IEEE TRANSACTIONS ON MOBILE COMPUTING

Context-Aware and Energy-Aware Video
Streaming on Smartphones

Xianda Chen, Student Member, IEEE, Tianxiang Tan, Student Member, IEEE,
Guohong Cao, Fellow, IEEE, and Thomas La Porta, Fellow, IEEE

Abstract—High quality video streaming for mobile devices implies high energy consumption due to the transmitted data and the
variation of wireless signals. As an example, transmissions in mobile scenarios (e.g., inside a moving bus) consumes more energy for
devices than when accessing from a static environment (e.g., at home). The QoE for the user does not substantially increase when
watching high bitrate videos in a vibrating environment (i.e., a moving vehicle), as the context, in this case vehicle’s vibration, affects
the perceived QoE. To address this problem, we propose to save energy by considering the context (environment) of video streaming.
To model the impact of context, we exploit the embedded accelerometer in smartphones to record the vibration level during video
streaming. Based on quality assessment experiments, we collect traces and model the impact of video bitrate and vibration level on
QoE, and model the impact of video bitrate and signal strength on power consumption. Based on the QoE model and the power model,
we formulate the context-aware and energy-aware video streaming problem as an optimization problem. We present an optimal
algorithm which can maximize QoE and minimize energy. Since the optimal algorithm requires perfect knowledge of future tasks, we
propose an online bitrate selection algorithm. To further improve the performance of the online algorithm, we propose a crowdsourcing
based bitrate selection algorithm. Through real measurements and trace-driven simulations, we demonstrate that the proposed
algorithms can significantly outperform existing approaches when considering both energy and QoE.

Index Terms—YVideo streaming, context awareness, energy saving, quality of experience

1 INTRODUCTION

OWADAYS, video streaming has become the most pop-
Nular application on smartphones. It is expected that
mobile video traffic will account for over 79% of the mo-
bile data traffic by 2022 [1]. While mobile networks offer
very high peak bandwidth, video streaming over mobile
networks still suffers from rapid and significant network
fluctuations. To adapt for various network conditions, the
Dynamic Adaptive Streaming over HTTP (DASH) protocol
has been widely adopted for video streaming. With DASH,
at the server side, the video is cut into a sequence of
video segments, each of which is encoded with different
bitrates, corresponding to different resolutions. At the client
side, based on the estimated network bandwidth, the video
player can dynamically determine the right bitrate for each
segment, such that the video segment can be successfully
downloaded before it is played to maintain good Quality of
Experience (QoE).

Based on DASH, many existing bitrate adaptation algo-
rithms [2], [3], [4], [5] focus on accurately predicting the net-
work bandwidth, and then use higher bitrates to maintain
better QoE. Although streaming video at a higher bitrate
can lead to better QoE, a larger amount of data will have to
be downloaded and processed on smartphones and hence,
consuming more energy. Since smartphones are battery-
powered, the issue of energy-efficient video streaming has
received considerable attention. Energy consumption for
video streaming on smartphones can be optimized from
the perspective of video downloading (i.e., data commu-

e The authors are with School of Electrical Engineering and Computer
Science, Pennsylvania State University, University Park, PA 16802.
E-mail: {xuc23, txt51, gxc27, tfl12}@psu.edu.

nication) and video processing (i.e., video playback) [6].
Researchers have proposed various techniques to reduce
the power consumption of the wireless interface during
video streaming [7], [8], [9], and have proposed techniques
to reduce the energy consumption of video processing on
smartphones [10], [11], [12], [13].

Different from these energy-saving techniques, we pro-
pose to save energy by considering the context (environ-
ment) of video streaming; i.e., watching video on a moving
bus/train or in a static environment (e.g., at home) may
have different QoE requirements. On a moving vehicle
where the wireless signal is weak, it costs much more
energy to maintain high bitrate video streaming than at a
static environment such as at home or a cafe where the
wireless signal is strong. The QoE for the user may not
increase too much by watching high bitrate videos in a
vibrating environment such as on a moving vehicle. This
is because the perception of video quality is affected by the
environment such as the vibration or shaking on a moving
vehicle. The vibration of the smartphone causes discomforts
during video watching, which results in QoE degradation
even with a high resolution. As a result, in such vibrating
environments, reducing the bitrate of video streaming may
significantly reduce the energy consumption, without de-
grading the QoE too much, and hence it is important to find
a better tradeoff between QoE and energy considering the
context of video streaming.

To support context-aware and energy-aware video
streaming on smartphones, we have the following chal-
lenges: (1) How to model the impact of context on QoE?
(2) How to select the right bitrate to minimize energy and
maximize QoE? To answer the first question, we recruit

IEEE TRANSACTIONS ON MOBILE COMPUTING

200

-
a
o

Energy (J)

N
o
o

50

250

T T

qualty (room)

quality (vehicle)
=—©— energy (room)
=¥ energy (vehicle)

12%

4%

Relative energy (J)

I L i L L

90 -95 -100 -105 -110 -115

Signal strength (dBm)

(a)

0.1 (144p)

0.37 (240p) 0.75(360p) 1.5(480p) 3.0(720p) 5.8 (1080p)
Bitrate, Mbps (Resolution)

(b)

Fig. 1. (a): Total energy consumption to download 100MB data under various network conditions. (b): Perceived QoE and energy consumption as
functions of bitrate under different environments (a static environment or a moving vehicle).

twenty users to watch and rate videos under two contexts;
i.e., on a moving vehicle and in a static environment. To
model the impact of context, we exploit the embedded
sensors (e.g., accelerometer) in smartphones [14] to record
the vibration level during video streaming. Based on these
quality assessment experiments, we collect traces and model
the impacts of video bitrate and vibration level on QOoE,
and model the impacts of video bitrate and signal strength
on power consumption. Based on the QoE model and the
power model, we formulate the context-aware and energy-
aware video streaming problem as an optimization problem.
We first present an optimal algorithm which can maxi-
mize QoE and minimize energy. Since the optimal algo-
rithm requires perfect knowledge of future tasks (which
will not be available in practical scenarios), we propose an
online algorithm for video streaming. To further improve
the performance of the online algorithm, we propose a
crowdsourcing based approach for bandwidth and vibration
prediction. Although crowdsourcing based approaches have
been proposed for video streaming [15], [16], most of them
focus on maximizing QoE, and none of them considers
energy and context issues.

In summary, this paper has the following contributions.

e A study of the impact of context on both QoE and
energy consumption for video streaming on smart-
phones. To the best of our knowledge, this is the first
study of such impact.

e We formulate the context-aware and energy-aware
video streaming problem as an optimization prob-
lem. We first propose an optimal solution, which
provides a performance upper bound. We then pro-
pose an online bitrate selection algorithm. We also
propose a crowdsourcing based bitrate selection al-
gorithm, which predicts the available bandwidth and
the vibration level using data collected from other
users.

e We evaluate the proposed solutions with exten-
sive trace-driven simulations. The evaluation results
show that the proposed algorithms can significantly

reduce the energy consumption while maintaining
good QoE.

The rest of the paper is structured as follows. We in-
troduce the background and motivation in Section 2. We
present the system model and the problem formulation in
Section 3. Section 4 presents our context-aware and energy-
aware video streaming algorithm. In Section 5, we present
the evaluation results. Section 6 discusses related work and
Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

In DASH, the video is broken into a sequence of small
HTTP-based segments, where each segment is encoded into
multiple copies with various bitrates. Based on the network
quality, the segment with the right bitrate is used for stream-
ing.

Streaming video at a higher bitrate leads to better quality,
but it requires to download and process more data, and
thus consuming more energy. When the network condition
becomes worse, much more energy will be consumed. Fig.
1(a) shows the energy consumption of downloading 100MB
data under various network conditions. The measurement
was done using an LG Nexus 5X smartphone using T-
Mobile LTE network. In the measurement, we focus on the
power consumption of the wireless interface. As can be seen,
when the signal strength decreases, the energy consumption
significantly increases. For example, the energy consump-
tion increases from 49] to 193] as the signal strength changes
from -90 dBm to -115 dBm.

One way to reduce the energy consumption is to use
the video segment with low bitrate. However, this may
reduce the video quality and affect the QoE under differ-
ent contexts. To understand the impact of context on QoE
and energy consumption for video streaming on smart-
phones, we conducted some experiments. With approval
by our Institutional Review Board (IRB), twenty subjects
were recruited to watch Youtube videos of various bitrates
(resolutions) under two different contexts (environments):

IEEE TRANSACTIONS ON MOBILE COMPUTING

in a static environment (room) and on a moving vehicle.
After watching each video, the subjects rate the perceived
quality using the nine-grade numerical quality scale (9
denotes “excellent” and 1 denotes “bad”) based on the ITU-
T Recommendation P.910 [17], which is then transformed to
the five-level rating scale, using MOSs = 1+ 4 - MOS,
The M OS} value is used to represent the QoE. The energy
consumption is calculated using the power models that will
be detailed in Section 3.3.

As shown in Fig. 1(b), the QoE does not improve too
much when the resolution is very high (e.g., 720p) for
smartphones. We also see that the QoE varies with context.
When the resolution drops from 1080p to 480p, the QoE
degrades much slower on a moving vehicle (4%) than in a
static environment (12%). On the other hand, the network
condition on a moving vehicle is worse than that in a
static environment. As a result, reducing the resolution from
1080p to 480p can save 65% energy when watching videos
on a moving vehicle, while only degrading the QoE by 4%.
Thus, it is important to consider energy, context, and QoE
together for video streaming.

To model QoE considering the context of video stream-
ing (i.e., the smoothness of the environment where users
watch videos), we can exploit the embedded sensors (e.g.,
accelerometer) in smartphones [14]. Based on these sensors,
we can differentiate whether the user is in a static environ-
ment or on a moving vehicle. We will present the detail
of the QoE model and formulate the context-aware video
streaming problem in the next section.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the video, QoE, and power
models, as well as the problem formulation.

3.1 Video Model

We follow the DASH video streaming process. The video is
broken into a sequence of n HTTP-based segments, where
each segment contains L seconds of video. Each segment
has V versions of copies corresponding to V different bi-
trates on the server side. Based on the network quality, the
client requests the segment with the right bitrate level from
the server. More specifically, the video streaming process
is modeled as n data transmission tasks, corresponding to
transmitting n video segments. Let 7; denote the ' task,
and let 77 denote the i'" task where the video segment is
encoded with bitrate index j (5 € {1,2,...,V}).

Since many users may skip or early quit during video
streaming, to save bandwidth, similar to Youtube, we use
a buffer threshold (5) to limit the amount of the video
data to be downloaded. $ is defined in terms of seconds.
Before the buffered data reaches j3, i.e., the video length of
downloaded but not yet viewed video in the buffer is less
than 3, the video player can download the next segment.
When the buffered data reaches 3, the player stops the
downloading process. It will wait until the video length of
the buffered video is less than 3 before downloading the
next segment. Let B; € [0, 3] denote the amount of video
data in the buffer when the client requests the i*" segment.
To avoid stall events (or rebuffering), the ith segment should

accz(m/sz)

acc, (m/sz)

X

acc (m/sz)

I I I I I I
0 50 100 150 200 250 300 350 400
time (s)

Fig. 2. Accelerometer data over time under different environments (a
static environment or a moving vehicle).

be completely downloaded before B; is drained out by the
video player at the client.

3.2 QoE Model

As explained in Section 2, the QoE model should consider
the context of video steaming; i.e.,, watching video on a
moving vehicle or in a static environment may have dif-
ferent QoE requirements. The QoE can be modeled with
Equation 1, where @) is the user perceived QoE, @), is the
“original” quality without considering any quality loss, I;
is the quality impairment (loss) during data transmission,
and I, is the quality impairment resulting from vibration
during video playback. Similar to [18],), is modeled with a
Michaelis-Menten function, as shown in Equation 2, where
b is the bitrate, and ¢; and cy are the model parameters
which are determined by the subjective quality assessment
experiments.

Q=Q,— I — 1, @
. Cl-b
Qo = maz(1l,min(5,1+4 - - er)))
It:fr'lr+fb'lb (3)
I, =c3+cq-exples-b-v) (4)

Similar to [19], [20], the QoE impairment during data
transmission can be modeled by Equation 3, considering the
impact of rebuffering events and bitrate changes. Mok et.
al [19] has defined three levels (low, medium, and high) of
rebuffering impacts on QoE by choosing I,., and we use their
base level (i.e., I, = 0.742), where the rebuffering duration
is less than one second. The rebuffering frequency is defined
as f, = (Si/st%Bi)*, where S; is the segment data size,
R; is the downloading throughput, and (z); = max{z,0}.
For the impact of bitrate change, we adopt the results from
[20]; i.e., reducing the bitrate of a segment by 3 Mbps has
the same penalty as one second rebuffering. Thus, we have

IEEE TRANSACTIONS ON MOBILE COMPUTING

30

5
{)
Goodwood 4.5 08,
5 os
2 " S 04,
] Sintel Basketball w35 £
E) ° o £
S i le] iy 02
= Matfix Y s 3 <}
® Battle £
S 295 7
g1or ° o~ A~
S ° Yacht < 6
= ® .. BBB 2 5
Doc | + data N
e ©® 15 | fitted curve @\%\
Speech Show o
0 i i 1 4
30 40 50 60 0 1 2 3 4 5 6 6 0
Spatial Information Bitrate (Mbps)

(a) Video sequences

(b) Original quality

(c) Vibration impairment

Fig. 3. (a): Average spatial and temporal information of the test videos. (b): The “original” quality of a video as a function of bitrate. (c): The QoE

impairment due to vibration.

TABLE 1
The test videos.
[Genre | Explanation [[Genre | Explanation |
. A fight scene in
Speech Speech on TV Matrix The Matrix (movie)
A battle scene in
Show Allen show Battle The Hobbit (movie)
Doc Documentary Basketball Sport
BBB Big Bl.le Bunny Yacht Moving yacht
(animation)
Sintel Sintel (movie) Goodwood Horseracing

I, = 0.742 and f, = %, where b; and b;_; are the
bitrate of the i'" and (i — 1)*"* video segment, respectively.
To model the impact of context, we exploit the embedded
sensors (e.g., accelerometer) in smartphones [14] to record
the vibration level during video streaming. Since we are
only interested in the acceleration associated with the vi-
bration of the smartphone, we subtract the force caused
by gravity from the raw accelerometer data. Fig. 2 shows
an example of the acceleration data over time under two
different environments (a static environment and a moving
vehicle). As can be seen, when watching video in a static
environment with the smartphone placed on the desk, the
acceleration data are basically stable, while the acceleration
data vary drastically due to the vibration of shaking when
watching video on a moving vehicle. The vibration level is
formulated with Equation 5, where m,, is the average value
of M acceleration samples in the sampling window and f,
is the average variation between consecutive acceleration
samples. Here we consider m, and f, equally;ie., a = 0.5.
With the vibration level, we model the impact of vibration
impairment with Equation 4, where b is the bitrate, v is the
vibration level, and c3, ¢4 and c5 are the model parameters.

v=a-mg+(1—a) f, 5)
1 M
M= 17 mz::l \/afn,x +a2,, +a2, . (6)
1 M
Ja = M=1 Z Z (@mi — am—l,l)2 @)
(B) m=2 l:{z,y,z}

TABLE 2
The resolution and bitrate for video dataset.

[Resolution | Bitrate (Mbps) |

1080p 5.80
720p 3.00
480p 1.50
360p 0.75
240p 0.375
T44p 0.10
TABLE 3
The parameters of QOE model.
Coefficient c1) c3 cq cs
Value 1.036 | 0.429 | 0.782 | -0.782 | 0.0648

Video Quality Assessment. To determine parameters
c1, €2, €3, ¢4, ¢5, in Equation 2 and Equation 4, we performed
subjective quality assessment experiments with 20 users
following ITU-T Recommendations. The subjects are asked
to watch 10 videos cached in the smartphone under two
contexts: in a static environment (room) and on a moving
vehicle. Table 1 summaries the characteristics of the videos.
To demonstrate that the chosen videos cover a wide range
of different types and genres following the standard ITU-T
P910 [17], we calculate the temporal and spatial informa-
tion of the videos which are shown in Fig. 3(a), where a
video with higher temporal information has more chang-
ing scenes, and a video with higher spatial information
has more spatial details in video frames. As can be seen,
the chosen videos cover a wide range of different types
and genres. The videos are encoded into different bitrate
versions at 30 fps, and Table 2 shows the bitrate for each
resolution. After watching a video, the subjects rate the
perceived quality as discussed in Section 2. In this quality
assessment experiment, the videos are locally cached in the
smartphone. Then, there will not be any data transmission,
and we can focus on quantifying the impact of the vibration
factor.

We first consider video watching in a static environment.
The perceived quality of video streaming in a static envi-
ronment is used as the “original” quality (i.e., (,), and the
results are shown in Fig. 3(b). As can be seen from the figure,

IEEE TRANSACTIONS ON MOBILE COMPUTING

1300

1100

Nexus 5X -

——
_—
3500 =

3000

(mW)

& 2500
H

Powe

2000

120

1000
0 1 2 3 4

Bitrate (Mbps)
(b) Py

(a) Setup

(c) P

Fig. 4. (a):Experimental setup for measuring power consumption. (b): The power model when there is no data transmission. (c): The power model

when there is data transmission.

Q, increases with the increase of the video bitrate. When
the bitrate becomes very high, further increasing the bitrate
will not lead to significant increase in the QoE, which is
consistent with the results reported in [21], [22]. With the
least squares regression method, we can get the fitted curve,
where the parameters c¢; and ¢y are shown in Table 3.

To see the impact of vibration on video quality, we
measure the quality impairment (I,) caused by vibration;
i.e., the QoE difference between watching the same video
with the same bitrate in a static environment and on a
moving vehicle. Based on the accelerometer data collected
by the smartphone during video watching, and Equation
5, we can calculate the vibration level (v). The relationship
among QoE impairment (I,), vibration level (v), and video
bitrate (b) is shown in Fig. 3(c). As shown in the figure, when
the bitrate is very small (e.g., 0.1 Mbps), the QoE is very poor
regardless of the context and thus the vibration impairment
is almost zero. When the vibration level is very low (i.e., in
a static environment), the quality impairment is also very
small. The quality impairment significantly increases when
the bitrate and the vibration level increase. For example,
when the vibration level increases from 2 to 6, the quality
impairment grows from 0.049 to 0.184 for 1.5 Mbps videos,
and the impairment grows from 0.174 to 0.549 for 5.8 Mbps
videos. With the least squares regression method, we can get
the fitted surface, where the parameters c3, c4, c5 are shown
in Table 3.

3.3 Power Model

To model the power consumption during video streaming,
we collect real measurement data by watching a short video
“Everything Wrong With Transformers” from Youtube with
different bitrates (i.e., 144p, 240p, 360p, 480p, 720p and
1080p) at different signal strengths. We use a rooted LG
Nexus 5X smartphone running Android 7.0, which uses
T-Mobile LTE network. Tcpdump is used to collect the
network trace, and the Monsoon power monitor is used
to measure the power level during video streaming. Since
the battery connectors on the Nexus 5X smartphone are
very tiny, it is very challenging to connect them to the
power monitor. To solve this problem, we design a battery
interceptor based on Flex PCB, which is a very thin circuit
board that can be easily bent or flexed. The interceptor
is connected with the smartphone’s mainboard and the
battery through the corresponding battery connector, and
uses a customized circuit to modify the battery connection.
As shown in Fig. 4(a), we use this interceptor to connect

TABLE 4
The power models.

[State [
Without data trans.

Power (mW) |

P,(b) = 1121.5 + 24.71b
P, (b, s) = 2301.2 + 439.6b
—41.57b% — 2.965 — 0.047s

With data trans.

the smartphone with the Monsoon power monitor, which
directly provides power supply for the smartphone. We also
collect the wireless signal strength during video streaming
by using an Android ADB shell dumpsys telephony.registry at
the background. Using the collected data traces, we build
two different power models based on whether there is data
transmission (video downloading) or not.

When there is no data transmission, i.e., the smartphone
plays the buffered video segment, the power consumption
(denoted by P,) is only affected by the video bitrate. For
high bitrate video, more data will be processed such as
decoding and rendering, and hence more power will be
consumed. Since P, increases with the video bitrate, P, is
modeled as a linear function of the video bitrate. With the
least squares regression method, we can get the fitted curve
as shown in Fig. 4(b).

With data transmission, the power consumption (de-

noted by F;) is affected by both video downloading and
video processing, and hence it is affected by the bitrate (b)
and the wireless signal strength (s). To model the relation-
ship between power consumption and these two factors, we
use the quadratic function [23] for curve fitting. Fig. 4(c)
shows the fitted surface, where the R-square value of the
fitting is 0.9866, which means a very high accuracy. The
results are summarized in Table 4, where the video bitrate b
is in terms of Mbps, the signal strength s is in terms of dBm
and the power level is in mW.
Energy Consumption of Task Ti] . Based on our power
models, we can calculate the energy consumption of video
streaming which consists of a set of tasks. We calculate the
energy of task 77 based on if there is rebuffering.

Case (a) (No rebuffering): When there is no rebuffering,
the energy consumption of task 7/ depends on the rela-
tionship among L, 8, B;, and the downloading time 15%,
where S; is the segment data size and R; is the downloading
throughput.

If the video length of the downloaded but not yet viewed
video after downloading the i*" segment is less than the
buffer threshold 3, i.e., (B; — % + L) < S, the video player

IEEE TRANSACTIONS ON MOBILE COMPUTING

starts to download the next segment when 77 is completed.
In this case, the energy of task 77 is the energy consumed
during the period of downloading the i" segment.

If the buffered data after downloading the i'" segment
reaches f3, ie., (B; — %: + L) > B, the player stops the
downloading process and waits until the buffered video is
less than 3 before downloading the next segment. In this
case, the energy of task 77 includes the energy consumed
during the period of downloading the i*" segment, and the
energy consumed during the waiting period before starting
to download the next segment.

Since the buffered data when the player downloads the
ith segment is B;, there are k = [B;/L] video segments
in the buffer, where the (i — k) video segment is being
played. Thus, we use P;(b;_y, s) to calculate the energy con-
sumed during the period of downloading the i'" segment.
If more than one video segments will be played during
the downloading period, since the power consumption F;
varies with video bitrate, we calculate the energy consumed
during the downloading period by summing up the ener-
gies consumed when different bitrate videos being played
during the downloading period. Since the waiting time is
less than L, i.e., the (i — k)" video segment is being played
during the waiting period, we use P,(b;_j) to calculate the
energy consumed during the waiting period. P; and P} can
be calculated based on Table 4. ‘

In summary, the energy of task 7/ when there is no
rebuffering can be calculated with Equation 8, where (x)4 =
mazx{z,0}.

Fu(T)) = Pubi-s9) (5 — (1:/Re/ 1] = D)

(2

[Si/Ri/L]—1
+ Z Pt<bi,k+g,S>L
g=1
Si
+ Py(bi—1)(Bi — E+L_B)+ (8)

Case (b) (Rebuffering): When there is rebuffering, i.e.,
B; < %, we can divide the video downloading into two
parts: B; and % — B;. During the first part, the buffered
video data is played out; while there is no video playback
during the second part, i.e., rebuffering. We calculate the
energy of 7/ by summing up the energy consumptions of
these two parts. Since there is no video playback during
the rebuffering, we use P;(0, s) to calculate the energy con-
sumed by downloading video during the rebuffering. Thus,
the energy consumption of 7} when there is rebuffering can
be calculated with Equation 9.

Ey(T?) = Pu(bi—k, s)(B; — (k — 1)L)

k—1
+ > Pi(bikrgrs)L
g=1
Si
FRO.9(C - By ©)

In summary, the energy of task Tij can be calculated with
Equation 10.

L

B(TY (10)

y = { BT, if < B
otherwise

3.4 Problem Formulation

In this subsection, we formalize the context-aware and
energy-aware video streaming problem. To determine the
right bitrate for each video segment (task), we introduce a
binary variable 7;; for bitrate selection, where n;; = 1 if the
video segment in task T; is encoded with bitrate index j,
ie., T l] ; otherwise, 7;; = 0. Since only one bitrate is selected
for each task, Z]"/:1 ni; = 1.

In our context-aware and energy-aware video streaming,
the goal is to minimize the energy consumption and max-
imize the QoE, and this can be achieved by selecting the
right bitrate for each video segment downloaded in each
task. This is a multi-objective optimization problem, and we
apply the weighted sum method [24] to formalize it. For
task 77, the QoE (Q(T})) can be calculated with Equation
1, and the energy consumption (E(7})) can be calculated
with Equation 10. Then, the optimization problem can be
formulated as follows.

n SN (o BT -
min ;;% (’YE(TiV) =750y

11

v
s.t. ij =1, forVi.

j=1

The objective of this optimization problem is to minimize
energy and maximize QoE under the constraint that only
one bitrate is selected for each task, Z;;l n;; = 1. Since
E(T7) and Q(T!) are measured using different units, they
are normalized with the highest bitrate (i.e., E(T}) and
Q(TY)). v is a weighting factor. With a smaller v, the
optimization problem puts more weight on maximizing
QoE; with a larger v, minimizing energy is more important.

4 CONTEXT-AWARE AND ENERGY-AWARE VIDEO
STREAMING

In this section, we present our context-aware and energy-
aware video streaming algorithms. We first present an opti-
mal algorithm which requires knowledge of all future tasks.
Since it is impossible to have such knowledge in practice, we
present an online bitrate selection algorithm by removing
such assumption. In addition, we propose a crowdsourcing
based bitrate selection algorithm.

4.1 The Optimal Algorithm

For a video streaming consisting of n tasks, our goal is to
find bitrate decisions to minimize the energy and maximize
the QoE. The process of determining the right bitrate for
each video segment (each task) can be mapped to the
shortest path problem [10], as shown in Fig. 5.

Let node T and T, denote the start and end of the video
streaming process, respectively. Since there are V' bitrates
available, we add V nodes for each task (T;), where Tij
corresponds to the video segment downloaded in T; and
it is encoded with bitrate index j. As shown in Fig. 5, we
add edges from T to each node of T3, and from each node
of T}, to T,.. We add an edge from each node of task 7; to
all V nodes of the next task. By considering both energy
consumption and QoE, the weight of an edge is defined as

IEEE TRANSACTIONS ON MOBILE COMPUTING

Fig. 5. Mapping the context-aware and energy-aware video streaming
problem to the shortest path problem.

(v ngT;)) —(1=7) 3((;1‘1’))). For edges from nodes of T, to T,
their weights are defined as 0.

In this graph, we consider all bitrate cases of each task
and all possible schedule paths between tasks, so each path
from T to T, maps to a bitrate selection sequence for the
video streaming, and vice versa. As a result, the shortest
path from T, to T, corresponds to the optimal bitrate
selection of all tasks in the video streaming process such
that the QoE is maximized and the energy is minimized.

Based on the graph, we can use the Dijkstra’s algorithm
to find the shortest path. Given a video streaming process
consisting of n tasks, the graph has O(nV) nodes and
O(nV?) edges. As the time complexity of the Dijkstra’s
algorithm is O((N + E)logN), where N is the number of
nodes and F is the number of edges, the time complexity of
the optimal algorithm is O(nV2log(nV')).

4.2 The Online Bitrate Selection Algorithm

Since the optimal algorithm requires the complete knowl-
edge of all future tasks, which is impossible in practice, it
can only be served as a performance upper bound. In this
subsection, we propose an online bitrate selection algorithm,
which first estimates the available bandwidth and the vi-
bration level, and then determines the right bitrate for each
video segment.

To estimate the network bandwidth, similar to [2], we
use the harmonic mean of the downloading throughput of
the past several segments to estimate the network band-
width. Since the network condition varies widely during
video streaming, especially when the user is on a moving
vehicle, some downloading throughput can be much higher
or lower than others among the past several segments. The
harmonic mean is used to eliminate the impacts of these
fluctuations.

The vibration level is estimated based on the collected
accelerometer data in a time window from the current time
to the previous 0.2 * 3, where § is small, i.e., 30 seconds.
This vibration level is used to determine the right bitrate for

Algorithm 1: The Online Bitrate Selection Algo-
rithm
Input : L, 5, v, B;, previous bitrate j;_1
Output: j;: bitrate level for segment ¢
1 R; < estimated bandwidth
2 U; < vibration calculated with Eq. (5)

. . E(T? 77
3 Ji argmlnje{l,..‘,v}(q/#}/)) —(1—=9) g((ij)))

4 if j¥ > j;_; then

5 | JF e jici+1

6 else if j7 < j;_; then

jr max{jlj € {jf, . ji1} and (5 < By)}
//S7: data size of segment i at bitrate j

9 end

10 return j;

the video segment. Since the player buffer threshold (5) is
very small, the downloaded video segment will be played
after very short time. Since the time interval between the
video downloading and the video playback is very small,
the vibration level when downloading video can be used to
estimate the vibration level when the downloaded video is
played.

Based on the estimated bandwidth and the vibration
level, the online bitrate selegtion algorithm can calculate the
energy consumption (E(7})) and the user perceived QoE
(Q(TY)) when downloading the i*" video segment encoded
with bitrate j. To minimize energy and maximize QoE,
we apply the same objective function of Equation 11, ie.,

J J
5ty ~ 0= DG

The online bitrate selection algorithm is described in Al-
gorithm 1. Due to network variations, a sudden large bitrate
increase may result in more rebuffering events and frequent
bitrate changes, and a sudden large bitrate drop may lead
to severe QoE impairment. To deal with these problems,
the online algorithm first computes a reference bitrate for
the i'" video segment (line 4) based on Equation 11. Then,
it determines the final bitrate, based on the relationship
between the reference bitrate and the bitrate of the previous
video segment.

If the reference bitrate is higher than that of the previous
video segment, the algorithm does not immediately jump to
the reference bitrate, as the reference bitrate can be several
levels higher than that of the previous segment. Instead, for
each bitrate increase, the algorithm selects the bitrate which
is one level higher than the bitrate of the previous video
segment (line 5-6). This gradual bitrate change reduces the
QoE impairment caused by frequent bitrate changes due to
network variations. If the network bandwidth is consistently
high, i.e., the reference bitrate is higher than the bitrate of the
previous video segment for consecutive video segments, the
video bitrate will gradually increase to the reference bitrate.

If the reference bitrate is lower than that of the previous
video segment, the algorithm does not immediately drop to
the reference bitrate to reduce the QoE impairment. Instead,
for each bitrate decrease, the online algorithm searches from
the bitrate of the previous video segment to the reference
bitrate, and finds the first bitrate which can be used to suc-

IEEE TRANSACTIONS ON MOBILE COMPUTING

roadway

A sample location

* downloading location

Fig. 6. Crowdsourcing based prediction.

cessfully download the video segment before the buffered
data is drained out (line 7-9). If the network bandwidth is
consistently low, i.e., the reference bitrate is lower than the
bitrate of the previous video segment for consecutive video
segments, the video bitrate will eventually decrease to the
reference bitrate.

4.3 The Crowdsourcing Based Algorithm

The proposed online bitrate selection algorithm can estimate
the available bandwidth and the vibration level, and then
determine the right bitrate for each video segment; how-
ever, it underperforms the optimal algorithm which has the
complete knowledge of all future tasks. For example, on
a moving vehicle, the network condition may dramatically
change during some time period. Then, using the down-
loading throughput of the past several segments measured
long time ago for bandwidth prediction may not be accurate.
Similar problems exist for vibration prediction. To further
improve the performance of the online algorithm, we pro-
pose a crowdsourcing based approach for bandwidth and
vibration prediction; i.e., bandwidth and vibration value
of each location can be predicted using the downloading
throughput and vibration values collected from other users
at (or around) this location. Although crowdsourcing based
approaches have been proposed for video streaming [15],
[16], most of them focus on maximizing QoE, and none of
them considers energy and context issues.

In crowdsourcing, mobile devices collect data tuples
such as bandwidth, vibration, and capture time for each
location during video streaming, and then upload these
data to the server. Since the crowdsource data (e.g., along
the commute route) usually do not frequently change, the
crowdsourced data can be downloaded to the client before-
hand. In a streaming session, the client can quickly obtain
the crowdsourced data base on the current location and
perform bandwidth and vibration prediction. Based on the
predicted bandwidth and vibration, the client determines
the best quality level for the video segment to be down-
loaded. Next, we first describe the data collection and query
process, the bandwidth and vibration prediction method,
and then present the crowdsourcing based bitrate selection
algorithm.

Data Collection and Query

The server maintains the records of previously measured
bandwidth and vibration values associated with their lo-
cations (i.e., GPS coordinates), which can be uploaded by
the clients during video streaming. The data tuple for each
location is represented as < loc, time, bw, vib >, where loc
is the GPS coordinate, time is the timestamp when data is
recorded, bw is the downloading throughput, and vib is the
vibration value which can be calculated with Equation 5.

When downloading a video segment, the client queries
the server for the bandwidth and vibration values by send-
ing its current location and moving speed to the server. To
reduce the query delay and save energy, we propose the
following solution. Since the crowdsourced data usually
do not frequently change, the client can download such
data daily (or several days) when charging at home, similar
to travelers downloading google map beforehand to avoid
using data plan. The data size should not be too large since
each data tuple only takes several bytes, and the client
only needs to download data in one area, e.g., along the
commute route. Then, the query will be very simple, similar
to offline Google map, where the client queries are based on
the current location and immediately obtain the bandwidth
and vibration level.

In a video streaming session, the network bandwidth
and vibration level for downloading each video segment can
be predicted based on the crowdsourced data, as detailed in
the following subsection.

Bandwidth and Vibration Prediction

Fig.6 illustrates the concept of bandwidth and vibration
prediction. In the figure, green triangles (called sample
locations) represent the locations where bandwidth and
vibration values of other users (bus or train riders) were
collected, and the red star (called downloading location)
represents the location where the video segment will be
downloaded. Since bandwidth and vibration values do not
change too much within a small area, the bandwidth and
vibration values of the current user can be estimated using
those of adjacent locations. We use the bandwidth and
vibration values of the K nearest sample locations to make
prediction; i.e., the weighted average of the values at the
sample points. Since the values at the sample locations close
to the downloading location are more relevant than those
far away, we assign larger weight to closer samples. More
specifically, we apply an inverse distance weighted (IDW)
interpolation [25] for the estimation. IDW assigns greater
weights to the values of the sample locations closer to
the downloading location, and the weights diminish as a
function of distance. The bandwidth (or vibration) value
R at the downloading location [can be calculated with
Equation 12.

(12)

where R; the network bandwidth at the sample location
li, w; = W is the weight, d(l;,1) represents the dis-
tance between the sample location /; and the downloading
location [, and p is the power parameter that determines
the rate at which the weights decrease. We set p = 2

IEEE TRANSACTIONS ON MOBILE COMPUTING

Algorithm 2: The Crowdsourcing Based Bitrate Se-
lection Algorithm

Input : L, 3, v, B;, previous bitrate j;_;
Output: j;: bitrate level for segment ¢
1 R[i7%’+fw—1] <+ bandwidth for segments [i, i+w—1]
2 V[sap1] < Vibration for segments [i, i+w—1]
3 fort«+itoi+w-1do
4 for j; < 1 to V do
5 U(®¢, i) = ming, eq1,...
O(®¢—1,jt-1)}

VIU(®Pe-1, ji-1) +

6 // record the optimal solution
7 prev(Pe, ji) = ji1
8 // update system state
9 O = £(Pr—1, Ri—1,0t-1,Jt-1)
10 end
11 end
12 Backtrack from prev(®; -1, jitw—1) to find the

optimal j;
13 return j;

for the experiments. Since network bandwidth varies with
time and location, bandwidth prediction using only the
crowdsourced data (which may be scarce at some locations)
may not reflect the real network condition. That is, for
downloading video segment at some locations, bandwidth
prediction may be inaccurate if we use the bandwidth
samples far away. Similarly, bandwidth prediction may be
inaccurate if we use the bandwidth samples collected at a
different time period (i.e., predicting bandwidth at day time
using samples collected at midnight).

To address this issue, we only use the crowdsourced
data within a predefined spatial region (e.g., 1000 square
meters) and a time period (within two hours). Then, we
use the downloading throughput of the past K segments
to calibrate the prediction. Specifically, we use the weighted
average network throughput, which is expressed as Equa-
tion 13.
where Ef is the estimated bandwidth calculated using the
K nearest crowdsourced bandwidth samples, R} is the esti-
mated bandwidth calculated using the past K downloading
throughput, and w; indicates the confidence of using the
crowdsourced data to estimate the network bandwidth. The
calibrating factor w; is adaptively updated and is defined as

. — 1 - -
w; = TR Rl R , where RR;_; denotes the through

put when downloadmg task T;_1. With a larger w; value,
ie., RZ 1 is close to R;_1, we put more weight on RS

Crowdsourcing Based Bitrate Selection Algorithm

In our online bitrate selection algorithm, the bitrate is
selected based on the predicted bandwidth and vibration
level for the next video segment. Due to large bandwidth
and vibration variations, the online algorithm may select
a bitrate too big or too small, and then affect the QoE.
One nature solution is to consider several video segments
in the future when making bitrate selections. However,
this is hard for the online algorithm, where the bandwidth

9

prediction becomes less accurate for future video segments.
With crowdsourcing based solution, we can predict the
bandwidth and vibration level of multiple video segments
in the future, based on which we can choose a better bitrate.
To achieve this goal, we apply an Model Predictive Control
(MPC) based optimization framework [20], which is widely
used to optimize a complex control objective in a dynamical
system under constraints.

In MPC, the video streaming process is modeled as
a discrete-time dynamical system, where the system state
when downloading video segment ¢ is defined by the
buffered data B; and the bitrate level for previous segment
Ji—1;1e., ®; =< B;, ji—1 >. The system state evolves based
on the video bitrate selected for segment i; i.e., the buffered
video when downloadmg video segment i + 1 becomes
Biy1 = max(B; — 3-,0) + L — At;, where S; is the data
size of video segment i encoded at bitrate j;, L is the
length of the video segment, and At; is the waiting time.
If the buffered video data reaches the buffer threshold S,
the player waits for At; before requesting segment ¢ + 1;
ie., At; = max(max(B; — %,0) + L — 3,0). The system
dynamics are summarized as <1I>Z-+1 =f£(®;, Ri, v4, Ji)-

For a state transition from ®; to ®,,; (denoted as
®; ¥ ®,,,), the objective is to minimize energy and
maximize QoE as shown in Equation 11; i.e., O(®;,j;) =

ggvg (1 —7) ET‘/? We use MPC to optimize the
aggregate objective of the next several video segments.
Specifically, given the predicted bandwidth R[l itw—1) and
vibration level v}; ;1) during the next w video segments,
MPC is used to optimize the aggregate objective of these w
video segments. The MPC based optimization problem can

be expressed as follows.

1+w—1

> O, j)

s.t. Dy = f(¢t7 ﬁh 17t7jt)

(14)

where w is the optimization window size. It searches the bi-
trate levels j; j1,—1) that maximize the aggregate objective
within the optimization window, and then requests video
segment ¢ encoded at bitrate level j;. In the next interval,
the optimization window is moved forward to [i 4+ 1,7 + w]
to determine the video bitrate for segment ¢ + 1. This bitrate
selection process repeats for the remaining video segments.

Although a brute force search can find an optimal solu-
tion for Equation 14, its computational complexity is O(V"?),
where V is the number of bitrate levels. There will be a
state explosion problem for large w. To efficiently find the
solution for Equation 14 in practice, we propose a dynamic
programming based approach. Based on the fact that the
accumulative objective at segment 7+ 1 depends on the solu-

tion at segment i and the transition ®; > ®;, the Bellman
equation for the dynamic programming is U(®;11, ji+1) =
minjie{l,...,V}{U(‘I)ia .]Z) + O((I)’L7 ji)}/ where U((I)l7.]1) is the
optimal utility up to segment i with bitrate level j;. The
algorithm is described in Algorithm 2, which computes the
optimal solution for each segment within the optimization
window based on the optimal solution to the previous
segment (i.e., the Bellman equation). After the algorithm
is terminated, the right bitrate j; for segment i can be

IEEE TRANSACTIONS ON MOBILE COMPUTING

10

)
S

N
S
T

o

Throughput (Mbps)

o

600
Time (sec)

Vibration
NoA o
T T T
| I I

o

I I
600 1000
Time (sec)

(o)

o

200 400 800

Fig. 7. (a): Video streaming on a moving vehicle along the route from location A to B, where each dot represents the location a downloading task

happens. (b): The throughput and vibration traces.

TABLE 5
Video traces.

[Video ID | Length (sec) [Data size (MB) | Avg. vibration |

1 198 65.1 6.83
2 371 123.8 2.46
3 449 140.6 6.61
4 498 152.2 6.41
5 612 173.1 523

computed by back tracking the solution selected for the last
segment in the optimization window.This will reduce the
time complexity to O(wV).

5 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
algorithms through extensive trace-driven simulations and
compare it with other existing algorithms.

5.1

We collect traces by watching videos from Youtube using LG
Nexus 5X smartphone. Subjects watch five videos with vari-
ous video length and data size, and under different contexts,
as shown in Table 5. We collect three kinds of traces: the
network trace by using tcpdump to extract the downloading
time and the downloading data size, the signal strength
trace by using a ADB shell, and the accelerometer data in
the smartphone. For simulations, each video is cut into 2
seconds segments and is encoded with fourteen bitrates, i.e.,
{0.1, 0.2, 0.24, 0.375, 0.55, 0.75, 1.0, 1.5, 2.3, 2.56, 3.0, 3.6, 4.3,
5.8} Mbps. We set the buffer threshold 5 = 30 seconds. We
equally consider minimizing energy and maximizing QoE;
ie,v=0.5.

Based on these traces, we compare the performance of
the following approaches.

Experiment Setup

e Youtube: Video streaming with the original Youtube
app at a bitrate of 5.8 Mbps (i.e., with resolution of
1080p).

e FESTIVE [2]: A throughput-based bitrate adapta-
tion approach, which uses the harmonic mean of the
past several throughput measurements to estimate
the available bandwidth, and then selects the highest
available bitrate that is just below the estimated
bandwidth.

e BBA [26]: A buffer-based bitrate adaptation ap-
proach. BBA uses throughput to control video bitrate
at the startup phase. After reaching the steady state,
BBA maps the current buffer level to bitrate selection
using a linear function.

o OBA: The online bitrate selection algorithm, which se-
lects the bitrate that minimizes energy and maximize
QoE.

e CBA: The crowdsourcing based bitrate selection al-
gorithm, which selects the bitrate that minimizes
energy and maximize QoE. Different from OBA, it
uses crowdsourced data for bandwidth prediction
and vibration prediction.

e Optimal: The optimal algorithm, which has the
complete knowledge of all future tasks.The Optimal
algorithm is impossible to achieve in practice, so it
only provides a performance upper bound.

5.2 Performance of Crowsourcing Based Bandwidth
and Vibration Prediction

As shown in Fig. 7, we use the bandwidth and vibration
traces measured when watching video on a moving vehicle
to evaluate the performance of the crowdsourcing based
approach for bandwidth and vibration prediction. On the
same route from location A to B, as shown in Fig. 7(a), we
conducted multiple experiments to collect traces by watch-
ing videos from Youtube. The network traces are collected
by using Tecpdump to extract the downloading time and the
downloading data size. All packets with an interval less
than one second are considered as the same downloading
task. Fig. 7(a) shows an example of the downloading tasks
for one experiment, where each dot in the figure represents
the location where a video downloading task takes place.
Fig. 7(b) shows the bandwidth and vibration traces for
the experiment in Fig. 7(a), where red dots on the traces
correspond to the downloading tasks in Fig. 7(a).

For the two proposed algorithms (OBA and CBA), the
performance is affected by the bandwidth and vibration pre-
diction, where the best (worst) prediction scenario will be
the best (worst) performance scenario for the approach. Fig.
8 compares the prediction result of the crowdsourcing based
approach (i.e., OBA) and the harmonic mean approach (i.e.,
CBA). As can be seen, the crowdsourcing based approach

IEEE TRANSACTIONS ON MOBILE COMPUTING

T T
~#—Ground Truth
—&—Harmonic
—&— Crowdsource

30

N
S
T
L

Throughput (Mbps)
>
L

L L L L ¥ L L L L
0 10 20 30 40 50 60 70 80
Download task

(a)
Fig. 8. (a): Throughput prediction. (b): Vibration prediction.

11

~—*—Ground Truth
—&—Harmonic
—6— Crowdsource

Vibration

. .
0 10 20 30 40 50 60 70 80
Download task

(b)

I Youtube IIFESTIVE [C188A I OBA [EICBA [Optimal

®
3

Saving on

Energy (J)
IS @
3 3

Energy saving (%)

N
S

0
FESTIVE BBA OBA

Video 1

Video 2 Video 3

(a)

Video 4 Video 5

extra energy for trace 1.

5%

o
@

Mean absolute error
N

Mean absolute error

Harmonic Crowdsource Harmonic Crowdsource

(@) (b)

Fig. 9. Mean absolute error for bandwidth prediction (a) and vibration
prediction (b).

can react to network variations better than the harmonic
mean approach. For example, the harmonic mean approach
underestimates the network bandwidth from the 26" to
32th downloading task, leading to downloading video seg-
ments at low quality. In contrast, when the network con-
dition drops from the 33! to 39" downloading task, the
harmonic mean approach overestimates the network band-
width by using the downloading throughput (that is high)
of the past segments. As a result, rebuffering events may
take place if the client keeps requesting video segments en-
coded at high bitrate that is much greater than the network
capacity. Fig. 9 compares the Mean Absolute Error (MAE)
of these two approaches. MAE is the error calculated as
an average of the absolute difference between the predicted
value and the ground truth; ie, MAE = L 3" | |y, — 7,
where ; is the prediction and y; is the true value. As
can be seen, compared to the harmonic mean approach,
the crowdsourcing based approach can improve bandwidth
prediction by up to 75% and 77% for vibration prediction.

5.3 Energy Comparison

The energy consumption is calculated based on the power
models shown in Section 3.3. As shown in Fig. 10(a), we

whole phone energy

CBA Optimal FESTIVE BBA OBA

400

IlBase energy
[Extra energy

Saving on
extra energy

0
Youtube FESTIVE BBA OBA

CBA Optimal

(b) (c)

Fig. 10. (a): Comparison of different approaches on energy consumption. (b): Energy saving compared to Youtube. (c): The base energy and the

CBA Optimal

compare the energy consumption of different approaches
based on the measured traces. As can be seen in the figure,
compared to Youtube which downloads video segments
at bitrate of 5.8 Mbps and consumes the most energy,
other five approaches can save energy due to the bitrate
adaptations. FESTIVE always downloads video segments
encoded at the highest available bitrate that is just below the
estimated bandwidth, and consumes much energy. BBA is
more aggressive to download higher bitrate segments after
the buffer reaches the steady state, i.e., BBA requests the
highest bitrate after the buffered data is larger than the pre-
defined upper threshold, thus consumes much more energy
compared to FESTIVE. Compared to FESTIVE and BBA,
OBA can save more energy, since OBA takes into account
the context of video streaming and download low bitrate
videos when the vibration level is high. As shown in Fig.
10(b), OBA can save 33.3% energy on average, which is very
close to Optimal (36.2%), and is much higher than FESTIVE
(7%) and BBA (3.9%). By using the crowdsourcing based
approach for bandwidth and vibration prediction, CBA can
reduce the energy consumption by 34.8%.

As shown in Fig. 10(c), we separate the total energy
consumption during video streaming into two parts: base
energy and extra energy consumption. The base energy
is the energy consumed when all video segments are en-
coded with the lowest bitrate, which includes the energy
consumed by the screen and the energy consumed by data
transmission and video processing. Thus, the base energy
is the minimum energy consumption for video streaming.
All video streaming approaches will try to choose bitrates
higher than the lowest bitrate to improve QoE, at the cost of
more energy consumption. The extra energy is the energy
difference between the energy consumed by the selected
video streaming approach and the base energy. As shown in
Fig. 10(b), when only considering the extra energy, CBA can

IEEE TRANSACTIONS ON MOBILE COMPUTING

250

200

Energy (

100

0
Youtube FESTIVE BBA

T T
Energy for
video playback

OBA CBA Optimal Youtube FESTIVE BBA

(a)

T T
Energy for
data transmission

OBA CBA Optimal

12

Saving on
video playback

Saving on
data transmission

IS - @
=) S S
T

Energy saving (%)

i)
=]

=

0
FESTIVE BBA OBA CBA Optimal FESTIVE BBA OBA

(b)

CBA Optimal

Fig. 11. (a): Energy consumption for video playback and data transmission. (b): Energy saving compared to Youtube.

TABLE 6
The power model validation.

. Measured | Calculated .
Bitrate (Mbps) energy () | energy () Error ratio
5.8 708.13 713.59 0.77%
3.0 648.69 658.62 1.53%
1.5 637.36 622.55 2.32%
0.75 615.69 609.79 0.96%
0.375 608.04 597.75 1.69%
0.1 597.02 589.38 1.28%

save 78.7% energy which is very close to Optimal (80.5%),
and it is much higher than FESTIVE (14.6%) and BBA (8.1%).
For smartphones with smaller screen size, the base energy
part will be smaller and then the total energy consumption
will be smaller. Relatively speaking, the energy saving will
be more significant since the denominator is smaller.

5.3.1

To further analyze the energy consumption, we separate
the total energy consumption during video streaming into
two parts: energy consumption for data transmission and
energy consumption for video playback. For each video,
we first identify the download periods and the signal
strength during each download period from the collected
data traces. We then calculate the energy consumption using
the power models shown in Section 3.3. As shown in Table
4, P;(b, s) indicates the power consumption affected by both
data transmission and video playback, and P,(b) indicates
the power consumption during video playback only. We
calculate the energy consumption for data transmission as
Py(b1,s) — Py(b2) times the duration of download periods,
where b; and by are the bitrate of the video segment being
downloaded and the bitrate of the video segment being
played during the video downloading period, respectively.
Then the energy consumption for video playback during
the whole video streaming process can be calculated as
the energy difference between the total energy consumption
and the energy consumption for data transmission.

Taking video 1 as an example, the energy consumption
for data transmission and video playback is shown in Fig.
11. As can be seen in Fig. 11(a), Youtube consumes the
most energy for video playback compared to other five
approaches. This is because, for high bitrate video, more
data will be processed such as decoding and rendering,
and hence more energy will be consumed. Compared to

Video Playback vs. Data Transmission

Youtube, as shown in Fig. 11(b), the energy saving for video
playback is 8% for OBA, which is twice (three times) of that
for FESTIVE (BBA). The energy saving will be more signifi-
cant if we compare the energy consumption for data trans-
mission. As can be seen in Fig. 11(b), compared to Youtube,
CBA can save up to 81.3% energy for data transmission,
which is close to Optimal (84.1%), and it is much higher
than FESTIVE (20.2%) and BBA (11.9%). This is because
the power consumption of the wireless interface is high
when it is turned on during data transmission, and is much
lower when the interface is turned off. Approaches, such
as Youtube, FESTIVE and BBA, request high bitrate video
segments and consume more energy, since the wireless
interface stays on for long time to download large amount
of data.

5.3.2 Power Model Validation

To validate the power models, we compare the energy
consumption measured by the Monsoon power monitor
and the energy consumption calculated using the power
models. For each video, we first identify the download
periods from the packet trace obtained by Tepdump, and
obtain the signal strength during each download period
from the signal strength trace. We then calculate the energy
consumption using the power models shown in Section 3.3.
Here we show an example when the signal strength is -90
dBm. The energy consumption for different bitrate videos
based on the real power trace is shown in Table 6. The
calculated energy consumptions are very close to the real
measurements, which indicates that our power models are
pretty accurate. The error ratio is consistently less than 3%,
with an average of 1.43%. Note that the power model is
dedicated for the specific smartphone used in this research
and can be enhanced by considering other factors such as
the current level of the battery.

5.4 QoE Comparison

Fig. 12(a) compares the QoE of all approaches. As can be
seen, Youtube outperforms other approaches for all traces
because Youtube requests all video segments at the highest
bitrate, and it suffers no quality impairment from bitrate
changes. However, the QoE gap between Youtube and oth-
ers is very small. This is because the QoE for video stream-
ing on smartphones does not improve too much when the
video bitrate is very high, and the perceived quality is
highly affected by the vibrating environment. Compared

IEEE TRANSACTIONS ON MOBILE COMPUTING

o

B Y outube EERIFESTIVE [IBBA I OBA [EERICBA [EOptimal|

~ w »

Average QoE

Video 1 Video 2 Video 3 Video 5

(@)

Video 4

0
Youtube FESTIVE BBA OBA

~ » » o

QoE degradation (%)

0
CBA Optimal FESTIVE BBA OBA CBA Optimal

(b) ()

Fig. 12. (a): Comparison of QoE for each trace. (b): The average QoE for each approach. (c): QoE degradation compared to Youtube.

N
)

®
o
@

of bitrate changes

IS
o
=

Bitrate change magnitude (Mbps)

0 0
Youtube FESTIVE BBA OBA Youtube FESTIVE BBA OBA

(a) (b)

CBA Optimal CBA Optimal

4

o
®

3

of rebuffering events
= IS
Avg. rebuffering time (sec)
o
by

0 0
Youtube FESTIVE BBA OBA Youtube FESTIVE BBA OBA

() (d)

CBA Optimal CBA Optimal

Fig. 13. (a): The number of bitrate changes. (b): The average magnitude of bitrate change. (c): The number of rebuffering events. (d): The average

rebuffering duration.

to other traces, the QoE for trace 2 is much better for all
approaches due to its low vibration level.

The overall QoE for all approaches is shown in Fig.
12(b). It can be seen that OBA can achieve very high QoE.
This is because OBA considers the network bandwidth and
the vibration level when selecting video bitrate for each
video segment. OBA requests video segments encoded at
the most suitable bitrate under the vibrating environment,
and thus gains high QoE. After reaching the steady state,
BBA is aggressive to request higher bitrate videos, and thus
gains higher QoE at the cost of higher energy consumption.
Fig. 12(c) shows the QoE degradation compared to Youtube.
Compared to Youtube, the average QoE degradation of CBA
is 3.2%, which is better than OBA (3.6%), and similar to
FESTIVE (3.5%), Optimal (2.9%), and BBA (2.2%).

5.4.1 Bitrate Changes and Rebuffering Events

As described in Section 3.2, the quality impairment during
data transmission includes the impact of rebuffering events
and bitrate changes. Here we show an example of video
1. As can be seen in Fig. 13(a) and (b), Youtube requests
all video segments at the same quality (i.e., the highest
bitrate), and suffers no quality impairment from bitrate
changes. FESTIVE generates the most number of bitrate
changes due to the network fluctuations, because it always
requests video segments encoded at the highest available
bitrate that is just below the estimated bandwidth. BBA
gradually increases video bitrate before reaching the steady
state, and thus generates a number of bitrate changes. After
the buffered data is larger than the predefined threshold,
BBA always requests video segments at the highest bitrate
and thus generates less number of bitrate changes compared
to FESTIVE. In contrast, OBA generates much less number
of bitrate changes (i.e., up to 70% less than that of FESTIVE)
by considering the network conditions and the context of
video streaming. OBA limits sudden bitrate changes; i.e.,
bitrate increase and then drop due to network fluctuations.

Figures 13(c) and 13(d) compare the rebuffering events of
all approaches. Rebuffering event happens when the video
segment cannot be successfully downloaded in time before
the buffered video data drains out. As can be seen, Youtube
generates the most number of rebuffering events, which
is four times of FESTIVE and twice of BBA. This is be-
cause Youtube always downloads video segments encoded
at the highest bitrate, and thus has the highest probabil-
ity of encountering rebuffering events when the network
condition suddenly varies. Compared to FESTIVE, BBA is
more aggressive to download higher bitrate segments after
reaching the steady state, and thus generates more number
of rebuffering events. As can be seen, CBA and OBA do not
generate any rebuffering events, since they request video
segments encoded at the most suitable bitrate under the
network conditions and the vibrating environment.

5.5

For context-aware and energy-aware video streaming, our
goal is to minimize energy and maximize QoE. As shown
in Fig. 10 and Fig. 12, for trace 3, CBA save up to 34.5%
energy at the cost of only 2.8% QoE degradation. We use
the ratio of energy saving over QoE degradation to evaluate
the overall performance, and the result is shown in Fig. 14.
The weighting factor v directly affects the objective of the
optimization problem in Equation 11. To see the impact of
v on the performance, we run experiments with different
values that ranges from 0.1 to 0.9, with the interval of 0.1.
Note that parameter v does not affect the bitrate decisions
(i.e., the streaming performance) for FESTIVE and BBA. As
can be seen in Fig. 14, the ratio decreases as 7y increases. This
is because with a smaller «, the optimization problem puts
more weight on maximizing QoE; i.e., the ratio becomes
large when QoE degradation is very small. In contrast, with
a larger «, the optimization problem priorities minimizing
energy consumption.

Impact of Parameter v

IEEE TRANSACTIONS ON MOBILE COMPUTING

50

——FESTIVE ——BBA
—~—O0BA
40 F —— Optimal

—e—CBA

Energy saving/QoE degradation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Y

Fig. 14. The ratio of energy saving over QoE degradation.

Taking v = 0.5 as an example, i.e., we equally consider
minimizing energy and maximizing QoE. On average, OBA
achieves better performance compared to FESTIVE (4.8X)
and BBA (5.1X). This is because the QoE does not improve
too much when the bitrate is very high for video streaming
on smartphones and is highly affected by the vibrating
environment, FESTIVE and BBA waste too much energy on
maintaining high bitrate video streaming in the vibrating
environment. As also can be seen, CBA can further improve
OBA by twenty percent in terms of the ratio of energy saving
over QoE degradation.

5.6 Comparisons of Vibration Based Schemes

In the previous subsections, we compared the performance
of the proposed algorithms with others. In this subsection,
we compare it to a simple vibration based approach (called
VBA), which is based on a simple lookup table of vibration
level to select the bitrate for video segments. Since each
video is encoded with fourteen bitrates and the vibration
level is less than seven most of time in our experiments,
we can define the lookup table as a mapping function, i.e.,
J = min(13, max(14—int(2xv),0)), where v is the vibration
level and j is the bitrate level (j = 13 represents the highest
bitrate and j = 0 represents the lowest bitrate).

Fig. 15 shows the energy saving and QoE degradation
of OBA and VBA compared to Youtube. As can be seen,
for trace 1, VBA can save 44.3% energy which is slightly
better than that of OBA (with v = 0.5). However, the QoE
degradation of VBA (46.9%) is much larger than that of OBA
(4.5%), since VBA downloads all video segments at very low
bitrate (i.e., at an average bitrate of 0.212 Mpbs). By contrast,
VBA consumes more energy than OBA for trace 2 where
the vibration levels are low, because it always downloads
high bitrate video segments. However, the QoE of VBA is
lower than that of OBA due to high frequency of rebuffering
events and bitrate changes. Compared to Youtube, OBA can
save 33.3% of energy when all five traces are considered, at
the cost of 3.6% QoE degradation, which is much better than
that of VBA (i.e., 36.4% energy saving at the cost of 34.5%
QoE degradation). Different form VBA, OBA selects bitrate
considering both available bandwidth and vibration level.
Moreover, it relies on optimization techniques to maximize
QoE and minimize energy based on the network bandwidth

14

o
=)
u
=)

N OBA Em OBA
VBA VBA

IS
S
IS
S

w
=)
w
=)

N
o
N
o

Energy saving (%)
QoE degradation (%)

-
o
o
o

0 Video 1 Video 2 Avg. 0 Video 1

(@) (b)

Fig. 15. Comparisons of vibration based schemes: (a) Energy saving
compared to Youtube. (b) QoE degradation compared to Youtube.

Video 2 Avg.

and the vibration level. Thus, OBA can perform much better
than VBA which simply maps vibration level to bitrate
selection. Note that our CBA algorithm performs better than
OBA, and then is much better than VBA.

6 RELATED WORK

QoE. There has been considerable research on maximizing
QoE for DASH based video streaming. Researchers [19],
[27] have proposed to model QoE for DASH based video
streaming with multiple metrics: average video bitrate, bi-
trate changes between successive segments, and rebuffering
event. FESTIVE [2] balances stability and efficiency, and
provides fairness among video players. Rather than esti-
mating network bandwidth, researchers [5], [26] have also
proposed to use the current buffer level to determine the
video bitrate. Li et al. [28] proposed a probe and adapt
bitrate adaptation scheme. Yin et al. [20] proposed a control-
theoretic model, which optimizes the user perceived QoE
by considering throughput and buffer information. In [29],
a neural network was trained to select the video bitrate of
future video segments. Balasubramanian ef al. [30] proposed
device-to-device (D2D) based caching techniques to min-
imize the latency for video streaming, and reinforcement
learning techniques were designed in [31] to reduce the
delay of downloading the video content in D2D networks.
Enghardt et al. [32] proposed an application-informed ap-
proach to select the most suitable access network for each
video segment. These methods try to maximize the QoE by
considering the quality impairment caused by data trans-
mission, and none of them considers the quality impairment
caused by vibrations.

Energy Consumption. Researchers have proposed vari-
ous techniques [7], [9], [33] to reduce the energy consump-
tion of the wireless interface during video streaming. Hu
et al. [7] proposed techniques to save energy based on
whether the user tends to watch video for a long time,
skip, or early quit. Hoque et al. [9] designed a down-
load scheduling algorithm base on crowd-sourced viewing
statistics. Wu et al. [33] designed an energy efficient video
streaming scheme over heterogeneous networks. There has
been some research [8], [34], [35] on reducing the tail energy
in cellular networks during data transmission. Researchers
have also proposed techniques [10], [11], [12], [13], [36], [37]
to reduce the energy consumption of video processing on
smartphones. Yang et al. [10] proposed to save energy for
video streaming by adaptively adjusting the CPU frequency.
Geng et al. [11] proposed an energy-efficient computational
offloading scheme for energy-intensive video processing on

IEEE TRANSACTIONS ON MOBILE COMPUTING

multicore-based mobile devices. He et al. [36] proposed
to save energy through dynamic resolution scaling based
on the user-screen distance. Kim et al. [38] adjusted the
refresh rate of the screen based on video content to achieve
energy saving. Park ef al. [39] proposed to save energy by
applying adaptive frame rate to some parts of the video.
Other researchers [12], [13], [37] focused on dynamically
adapting the video bitrate and the display brightness to save
energy. Complementary to these energy-saving techniques,
we take a different approach to save energy by considering
the context of video streaming.

7 CONCLUSIONS

In this paper, we proposed to save energy by considering the
context of video streaming; i.e., watching video on a moving
vehicle or in a static environment may have different QoE
requirements. Based on quality assessment experiments, we
collected traces and modeled the impact of video bitrate and
vibration level on QoE, and modeled the impact of video
bitrate and signal strength on power consumption. Based
on the QoE model and the power model, we formulated the
context-aware and energy-aware video streaming problem
as an optimization problem. We presented an optimal algo-
rithm which can maximize QoE and minimize energy. Since
the optimal algorithm requires perfect knowledge of future
tasks which is not available in practice, we then proposed
an online bitrate selection algorithm. To further improve
the performance of the online algorithm, we proposed a
crowdsourcing based approach for bandwidth and vibration
prediction. Through real measurements and trace-driven
simulations, we demonstrated that our proposed algorithms
can significantly reduce the energy consumption (34.8% for
the crowdsourcing based algorithm) with only small QoE
degradation (3.2% for the crowdsourcing based algorithm).

Although smartphones are used for experiments in this
papert, the proposed algorithms can also be applied to other
mobile devices, such as tablets, considering their special
features. The power model can be enhanced by considering
other factors such as the current level of the battery. Besides
using the accelerometer sensor, other information such as
WiFi SSID can be leveraged for inferring the context of video
streaming, at home, in a commuter train, or bus. We will
also investigate how to apply the proposed techniques to
other video streaming scenarios such as 360 degree video
streaming.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grant CNS-1815465.

REFERENCES

[1] Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2016-2021 White Paper. http://goo.gl/DXWFyr.

[2] . Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency,
and Stability in HTTP-based Adaptive Video Streaming With
FESTIVE. IEEE/ACM Trans. on Networking, 2014.

[3] A. H. Zahran, D. Raca, and C. Sreenan. ARBITER+: Adaptive
Rate-Based Intelligent HTTP Streaming Algorithm for Mobile
Networks. IEEE Trans. on Mobile Computing, 2018.

(4]

(5]

6]

(71
(8]
(9]

[10]

[11]

[12]

[13]

[14]

(15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

15

Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and
C. Yue. A Control Theoretic Approach to ABR Video Streaming:
A Fresh Look at PID-based Rate Adaptation. In IEEE INFOCOM,
2017.

K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. In IEEE INFOCOM,
2016.

R. Pérez-Torres, C. Torres-Huitzil, and H. Galeana-Zapién. Power
Management Techniques in Smartphone-based Mobility Sensing
Systems: A Survey. Pervasive and Mobile Computing, 2016.

W. Hu and G. Cao. Energy-Aware Video Streaming on Smart-
phones. In IEEE INFOCOM, 2015.

Y. Yang and G. Cao. Prefetch-Based Energy Optimization on
Smartphones. IEEE Trans. on Wireless Communications, 2018.

M.A. Hoque, M. Siekkinen, , and J.K. Nurminen. Using Crowd-
Sourced Viewing Statistics to Save Energy in Wireless Video
Streaming. In ACM MobiCom, 2013.

Y. Yang, W. Hu, X. Chen, and G. Cao. Energy-Aware CPU
Frequency Scaling for Mobile Video Streaming. IEEE Trans. on
Mobile Computing, 2019.

Y. Geng, Y. Yang, and G. Cao. Energy-Efficient Computation Of-
floading for Multicore-Based Mobile Devices. In IEEE INFOCOM,
2018.

J. S. Leu, M. C. Yu, C. Y. Liu, A. P. Budiarsa, and V. Utomo.
Energy Efficient Streaming for Smartphone by Video Adaptation
and Backlight Control. Computer Networks, 2017.

Z. Yan and C. W Chen. RnB: Rate and Brightness Adaptation
for Rate-Distortion-Energy Tradeoff in HTTP Adaptive Streaming
over Mobile Devices. In ACM MobiCom, 2016.

X. Sun, Z. Lu, W. Hu, and G. Cao. SymDetector: Detecting Sound-
Related Respiratory Symptoms Using Smartphones. In ACM
UbiComp, 2015.

J. Hao, R. Zimmermann, and H. Ma. GTube: Geo-Predictive Video
Streaming over HTTP in Mobile Environments. In ACM Int’l Conf.
on Multimedia Systems, 2014.

B. Taani and R. Zimmermann. Spatio-Temporal Analysis of
Bandwidth Maps for Geo-Predictive Video Streaming in Mobile
Environments. In ACM Int’l Conf. on Multimedia, 2016.

ITU-T P.910: Subjective Video Quality Assessment Methods for
Multimedia Applications. https://www.itu.int/rec/T-REC-P.910-
200804-1.

K. Yamagishi and T. Hayashi. Parametric Quality-Estimation
Model for Adaptive-Bitrate-Streaming Services. IEEE Trans. on
Multimedia, 2017.

R. K. Mok, E. W. Chan, and R. K. Chang. Measuring the Quality
of Experience of HTTP Video Streaming. In IFIP/IEEE Symposium
on Integrated Network Management (IM), 2011.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP. In
ACM SIGCOMM, 2015.

G. Cermak, M. Pinson, and S. Wolf. The Relationship Among
Video Quality, Screen Resolution, and Bit Rate. IEEE Trans. on
Broadcasting, 2011.

B. Belmudez and S. Moller. An Approach for Modeling the Effects
of Video Resolution and Size on the Perceived Visual Quality. In
IEEE Int’l Symposium on Multimedia, 2011.

Quadratic Function. http://mathworld.wolfram.com/Quadratic-
Curve.html.

I Y. Kim and O. L. De Weck. Adaptive Weighted Sum Method
for Multiobjective Optimization: a New Method for Pareto Front
Generation. Structural and Multidisciplinary Optimization, 31(2):05—
116, 2006.

Inverse Distance Weighting. https://en.wikipedia.org/wiki/Inverse-

distance-weighting.

T. Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson.
A Buffer-based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In ACM SIGCOMM, 2014.

Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. Deriving and
Validating User Experience Model for DASH Video Streaming.
IEEE Trans. on Broadcasting, 2015.

Z.1i, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, , and D. Oran.
Probe and Adapt: Rate Adaptation for HTTP Video Streaming at
Scale. IEEE]. Selected Areas in Communications, 2014.

H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video
Streaming with Pensieve. In ACM SIGCOMM, 2017.

V. Balasubramanian, M. Wang, M. Reisslein, and C. Xu. Edge-
boost: Enhancing Multimedia Delivery with Mobile Edge Caching

IEEE TRANSACTIONS ON MOBILE COMPUTING

in 5G-D2D Networks. In IEEE Int’l Conf. on Multimedia and Expo
(ICME), 2019.

[31] W. Jiang, G. Feng, S. Qin, T. Yum, and G. Cao. Multi-agent
reinforcement learning for efficient content caching in mobile d2d
networks. IEEE Trans. on Wireless Communications, 2019.

[32] T. Enghardt, T. Zinner, and A. Feldmann. Using Informed Access
Network Selection to Improve HTTP Adaptive Streaming Perfor-
mance. In ACM Int’l Conf. on Multimedia Systems, 2020.

[33] J. Wu, B. Cheng, M. Wang, and J. Chen. Energy-Efficient Band-
width Aggregation for Delay-Constrained Video over Heteroge-
neous Wireless Networks. IEEE |. Selected Areas in Communications,
2017.

[34] Y. Yang, Y. Geng, and G. Cao. Energy-Aware Advertising Through
Quality-Aware Prefetching on Smartphones. In IEEE MASS, 2017.

[35] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
A Close Examination of Performance and Power Characteristics of
4G LTE Networks. In ACM MobiSys, 2012.

[36] S. He, Y. Liu, and H. Zhou. Optimizing Smartphone Power Con-
sumption through Dynamic Resolution Scaling. In ACM MobiCom,
2015.

[37] B. Varghese, G. Jourjon, K. Thilakarathne, and A. Seneviratne. e-
DASH: Modelling An Energy-Aware DASH Player. In IEEE Int’l
Symp. on "A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM), 2017.

[38] D. Kim, N. Jung, Y. Chon, and H. Cha. Content-Centric Energy
Management of Mobile Displays. IEEE Trans. on Mobile Computing,
2016.

[39] K.Park and M. Kim. EVSO: Environment-Aware Video Streaming
Optimization of Power Consumption. In IEEE INFOCOM, 2019.

Xianda Chen received the BS degree in soft-
ware engineering from Northwestern Polytech-
nical University, China, and the MS degree
in electrical and computer engineering from
Sungkyunkwan University, South Korea. He is
currently pursuing the Ph.D. degree with the De-
partment of Computer Science and Engineering,
the Pennsylvania State University, USA. His re-
search interests include wireless networks, mo-
bile computing, and mobile video. He is a student
member of the IEEE.

Tianxiang Tan received the BE degree from Sun

Yat-sen University and the MS degree in com-

puter science from University of Southern Cali-
- fornia. He is currently working toward the PhD
degree in the Department of Computer Science
and Engineering, the Pennsylvania State Univer-
sity. His research interests include mobile cloud
computing, edge computing and deep learning.
He is a student member of the IEEE.

16

Guohong Cao received his B.S. degree in com-
puter science from Xi’an Jiaotong University, and
his Ph.D. in computer science from the Ohio
State University in 1999. Since then, he has
been with the Department of Computer Science
and Engineering at the Pennsylvania State Uni-
versity, where he is currently a Distinguished
Professor. He has published more than 200 pa-
pers in the areas of wireless networks, mobile
computing, machine learning, wireless security
and privacy, and Internet of Things, which have
been cited over 20000 times. He has served on the editorial board of
IEEE Transactions on Mobile Computing, IEEE Transactions on Wire-
less Communications, and IEEE Transactions on Vehicular Technology,
and has served on the organizing and technical program committees of
many conferences, including the TPC Chair/Co-Chair of IEEE SRDS,
MASS, and INFOCOM. He has received several best paper awards, the
IEEE INFOCOM Test of Time award, and the NSF CAREER award. He
is a Fellow of the AAAS and a Fellow of the IEEE.

Thomas F. La Porta is the Director of the School
of Electrical Engineering and Computer Science
and Penn State University. He is an Evan Pugh
Professor and the William E. Leonhard Chair
Professor in the Computer Science and Engi-
neering Department and the Electrical Engineer-
ing Department. He received his B.S.E.E. and
M.S.E.E. degrees from The Cooper Union, New
York, NY, and his Ph.D. degree in Electrical En-
gineering from Columbia University, New York,
NY. He joined Penn State in 2002. He was the
founding Director of the Institute of Networking and Security Research
at Penn State. Prior to joining Penn State, Dr. La Porta was with Bell
Laboratories for 17 years. He was the Director of the Mobile Networking
Research Department in Bell Laboratories, Lucent Technologies where
he led various projects in wireless and mobile networking. He is an
IEEE Fellow, Bell Labs Fellow, received the Bell Labs Distinguished
Technical Staff Award, and an Eta Kappa Nu Outstanding Young Elec-
trical Engineer Award. He also won two Thomas Alva Edison Patent
Awards. His research interests include mobility management, signaling
and control for wireless networks, security for wireless systems, mobile
data systems, and protocol design. Dr. La Porta was the founding
Editor-in-Chief of the IEEE Transactions on Mobile Computing. He has
published numerous papers and holds 39 patents.

