

Sequential Landfall of Tropical Cyclones in the United States: From Historical Records to Climate Projections

Dazhi Xi¹, Ning Lin¹

¹Department of Civil and Environmental Engineering, Princeton University

Corresponding author: Dazhi Xi (dxi@princeton.edu)

Keywords:

Tropical cyclones, Sequential landfall, Poisson-Gaussian model, Climate projection

Key Points:

- Time intervals between sequential landfalling TCs has decreased for most US regions, although the trend is not statistically significant.
- A climate downscaling projection indicates that intervals between sequential US landfalling TCs may significantly decrease in the future.
- The decreased intervals and increased chances of sequential landfalling TCs are mainly driven by increases in storm landfall frequency.

15 Abstract

16 In this study, we examine sequential landfalling tropical cyclones (TCs) along U.S. East and
17 Gulf Coasts. We find that Florida and Louisiana are most prone to sequential landfall risk. The
18 minimal time between sequential landfalling TC has decreased for most regions since 1979,
19 although the trend is not statistically significant given limited data. A climate projection indicates
20 a significant increase in sequential landfalls over the 21st century under the SSP5 8.5 scenario,
21 with the chance of a location experiencing a less-than-10-day break between two TC impacts
22 being doubled for most regions. The increases in sequential landfalls in the historical period and
23 projected future climate are both related to increased landfall frequency, even though the storm
24 season has been slightly expanding and may continue to expand. This study highlights a new
25 type of TC hazard resulting from the temporal compounding of landfalls and urges the
26 improvement of coastal resilience.

27

28 Plain Language Summary

29 Sequential landfalling tropical cyclones (TCs), which make landfall near a location within a short
30 period of time, can be hazardous for coastal communities. Analyzing the historical records for
31 the U.S. East and Gulf Coasts, we find that the states of Florida and Louisiana are most prone to
32 sequential TC hazard, and this hazard has had an increasing potential for most coastal regions
33 since 1979. Performing future projections of TCs under the effect of climate change, we find that
34 the sequential TC hazard may increase even more significantly in the future. The increased
35 sequential TC hazard in both the historical period and a projected future climate is related to the
36 increased annual frequency of landfalling TCs. This study highlights a new type of TC hazard
37 resulting from the temporal compounding of landfalling TCs and urges the improvement of
38 coastal resilience, e.g., shortening the time scales for infrastructure recovery after TC landfalls.

39

40 1 Introduction

41 In 2020, 31 tropical cyclones (TCs) occurred in the North Atlantic. Besides the large number of
42 TCs (tied with 2005 as the most since 1979), 18 TCs approached within 250 km of U.S.
43 coastlines, the highest number since 1979. Eastern Louisiana, in particular, experienced
44 sequential landfalls of three TCs. Tropical Storm Beta, Hurricane Delta, and Hurricane Zeta
45 affected this region sequentially on September 20, October 9, and October 24, leading to losses
46 of > \$225 million, > \$2.9 billion, and > \$3.9 billion, respectively (Aon Benfiled 2020).

47

48 Sequential landfalling TCs (SLTs), defined as those that make landfall near a specific location
49 within a short period of time, may be conceived as temporally compounding events (Zscheischler
50 et al. 2020). SLTs are hazardous if the landfall interval is shorter than the time scale of recovery
51 of coastal communities and ecosystems. For example, the time scale of power system recovery
52 may be over two weeks; Ouyang et al. (2012) found that the power system in Harris County,
53 Texas needed 16-17 days to fully recover after Hurricane Ike (2008) made landfall. Urban
54 transportation systems may have similar recovery time scales; Chan and Schofer (2016) found
55 that New York subway system restored 95% regular service two weeks after Hurricane Sandy
56 (2012) made landfall. Also, TCs can weaken building structures and generate debris (Lin et al.
57 2010), which can take up to a year to clean up (Brandon et al. 2011) and weakened structures and

58 scattered debris increase the chance for later storms to produce more damage (Minor 2005).
59 Moreover, ecosystems are susceptible to SLTs, which can dramatically influence the
60 concentration of nutrients (Paerl et al. 2001) or cause reductions in salinity (Switzer et al. 2016).
61 Thus, a better understanding of SLTs supports the development of coastal resilience.

62
63 It is interesting from both scientific and social perspectives to ask if SLTs have been increasing
64 and will increase in the future. Previous research has examined TC climatology features that are
65 related to SLTs. Webster et al. (2005) found global increases of storm number since 1970s.
66 Wang and Toumi (2021) found the fraction of storms entering coastal regions has an increased
67 trend. Kossin et al. (2018) found the TC translation speed has decreased globally, and Hall and
68 Kossin (2019) showed the stalling times of US landfalling TCs have increased. These results
69 indicate increasing risks from TCs but did not directly address the trend of SLTs. For future
70 projections, previous studies have focused on global to basin-scale changes of storm intensity
71 and frequency. Most models project increased storm intensity and decreased frequency (Knutson
72 et al. 2020) and some models project increased storm frequency (Emanuel 2013, Bhatia et al.
73 2018). Some models also project a slowdown of TC movement (Emanuel 2021) and increased
74 TC landfall frequencies (Emanuel 2013, Emanuel 2021). Fewer studies have projected landfall
75 hazards in the future (Marsooli et al. 2019, Emanuel 2017, Xu et al. 2020), and none of the
76 climate projection studies has focused on SLTs.

77
78 In this study, we investigate SLTs in the coastal United States. We examine the time intervals
79 between storm landfalls and impacts, as metrics describing SLTs, and their spatial and temporal
80 variations. We also investigate how the climatology of these time intervals may change in the
81 future, as simulated by a synthetic TC model downscaling six CMIP6 climate models. To
82 explore the observed and simulated spatial and temporal variations of SLTs, we apply a Poisson-
83 Gaussian model to connect TC landfall intervals to TC landfall frequency and seasonality.

84

85 **2 Data and Method**

86 To study the historical climatology of SLTs in the coastal United States, we used TC
87 observations from the International Best Track Archive for Climate Stewardship (IBTrACS).
88 IBTrACS provides six-hourly TC locations and intensities. We used data from 1979 (the satellite
89 era) to avoid the influence of missing records in earlier decades (Moon et al. 2018).

90

91 To study climate change effect, we applied synthetic TCs generated with a statistical-
92 deterministic TC model (Emanuel 2008, Emanuel 2021). The synthetic storms were generated
93 under the environments of the NCAR/NCEP reanalysis and each of six CMIP6 climate models
94 (CanESM5, CNRM-CM6-1, GFDL-CM-4, EC-Earth3, IPSL-CM6A-LR, MIROC6) for control
95 (1984-2005) and Shared Socioeconomic Pathway 5 8.5 scenarios (SSP5 8.5; 2070-2100). 4400
96 and 6200 storms were generated from each climate model for control and SSP5 8.5 scenarios,
97 respectively, and 5018 storms were generated from the reanalysis in the control period.

98

99 We divided the U.S. East and Gulf coastlines into eight regions, namely Texas, Louisiana,
100 Mississippi-Alabama, West Florida, East Florida, Georgia, South Carolina, and North Carolina
101 (regions in higher latitudes have been seldomly affected by SLTs and thus are not investigated in
102 this study). We also specifically examine the East Louisiana region (90.59° W to 89.29° W) as

103 it was hit by SLTs in 2020. To focus on SLTs that are spatially close enough to cause compound
 104 impacts, we divided the coastlines into 186 mileposts with 100-km spacing in Mexico and 50-km
 105 spacing in the US (detailed in Jing and Lin, 2020) and analyzed SLTs for each milepost. We
 106 selected all storms in IBTrACS and synthetic storm simulations that approached within 250 km
 107 of a milepost (following Jing and Lin, 2020) and defined the landfall time as when the storm first
 108 entered the 250-km circle centered on the milepost. We computed the landfall intervals between
 109 storms for each milepost and defined the minimum interval over a year and across all mileposts
 110 in each defined coastal region to be the minimal landfall interval (MLI) in the year for the region.
 111 We further defined the storm impact duration (SID) for a milepost as the duration when the
 112 storm was within 250 km of the milepost, and we calculated the minimal impact interval (MII),
 113 the minimum over a year and across the mileposts for the region of the time interval between the
 114 end of the impact of the first storm and the start of the impact of the second storm. Annual
 115 landfall frequencies for each region are also calculated.
 116

117 We considered storms that reach tropical storm intensity (>17.5 m/s) at landfall in the historical
 118 analysis. For synthetic analysis with larger samples, we examined MLI and MII also for
 119 hurricanes (>32.5 m/s at landfall). We estimated the probability distribution and return period for
 120 MLI and MII in the control simulations and climate-model projections. The climate projections
 121 of MLI and MII were bias-corrected. We bias-corrected the future projection of storm frequency
 122 and cumulative density functions (CDFs) of MLI and MII in each model by comparing the
 123 climate-model and reanalysis-based estimations for the control period. The storm frequency was
 124 bias-corrected through a multiplicative factor, and CDFs of MLI and MII were bias-corrected
 125 through quantile-quantile-mapping. Besides the MLI and MII distributions for each of the six
 126 climate models, we also calculated the weighted average of the six models, by assigning weights
 127 to the models based on the mean square error of the model-simulated CDFs of MLI and MII for
 128 the control period compared to reanalysis-based simulations. Marsooli et al. (2019) applied
 129 similar methods to perform bias correction and model combination for storm surge projections.
 130

131 To understand the connections between MLI and landfall frequency and seasonality, we propose
 132 a Poisson-Gaussian landfall model. The model assumes storm arrivals in a region to form a
 133 nonstationary Poisson process. The Poisson rate of storm landfall is modulated by interannual
 134 and seasonal variations, which can be described as

$$\nu(t, s) = \lambda(t)S(s) \quad (1)$$

135 where $\lambda(t)$, the interannual variation, is the landfall frequency in year t , and $S(s)$, the seasonal
 136 variation, is the likelihood of landfall occurrence on day s relative to the likelihood of occurrence
 137 during the season. We model the seasonality with a Gaussian function,
 138

$$S(s) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{s-\mu}{\sigma})^2} \quad (2)$$

139 where μ is the mean landfall day during the year and σ is the standard deviation of the landfall
 140 day. While μ represents the seasonal peak, σ represents the spread of the season. In this model,
 141 MLI depends solely on σ and λ , as they together determine the number of storms within a time
 142 period, while μ has no influence on MLI as it only shifts the landfall day. We performed Monte
 143 Carlo simulations of storm landfalls for various σ and λ to examine the theoretical connection
 144 between MLI and these parameters.
 145

146

148 Based on this landfall model, we investigated the change of MLI by investigating the changes of
149 λ and σ in historical observations and climate simulations. To study how these parameters have
150 changed in the historical period, we divided the historical period (1979-2019) into two periods
151 (1979-1999 and 2000-2019) and fitted the model for each period. To study how these parameters
152 may change from the control to the future climate, we fitted the model for the control and future
153 periods for each climate model. We used the method of maximum likelihood for model fitting.
154 We performed Monte Carlo simulations of TC landfall using the model fitted by the historical
155 observation to validate the model.

156

157 The Poisson-Gaussian model assumes storms are conditionally independent (given the
158 environmental condition), and so does the synthetic storm modeling, as feedbacks of storms to
159 the environment is not captured in the one-way coupling system. Physical interactions between
160 storms are possible but rare (Hoover 1961, Brand 1970, Xu et al. 2013, Schenkel 2016). Also,
161 previous research has examined the independence assumption on storm genesis and landfalls and
162 found that the Poisson distribution generally fits the observations well (e.g., Rumpf et al. 2009,
163 Lin et al. 2012, Wahiduzzaman et al. 2021).

164

165 3 Historical Record of SLTs

166 We first use East Louisiana as an example to study the historical variation of the annual landfall
167 frequency, mean SID, and MLI. Figure 1 (a)-(d) shows that, for East Louisiana, the landfall
168 frequency has increased by 0.0167 ± 0.0156 storms/year since 1979. SID has increased by
169 0.016 ± 0.011 days/year since 1979. Also, MLI has decreased (-0.909 ± 0.508 days/year) since
170 1979, implying that the chance of SLTs has increased. The increasing trends of the landfall
171 frequency and mean SID pass the Mann-Kendall significance test (95% confidence level), but
172 the trend of MLI cannot pass the test, possibly due to data limitations (only data in years with at
173 least two landfalling storms at a milepost are used to calculate MLI). The probability distribution
174 of yearly MLI is fitted with a Generalized Pareto Distribution (GPD) (Fig.1d). The shape
175 parameter of the fitted GPD is negative, implying that the GPD has a light tail and the yearly
176 MLI is unlikely to take values much larger than the mean.

177

178 We extended the above analysis to the other coastal regions (Fig. 1(e)-(h)). Except for Texas, all
179 the other coastal regions show a slight but statistically significant increase of landfalling
180 frequency since 1979 (up to 0.04 ± 0.0182 storms/year). Significant increases of SID are observed
181 for all the coastal regions, with the maximum increase occurring in Louisiana (0.0286 ± 0.0105
182 days/year). The observed increase in SID is consistent with the finding of Hall and Kossin
183 (2019). MLI decreases for most regions, except West Florida and Mississippi-Alabama, by up to
184 0.94 ± 0.75 days/year (South Carolina). Although the trend cannot pass the Mann-Kendall test due
185 to data limitation, the increased landfall frequency indicates increased potential for short MLI
186 (see discussion with the theoretical modeling below). The decrease in MLI and increase in SID
187 implies a decrease of MII (not shown) and thus an increase of impact from SLTs for most coastal
188 areas. We also fit GPD to MLI for each region; Fig. 1(h) shows the scale of the fitted GPD.
189 Small value of the scale indicates the region is more likely to experience short MLI. The lowest
190 values of scale are found in East Florida (24.41), West Florida (32.02), and Louisiana (37.79),

191 meaning that these locations are most prone to the threat of SLTs. Shape parameters (not shown)
192 for all regions are negative except for Florida, implying that MLI is unlikely to take values much
193 larger than the mean in most regions.

194

195 To better understand the variation of MLI, we investigate the connection between MLI and TC
196 climatology features. Figure 2(a) shows the relationship between MLI and the annual landfall
197 frequency in the historical record. Smaller MLI is associated with larger landfall frequency.
198 Linear fitting of mean MLI to annual landfall frequency indicates that one more landfall on
199 average causes a 7.15 ± 2.4 -day shortening of MLI. Figure 2(b) shows the relationship between
200 the fitted λ (annual frequency averaged over each period) and σ (seasonality variation averaged
201 over each period) in the historical record, and how they jointly influence MLI. We find that λ
202 and σ are positively correlated, implying that as the storm frequency increases (Fig. 1(e)), storm
203 season has also been slightly expanding (i.e., seasonal distribution being slightly flattened).
204 Figure 2(b) also shows that lower MLI is associated with smaller σ and larger λ although the
205 pattern appears unclearly due to data limitations. Thus, we perform idealized simulations using
206 the Poisson-Gaussian model; Figure 2(c) shows the expectation of MLI ($E(T)$) in the $\lambda - \sigma$
207 space. The theoretical results show that given σ , the larger the λ , the lower the MLI and given λ ,
208 the smaller the σ , the lower the MLI. MLI is shortened by about 6-8 days per increase of a
209 landfall, consistent with the empirical sensitivity. The Poisson-Gaussian model is evaluated with
210 the observation (Figure 2(d)). The model captures the relationship between MLI and parameters
211 λ and σ well. All observations are covered by the 25-th to 75-th percentiles of the Monte Carlo
212 simulations. The small discrepancies of simulations and observations are related to the model
213 assumption of storm independency and statistical uncertainties. The result indicates that MLI has
214 a decreasing potential over the historical period mainly because the storm landfall frequency has
215 increased. Although the storm season has been slightly expanding (i.e., TC activity in the off-
216 peak season has increased relatively more than in the peak season), the increase of TC activity in
217 the peak season is still significant and likely responsible for the decrease of MLI.
218

219 **4 Climate Projection of SLTs**

220 In this section we use the synthetic storm dataset to examine SLTs under climate change. Figure
221 3 examines the CDF of MLI. We find that the probability for short TC-MLI (MLI between TCs;
222 Figs. 3a–3h) increases from the control to the future climate (e.g., in Louisiana the probability of
223 MLI < 20 days increases from 0.49 to 0.65), while the predicted degree of increase varies among
224 climate models. The probability for short hurricane-MLI (MLI between hurricanes; Figs. 3i–3p)
225 also increases (e.g., in Louisiana the probability of hurricane-MLI < 20 days increases from 0.52
226 to 0.61), and the changes in the Gulf Coast regions and Florida are larger than those in East
227 Coast regions. The overall chance of the hurricane-MLI being smaller than 20 days for the Gulf
228 Coast (Texas to West Florida) increases from 0.46 to 0.59 and for East Coast (East Florida to
229 North Carolina) increases from 0.46 to 0.56 (not shown). All changes pass the two-sample

230 Kolmogorov-Smirnov test on differences in distributions (with 5% significance level) and are
231 hence statistically significant.

232

233 To assess overall sequential landfall risk, we combine MLI, SID, and multi-landfall frequency to
234 compute return period of MII (Figure 4). The change in MII is significant, which is dominated by
235 the change in MLI and landfall frequency rather than SID (not shown). For example, the return
236 period of a 10-day TC-MII would decrease by about half for most regions from the control to
237 future climate (e.g., in Louisiana the return period decreases from 15 years to 8 years). We found
238 more significant increase of the chance of experiencing a short hurricane-MII (break between
239 hurricane impacts). In Louisiana the return period of a 20-day hurricane-MII would decrease
240 from 35 to 4 years. For the Gulf Coast (Texas to West Florida) the return period of a 20-day
241 hurricane-MII would decrease from 12 to one year, and for the East Coast (East Florida to North
242 Carolina) it will decrease from 25 to two years (not shown).

243

244 To better understand the change of SLTs in the future, we examine the change of annual landfall
245 frequency λ and seasonality σ in the control and future climate simulations from the six climate
246 models. We find that the averages of both λ and σ increase in the future. The increase in
247 average λ from the control to the future climate ranges from 2.38 to 6.31 storms across the
248 regions while the increase in average σ ranges from 3.69 to 4.87 days. The increase in λ is a
249 composite result of increased basin-wide genesis frequency and northward expansion of track
250 density (Emanuel 2021). The projected change in λ over the 21th century is beyond the historical
251 variation from the period of 1979-1999 to the period of 2000-2019 (increase by up to 0.9 storms)
252 while the increase in σ is within the historical variation (increase by up to 9.6 days). According
253 to the Poisson-Gaussian model (Fig. 2c), such changes in storm frequency and seasonality lead to
254 the significant decrease of MLI (e.g., in Louisiana expected MLI decreases from around 17 days
255 to 6 days; Fig. 3) and MII (Fig. 4), resulting from increased storm activity in the peak season.

256

257 **5 Conclusions**

258 This study examines various climatological features of SLTs using observation and climate
259 model projections for U.S. East and Gulf Coasts. We describe SLTs with storm landfall interval
260 (MLI), impact duration (SID), and impact interval (MII). We find East Florida, West Florida,
261 and Louisiana are most prone to sequential SLTs risk. Except for Texas, the landfall frequency
262 and annual mean SID have significantly increased since 1979, with the largest increase in
263 landfall frequency found in Mississippi-Alabama ($+0.04 \pm 0.0182$ storms/year) and the largest
264 increase in SID found in Louisiana ($+0.0286 \pm 0.0105$ days/year). MLI decreases for most
265 regions, except West Florida and Mississippi-Alabama, by up to 0.94 ± 0.75 days/year (South
266 Carolina). Although the trend is not statistically significant due to data limitation, the increase of
267 landfalling storms indicate increased potential for short MLI for most regions in the U.S. Coasts.
268 The decreasing potential of MLI and increases in landfall frequency and SID indicate decreased
269 MII and thus an increased impact from SLTs for most coastal areas. Applying a Poisson-

270 Gaussian model, we found the decrease of MLI is consistent with the increase of annual landfall
271 frequency, although the storm season has also been slightly expanding. Previous findings of
272 more storms (Webster et al. 2005, Wang and Toumi 2021) and longer storm stalling time (Hall
273 and Kossin 2019) and our results of increased likelihood of temporally compounding storms
274 consistently indicate an increased TC threat along the U.S. coastlines over the past decades.

275 Climate projections using a synthetic storm model indicate SLTs will significantly increase
276 under the SSP5 8.5 scenario, especially for the Gulf Coast. The return period of a 10-day MII
277 between TCs would decrease by about half for most coastal regions over the 21st century (e.g., in
278 Louisiana from 15 years to 8 years). The chance of experiencing a short MII between hurricanes
279 would increase more significantly (e.g., in Louisiana the return period of a 20-day hurricane-MII
280 would decrease from 35 years to 4 years). This large increase in SLTs is consistent with the
281 projected significant increase of annual landfall frequency in the model (increased by 2.38-6.31
282 storms on average over the 21st century for US coast) although the storm season is projected to
283 be slightly expanding. Previous research has projected a global slowdown of storm translation
284 speed (Emanuel 2021) and more landfalling storms in the future (Emanuel 2013, Emanuel 2021).
285 Consistent with the previous findings, this study shows explicitly that the time intervals between
286 storm impacts may significantly decrease in the future.

287 This study highlights a new type of TC hazard resulting from temporally compounding landfalls
288 while previous studies focus on single-storm hazards such as surge (Marsooli et al. 2019),
289 rainfall (Emanuel 2017), and compound flooding (Gori et al. 2020). Previous findings on
290 intensified single-storm hazards calls for improvement of coastal reliability while this study on
291 increased SLTs urges the improvement of coastal resilience. For example, the power system in
292 Texas requires around 17 days to fully recover after hurricane landfall (Ouyang et al. 2012). For
293 Texas, hurricane-MII being less than 17 days is a 40-year event in the current climate but would
294 be a less-than-10-year event in the future (Figure 4i). To be prepared for potentially more
295 frequent SLTs in the future, the recovery time of power grids and other infrastructure systems
296 may need to be shortened along U.S. coastlines.

297 This study used a specific synthetic storm model to investigate SLTs in the future climate. This
298 storm model predicts increased TC frequencies (Emanuel 2013, 2021) while large uncertainties
299 still exist on how TC frequency will change in the future (Knutson et al. 2020). This study
300 underlines again the importance of accurately projecting TC frequency, which greatly influences
301 the estimation of SLTs and other TC hazards (Marsooli et al. 2019). It is important for future
302 studies to use other methods, including regional (Wright et al. 2015) and global climate models
303 that can explicitly simulate intense TCs (e.g., Bhatia et al. 2018), to validate the change of SLTs
304 in the future found in this study.

305 **Data Availability Statement**

306 The analysis results and data from this study are deposited to the NSF DesignSafe-CI and can be
307 accessed online (<https://www.designsafe-ci.org/data/browser/projects/7419478767301693931-242ac117-0001-012/>). The hurricane dataset IBTrACS can be accessed from the National
308 Climatic Data Center (<https://www.ncdc.noaa.gov/ibtracs/>). The original synthetic tropical
309 cyclone datasets used in this study are freely available from Kerry Emanuel for research
310

311 purposes. For the details and availability of the synthetic datasets, please refer to Emanuel (2021)
312 (DOI: <https://doi.org/10.1175/JCLI-D-20-0367.1>)

313

314 **Acknowledgments**

315 This material is based upon work supported by the National Science Foundation (NSF Grants
316 1854993 and 1652448). All opinions expressed in this paper are the authors' and do not
317 necessarily reflect the policies and views of NSF. The authors thank Kerry Emanuel (MIT) for
318 providing us with the synthetic storm datasets and constructive comments. The first author also
319 thanks Tianqi Cui (JHU) for useful discussions about the statistical analysis.
320

321 **References**

322 Aon Benfield. 2021. "Global Catastrophe Recap – October 2020" (PDF). p. 4.

323 Bhatia, K., Vecchi, G., Murakami, H., Underwood, S., & Kossin, J. (2018). Projected response
324 of tropical cyclone intensity and intensification in a global climate model. *Journal of*
325 *Climate*, 31(20), 8281–8303. <https://doi.org/10.1175/JCLI-D-17-0898.1>

338 Brand, S. (1970), Interaction of binary tropical cyclones of the western North Pacific Ocean, *J.*
339 *Appl. Meteor.*, 9, 433-441.
340

458 Brandon, D. L., Medina, V. F., & Morrow, A. B. (2011). A case history study of the recycling
459 efforts from the United States Army Corps of Engineers Hurricane Katrina debris removal
460 mission in Mississippi. *Advances in Civil Engineering*, 2011(3).
461 <https://doi.org/10.1155/2011/526256>

462 Chan, R., & Schofer, J. L. (2016). Measuring Transportation System Resilience: Response of
463 Rail Transit to Weather Disruptions. *Natural Hazards Review*, 17(1), 05015004.
464 [https://doi.org/10.1061/\(asce\)nh.1527-6996.0000200](https://doi.org/10.1061/(asce)nh.1527-6996.0000200)

465 Emanuel, K. (2017). Assessing the present and future probability of Hurricane Harvey's rainfall.
466 *Proceedings of the National Academy of Sciences of the United States of America*, 114(48),
467 12681–12684. <https://doi.org/10.1073/pnas.1716222114>

468 Emanuel, K. (2006). Climate and tropical cyclone activity: A new model downscaling approach.
469 *Journal of Climate*, 19(19), 4797–4802. <https://doi.org/10.1175/JCLI3908.1>

470 Emanuel, K. (2021). Response of global tropical cyclone activity to increasing CO₂: Results
471 from downscaling CMIP6 models. *Journal of Climate*, 34(1), 57–70.
472 <https://doi.org/10.1175/JCLI-D-20-0367.1>

473 Hall, T. M., & Kossin, J. P. (2019). Hurricane stalling along the North American coast and
474 implications for rainfall. *Npj Climate and Atmospheric Science*, 2(1), 1–9.
475 <https://doi.org/10.1038/s41612-019-0074-8>

476 HOOVER, E. W. (1961). Relative Motion of Hurricane Pairs. *Monthly Weather Review*, 89(7),
477 251–255. [https://doi.org/10.1175/1520-0493\(1961\)089<0251:rmohp>2.0.co;2](https://doi.org/10.1175/1520-0493(1961)089<0251:rmohp>2.0.co;2)

478 Jing, R., & Lin, N. (2020). An Environment-Dependent Probabilistic Tropical Cyclone Model.
479 *Journal of Advances in Modeling Earth Systems*, 12(3), 1–18.
480 <https://doi.org/10.1029/2019MS001975>

481 Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., et al. (2010).
482 Tropical cyclones and climate change. *Nature Geoscience*, 3(3), 157–163.
483 <https://doi.org/10.1038/ngeo779>

484 Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and
485 D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-
486 first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. *J. Climate*, 28,
487 7203–7224, <https://doi.org/10.1175/JCLI-D-15-0129.1>.

488 Knutson, T., Camargo, S. J., Chan, J.C., Emanuel, K., Ho, C. H., Kossin, J., Mohapatra, M.,
489 Satoh, M., Sugi, M., Walsh, K. and Wu, L., 2020. Tropical cyclones and climate change
490 assessment: Part II: Projected response to anthropogenic warming. *Bulletin of the American
491 Meteorological Society*, 101(3), pp. E303-E322.

492 Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. *Nature*,
493 558(7708), 104–107. <https://doi.org/10.1038/s41586-018-0158-3>

494 Lee, C. Y., Camargo, S. J., Sobel, A. H., & Tippett, M. K. (2020). Statistical-Dynamical
495 downscaling projections of tropical cyclone activity in a warming climate: Two diverging
496 genesis scenarios. *Journal of Climate*, 33(11), 4815–4834. <https://doi.org/10.1175/JCLI-D-19-0452.1>

498 Lin, N., E. Vanmarcke, and S. C. Yau (2010). Windborne debris risk analysis – Part II.
499 Application to structural vulnerability modeling. *Wind. Struct.* 13(2): 207-220.

500 Lin, N., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. (2012). Physically based assessment
501 of hurricane surge threat under climate change. *Nature Climate Change*, 2(6), 462–467.
502 <https://doi.org/10.1038/nclimate1389>

503 Marsooli, R., Lin, N., Emanuel, K., & Feng, K. (2019). Climate change exacerbates hurricane
504 flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. *Nature
505 Communications*, 10(1), 1–9. <https://doi.org/10.1038/s41467-019-11755-z>

506 Minor, J. E. (2005). Lessons Learned from Failures of the Building Envelope in Windstorms.
507 *Journal of Architectural Engineering*, 11(1), 10–13. [https://doi.org/10.1061/\(asce\)1076-0431\(2005\)11:1\(10\)](https://doi.org/10.1061/(asce)1076-0431(2005)11:1(10))

509 Moon, I.-J., Kim, S.-H., & Chan, J. C. L. (2019). Climate change and tropical cyclone trend.
510 *Nature*, 570(7759), E3–E5. <https://doi.org/10.1038/s41586-019-1222-3>

511 Ouyang, M., Dueñas-Osorio, L., & Min, X. (2012). A three-stage resilience analysis framework
512 for urban infrastructure systems. *Structural Safety*, 36–37, 23–31.
513 <https://doi.org/10.1016/j.strusafe.2011.12.004>

514 Paerl, H. W., Bales, J. D., Ausley, L. W., Buzzelli, C. P., Crowder, L. B., Eby, L. A., et al.
515 (2001). Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the
516 United States' largest lagoonal estuary, Pamlico Sound, NC. *Proceedings of the National
517 Academy of Sciences of the United States of America*, 98(10), 5655–5660.
518 <https://doi.org/10.1073/pnas.101097398>

519 Schenkel, B. A. (2016). A climatology of multiple tropical cyclone events. *Journal of Climate*,
520 29(13), 4861–4883. <https://doi.org/10.1175/JCLI-D-15-0048.1>

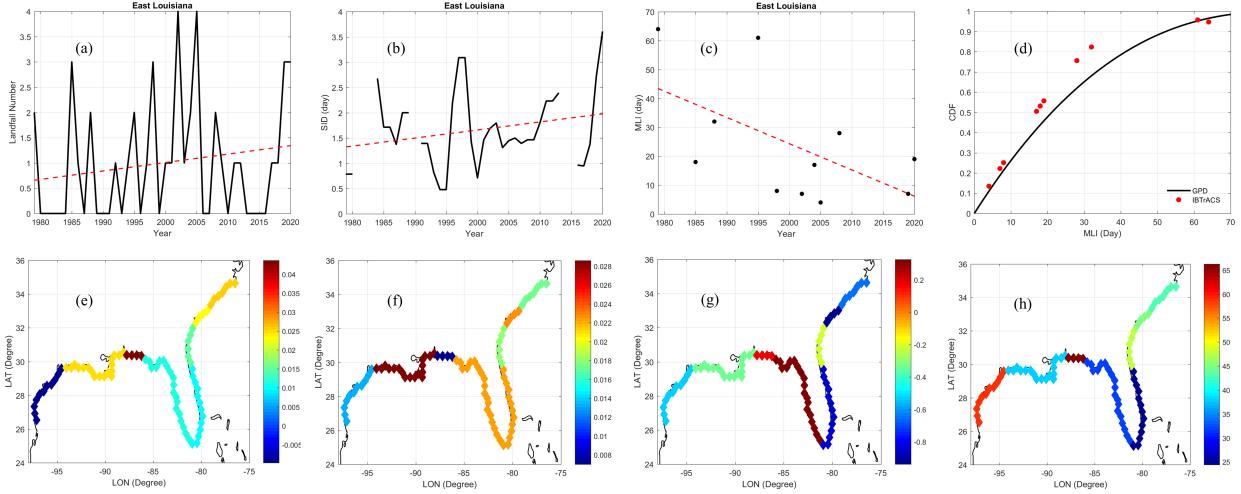
521 Switzer, T. S., Winner, B. L., Dunham, N. M., Whittington, J. A., & Thomas, M. (2006).
522 Influence of sequential hurricanes on nekton communities in a Southeast Florida estuary:
523 Short-term effects in the context of historical variations in freshwater inflow. *Estuaries and
524 Coasts*, 29(6), 1011–1018. <https://doi.org/10.1007/bf02798663>

525 Wahiduzzaman, M., Yeasmin, A., Luo, J. J., Quadir, D. A., Van Amstel, A., Cheung, K., &
526 Yuan, C. (2021). Markov Chain Monte Carlo simulation and regression approach guided by
527 El Niño–Southern Oscillation to model the tropical cyclone occurrence over the Bay of
528 Bengal. *Climate Dynamics*, 56(9), 2693–2713.

529 Wang, S., & Toumi, R. (2021). Recent migration of tropical cyclones toward coasts. *Science*,
530 371(6528), 514–517. <https://doi.org/10.1126/science.abb9038>

531 Wright, D. B., Knutson, T. R., & Smith, J. A., 2015. Regional climate model projections of
532 rainfall from U.S. landfalling tropical cyclones

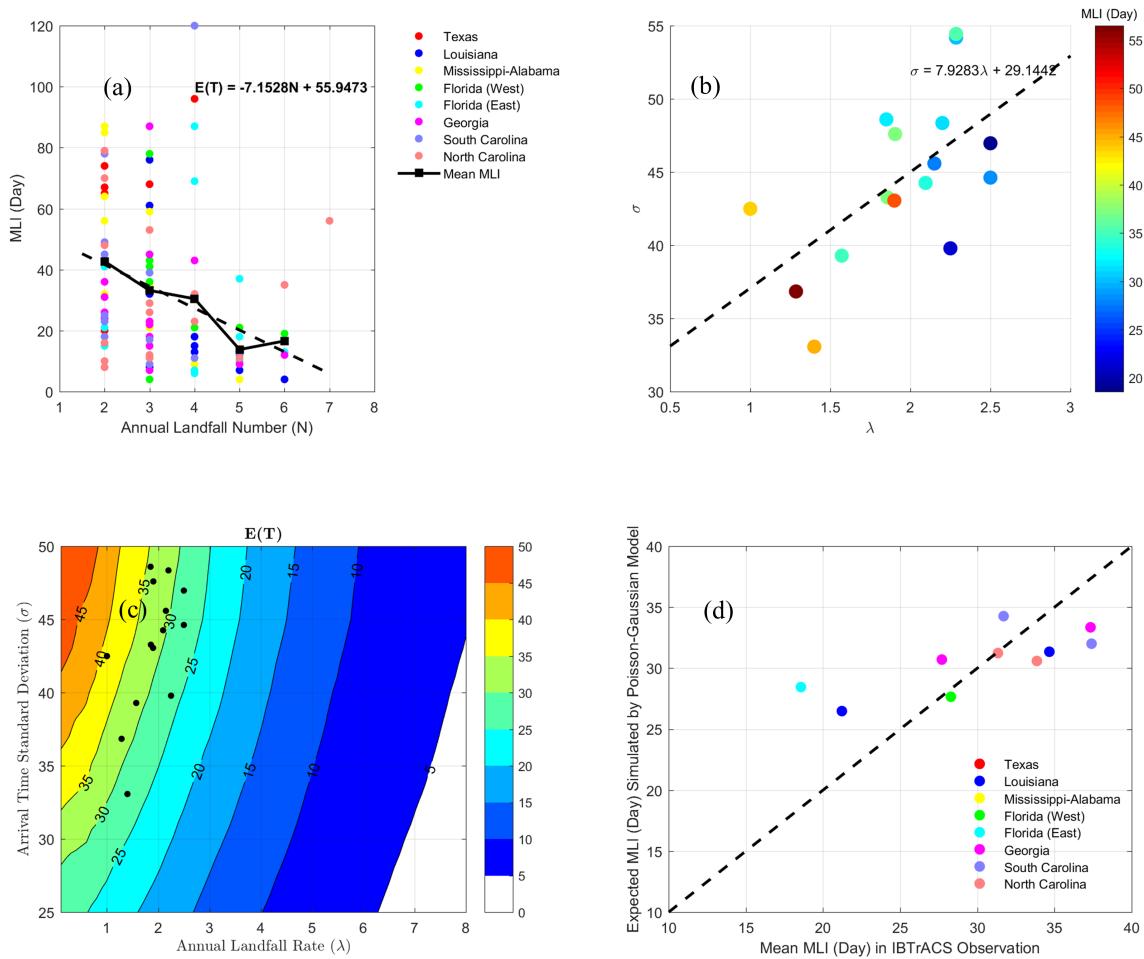
533



534

535 Figure 1. Analysis of historical SLTs from 1979-2020. Upper panels: East Louisiana. (a). Annual
 536 landfall frequency, (b). Annual mean storm impact duration (SID), and (c). Annual minimal
 537 landfall interval (MLI); for (a), (b), and (c), the red line indicates the trend from 1979. (d). CDF
 538 of MLI from the data (red dots) and GPD fit (black curve) using data from 1979-2020. Bottom
 539 panels: U.S. East and Gulf coasts. Annual change ($year^{-1}$) of (e). landfall frequency, (f). mean
 540 SID, and (g). MLI. (h). Scale of fitted GPD of MLI of 1979-2020.

541

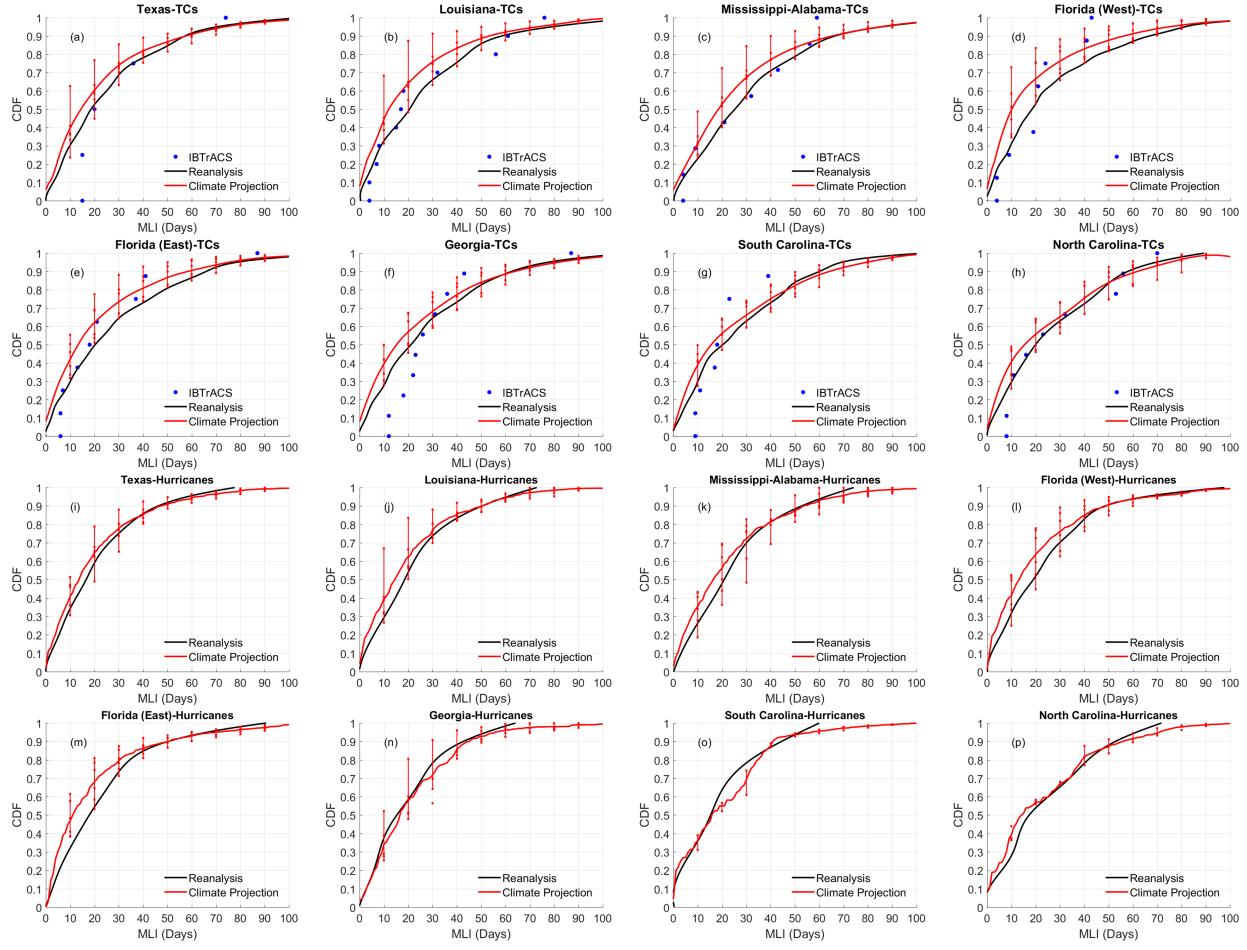


542

543

544 Figure 2. Analysis of the relationship between minimal landfall interval (MLI) and TC
 545 climatology features. (a) Observed relationship between MLI and annual landfall frequency. (b)
 546 Observed relationship between landfall frequency, λ , and standard deviation of the landfall day,
 547 σ . λ and σ are fitted for each of the two periods (1979-1999 and 2000-2019). (c) Expectation of
 548 MLI in the λ and σ space in the Poisson-Gaussian model; black dots are the observed λ and σ as
 549 in (b). (d). Comparison of simulated expectation and observed mean of MLI; only locations with
 550 more than three years of records of multi-storm landfalls are shown.

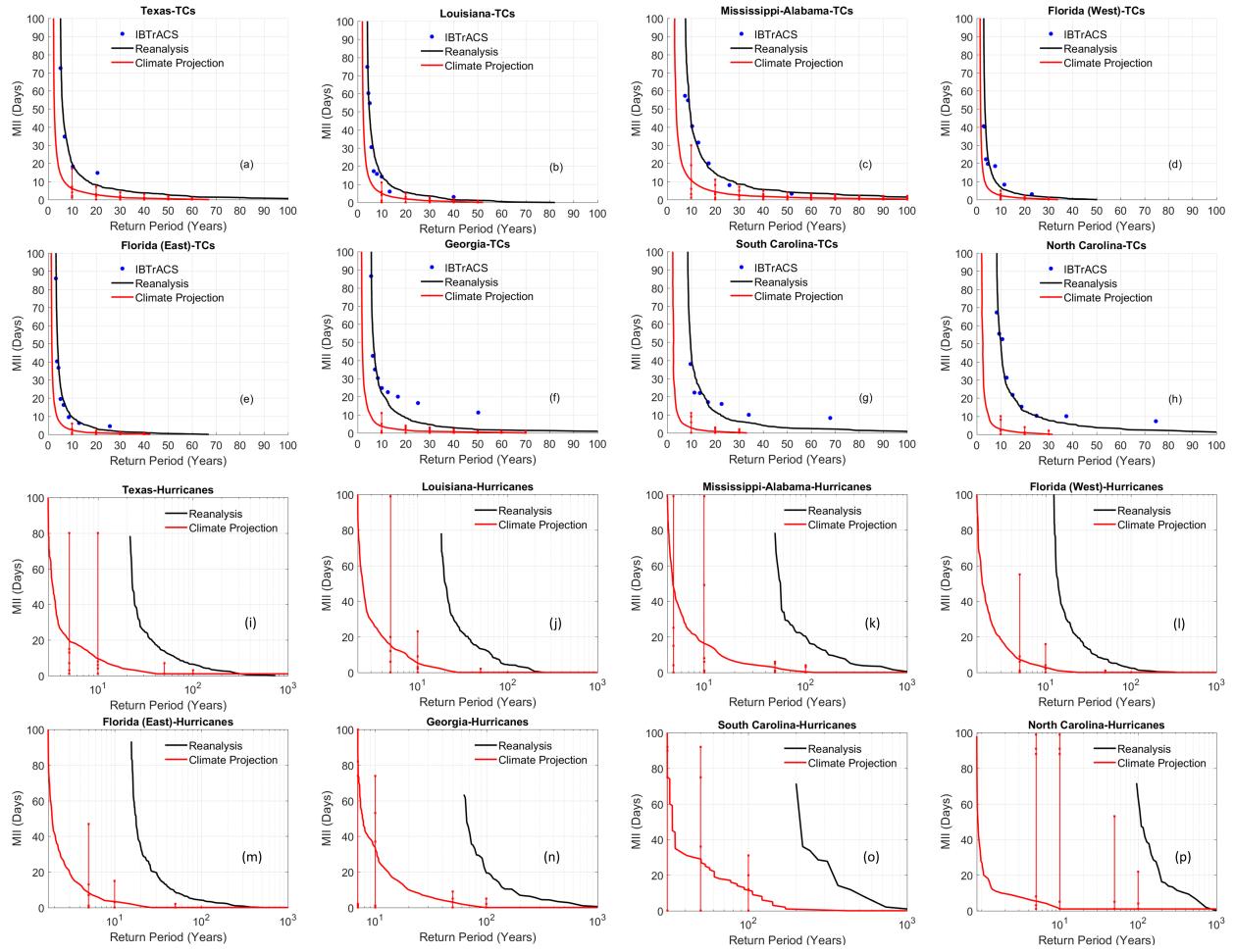
551



552

553 Figure 3. CDF of minimal landfall interval between TCs (TC-MLI) in (a) Texas, (b) Louisiana,
 554 (c) Mississippi-Alabama, (d) West Florida, (e) East Florida, (f) Georgia, (g) South Carolina, and
 555 (h) North Carolina. (i)-(p) are same as (a)-(h), but for hurricanes (hurricane-MLI). The CDF is
 556 calculated based on data in years when at least two TCs (or hurricanes) make landfall at a
 557 milepost in the region. Blue dots show observations (for TCs only), black curve shows the
 558 reanalysis-based simulation for the historical period, red curve shows the weighted average
 559 projection for the future climate, and the spread of the six climate models is shown as error bars.
 560 Bias-correction based on the reanalysis simulation is applied for the climate projections. (For
 561 North Carolina, three of six climate models (CanESM5, CNRM-CM6-1, IPSL-CM6A-LR)
 562 cannot predict SLTs for hurricanes in the historical period due to limited number of intense
 563 storms in historical simulations, so we omit the SSP5 8.5 simulations from these climate models
 564 for this location.)

565

566
567

568 Figure 4. Same as Fig. 3, but for return period of minimal impact interval (MII).