of null fitness, and the ability
to select rare useful labels for the next experimental cycle is of key importance.

We observe that LEASURE outperforms all evaluated baselines, and that the inclusion of submodular
optimization is mandatory to its success (Figure 3a). A greedy active learner which labels the anti-
body mutation with the best predicted Kd (the smallest) preforms approximately equivalently with
selecting random labels. Use of dropout as an approximation of model uncertainty as in Gal and
Ghahramani (2016) improves upon these baselines, although significant betterment is not achieved
until approximately 35 labels are added. In comparison, the results from LEASURE diverge from
all others nearly immediately, and the best model, which uses a lambda of 0.1, achieves a notable
improvement in Kd, 5.81 µM, vs 7.27 µM achieved by entropy sampling. In support of methods
success, we note that the learned policy preforms approximately as well as the greedy oracle which
it emulates (Appendix Figure 7a). We observe that the results are robust within a range of possible
lambda values (Figure Figure 3b and Appendix Figure 7b), and that without the use of submodular
regularization the trained policy fails to learn a policy better than the selection of random labels.
This is an important finding, as the method proposed by Liu et al. (2018) without LEASURE, has
been shown to be a state-of-the-art method for imitation learning.

Based on these empirical results, LEASURE demonstrates significant potential as computational
tool for real-world automated experimental design tasks: In particular, in the protein engineering
task, LEASURE achieves the SOTA on the benchmark data-sets considered in this work. While
LEASURE does involve repeated retraining of the protein engineering network, we observe that
it returns strong results even with a single step of training. Additionally, the networks that are
employed are very simple (Appendix C). This allows for reasonable training time (36 hours) and
nearly instantaneous inference. Given the considerable time and cost of protein engineering, these
computational budgets are quite modest. Protein engineering is a time consuming (months to years)
and expensive undertaking (10’s of thousands to millions of dollars). These projects usually strive to
achieve the best possible results given a fixed budget. We have demonstrated in our work the ability
deliver significant improvements in protein potency for the modest fixed budgets. Although the cost
savings of engineering and testing an individual protein (or label) vary significantly based on the
system, ranging tens to hundreds of dollars, we observe that to achieve a Kd of 8e-6 M LEASURE
delivers an approximate cost savings of 65%, or 40 fewer labels than the next best method. The
sequential synthesis and evaluation of each of these labels would likely span several months and
additionally incur several thousands of dollars of materials costs.

7 CONCLUSION

In this paper, we introduce LEASURE, a data-driven decision making framework based on a novel
submodular-regularized loss function. The algorithm was inspired by the recent developments
of submodular-surrogate-based near-optimal algorithms for sequential decision making. We have
demonstrated LEASURE on several diverse set of decision making tasks. Our results suggest
that LEASURE can be easily integrated with modern deep imitation learning pipelines, and that
it is efficient to run, while still reaching the best performance among the competing baselines.
In addition to demonstrating the strong empirical performance on several use cases, we believe
our work also provides useful insights in the design and analysis of novel information acquisition
heuristics where traditional ad-hoc approaches are not feasible.

Acknowledgements. This research was supported in part by funding from NSF #1645832, NIH
#T32GM112592, The Rosen Bioengineering Center, Raytheon, Beyond Limits, JPL, and UChicago
CDAC via a JTFI AI + Science Grant. This work was additionally supported by NVIDIA corporation
through the donation of the GPU hardware used in experiments.

9

Published as a conference paper at ICLR 2021

REFERENCES

E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church. Unified rational protein engineering
with sequence-based deep representation learning. Nat. Methods, 16(12):1315–1322, 12 2019.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch
active learning by diverse, uncertain gradient lower bounds. In International Conference on Learning Rep-
resentations, 2020. URL https://openreview.net/forum?id=ryghZJBKPS.

Francis Bach. Submodular functions: from discrete to continuous domains. Mathematical Programming, 175
(1-2):419–459, 2019.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming sub-
modular maximization: Massive data summarization on the fly. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 671–680, 2014.

Maria-Florina Balcan and Nicholas JA Harvey. Submodular functions: Learnability, structure, and optimiza-
tion. SIAM Journal on Computing, 47(3):703–754, 2018.

Mislav Balunovic, Pavol Bielik, and Martin T Vechev. Learning to solve smt formulas. In NeurIPS, pages
10338–10349, 2018.

Andrew An Bian, Joachim M Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guarantees for greedy
maximization of non-submodular functions with applications. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 498–507, 2017a.

Andrew An Bian, Baharan Mirzasoleiman, Joachim Buhmann, and Andreas Krause. Guaranteed non-convex
optimization: Submodular maximization over continuous domains. In Artificial Intelligence and Statistics,
pages 111–120, 2017b.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization with cardinality
constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1433–1452. SIAM, 2014.

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science, 10(3):273–304,
1995.

Yuxin Chen, S Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information maximization:
When is greedy near-optimal? In Conference on Learning Theory, pages 338–363, 2015a.

Yuxin Chen, Shervin Javdani, Amin Karbasi, James Andrew Bagnell, Siddhartha Srinivasa, and Andreas
Krause. Submodular surrogates for value of information. In Proc. Conference on Artificial Intelligence
(AAAI), January 2015b.

Yuxin Chen, S. Hamed Hassani, and Andreas Krause. Near-optimal bayesian active learning with correlated
and noisy tests. In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), April
2017a.

Yuxin Chen, Jean-Michel Renders, Morteza Haghir Chehreghani, and Andreas Krause. Efficient online learning
for optimizing value of information: Theory and application to interactive troubleshooting. In Proceedings of
the 33rd Conference on Uncertainty in Artificial Intelligence (UAI 2017), volume 2, pages 966–983. Curran
Associates, Inc., 2017b.

Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 8(3):1–121, 2014.

Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, and Debadeepta Dey. Learning to gather information
via imitation. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 908–915.
IEEE, 2017.

Brian W Dolhansky and Jeff A Bilmes. Deep submodular functions: Definitions and learning. In Advances in
Neural Information Processing Systems, pages 3404–3412, 2016.

Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning down the noise in the blogosphere.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 289–298, 2009.

Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The one-way communication
complexity of submodular maximization with applications to streaming and robustness. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 1363–1374, 2020.

10

https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS

Published as a conference paper at ICLR 2021

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.
mlr.press/v48/gal16.html.

Maxime Gasse, Didier Che´telat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial opti-
mization with graph convolutional neural networks. In Advances in Neural Information Processing Systems,
pages 15580–15592, 2019.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. In Advances
in neural information processing systems, pages 3293–3301, 2014.

Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen, and
Branislav Kveton. Cascading linear submodular bandits: Accounting for position bias and diversity in
online learning to rank. In Uncertainty in Artificial Intelligence, pages 722–732. PMLR, 2020.

Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In Advances in Neural
Information Processing Systems, pages 3045–3053, 2016.

Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, James Andrew Bagnell, and Siddhartha Srini-
vasa. Near-optimal bayesian active learning for decision making. In In Proc. International Conference on
Artificial Intelligence and Statistics (AISTATS), April 2014.

Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi. Submodular
streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In Interna-
tional Conference on Machine Learning, pages 3311–3320, 2019.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch in
mixed integer programming. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. In Advances in
Neural Information Processing Systems, pages 4225–4235, 2017.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:71–104, 2014.

Andreas Krause and Carlos Guestrin. Optimal value of information in graphical models. JAIR, 35:557–591,
2009.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in gaussian processes:
Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9(2), 2008.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 420–429, 2007.

Ching Lih Lim. A suite of greedy methods for set cover computation. 2015.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies,
pages 510–520, 2011.

Hui Lin and Jeff Bilmes. Learning mixtures of submodular shells with application to document summarization.
In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI’12, page
479490, Arlington, Virginia, USA, 2012. AUAI Press. ISBN 9780974903989.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of Mathematical
Statistics, pages 986–1005, 1956.

Ming Liu, Wray Buntine, and Gholamreza Haffari. Learning how to actively learn: A deep imitation learning
approach. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1874–1883, 2018.

Marko Mitrovic, Mark Bun, Andreas Krause, and Amin Karbasi. Differentially private submodular maximiza-
tion: data summarization in disguise. In International Conference on Machine Learning, pages 2478–2487,
2017.

11

http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html

Published as a conference paper at ICLR 2021

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximiz-
ing submodular set functionsi. Mathematical programming, 14(1):265–294, 1978.

Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with multi-armed bandits.
In Proceedings of the 25th international conference on Machine learning, pages 784–791, 2008.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel, and Yun S.
Song. Evaluating protein transfer learning with tape. Advances in neural information processing systems, 32:
9689–9701, Dec 2019. ISSN 1049-5258. URL https://pubmed.ncbi.nlm.nih.gov/33390682.
33390682[pmid].

Ste´phane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635, 2011.

Stephane Ross, Jiaji Zhou, Yisong Yue, Debadeepta Dey, and Drew Bagnell. Learning policies for contextual
submodular prediction. In International Conference on Machine Learning, pages 1364–1372, 2013.

M. C. Runge, S. J. Converse, and J. E. Lyons. Which uncertainty? using expert elicitation and expected value
of information to design an adaptive program. Biological Conservation, 2011.

Yash Satsangi, Shimon Whiteson, Frans A Oliehoek, and Matthijs TJ Spaan. Exploiting submodular value
functions for scaling up active perception. Autonomous Robots, 42(2):209–233, 2018.

Adish Singla, Ilija Bogunovic, Gäbor Barto´k, Amin Karbasi, and Andreas Krause. Near-optimally teaching the
crowd to classify. In ICML, volume 1, page 3, 2014.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten Joachims. Large-margin learning of submodular summa-
rization models. In Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 224–233, 2012.

U. Sjbring, L. Bjrck, and W. Kastern. Streptococcal protein G. Gene structure and protein binding properties.
J. Biol. Chem., 266(1):399–405, Jan 1991.

Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, and Masahiro Ono. Learning to search
via retrospective imitation. arXiv preprint arXiv:1804.00846, 2018.

Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood search framework for
solving integer linear programs. In Advances in Neural Information Processing Systems, 2020.

Matthew Streeter, Daniel Golovin, and Andreas Krause. Online learning of assignments. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems, volume 22. Curran Associates, Inc., 2009. URL https://proceedings.neurips.
cc/paper/2009/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf.

C. Y. Wang, P. M. Chang, M. L. Ary, B. D. Allen, R. A. Chica, S. L. Mayo, and B. D. Olafson. ProtaBank: A
repository for protein design and engineering data. Protein Sci., 28(3):672, Mar 2019.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning. In Inter-
national Conference on Machine Learning, pages 1954–1963, 2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017.

Baosheng Yu, Meng Fang, and Dacheng Tao. Linear submodular bandits with a knapsack constraint. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to diversified retrieval. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.
neurips.cc/paper/2011/file/33ebd5b07dc7e407752fe773eed20635-Paper.pdf.

Yisong Yue and Thorsten Joachims. Predicting diverse subsets using structural svms. In Proceedings of the
25th international conference on Machine learning, pages 1224–1231, 2008.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexan-
der J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

12

https://pubmed.ncbi.nlm.nih.gov/33390682
https://proceedings.neurips.cc/paper/2009/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/33ebd5b07dc7e407752fe773eed20635-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/33ebd5b07dc7e407752fe773eed20635-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

Published as a conference paper at ICLR 2021

A P ROOF FOR SECTION 5

A.1 PROOF OF THEOREM 2

Proof. The high-level idea is to first connect the total expected utility of the learned policy π̂ with
the expected utility of the expert policy π

ex
p, following the analysis in DAgger (Ross et al., 2011).

Then, we will use the fact that π
ex

p is greedy with respect to f , an approximation to the submodular
utility function u, to bound the one step gain of the π

ex
p against the k step gain of running the

optimal policy, and subsequently bound the total utility of the expert policy against the optimal
policy. We would eventually obtain a similar result as Theorem 2, detailed as follows.

More concretely, following Theorem 3.4 in DAgger, we obtain that

E [u(Sπ̂ ,k)] ≥ E [u(Sπexp ,k)] − ΔmaxkEN − O(1)

Here Δmax is the largest one-step deviation from π
ex

p that π̂ can suffer. It is equivalent to the term
u in the DAgger paper. Since f is e-close to a monotone submodular function u, we know that
Δmax ≤ maxA V ,|A|=k f (A) ≤ maxA V ,|A|=k u(A) + EE , which is a constant once u is given.

Next, since π
ex

p is greedily optimizing an E E-approximation to a monotone submodular function u,
we know that

E [u(Sπexp ,k)] ≥ (1 − 1/e)E [u(Sπ* ,k)] − keE

following the proof from Theorem 5 in (Chen et al., 2017b).

Combining both steps, we have that

E [u(Sπ̂ ,k)] ≥ (1 − 1/e)E [u(Sπ* ,k)] − k (f E + Δmax f N) − O(1)

which completes the proof.

13

(a) (b)

Published as a conference paper at ICLR 2021

B SUPPELEMENTAL DETAILS FOR THE SET COVER AND MNIST ACTIVE
LEARNING EXPERIMENTS

We provide additional results for the set cover experiments, under the same experimental setup as
Figure 1a and 1b. The subplots 4a and 4b show the mean square error of learned policy g as a
function of the size of Sl. We provide a zoomed-in version of 4b in Figure 4c. In Figure 4c, we
show it is clear that training the neural network on the monotonicity regularizer only does not help
it learn out of sample - the error rapidly increases as soon as the test rollout length becomes larger
than the training rollout length.

In Noisy Set Cover experiment (Figure 4a), each label of the element added to the superset was
perturbed with N (0, 1) noise. As a result, the variance of the total noise is linear in the number of
sets. So, it is reasonable that the MSE error grows with number of sets - the policies cannot learn to
predict random noise. While stochastic MSE of LEASURE and the no-regularizer policy are similar,
LEASURE outperforms in the number of elements added, which is what matters in practice (Fig-
ure 1). These two figures confirm our intuition that when the problem is not exactly submodular,
Leasure will still generalize better than no regularizer by learning to ignore small deviations from
submodularity. Finally, it is also expected that DSF has a lower MSE than Leasure when the label
noise is too large - Deep Submodular Functions are required to be submodular. When the stochastic-
ity in the MSE becomes overwhelmingly large, that restrictive requirement becomes an advantage.
However, when the MSE variance is not too large, the lack of expressiveness and the difficulty of
optimization of DSF make it lose its advantage compared to Leasure.

(c)

Figure 4: Supplemental results: Set cover

For completion, we also provide our architecture and parameter choices for both set cover and
Learning Active Learning (LAL) on MNIST experiments. For set cover, the problem is too simple to
require DAGGER (Ross et al., 2011). Instead, the tuples are generated randomly. For active learning
on MNIST, the tuples are indeed generated using Algorithm 1. For MNIST, we first preprocessed
our dataset with PCA, leaving the number of vectors necessary to achieve 80% covariance on the
training set (24 vectors). That was necessary to allow the comparison with DSF. For set cover, each
element was a set v containing 23 elements v

1
, v

2
, .., v

23
, where v

i
 was an integer corresponding

to the label of the species. As a neural network input, v was simply represented as a vector of
[v

1
 ,..., v

23
].

14

~
Set em-

i v̄i
Dense Layer

+ Tanh bedding Ā
v̄k

v̄0

v̄1

. . .

Published as a conference paper at ICLR 2021

Both set cover and MNIST used a modified Deepset architecture (Zaheer et al., 2017) for score net-
works as follows: Given a set A = {v0 , ..., vk} V and a datapoint v V , the score network g first
preprocesses all inputs v0 , ..., vk , v to obtain learned embeddings v̄0 , .., v̄k , v̄. (See Figure 5) Then,
the elements in A are combined using Deepsets architecture to produce a learned set embedding A

¯
.

Finally, A
¯

 and v̄ are concatenated and then a learned linear layer and a Leaky ReLu nonlinearity are
applied to produce g (A, v). (See Figure 6). All dense layers have 64 neurons and a bias term. Using
this Deepsets-like framework, we achieve permutation invariance of elements in set A while also
keeping the network expressive enough to learn a wide range of functions.

Learning element representation

Input v V Dense Layer
+ Tanh

Dense Layer Embedding v̄
+ Tanh

Figure 5: Score neural network architecture illustration

Combining element representation using DeepSets

¯ v
Dense

Layer +
Leaky ReLu

g(A, v)

Figure 6: Score neural network architecture illustration.

For both tasks, the score networks are trained using ADAM with a learning rate of 1e-3. Beta
parameter from Line 2 in LEASURE was picked randomly to be

5

4
. From experiments, the exact

value of the parameter did not matter as long as it starts with at least 21 and degrades towards almost
0 after N iterations. The λ and γ parameters were picked using a hyperparameter sweep in log space.
As per our intuition, we have found that the strength of the parameters should reflect your certainty
that the task is submodular and/or monotone. For set cover, λ = 0.1, γ = 0.5, while for active
learning λ = 0.001 and γ = 0.001. Notice that the values are not comparable between different
experiments: for MNIST Learning Active Learning (LAL), g

ex
p (A, v) [0 , 1) outputs the accuracy

gain of adding v to A and training a supervised model on it; for set cover, g
ex

p(A, v) {0, 1}
outputs the number of new elements added to the set by adding x to A. For LAL, the values of gexp

are usually much smaller than 1, particularly for larger sets. Thus, the values for the two regularizers
had to be smaller so that the model learns not just the regularizer.

Finally, we wanted to discuss our baselines in Fashion MNIST experiments. In Figure 2, we have
four baselines: random, uncertainty, BADGE (Ash et al., 2020), and no regularizer. The no regu-
larizer baseline was trained identically to LEASURE, except for the absense of submodularity and
monotonicity regularizers. The no regularizer baseline performed well on the sets with up to 30
additional points - corresponding exactly to the length of the training rollouts. However, it failed to
generalize. On the other hand, the submodular regularizer allowed the learned score function to find
a local minima that generalized well to out of sample. Finally, BADGE did not seem to perform well
when the number of datapoints in the set was large, likely because the gradient signal from adding
any one additional datapoint was too weak and thus the selection of the next best datapoint was too
noisy.

Some more details regarding BADGE (Ash et al., 2020). The authors do not learn a policy, instead,
they use gradients of the classifier (gradient embedding) to select a useful, diverse batch. Although
BADGE was originally made for a batch setting, the authors’ main idea is still applicable to our
case: they argued that the next datapoint(s) can be selected by looking at which fictitious labels
would produce the largest gradients in the classifier network. Therefore, we replaced the kmeans++
algorithm the authors suggested with simply selecting the datapoint that corresponds to the largest
gradient norm. This algorithm has an advantage that it does not require a trained policy network.
However, it provides no guarantees about submodularity of the resulting policy, and, in our exper-
iments, the performance degrades with the size of the set - likely because the gradient signal from

15

Published as a conference paper at ICLR 2021

adding any one additional datapoint was too weak and thus the selection of the next best datapoint
was too noisy. Since BADGE requires a neural network classifier/regressor, we could not use it as a
baseline for Set Cover (Set Cover regression function is simply adding all elements in the superset).

The no-regularizer baseline is similar to that of Konyushkova et al. (2017). However, the problem
considered in Konyushkova et al. (2017) is not compatible with most of the tasks we considered here
(for MNIST, yes if we use random forest classifiers; but for others not). Furthermore, Konyushkova
et al. (2017) treated the problem under a classical supervised learning setting this is often not
desirable, given that we are learning a policy from non i.i.d. data samples.

16

Published as a conference paper at ICLR 2021

C SUPPLEMENTAL DETAILS FOR THE PROTEIN ENGINEERING
EXPERIMENTS

Dataset Our datasets were identified in Protabank (Wang et al., 2019) for training of active learn-
ing policies and benchmarking of performance. In selecting datasets upon which to train our active
learning models several factors were considered. As the state space of possible protein variants for
typical engineering application is very large, size is our foremost criteria. Additionally it will be ad-
vantageous to use datasets which characterize mutations to all amino acids (as opposed to Alanine
scans), and those which include epistatic interactions. We also desire to identify datasets which have
a high quality, quantitative readout, such as calorimetry, fluorescence, or SPR data.

Protein Engineering Methods Embeddings of protein sequences were created using the TAPE
repository (Rao et al., 2019) according to the UniRep system as first proposed in Alley et al. (2019).
UniRep produces protein embeddings as a matrix of shape (length protein sequence, 1900), although
we average together the embeddings only of positions being engineered to produce a consistent
embedding of shape (1900,). We have implemented the active learning imitation learning algorithm
proposed in Liu et al. (2018) to work with the protein embedding representations described above.
Pseudocode for this method is presented in Algorithms 1 and 2 from the original work. As in Liu
et al. (2018), our policy network consists of a single dense unit which acts sequentially on the pool
of samples being considered to produce a preference score. Our downstream protein engineering
network (which was used to compute the preference score of the expert policy) acts on the protein
embeddings prepared using TAPE. The network consists of an attention layer, followed by a 1-
dimensional convolution layer (128 filters, kernel size 3), before being flattened and applying two
fully connected layers of 128 units each. When predicting protein fitness, dropout is applied with a
probability of 0.5 and an additional dense layer is applied with one unit and linear activation. Both
networks are trained using ADAM with a learning rate of 1e-3. The implementation of this part
of the project is nearly identical to Liu et al. (2018), only changing the data representation, protein
fitness network structure, and values of K (30), B (100) and T (20) as listed in the appendix of our
work. Beta is fixed at 0.5, although the method was shown to be robust to a range of values. At
training time, 100 labels are randomly selected for evaluating the effect of the greedy oracle, and 10
data are randomly selected to form the initial data set for learning. The superset is appended at each
step of training the policy to maintain a size of 2x the labeled dataset. The training of a policy using
these settings takes 36 hours on a modern multiprocessor computer equipped with an NVIDIA Titan
V GPU.

(a) Comparison of policy to greedy oracle which it em-
ulates

(b) Effect of scaling parameter lambda and empirical
evidence for selecting its value

Figure 7: Supplemental results for the protein engineering experiments of Section 6.3: (a) We ob-
serve that the policy learned by LEASURE preforms approximately as well as the greedy oracle
which it emulates. In this experiment the policy was derived from the training set, but the greedy
oracle is operating on the test set. (b) Lambda linearly scales the value of the regularizer term. When
lambda takes value 0.01, the magnitude of the (scaled) regularizer term (represented by the blue bar)
aligns the best with the magnitude of the cross entropy loss (represented by the orange bar). This
is consistent with what we observed in Figure 3b where λ = 0.01 leads to well-regularized model
behavior.

17

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

