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Abstract	11	

Tropical	cyclones	(TCs)	are	drivers	of	extreme	rainfall	and	surge,	but	the	current	and	12	

future	TC	rainfall-surge	joint	hazard	has	not	been	well	quantified.	Using	a	physics-based	13	

approach	to	simulate	TC	rainfall	and	storm	tides,	we	show	drastic	increases	in	their	joint	14	

hazard	from	historical	to	future	projected	(SSP5	8.5)	conditions.	The	frequency	of	joint	15	

extreme	events	(exceeding	both	hazards’	historical	100-yr	levels)	may	increase	by	7-36	16	

fold	along	the	southern	US	and	30-195	fold	in	the	northeast	by	2100.	This	increase	in	joint	17	

hazard	is	induced	by	sea-level	rise	and	TC	climatology	change;	the	relative	contribution	of	18	

TC	climatology	change	is	higher	than	that	of	sea-level	rise	for	96%	of	the	coast,	largely	due	19	

to	rainfall	increases.	Increasing	storm	intensity	and	decreasing	translation	speed	are	the	20	

main	TC	change	factors	that	cause	higher	rainfall	and	storm	tides	and	up	to	25%	increase	in	21	

their	dependence.	22	

	23	

	24	

Coastlines	across	the	globe	are	vulnerable	to	the	joint	occurrence	of	high	sea	levels	and	25	

intense	rainfall1–3,	which	can	increase	flooding	beyond	the	level	predicted	by	considering	26	

either	hazard	alone	and	result	in	compound	floods4,5.	Coastal	compound	floods	are	most	27	

often	triggered	by	cyclonic	storm	events,	either	tropical	cyclones	(TCs)	or	extra-tropical	28	

cyclones	(ETCs)3,	which	are	both	low	pressure	systems	that	can	generate	significant	storm	29	

surges	and	rainfall5.	The	future	incidence	of	coastal	rainfall	and	storm	tides	may	be	affected	30	

by	the	combination	of	sea-level	rise	(SLR)	and	changes	in	storm	climatology.	Recent	31	

projections	of	storm	climatology	change	suggest	an	increase	in	the	probability	of	joint	32	

rainfall-surge	events	along	much	of	the	global	coastline,	mostly	driven	by	an	increase	in	33	

rainfall	hazard6,7.	Previous	studies	of	US	compound	flood	potential	have	considered	34	



	 2	

changes	in	the	joint	hazard	resulting	from	changes	in	a	subset	of	climate-induced	variables,	35	

such	as	SLR8	and	changes	in	river	flow9	or	rainfall10.		36	

Along	the	US	Atlantic	and	Gulf	Coasts,	TCs	are	one	of	the	largest	drivers	of	coastal	37	

flood	losses11,12.	Although	less	frequent	than	ETCs	at	mid-high	latitudes,	TCs	typically	38	

dominate	the	upper	tail	distribution	(>50	year	return	period)	of	both	storm	surges13,14	and	39	

rainfall-induced	flooding15,16,	and	TCs	have	been	responsible	for	many	extreme	compound	40	

floods1,17.	However,	few	regional	studies	of	compound	flood	hazard	have	explicitly	41	

accounted	for	TC	events10,	due	to	their	sparse	occurrence	in	the	historical	record	and	42	

challenges	in	representing	TCs	within	reanalysis	datasets	and	typical	global	circulation	43	

models	(GCMs)7.	It	is	unclear	how	future	changes	in	TC	climatology	and	SLR	will	alter	the	44	

severity	and	spatial	variation	of	extreme	rainfall-surge	hazard	across	the	US	Atlantic	and	45	

Gulf	Coasts,	what	will	be	the	relative	contribution	of	storm	climatology	change	and	SLR	to	46	

changes	in	the	joint	hazard,	and	how	changes	in	TC	characteristics	are	related	to	changes	in	47	

rainfall	hazard,	storm	surge	hazard,	and	their	dependence.		48	

To	address	these	questions,	we	apply	a	full	probabilistic	joint	hazard	analysis	49	

framework	to	investigate	the	current	and	future	joint	rainfall-surge	hazard	from	TC	events	50	

impacting	the	US	Atlantic	and	Gulf	Coasts	under	the	combined	influence	of	end-of-21st	51	

century	high	emission	scenario	SLR	(RCP	8.5)18	and	storm	climatology	change	(SSP5	8.5)19.	52	

We	generate	synthetic	TCs	from	a	statistical-deterministic	TC	model20	forced	with	53	

reanalysis	or	GCM	output.	5018	synthetic	TCs	consistent	with	the	historical	(1980-2005)	54	

climate	(equivalent	to	1500	simulation	years)	are	downscaled	from	NCEP	reanalysis	data	55	

and	used	to	represent	the	historical	storm	climatology.	6200	projected	future	(2070-2100)	56	

TCs	are	downscaled	from	each	of	eight	CMIP619	GCMs,	bias-corrected,	and	combined	into	a	57	

single	weighted-average	composite	projection	(for	800	simulation	years)	that	represents	58	

the	future	storm	climatology	(see	Methods).	We	simulate	storm	tides	(storm	surge	plus	59	

astronomical	tide)	for	each	event	with	the	advanced	circulation	(ADCIRC)	hydrodynamic	60	

model21,22,	using	a	high-resolution	mesh	that	spans	the	entire	North	Atlantic	basin	and	has	61	

been	previously	validated23	(Methods).	We	estimate	rainfall	fields	using	the	physics-based	62	

Tropical	Cyclone	Rainfall	(TCR)	model,	which	has	previously	been	used	to	assess	historical	63	

rainfall	climatology24,25,	project	changes	in	rainfall	hazard26,	and	simulate	flood	impacts27,28	64	

(Methods).	To	evaluate	the	impact	of	SLR,	we	incorporate	spatially-varying,	probabilistic	65	
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SLR	projections	for	2100	from	ref.	18,	which	are	based	on	projections	from	a	suite	of	CMIP5	66	

GCMs	(Methods).		67	

To	focus	on	a	particular	metric	to	measure	the	joint	hazard,	we	define	a	joint	68	

extreme	event	as	one	that	exceeds	both	the	historical	100-year	storm	tide	(relative	to	the	69	

historical	sea	level)	and	the	historical	100-year	24-hour	rainfall	at	a	given	coastal	location.	70	

Based	on	the	simulations	and	bivariate	extreme	value	analysis,	we	quantify	the	return	71	

period	of	the	joint	extreme	event	(henceforth	referred	to	as	JRP)	in	the	historical	and	future	72	

climates	(see	Methods)	and	show	that	SLR	and	TC	climatology	change	cause	drastic	73	

increases	in	the	frequency	of	joint	extreme	events.	We	quantify	the	relative	importance	of	74	

the	change	of	different	climatological	variables	(i.e.,	sea	level,	storm	frequency,	rainfall,	75	

storm	tides,	and	hazard	dependence)	in	driving	the	changes	in	JRP	(Methods)	and	find	that	76	

TC	climatology	changes	drive	larger	increases	in	the	joint	hazard	compared	to	SLR.	We	77	

further	investigate	the	effect	of	TC	characteristic	changes	and	find	that	increases	in	78	

intensity	and	decreases	in	translation	speed	cause	increases	in	rainfall	and	surge	hazards	79	

as	well	as	their	dependence.		Our	findings	motivate	explicit	consideration	of	TC	climatology	80	

changes	in	compound	flood	hazard	analysis.	81	

	82	

Spatial	pattern	of	current	and	future	joint	hazard		83	

For	each	location	along	the	coastline,	we	calculate	the	peak	storm	tide	and	maximum	24-84	

hour	rainfall	accumulation	occurring	anywhere	in	the	upstream	catchment	for	each	storm	85	

event.	Based	on	the	NCEP	simulations,	we	quantify	the	univariate	100-year	storm	tide	(i.e.,	86	

the	storm	tide	level	that	has	a	1%	annual	probability	to	be	exceeded)	and	univariate	100-87	

year	24-hour	rainfall	for	the	historical	period	(Fig.	S1).	Using	the	thresholds	of	historical	88	

100-year	storm	tide	and	rainfall,	we	quantify	the	probability	of	joint	extreme	event	89	

occurrence	through	JRP	in	the	historical	climate	(Fig.	1a)	and	in	the	future	climate	(Fig.	1b).	90	

We	also	show	the	most	dominant	driver	of	the	JRP	change	in	Fig.	1c.	There	are	large	91	

variations	in	JRP	across	the	US	coastline	under	historical	conditions	(Fig	1a).	The	coastlines	92	

of	the	Gulf	of	Mexico	and	Southeast	Atlantic	(up	to	Chesapeake	Bay)	have	lower	JRP,	93	

typically	ranging	from	200-500	years,	signifying	a	higher	probability	of	joint	extreme	94	

occurrence	compared	to	other	regions.	JRP	increases	along	the	northern	Mid-Atlantic	(up	95	

to	Connecticut)	due	to	a	decrease	in	the	statistical	dependence	between	storm	tide	and	96	
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rainfall.	Along	the	New	England	coastline	JRP	is	much	larger	than	other	regions	(>1000	97	

years)	because	in	this	region	the	two	hazards	occur	almost	independently.	The	low	98	

correlation	between	rainfall	and	storm	tides	in	New	England	is	due	to	the	large	tidal	99	

constituents	that	dominate	total	extreme	sea	levels	compared	to	TC-induced	storm	100	

surges23.		101	

	 Due	to	the	combination	of	future	storm	climatology	change	and	SLR,	future	JRP	may	102	

decrease	to	3-30	years,	with	higher	JRP	values	along	the	Gulf	of	Mexico	and	Southeast	103	

Atlantic	(10-30	years)	and	lower	JRP	along	the	Mid-Atlantic	and	New	England	region	(3-10	104	

years;	Fig.	1b).	The	reason	for	higher	future	JRP	along	the	southern	coastline	is	because	105	

these	regions	are	already	prone	to	extreme	rainfall	and	surges	in	the	historical	climate	(Fig	106	

S1)	and	the	percent	increase	in	the	hazard	there	is	smaller	than	the	percent	increase	for	107	

northern	regions.	Thus,	across	the	entire	coastline,	JRP	decreases	drastically	compared	to	108	

its	historical	values.	Also,	the	change	in	JRP	generally	increases	moving	from	south	to	109	

north,	with	the	largest	decreases	in	JRP	occurring	in	northern	locations.	However,	even	the	110	

locations	of	smallest	JRP	change	still	correspond	to	a	7-fold	increase	in	the	frequency	of	111	

joint	events.		The	southeast	Florida	coast	(i.e.,	Miami	region)	is	an	exception	to	the	spatial	112	

trend	of	future	JRP.	Here,	the	historical	JRP	is	600	years	and	the	future	JRP	is	3	years,	113	

resulting	in	a	JRP	change	that	is	much	greater	than	the	JRP	change	for	the	rest	of	the	114	

Southeast	Atlantic.	The	reason	for	the	large	change	in	JRP	in	the	Miami	region	is	because	115	

modeled	extreme	storm	tides	and	TC	rainfall	are	not	highly	correlated	in	the	historical	116	

period,	but	large	increases	in	rainfall	hazard	and	SLR	in	the	future	cause	the	joint	extreme	117	

sea	level	and	rainfall	thresholds	to	be	exceeded	frequently.		118	

	 The	projection	of	JRP	is	associated	with	statistical	and	physical	modeling	119	

uncertainties;	Figure	2	depicts	the	median	JRP	estimate	(as	discussed	above)	and	95%	120	

boot-strapped	sampling	uncertainty	bounds	under	historical	(gray)	and	composite	future	121	

(blue)	conditions	and	the	JRP	estimates	from	individual	GCMs	for	representative	coastal	122	

locations.	The	sampling	uncertainty	ranges	of	the	composite	future	JRP	(blue	boxes)	are	123	

much	smaller	than	the	historical	uncertainties,	since	joint	exceedances	are	more	frequent	124	

in	the	future	period	and	consequently	JRP	can	be	estimated	with	less	sampling	uncertainty.	125	

The	variations	in	JRP	estimates	among	different	models	are	primarily	due	to	differences	in	126	

the	future	projected	TC	frequency	and	intensity.	MPI,	MRI,	and	GFDL	consistently	predict	127	
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smaller	decreases	in	JRP	since	these	GCMs	project	low/no	increase	in	storm	frequency	(Fig	128	

S2)	and	low-moderate	increases	in	storm	intensity	(Fig	S3).	Conversely,	ECEARTH	and	IPSL	129	

consistently	predict	large	decreases	in	JRP	since	both	models	project	the	highest	increases	130	

in	storm	frequency	and	intensity.	The	variations	among	the	GCMs	are	consistent	for	the	131	

entire	coastline	(Fig.	S4).	Although	there	is	a	relatively	large	inter-model	range	of	future	132	

JRP	estimates,	especially	for	locations	in	the	Gulf	of	Mexico,	even	the	most	conservative	133	

GCM	(i.e.,	MPI)	projects	large	increases	in	future	joint	hazard.		134	

	135	

Drivers	of	joint	hazard	change	136	

The	change	in	JRP	can	be	driven	by	three	mechanisms:	1)	changes	in	storm	frequency,	2)	137	

marginal	changes	in	rainfall	totals	and/or	extreme	sea	level	driven	by	TC	climatology	138	

changes	and	SLR,	and	3)	changes	in	the	statistical	dependence	between	extreme	rainfall	139	

and	storm	surges.	To	understand	the	relative	contribution	to	changes	in	JRP	from	each	140	

mechanism,	we	calculate	the	isolated	impact	of	changes	in	storm	frequency,	rainfall	hazard,	141	

storm	tide	hazard,	hazard	dependence,	and	SLR	(see	Methods).	In	Figure	1c	we	plot	the	142	

single	variable	that	causes	the	largest	decrease	in	JRP	at	each	coastal	location.	Across	the	143	

Gulf	of	Mexico	and	Florida	coastline,	the	increase	in	rainfall	is	the	largest	driver	of	changes	144	

in	JRP,	while	the	increase	in	storm	frequency	has	the	largest	impact	on	JRP	change	for	parts	145	

of	the	Southeast	and	Mid-Atlantic.	Along	the	upper	Mid-Atlantic	and	New	England	coastline,	146	

SLR	causes	the	largest	decrease	in	future	JRP.	For	the	select	locations,	we	show	the	relative	147	

impact	on	JRP	change	of	each	variable	and	the	combined	impact	of	all	storm	climatology	148	

variables	(Fig	3).	Across	all	locations	in	Fig	3	the	change	in	marginal	rainfall	distribution	is	149	

among	the	largest	contributor	to	the	change	in	JRP,	since	all	GCMs	project	significant	150	

increases	in	rainfall	totals	(Fig	S5)	due	to	both	the	increased	saturation	specific	humidity	of	151	

the	warmed	environment	and	the	projected	increase	in	TC	intensity.	In	contrast	to	the	large	152	

rainfall	impact,	the	change	in	marginal	storm	tide	distribution	has	small	impact	on	the	153	

change	in	JRP	for	northern	locations	and	a	small	to	moderate	impact	on	JRP	change	for	154	

locations	along	the	Gulf	of	Mexico.	The	relative	impact	of	SLR	on	JRP	change	generally	155	

increases	moving	south	to	north,	with	the	largest	impact	at	Portland,	ME.	Importantly,	the	156	

storm	climatology	changes	drive	large	increases	in	joint	hazard	across	all	locations.	The	157	
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combined	impact	of	storm	climatology	changes	on	JRP	is	larger	than	the	SLR	impact	for	158	

96%	of	locations	along	the	coastline.		159	

The	change	in	the	dependence	between	hazards	also	causes	a	small	to	moderate	160	

decrease	in	JRP	for	most	locations	in	Figure	3,	indicating	that	the	extremes	of	the	two	161	

hazards	are	projected	to	become	more	dependent	in	the	future	climate.	To	further	examine	162	

the	change	in	hazard	dependence,	Figure	4a	shows	the	conditional	probability	of	24-hour	163	

rainfall	exceeding	the	90th	percentile	given	a	storm	tide	that	exceeds	the	90th	percentile,	164	

calculated	for	the	historical	period.		The	conditional	probability	is	a	representation	of	the	165	

tail	dependence	between	the	hazards,	as	higher	conditional	probability	corresponds	to	166	

higher	tail	dependence.	The	eastern	Gulf	of	Mexico	and	Chesapeake	Bay	exhibit	the	167	

strongest	dependence	between	hazards,	the	western	Gulf	of	Mexico	and	Southeast	Atlantic	168	

have	moderate	hazard	dependence,	and	the	Mid-Atlantic	and	New	England	have	relatively	169	

low	dependence.	Figure	4b	shows	the	change	in	the	conditional	probability	from	the	170	

historical	to	future	climate,	with	areas	of	red	(blue)	indicating	statistically	significant	171	

increases	(decreases)	in	dependence.	With	the	exception	of	the	eastern	Gulf	of	Mexico,	172	

Chesapeake	Bay	and	the	Maine	coastline,	most	regions	are	projected	to	have	higher	173	

dependence	between	extreme	rainfall	and	storm	tides	in	the	future.	Specifically,	the	lower	174	

Texas,	Georgia,	North	Carolina,	and	New	Jersey	coastlines	are	projected	to	experience	the	175	

largest	strengthening	of	hazard	dependence	in	the	future,	resulting	in	up	to	an	increase	of	176	

0.2	in	the	conditional	probability	(Fig.	4b).	Along	the	eastern	Gulf	of	Mexico	there	is	almost	177	

no	change	in	the	dependence	strength	because	the	two	hazards	are	already	highly	178	

correlated	in	the	historical	climate	(Fig	4a)	and	will	remain	similarly	correlated	in	the	179	

future	climate.	Along	the	coast	of	Maine	there	is	a	small	projected	increase	in	hazard	180	

dependence,	although	this	increase	is	not	statistically	significant.	The	Chesapeake	Bay	181	

stands	as	an	outlier,	and	it	is	the	only	location	where	the	dependence	strength	between	182	

hazards	decreases	in	the	future	climate	(discussed	below).		183	

	184	

Changes	in	dominant	TC	storm	characteristics		185	

Since	TC	climatology	change	is	the	dominant	contributor	to	JRP	change,	we	investigate	how	186	

projected	changes	in	TC	storm	characteristics	drive	changes	in	rainfall	accumulations,	peak	187	

storm	surges,	and	their	dependence	at	the	coast.		After	investigating	correlations	between	188	
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each	hazard	and	storm	intensity,	approach	angle,	translation	speed,	and	landfall	location	189	

and	quantifying	projected	changes	in	each	storm	characteristic,	we	find	that	storm	190	

intensity	and	translation	speed	are	both	projected	to	change	significantly	in	the	future	(Fig	191	

5a	and	5b,	respectively)	and	are	significantly	correlated	with	rainfall	and/or	storm	tide	(Fig	192	

5c-f).	For	the	vast	majority	of	the	coastline,	both	the	peak	storm	tide	and	24-hour	rainfall	193	

are	significantly	correlated	with	TC	intensity,	although	the	strength	of	correlation	is	higher	194	

for	rainfall	(Fig	5c-d).	The	24-hour	rainfall	is	also	strongly	negatively	correlated	with	storm	195	

translation	speed	(Fig	5f),	as	slower	moving	storms	will	drop	more	rainfall	in	a	given	196	

coastal	location	than	faster	moving	storms.	The	peak	storm	tide	is	not	strongly	correlated	197	

with	translation	speed	(Fig	5e),	since	both	slow	and	fast	moving	storms	can	generate	high	198	

surges,	and	the	additional	background	wind	contribution	is	generally	small,	even	for	fast	199	

moving	storms,	compared	to	the	cyclonic	wind	speed.	Under	future	storm	climatology,	the	200	

90th	percentile	of	TC	intensity	is	projected	to	increase	by	15-30%	along	the	Gulf	of	Mexico	201	

and	Southeast	Atlantic,	30-50%	along	the	Mid-Atlantic,	and	20-30%	along	the	New	England	202	

coastline	(Fig	5a).		The	vast	majority	of	previous	studies	also	project	an	increase	in	North	203	

Atlantic	TC	intensity,	and	many	predict	an	increase	in	the	frequency	of	high	intensity	204	

(category	3-5)	TCs29.	We	also	find	a	large	future	reduction	in	the	translation	speed	of	205	

storms	that	exceed	the	90th	percentile	intensity	(Fig	5b).	For	all	regions	except	New	206	

England,	storms	that	exceed	90th	percentile	intensity	are	likely	to	move	20-30%	slower	in	207	

the	future	than	in	the	historical	period.	The	decrease	in	translation	speed	found	here	is	208	

consistent	with	previous	work	examining	changes	in	translation	speed	in	the	historical	209	

record30	and	projections	of	TC	translation	speed	under	future	climate	conditions31–33.	The	210	

increase	in	storm	intensity	coupled	with	the	decrease	in	translation	speed	drives	an	211	

increased	likelihood	to	observe	both	extreme	rainfall	and	extreme	storm	tide	in	the	future	212	

and	increases	the	upper	tail	dependence	between	the	hazards.	By	comparing	Figure	4b	213	

with	Figures	5a-b	it	is	clear	that	most	regions	experiencing	a	significant	increase	in	the	214	

hazard	dependence	also	experience	significant	increases	in	storm	intensity	and	decreases	215	

in	translation	speed.	The	Chesapeake	Bay	is	a	notable	exception,	since	the	hazards	are	216	

projected	to	become	less	dependent	in	the	future	even	though	there	is	an	increase	in	TC	217	

intensity	and	decrease	in	translation	speed.	In	the	future	a	larger	number	of	intense	storms	218	

are	projected	to	approach	the	coast	north	of	the	Bay	opening.	These	storms	do	not	induce	219	
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high	storm	surges	within	the	Bay	since	the	cyclonic	winds	are	pointed	away	from	the	coast,	220	

but	they	still	induce	extreme	rainfall.	Thus,	the	increase	in	the	number	of	these	types	of	221	

storms	causes	a	decrease	in	the	hazard	correlation	at	this	location	in	the	future	climate.		222	

	223	

Discussion		224	

The	results	presented	here	demonstrate	that	TC	climatology	change	and	SLR	may	cause	225	

large	increases	in	joint	rainfall-surge	hazard	across	the	US	East	and	Gulf	coasts.	The	226	

projected	increase	in	extreme	rainfall	hazard	(considering	the	maximum	24-hour	rainfall	227	

accumulation	over	the	catchment	in	the	above	analysis)	is	often	the	largest	driver	of	the	228	

increase	in	the	extreme	joint	hazard.	Our	projections	of	extreme	rainfall	are	consistent	with	229	

refs.	26	and	34,	who	found	100-120%	increase	in	the	100-year	storm	total	rainfall	at	a	single	230	

point	location	in	Houston,	TX,	while	we	project	a	123%	increase	(Table	S2).	Our	projections	231	

are	also	consistent	with	previous	studies	focusing	on	mean	rainfall	changes.	Using	the	RCP	232	

4.5	scenario	and	a	suite	of	CMIP5	models,	most	previous	studies	found	a	10-22%	increase	233	

in	mean	end-of-century	TC	rain	rates	within	100	km	of	the	storm	center35–37.	A	recent	study	234	

using	a	high-resolution	GCM	projected	a	larger	increase	of	29%38.	Here	we	project	a	slightly	235	

higher	32%	increase	in	inner	core	mean	TC	rain	rate	(Table	S1),	which	is	reasonable	given	236	

our	use	of	the	SSP5	8.5	high	emission	scenario.		237	

	 We	also	find	that	the	overall	impact	of	storm	climatology	change	on	the	change	in	238	

the	extreme	joint	hazard	is	larger	than	the	SLR	impact	for	96%	of	the	coastline.	The	239	

contribution	of	TC	climatology	change	is	also	dominant	for	lower	joint	TC	hazard	240	

thresholds,	such	as	25-year	or	50-year	levels	(see	Table	S3;	Fig.	S6).	Although	we	find	that	241	

TC	climatology	change	is	more	dominant	than	SLR	in	driving	changes	in	TC	joint	hazard,	242	

SLR	also	impacts	other	types	of	compound	flooding	arising	from	e.g.,	ETCs	or	two	unrelated	243	

meteorological	events,	especially	for	return	periods	shorter	than	50	years13–16.	Moreover,	244	

recent	work	in	ref.	39	that	incorporated	a	physical	model	for	ice	sheet	hydro-fracturing,	a	245	

mechanism	that	is	deeply	uncertain,	found	significantly	higher	SLR	by	2100	than	ref.	18	246	

(which	we	use	here).	Therefore,	the	overall	role	of	SLR	on	total	compound	flood	hazard	247	

may	still	be	dominant	compared	to	TC	climatology	change.		248	

	 The	findings	presented	here	are	associated	with	inevitable	uncertainties.	We	utilize	249	

a	single	TC	model	to	downscale	all	GCMs	and	reanalysis	data,	and	the	model	predicts	a	250	
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significant	increase	in	future	TC	frequency	for	five	of	the	eight	GCMs.	Although	a	few	other	251	

studies40,41	have	also	predicted	increases	in	TC	frequency,	the	majority	of	studies	predict	a	252	

decrease	or	no	change	in	North	Atlantic	storm	frequency29.	However,	the	main	findings	of	253	

our	study	are	unchanged	even	if	we	assume	no	change	in	future	TC	frequency.	The	future	254	

JRP	change	calculated	by	holding	TC	frequency	constant	at	the	historical	level	is	only	255	

slightly	lower	at	each	coastal	location	(up	to	149-fold	decrease	in	JRP;	see	comparison	in	256	

Fig	S7),	and	the	spatial	trends	(i.e.	higher	JRP	change	in	the	north	compared	to	the	south)	257	

are	unchanged.	The	relative	importance	of	TC	climatology	change	compared	to	SLR	also	258	

remains	similar	when	assuming	constant	frequency,	and	TC	climatology	change	still	causes	259	

a	larger	JRP	change	than	SLR	for	84%	of	the	coastline.	The	reason	our	results	are	relatively	260	

unchanged	if	we	neglect	the	projected	frequency	change	is	because	the	increase	in	TC	261	

hazards	and	their	joint	occurrence	is	largely	driven	by	projected	increases	in	TC	intensity	262	

and	decreases	in	translation	speed.			263	

	 This	study	cannot	directly	predict	the	overall	compound	flood	hazard,	which	is	264	

driven	by	a	combination	of	ETC	events	(especially	at	lower	return	periods)	and	TCs.	265	

Moreover,	compound	flood	depths	must	be	quantified	using	high-resolution	inundation	266	

models.	Nevertheless,	we	provide	evidence	that	joint	rainfall-surge	extreme	events	could	267	

become	an	increasing	threat	to	coastal	communities	in	the	future.	We	also	find	that	the	268	

statistical	dependence	between	extreme	rainfall	and	storm	tide	increases	in	the	future	for	269	

portions	of	the	coastline,	resulting	in	a	higher	probability	of	multi-hazard	extremes	during	270	

future	storm	events.	This	finding	is	significant	since	many	previous	studies	of	future	271	

compound	flooding	have	neglected	potential	increases	in	hazard	dependence8–10,42,	which	272	

could	underestimate	compound	flood	risk.	Our	projections	of	joint	TC	rainfall-surge	hazard	273	

can	be	combined	with	ETC	hazard	distributions43	to	develop	overall	flood	mapping	274	

scenarios44	for	regional10,45	or	local-scale17,46,47	flood	models	to	assess	the	impact	of	joint	275	

rainfall-surge	occurrence	on	coastal	flooding	in	a	changing	climate.		276	
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Figure	Captions		295	

Figure	1:	Joint	rainfall-surge	hazard	in	the	current	and	future	period	and	largest	driver	of	296	

joint	hazard	change.	Joint	return	period	of	NCEP	historical	100-yr	rainfall	and	100-yr	sea	297	

level	(JRP)	for	(a)	NCEP	historical	period	and	(b)	future	period	(2070-2100)	based	on	GCM	298	

composite	projection	and	2100	SLR.	Black	dots	in	(a)	show	representative	locations	that	299	

are	analyzed	further	in	Figures	2-3.	Red	tick	marks	in	(a)	show	boundaries	of	Gulf	of	300	

Mexico,	Southeast	Atlantic,	Mid-Atlantic,	and	New	England.	(c)	Largest	single	factor	301	

contributing	to	increase	in	joint	hazard	or	N/A	if	no	single	hazard	is	larger	than	others.	US	302	

state	outlines	come	from	the	U.S.	Census	Bureau48.	303	

	304	

Figure	2:	JRP	sampling	uncertainty	and	model	ranges	for	representative	coastal	locations.	305	

JRP	estimates	and	95%	boot-strapped	uncertainty	bounds	under	NCEP	historical	(gray)	306	

and	GCM	future	composite	(blue)	forcing.	GCM	model	ensemble	spread	at	each	location	for	307	

the	future	period	(2070-2100)	shown	as	colored	dots.		308	

	309	

Figure	3:	Relative	impact	of	each	single	climate	factor	on	JRP	change	and	impact	of	total	310	

changes	in	TC	climatology	or	sea	level	rise.	Zero	indicates	no	change	in	JRP	compared	to	311	

NCEP	historical	JRP	and	one	indicates	that	the	factor	causes	the	entire	change	between	312	
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historical	and	future	JRP.	Negative	impact	values	indicate	that	the	factor	increases	the	JRP	313	

compared	to	historical	best	estimate	(vertical	black	lines	in	Fig	2a).	Note	that	the	combined	314	

impact	of	all	climate	factors	on	JRP	is	highly	non-linear	and	thus	the	sum	of	the	relative	315	

impact	of	each	single	factor	does	not	equal	one.	316	

	317	

Figure	4:	Historical	and	future	change	in	tail	dependence	between	24-hour	rainfall	and	318	

peak	storm	tide.	(a)	Conditional	probability	of	extreme	rainfall	(exceeding	90th	percentile)	319	

given	extreme	storm	tide	(exceeding	90th	percentile)	in	the	historical	period,	and	(b)	320	

change	in	conditional	probability	of	extreme	rainfall	due	to	future	storm	climatology.	321	

Positive	(negative)	values	indicate	increases	(decreases)	in	conditional	probability.	Areas	322	

of	gray	indicate	that	the	projected	change	in	conditional	probability	is	not	significant	323	

compared	to	the	range	of	natural	variability	in	the	historical	period	(set	as	the	10-90	324	

percentiles	of	the	tail	dependence	estimated	through	bootstrapping).	US	state	outlines	325	

come	from	the	U.S.	Census	Bureau48.	326	

	327	

Figure	5:	Change	between	future	composite	TC	characteristics	and	historical	328	

characteristics	and	correlation	between	rainfall/storm	tide	and	TC	characteristics.	Change	329	

in	(a)	90th	percentile	TC	intensity	(Vmax),	and	(b)	median	translation	speed	(Vt)	of	storms	330	

that	exceed	90th	percentile	intensity.	Kendall	correlation	between	Vmax	and	storm	tide	(c)	331	

or	rainfall	(d)	and	between	Vt	and	storm	tide	(e)	or	rainfall	(f).	US	state	outlines	come	from	332	

the	U.S.	Census	Bureau48.	333	

	334	

	335	
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	Methods		456	

To	characterize	the	present	and	future	joint	rainfall-surge	hazard,	we	implement	a	physics-457	

based	modeling	framework	that	is	driven	by	the	large-scale	atmospheric	and	ocean	458	

climatology	of	reanalysis	(historical	period)	or	GCM	(future	period)	data.	First	we	construct	459	

monthly	climatologies	of	relevant	environmental	variables	(see	ref.	48)	based	on	the	460	

reanalysis/GCM	data.	Next,	we	generate	thousands	of	synthetic	TCs	that	are	consistent	with	461	

the	large-scale	environment	using	a	statistical-deterministic	TC	model.	These	synthetic	TCs	462	

represent	around	1000	simulation	years	for	each	climate	condition.	For	each	TC	we	model	463	

the	coastal	storm	tides	using	a	high-resolution	hydrodynamic	model,	and	we	model	the	464	

rainfall	fields	using	a	computationally-efficient	physics-based	rainfall	model.	Based	on	the	465	

modeled	storm	tides	and	rainfall	accumulations	for	the	thousands	of	synthetic	TCs,	we	466	

conduct	bivariate	statistical	analysis	to	quantify	the	probability	of	joint	extreme	events.		467	

	468	

Data	469	

We	generated	5018	synthetic	TC	tracks	for	the	historical	time	period	(between	1980	and	470	

2005),	based	on	the	National	Centers	for	Environmental	Prediction	(NCEP)	reanalysis49.	471	

We	then	generated	4400	synthetic	TCs	for	the	historical	period	(1984-2005)	and	6200	TCs	472	

for	the	future	period	(2070	to	2100)	under	the	Shared	Socioeconomic	Pathway	(SSP)	5,	8.5	473	

emission	scenario50	based	on	each	of	eight	CMIP650	climate	models:	Canadian	Earth	System	474	

Model	(CANESM),	Centre	National	de	Recherches	Météorologiques	(CNRM),	EC-Earth	475	

Consortium	Model	(ECEARTH),	Geophysical	Fluid	Dynamics	Laboratory	Climate	Model	476	

(GFDL),	The	Institute	Pierre	Simon	Laplace	Climate	Model	(IPSL),	Model	for	477	

Interdisciplinary	Research	on	Climate	(MIROC),	Max	Planck	Institute	Earth	System	Model	478	

(MPI),	and	Meteorological	Research	Institute	Earth	System	Model	(MRI).		479	

	480	

Synthetic	TC	Model	481	

The	statistical-deterministic	TC	model51,	which	has	been	widely	applied	for	TC	hazard	482	

assessment52-56,	generates	synthetic	events	based	on	data	about	the	large-scale	483	

environment	and	can	be	forced	with	either	reanalysis	data	or	projections	from	GCMs.	484	

Vortices	are	randomly	seeded	in	space	and	time,	and	are	moved	according	to	the	large-485	

scale	environmental	winds	plus	a	beta-drift	correction57.	TC	intensity	is	estimated	at	each	486	
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time	step	based	on	the	Coupled	Hurricane	Intensity	Prediction	System	(CHIPS),	which	is	an	487	

axisymmetric	vortex	model	coupled	to	a	1D	ocean	model58.	Storms	are	only	retained	if	their	488	

intensity	exceeds	21	m/s	(40	kts).	Thus,	only	seed	vortices	that	encounter	favorable	large-489	

scale	environment	conditions	will	strengthen	into	TCs,	and	the	timing	of	TC	development	is	490	

consistent	with	the	environmental	climatology.		For	each	TC,	the	outer	radius	at	which	the	491	

cyclonic	wind	speed	goes	to	zero	(henceforth	outer	radius)	is	randomly	drawn	from	an	492	

empirical	lognormal	distribution59.	We	neglect	the	variation	in	outer	radius	size	over	the	493	

TC	lifetime60	since	previous	work	has	shown	the	outer	radius	variation	to	be	relatively	494	

small61.	We	also	assume	no	change	in	the	distribution	of	TC	outer	size	for	the	future	climate	495	

since	historical	trend	analysis	for	the	North	Atlantic	basin	found	no	statistically	significant	496	

changes	in	TC	size	over	time62.	Moreover,	an	analysis	of	dynamically-downscaled	TCs	based	497	

on	RCP	4.5	end	of	century	forcing	found	nearly	constant	outer	radius	compared	to	the	498	

historical	period63.	Using	the	CHIPS-estimated	intensity	and	outer	radius,	we	estimate	the	499	

radius	to	maximum	winds	based	on	a	theoretical	wind	model	that	links	the	outer	500	

descending	region	of	the	TC	with	the	inner	ascending	region61.	Each	simulated	storm	is	501	

characterized	by	time	series	of	storm	parameters	(time,	center	position,	maximum	wind	502	

speed,	pressure	deficit	and	radius	to	maximum	wind)	for	every	two	hours.		503	

	504	

Bias	Correction	and	Model	Combination		505	

The	downscaled	TCs	from	each	GCM	may	be	biased	compared	to	the	NCEP-downscaled	506	

TCs,	and	biases	within	the	TC	characteristics	can	propagate	to	become	biases	in	the	hazard	507	

estimation.	TC	intensity	and	annual	frequency	are	both	important	drivers	of	coastal	flood	508	

risk,	and	both	variables	may	be	biased	due	to	biases	in	GCM	projections.	Therefore,	we	509	

perform	bias	correction	at	the	storm	level	based	on	the	differences	between	the	NCEP	TC	510	

frequency	and	intensity	distribution	and	the	GCM-predicted	frequency	and	intensity	511	

distribution	for	the	historical	period.	Using	our	method	of	bias	correction,	we	avoid	512	

multivariate	bias	correction	on	the	modeled	storm	tides	and	rainfall,	which	often	fails	to	513	

preserve	the	entire	dependence	structure	between	hazards64.	Additionally,	bias	correction	514	

at	the	storm	level	is	computationally	efficient,	while	bias	correction	at	the	hazard	level	515	

requires	performing	intensive	hydrodynamic	simulations	for	additional	thousands	of	GCM	516	

TCs	for	the	historical	period.		517	
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Specifically,	at	each	location	we	bias	correct	the	TC	frequency	by	multiplying	the	518	

GCM-predicted	future	frequency	by	the	ratio	of	the	NCEP-derived	historical	frequency	and	519	

GCM-predicted	historical	frequency..	To	correct	the	GCM-projected	TC	intensity	(Vmax)	of	520	

each	storm	set,	we	first	utilize	the	quantile	delta	mapping	approach	described	in	ref.	65	521	

applied	to	each	location	along	the	coast.	Essentially,	the	change	between	the	GCM-projected	522	

future	(2070-2100)	and	historical	(1984-2005)	downscaled	Vmax	quantiles	is	added	to	the	523	

NCEP-downscaled	historical	quantiles	to	create	a	corrected	future	Vmax	distribution	for	524	

each	GCM	model	at	each	location.	Then	by	the	principle	of	importance	sampling66	the	GCM-525	

projected	storms	are	weighted	and	re-sampled	with	weights	corresponding	to	the	ratio	of	526	

the	corrected	Vmax	probability	density	to	the	GCM-projected	Vmax	probability	density.	By	527	

doing	weighted	re-sampling	of	the	storms	at	each	location	we	are	able	to	match	the	528	

corrected	future	Vmax	distribution	and	consequently	generate	a	storm	set	at	each	location	529	

that	is	unbiased	with	respect	to	the	intensity	distribution.	Figure	S8	shows	the	bias	530	

correction	procedure	applied	at	a	sample	location	for	a	sample	GCM,	demonstrating	that	531	

after	weighting/re-sampling	the	target	Vmax	distribution	is	matched	accurately.	We	also	532	

create	a	composite	projection	for	the	future	climate	using	a	weighted	average	across	all	533	

GCM	storm	sets,	where	the	weights	of	each	GCM	are	based	on	their	Willmott	skill67	in	534	

matching	the	NCEP	TC	intensity	return	level	curve	in	the	historical	period	(Fig.	S9).		535	

	536	

Hydrodynamic	Modeling		537	

We	simulate	TC	storm	tides	using	the	2D	depth-integrated	version	of	the	ADvanced	538	

CIRCulation	(ADCIRC)	model68,69.	We	utilize	an	unstructured	computational	mesh	539	

developed	by	ref.	70	that	spans	the	entire	North	Atlantic	basin	and	has	resolution	varying	540	

from	>50	km	in	the	deep	ocean	to	~1	km	near	the	coastline.	Eight	tidal	constituents	are	541	

incorporated	as	periodic	boundary	conditions	at	the	ocean	boundaries	of	the	mesh,	and	542	

tidal	data	are	obtained	from	the	global	model	of	ocean	tides	TPXO8-ATLAS71.	The	timing	of	543	

the	tide	is	matched	to	the	timing	of	the	synthetic	storm	(simulated	according	to	the	544	

climatology).	Wind	and	pressure	fields	are	developed	based	on	the	Vmax	and	radius	to	545	

maximum	wind	(Rmax)	of	each	synthetic	TC	and	physics-based	parametric	models72,73.	546	

Further	details	regarding	the	mesh	formulation,	tidal	forcing,	and	wind/pressure	models	547	

are	documented	in	ref.	70.	Simulated	storm	tides	from	the	model	configuration	utilized	in	548	
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this	study	were	compared	against	observed	water	levels	for	191	historical	TCs	impacting	549	

the	US	East	and	Gulf	Coasts,	and	the	model	was	found	to	satisfactorily	reproduce	peak	550	

storm	tides	(with	an	average	root	mean	square	error	of	0.31	m	and	Willmott	skill67	of	551	

0.90)70.	In	this	study	we	do	not	account	for	wave	setup	since	the	computational	expense	of	552	

coupled	wave-surge	model	would	prevent	a	large-scale	Monte	Carlo	risk	assessment.	For	553	

each	TC	we	extract	peak	storm	tides	at	nodes	along	the	coastline	that	are	spaced	roughly	554	

25	km	apart.		555	

	556	

Rainfall	Modeling		557	

We	estimate	rainfall	fields	from	each	synthetic	TC	using	the	Tropical	Cyclone	Rainfall	(TCR)	558	

model	described	in	refs	74.	TCR	is	a	physics-based	model	that	simulates	convective	TC	559	

rainfall	by	relating	the	precipitation	rate	to	the	total	upward	velocity	within	the	TC	vortex.	560	

Vertical	velocity	is	estimated	by	taking	into	account	frictional	convergence,	topographic	561	

forcing,	vortex	stretching,	baroclinic	effects,	and	radiative	cooling.	TCR	has	been	previously	562	

utilized	in	risk	assessment	studies55,75	and	was	recently	compared	against	observed	TC	563	

rainfall	across	the	US56,76.	It	was	found	in	ref.	76	that	TCR	simulates	the	rainfall	climatology	564	

of	coastal	regions	with	relatively	good	accuracy,	although	it	underperforms	in	inland	and	565	

mountainous	regions.	The	performance	of	the	model	for	inland	regions	has	been		566	

addressed	and	improved	in	subsequent	work	leading	to	ref.	56.	TCR	does	not	simulate	outer	567	

TC	rain	bands,	which	are	three-dimensional	in	nature	and	cannot	be	directly	simulated	568	

with	an	axisymmetric	model.	Nevertheless,	a	recent	study	modeled	compound	flooding	569	

using	TCR-predicted	rainfall	fields	for	several	historical	events	and	found	that	TCR	rainfall	570	

produced	similar	flood	depth/extent	compared	to	using	radar	rainfall	forcing55.	In	our	571	

study,	we	utilize	TCR	rainfall	over	each	coastal	catchment	delineated	according	to	USGS	572	

hydrologic	units	(HUs)77.	We	pair	each	coastline	point	with	its	upstream	coastal	catchment,	573	

and	for	the	coastal	point	we	utilize	the	maximum	24-hour	rainfall	accumulation	occurring	574	

anywhere	in	the	upstream	catchment	as		our	rainfall	metric	for	each	storm	event.	The	24-575	

hour	storm	duration	is	frequently	used	for	rainfall	risk	assessment	studies78,	and	rainfall	576	

occurring	anywhere	in	the	immediate	upstream	catchment	will	drain	to	the	same	coastal	577	

point	and	can	impact	compound	hazard.		578	

	579	
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Validation	of	integrated	modeling	of	TC	surge-rainfall	hazard			580	

Previous	studies	have	independently	evaluated	the	TC	model48,51,	rainfall	model56,76,	and	581	

storm	tide	model70	by	comparing	against	historical	observations.	Here,	we	additionally	582	

evaluate	the	ability	of	our	models	to	reproduce	observed	dependence	between	TC	rainfall	583	

and	storm	tides.	We	compare	the	Kendall	rank	correlation79	computed	from	modeled	584	

rainfall	and	storm	tides	(derived	from	reanalysis	data)	against	the	Kendall	correlation	585	

computed	from	observed	storm	tides	and	observed	daily	rainfall	at	31	gauge	locations	586	

across	the	coastline	(Figure	S10).	The	Kendall	correlation	coefficient	can	capture	non-587	

linear	dependence	between	two	variables	by	utilizing	the	relative	ranks	of	each	588	

observation	rather	than	the	magnitude,	and	Kendall	correlation	has	been	used	extensively	589	

as	a	metric	to	assess	dependence	between	rainfall	and	storm	tides80-82.	If	the	modeled	590	

rainfall	and	storm	tides	from	the	NCEP	synthetic	TCs	produce	a	similar	correlation	591	

coefficient	as	the	observations,	this	suggests	that	the	models	produce	joint	high	(and	joint	592	

low)	events	with	similar	likelihood	as	the	real	observed	TCs,	and	thus	increase	our	593	

confidence	in	the	use	of	our	models	to	project	current	and	future	joint	hazard.	594	

Based	on	Figure	S10,	the	model-based	correlations	match	well	with	the	observed	595	

correlations,	with	an	overall	root	mean	square	error	(RMSE)	of	0.09	and	bias	of	0.02	596	

(indicating	slight	overestimation	of	rainfall-surge	dependence).	For	the	majority	of	597	

locations	the	difference	between	modeled	and	observed	correlations	is	within	+/-	0.1.	The	598	

model	overestimates	the	correlation	for	the	region	between	Mississippi	and	the	Florida	599	

panhandle.	The	discrepancy	between	modeled	and	observed	correlation	in	this	region	is	600	

likely	due	to	the	occurrence	of	other	observed	rainfall	mechanisms,	such	as	extra-tropical	601	

transition	or	interaction	with	fronts,	that	are	not	simulated	by	the	TC	model	and	cause	602	

lower	correlation	between	observed	rainfall	and	storm	tides.	603	

	604	

Sea	Level	Rise	Projections		605	

We	incorporate	probabilistic,	localized	sea	level	rise	projections	from	ref.	83	for	2100	606	

considering	the	RCP	8.5	emission	scenario.	In	ref.	83	sea	level	rise	probability	distributions	607	

are	developed	for	tide	gauge	locations	across	the	globe	by	taking	into	account	ice	sheet	608	

components	(Greenland,	West	Antarctic,	and	East	Antarctic),	glacier	and	ice	cap	surface	609	

mass	balance,	thermal	expansion	and	oceanographic	processes,	land	water	storage,	and	610	
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other	non-climatic	factors.	Sea	level	changes	due	to	thermal	expansion	and	oceanographic	611	

processes	are	based	on	ensemble	mean	projections	from	a	suite	of	CMIP5	GCMs.	For	each	612	

point	along	the	coastline,	we	select	the	nearest	tide	gauge	and	adopt	the	probability	613	

distribution	specified	by	ref.	83.		614	

	 We	calculate	total	sea	level	for	each	TC	by	randomly	drawing	from	the	SLR	615	

distributions	and	superimposing	on	the	modeled	storm	tides	for	computational	efficiency.	616	

The	assumption	of	linearity	between	SLR	and	storm	tides	is	a	reasonable	approximation	of	617	

extreme	sea	levels,	but	nonlinear	interactions	between	SLR	and	storm	tides	can	be	618	

significant	in	complex	local	areas,	particularly	small	bays	and	estuaries84,85.	We	also	treat	619	

TC	climatology	change	and	SLR	as	independent,	although	they	may	be	significantly	620	

correlated.	Ref	86	found	a	significant	correlation	between	SLR	and	changes	in	power	621	

dissipation	index	(an	integrated	measure	of	TC	intensity,	frequency,	and	duration)	for	the	622	

North	Atlantic,	suggesting	that	large	increases	in	mean	sea	level	are	more	likely	to	co-occur	623	

with	larger	increases	in	TC	hazard.	By	neglecting	correlation	between	SLR	and	climatology	624	

changes	our	results	may	underestimate	the	composite	(weighted-average)	change	in	625	

climatology	and	SLR,	and	consequently	represent	a	conservative	estimate	of	joint	hazard	626	

change.		627	

	628	

Statistical	Analysis	of	Joint	Hazard		629	

We	conduct	statistical	analysis	on	the	pairs	of	maximum	modeled	storm	tides	(or	storm	630	

tides	plus	SLR)	and	maximum	24-hr	rainfall	accumulation	at	each	location	along	the	631	

coastline	to	quantify	their	marginal	and	joint	hazard.		632	

	 The	marginal	distributions	of	both	rainfall	and	storm	tides	are	often	characterized	633	

by	a	long	tail	representing	the	rare	but	extreme	events52,53.	The	heavy	tail	can	be	modeled	634	

with	a	Peaks-Over-Threshold	approach,	where	the	probability	above	a	high	threshold	is	635	

estimated	by	a	Generalized	Pareto	(GP)	distribution87.	We	fit	marginal	GP	distributions	636	

using	the	maximum	likelihood	method87	for	the	rainfall	and	storm	tides	at	each	location,	637	

and	the	threshold	is	set	by	numerically	minimizing	the	root	mean	square	error	between	the	638	

empirical	quantiles	and	the	theoretical	quantiles.	According	to	bivariate	extreme	value	639	

theory,	a	logistic	model	can	be	used	to	estimate	the	joint	distribution	of	two	GP	variables	640	

such	that	their	bivariate	CDF	takes	the	form87,88:		641	
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	 		 (1)	642	

Where	 	and	 	are	the	Fréchet-transformed	versions	of	the	variables	 	and	 ,	and	a	is	a	643	

parameter	that	quantifies	the	strength	of	the	dependence	between	the	variables	(a	à	0	644	

signifies	complete	dependence	and	a=1	complete	independence).	At	each	location	we	645	

transform	the	rainfall	and	storm	tide	pairs	based	on	their	respective	marginal	distributions	646	

and	GP	thresholds	to	obtain	Fréchet	versions	of	the	variables.	Then	we	fit	the	bivariate	647	

distribution	using	a	censored	maximum	likelihood	approach88	that	considers	pairs	that	648	

jointly	exceed	their	GP	thresholds	(within	the	“evd”	R-package89).	We	additionally	ensure	649	

that	there	are	at	least	20	pairs	of	joint	exceedances	to	fit	the	bivariate	model.	The	bivariate	650	

logistic	model	employed	here	has	previously	been	utilized	to	model	dependence	between	651	

rainfall	and	storm	surges88,90-92.		652	

	 After	characterizing	the	marginal	and	joint	distributions	of	rainfall	and	storm	tides	653	

at	each	coastline	location,	we	quantify	the	return	period	(inverse	of	the	annual	exceedance	654	

probability)	of	jointly	extreme	events.	For	each	location,	we	model	TC	occurrence	as	a	655	

Poisson	Process	with	arrival	rate	λ	per	year.	The	basin	arrival	rate	is	a	parameter	of	the	TC	656	

model20	and	is	calibrated	to	match	the	observed	occurrence	rate	in	the	North	Atlantic	basin	657	

for	the	historical	period.	The	location-specific	arrival	rate	(λ)	is	an	adjustment	of	the	basin	658	

arrival	rate	according	to	the	proportion	of	storms	passing	within	200	km	of	each	location.	659	

We	define	 	as	the	marginal	100-year	storm	tide	and	100-year	rainfall,	defined	in	the	660	

historical	period.	Then	the	return	period	of	an	event	that	jointly	exceeds	 	and	 	661	

(henceforth	labeled	JRP)	is	calculated	as	follows:		662	

	 		 (2)	663	

Where	P	is	the	joint	exceedance	probability:	664	

	 		 (3)	665	

Where	G	is	defined	in	equation	1.		666	

	 We	quantify	JRP	under	the	current	and	future	storm	climates,	by	fitting	marginal	667	

and	joint	distributions	to	storm	tide	and	rainfall	pairs	from	NCEP	or	each	GCM-derived	668	

storm	dataset.	We	estimate	the	sampling	uncertainty	bounds	of	the	JRP	estimates	by	669	

   G(x, y) = exp{−( !x−1/α + !y−1/α )α}

  !x   !y  x  y

  xT , yT

 xT  yT

  
JRP = 1

1− e−λP

  P = 1− Pr( X ≤ xT )− Pr(Y ≤ yT )+G(xT , yT )
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implementing	a	bootstrapping	approach	with	500	iterations	for	each	location	and	each	670	

GCM.	For	each	iteration,	we	re-sample	(with	replacement)	pairs	of	modeled	storm	tides	671	

and	rainfall,	fit	the	univariate	and	joint	distributions	and	re-calculate	JRP.		672	

	673	

Attribution	of	Changes	in	Joint	Hazard		674	

To	quantify	the	isolated	impact	of	various	climate	factors	on	changes	in	joint	rainfall-surge	675	

hazard,	we	adjust	a	single	factor	at	a	time	and	then	re-calculate	JRP.	To	quantify	the	676	

isolated	impact	of	SLR	on	changes	in	JRP,	we	randomly	draw	SLR	values	from	location-677	

specific	probability	distributions18	and	add	them	to	the	historical	rainfall-storm	tide	pairs.	678	

The	impact	of	changes	in	future	storm	frequency	is	quantified	by	simply	changing	the	value	679	

of	λ	in	Equation	2	to	reflect	the	future	period	frequency.	Because	storm	tide	and	rainfall	are	680	

dependent,	we	quantify	the	impact	of	changes	in	(1)	marginal	rainfall	distribution,	(2)	681	

marginal	storm	tide	distribution,	and	(3)	dependence	between	hazards,	through	quantile-682	

matching.	Specifically,	we	calculate	 	and	 ,	which	are	the	historical	rainfall	( )	and	683	

storm	tide	( )	cumulative	distribution	functions	(CDFs),	and	 	and	 ,	which	are	the	684	

future	CDFs.	Given	historical	pairs	of	rainfall	and	storm	tide	( )	we	can	evaluate	the	685	

impact	of	changes	in	rainfall	hazard	by	changing	 	values	to	 		so	that	686	

the	magnitude	of	rainfall	is	increased	according	to	the	future	period	rainfall	distribution	687	

but	the	storm	tide	( )	values	and	dependence	between	hazards	are	unchanged.	We	688	

similarly	calculate	the	storm	tide	values	( )	while	keeping	the	rainfall	values	( )	constant	689	

to	evaluate	the	impact	of	increases	in	storm	tide	on	the	JRP	change.	The	methodology	above	690	

guarantees	the	rank	correlation	between	TC	rainfall	and	surge	is	unchanged.	To	measure	691	

the	impact	of	changes	in	hazard	dependence	(α	in	Equation	1),	we	adjust	the	future	rainfall	692	

and	storm	tide	pairs	( )	as	follows: ,	 .	The	693	

adjusted	values	of	rainfall	and	storm	tide	are	reduced	according	to	their	historical	694	

distributions,	but	the	dependence	between	hazards	is	based	on	the	future	period	695	

climatology.			696	

  Fr ,h   Fs,h  rh

 sh   Fr , f   Fs, f

  rh ,sh

 rh   rh
* = Fr , f

−1 (Fr ,h(rh ))
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	697	
Data	availability	statement:	698	

The	hazard	data	generated	from	this	study	are	deposited	to	the	NSF	DesignSafe-CI	and	can	699	

be	accessed	online	(https://doi.org/10.17603/ds2-gv07-kf03)93.	Downscaled	TC	track	700	

information	can	be	obtained	by	contacting	K.E.		701	

	702	

Code	availability	statement:		703	

The	codes	for	marginal	and	bivariate	extreme	value	analysis,	and	for	visualization	are	704	

deposited	to	the	NSF	DesignSafe-CI	and	can	be	accessed	online	705	

(https://doi.org/10.17603/ds2-gv07-kf03)93.	706	
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