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Abstract 15 

In this study, we examine sequential landfalling tropical cyclones (TCs) along U.S. East and 16 
Gulf Coasts. We find that Florida and Louisiana are most prone to sequential landfall risk. The 17 
minimal time between sequential landfalling TC has decreased for most regions since 1979, 18 
although the trend is not statistically significant given limited data. A climate projection indicates 19 
a significant increase in sequential landfalls over the 21st century under the SSP5 8.5 scenario, 20 
with the chance of a location experiencing a less-than-10-day break between two TC impacts 21 
being doubled for most regions. The increases in sequential landfalls in the historical period and 22 
projected future climate are both related to increased landfall frequency, even though the storm 23 
season has been slightly expanding and may continue to expand. This study highlights a new 24 
type of TC hazard resulting from the temporal compounding of landfalls and urges the 25 
improvement of coastal resilience. 26 
 27 
Plain Language Summary 28 

Sequential landfalling tropical cyclones (TCs), which make landfall near a location within a short 29 
period of time, can be hazardous for coastal communities. Analyzing the historical records for 30 
the U.S. East and Gulf Coasts, we find that the states of Florida and Louisiana are most prone to 31 
sequential TC hazard, and this hazard has had an increasing potential for most coastal regions 32 
since 1979. Performing future projections of TCs under the effect of climate change, we find that 33 
the sequential TC hazard may increase even more significantly in the future. The increased 34 
sequential TC hazard in both the historical period and a projected future climate is related to the 35 
increased annual frequency of landfalling TCs. This study highlights a new type of TC hazard 36 
resulting from the temporal compounding of landfalling TCs and urges the improvement of 37 
coastal resilience, e.g., shortening the time scales for infrastructure recovery after TC landfalls.  38 

 39 

1 Introduction 40 
In 2020, 31 tropical cyclones (TCs) occurred in the North Atlantic. Besides the large number of 41 
TCs (tied with 2005 as the most since 1979), 18 TCs approached within 250 km of U.S. 42 
coastlines, the highest number since 1979. Eastern Louisiana, in particular, experienced 43 
sequential landfalls of three TCs. Tropical Storm Beta, Hurricane Delta, and Hurricane Zeta 44 
affected this region sequentially on September 20, October 9, and October 24, leading to losses 45 
of > $225 million, > $2.9 billion, and > $3.9 billion, respectively (Aon Benfiled 2020).  46 
 47 
Sequential landfalling TCs (SLTs), defined as those that make landfall near a specific location 48 
within a short period of time, may be conceived as temporally compounding events (Zscheischler 49 
et al. 2020). SLTs are hazardous if the landfall interval is shorter than the time scale of recovery 50 
of coastal communities and ecosystems. For example, the time scale of power system recovery 51 
may be over two weeks; Ouyang et al. (2012) found that the power system in Harris County, 52 
Texas needed 16-17 days to fully recover after Hurricane Ike (2008) made landfall. Urban 53 
transportation systems may have similar recovery time scales; Chan and Schofer (2016) found 54 
that New York subway system restored 95% regular service two weeks after Hurricane Sandy 55 
(2012) made landfall. Also, TCs can weaken building structures and generate debris (Lin et al. 56 
2010), which can take up to a year to clean up (Brandon et al. 2011) and weakened structures and 57 
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scattered debris increase the chance for later storms to produce more damage (Minor 2005). 58 
Moreover, ecosystems are susceptible to SLTs, which can dramatically influence the 59 
concentration of nutrients (Paerl et al. 2001) or cause reductions in salinity (Switzer et al. 2016). 60 
Thus, a better understanding of SLTs supports the development of coastal resilience. 61 
 62 
It is interesting from both scientific and social perspectives to ask if SLTs have been increasing 63 
and will increase in the future. Previous research has examined TC climatology features that are 64 
related to SLTs. Webster et al. (2005) found global increases of storm number since 1970s. 65 
Wang and Toumi (2021) found the fraction of storms entering coastal regions has an increased 66 
trend. Kossin et al. (2018) found the TC translation speed has decreased globally, and Hall and 67 
Kossin (2019) showed the stalling times of US landfalling TCs have increased. These results 68 
indicate increasing risks from TCs but did not directly address the trend of SLTs. For future 69 
projections, previous studies have focused on global to basin-scale changes of storm intensity 70 
and frequency. Most models project increased storm intensity and decreased frequency (Knutson 71 
et al. 2020) and some models project increased storm frequency (Emanuel 2013, Bhatia et al. 72 
2018). Some models also project a slowdown of TC movement (Emanuel 2021) and increased 73 
TC landfall frequencies (Emanuel 2013, Emanuel 2021). Fewer studies have projected landfall 74 
hazards in the future (Marsooli et al. 2019, Emanuel 2017, Xu et al. 2020), and none of the 75 
climate projection studies has focused on SLTs. 76 
 77 
In this study, we investigate SLTs in the coastal United States. We examine the time intervals 78 
between storm landfalls and impacts, as metrics describing SLTs, and their spatial and temporal 79 
variations. We also investigate how the climatology of these time intervals may change in the 80 
future, as simulated by a synthetic TC model downscaling six CMIP6 climate models. To 81 
explore the observed and simulated spatial and temporal variations of SLTs, we apply a Poisson-82 
Gaussian model to connect TC landfall intervals to TC landfall frequency and seasonality.  83 
 84 

2 Data and Method 85 
To study the historical climatology of SLTs in the coastal United States, we used TC 86 
observations from the International Best Track Archive for Climate Stewardship (IBTrACS). 87 
IBTrACS provides six-hourly TC locations and intensities. We used data from 1979 (the satellite 88 
era) to avoid the influence of missing records in earlier decades (Moon et al. 2018).  89 
 90 
To study climate change effect, we applied synthetic TCs generated with a statistical-91 
deterministic TC model (Emanuel 2008, Emanuel 2021). The synthetic storms were generated 92 
under the environments of the NCAR/NCEP reanalysis and each of six CMIP6 climate models 93 
(CanESM5, CNRM-CM6-1, GFDL-CM-4, EC-Earth3, IPSL-CM6A-LR, MIROC6) for control 94 
(1984-2005) and Shared Socioeconomic Pathway 5 8.5 scenarios (SSP5 8.5; 2070-2100).  4400 95 
and 6200 storms were generated from each climate model for control and SSP5 8.5 scenarios, 96 
respectively, and 5018 storms were generated from the reanalysis in the control period. 97 
 98 
We divided the U.S. East and Gulf coastlines into eight regions, namely Texas, Louisiana, 99 
Mississippi-Alabama, West Florida, East Florida, Georgia, South Carolina, and North Carolina 100 
(regions in higher latitudes have been seldomly affected by SLTs and thus are not investigated in 101 
this study). We also specifically examine the East Louisiana region (90.59°W to 89.29°W) as 102 
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it was hit by SLTs in 2020. To focus on SLTs that are spatially close enough to cause compound 103 
impacts, we divided the coastlines into 186 mileposts with 100-km spacing in Mexico and 50-km 104 
spacing in the US (detailed in Jing and Lin, 2020) and analyzed SLTs for each milepost. We 105 
selected all storms in IBTrACS and synthetic storm simulations that approached within 250 km 106 
of a milepost (following Jing and Lin, 2020) and defined the landfall time as when the storm first 107 
entered the 250-km circle centered on the milepost. We computed the landfall intervals between 108 
storms for each milepost and defined the minimum interval over a year and across all mileposts 109 
in each defined coastal region to be the minimal landfall interval (MLI) in the year for the region. 110 
We further defined the storm impact duration (SID) for a milepost as the duration when the 111 
storm was within 250 km of the milepost, and we calculated the minimal impact interval (MII), 112 
the minimum over a year and across the mileposts for the region of the time interval between the 113 
end of the impact of the first storm and the start of the impact of the second storm. Annual 114 
landfall frequencies for each region are also calculated. 115 
 116 
We considered storms that reach tropical storm intensity (>17.5 m/s) at landfall in the historical 117 
analysis. For synthetic analysis with larger samples, we examined MLI and MII also for 118 
hurricanes (>32.5 m/s at landfall). We estimated the probability distribution and return period for 119 
MLI and MII in the control simulations and climate-model projections. The climate projections 120 
of MLI and MII were bias-corrected. We bias-corrected the future projection of storm frequency 121 
and cumulative density functions (CDFs) of MLI and MII in each model by comparing the 122 
climate-model and reanalysis-based estimations for the control period. The storm frequency was 123 
bias-corrected through a multiplicative factor, and CDFs of MLI and MII were bias-corrected 124 
through quantile-quantile-mapping. Besides the MLI and MII distributions for each of the six 125 
climate models, we also calculated the weighted average of the six models, by assigning weights 126 
to the models based on the mean square error of the model-simulated CDFs of MLI and MII for 127 
the control period compared to reanalysis-based simulations. Marsooli et al. (2019) applied 128 
similar methods to perform bias correction and model combination for storm surge projections.  129 
 130 
To understand the connections between MLI and landfall frequency and seasonality, we propose 131 
a Poisson-Gaussian landfall model. The model assumes storm arrivals in a region to form a 132 
nonstationary Poisson process. The Poisson rate of storm landfall is modulated by interannual 133 
and seasonal variations, which can be described as 134 

𝜈(𝑡, 𝑠) = 𝜆(𝑡)𝑆(𝑠)                                                               (1) 135 
where 𝜆(𝑡), the interannual variation, is the landfall frequency in year t, and 𝑆(𝑠), the seasonal 136 
variation, is the likelihood of landfall occurrence on day s relative to the likelihood of occurrence 137 
during the season. We model the seasonality with a Gaussian function, 138 

𝑆(𝑠) = 	 !
"√$%

𝑒&
!
"(
#$%
& )"                                                          (2) 139 

 140 
where 𝝁 is the mean landfall day during the year and 𝝈 is the standard deviation of the landfall 141 
day. While 𝝁 represents the seasonal peak, 𝝈 represents the spread of the season. In this model, 142 
MLI depends solely on 𝝈  and 𝜆, as they together determine the number of storms within a time 143 
period, while 𝝁 has no influence on MLI as it only shifts the landfall day. We performed Monte 144 
Carlo simulations of storm landfalls for various 𝝈 and 𝜆 to examine the theoretical connection 145 
between MLI and these parameters. 146 
 147 
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Based on this landfall model, we investigated the change of MLI by investigating the changes of 148 
𝜆 and 𝝈 in historical observations and climate simulations. To study how these parameters have 149 
changed in the historical period, we divided the historical period (1979-2019) into two periods 150 
(1979-1999 and 2000-2019) and fitted the model for each period. To study how these parameters 151 
may change from the control to the future climate, we fitted the model for the control and future 152 
periods for each climate model. We used the method of maximum likelihood for model fitting. 153 
We performed Monte Carlo simulations of TC landfall using the model fitted by the historical 154 
observation to validate the model.  155 
 156 
The Poisson-Gaussian model assumes storms are conditionally independent (given the 157 
environmental condition), and so does the synthetic storm modeling, as feedbacks of storms to 158 
the environment is not captured in the one-way coupling system. Physical interactions between 159 
storms are possible but rare (Hoover 1961, Brand 1970, Xu et al. 2013, Schenkel 2016). Also, 160 
previous research has examined the independence assumption on storm genesis and landfalls and 161 
found that the Poisson distribution generally fits the observations well (e.g., Rumpf et al. 2009, 162 
Lin et al. 2012, Wahiduzzaman et al. 2021).  163 
 164 

3 Historical Record of SLTs 165 

We first use East Louisiana as an example to study the historical variation of the annual landfall 166 
frequency, mean SID, and MLI. Figure 1 (a)-(d) shows that, for East Louisiana, the landfall 167 
frequency has increased by 0.0167±0.0156 storms/year since 1979. SID has increased by 168 
0.016±0.011 days/year since 1979. Also, MLI has decreased (-0.909±0.508 days/year) since 169 
1979, implying that the chance of SLTs has increased. The increasing trends of the landfall 170 
frequency and mean SID pass the Mann-Kendall significance test (95% confidence level), but 171 
the trend of MLI cannot pass the test, possibly due to data limitations (only data in years with at 172 
least two landfalling storms at a milepost are used to calculate MLI). The probability distribution 173 
of yearly MLI is fitted with a Generalized Pareto Distribution (GPD) (Fig.1d). The shape 174 
parameter of the fitted GPD is negative, implying that the GPD has a light tail and the yearly 175 
MLI is unlikely to take values much larger than the mean.  176 
 177 

We extended the above analysis to the other coastal regions (Fig. 1(e)-(h)). Except for Texas, all 178 
the other coastal regions show a slight but statistically significant increase of landfalling 179 
frequency since 1979 (up to 0.04±0.0182 storms/year). Significant increases of SID are observed 180 
for all the coastal regions, with the maximum increase occurring in Louisiana (0.0286±0.0105 181 
days/year). The observed increase in SID is consistent with the finding of Hall and Kossin 182 
(2019). MLI decreases for most regions, except West Florida and Mississippi-Alabama, by up to 183 
0.94±0.75 days/year (South Carolina). Although the trend cannot pass the Mann-Kendall test due 184 
to data limitation, the increased landfall frequency indicates increased potential for short MLI 185 
(see discussion with the theoretical modeling below). The decrease in MLI and increase in SID 186 
implies a decrease of MII (not shown) and thus an increase of impact from SLTs for most coastal 187 
areas. We also fit GPD to MLI for each region; Fig. 1(h) shows the scale of the fitted GPD. 188 
Small value of the scale indicates the region is more likely to experience short MLI. The lowest 189 
values of scale are found in East Florida (24.41), West Florida (32.02), and Louisiana (37.79), 190 
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meaning that these locations are most prone to the threat of SLTs. Shape parameters (not shown) 191 
for all regions are negative except for Florida, implying that MLI is unlikely to take values much 192 
larger than the mean in most regions. 193 
 194 

To better understand the variation of MLI, we investigate the connection between MLI and TC 195 
climatology features. Figure 2(a) shows the relationship between MLI and the annual landfall 196 
frequency in the historical record. Smaller MLI is associated with larger landfall frequency. 197 
Linear fitting of mean MLI to annual landfall frequency indicates that one more landfall on 198 
average causes a 7.15±2.4-day shortening of MLI. Figure 2(b) shows the relationship between 199 
the fitted 𝝀 (annual frequency averaged over each period) and 𝝈 (seasonality variation averaged 200 
over each period) in the historical record, and how they jointly influence MLI. We find that 𝝀 201 
and 𝝈 are positively correlated, implying that as the storm frequency increases (Fig. 1(e)), storm 202 
season has also been slightly expanding (i.e., seasonal distribution being slightly flattened). 203 
Figure 2(b) also shows that lower MLI is associated with smaller 𝝈 and larger 𝝀  although the 204 
pattern appears unclearly due to data limitations. Thus, we perform idealized simulations using 205 
the Poisson-Gaussian model; Figure 2(c) shows the expectation of MLI (E(T)) in the 𝝀 − 𝝈 206 
space. The theoretical results show that given 𝜎, the larger the 𝜆, the lower the MLI and given 𝜆, 207 
the smaller the 𝜎, the lower the MLI. MLI is shortened by about 6-8 days per increase of a 208 
landfall, consistent with the empirical sensitivity. The Poisson-Gaussian model is evaluated with 209 
the observation (Figure 2(d)). The model captures the relationship between MLI and parameters 210 
𝝀 and 𝝈 well. All observations are covered by the 25-th to 75-th percentiles of the Monte Carlo 211 
simulations. The small discrepancies of simulations and observations are related to the model 212 
assumption of storm independency and statistical uncertainties. The result indicates that MLI has 213 
a decreasing potential over the historical period mainly because the storm landfall frequency has 214 
increased. Although the storm season has been slightly expanding (i.e., TC activity in the off-215 
peak season has increased relatively more than in the peak season), the increase of TC activity in 216 
the peak season is still significant and likely responsible for the decrease of MLI. 217 
 218 

4 Climate Projection of SLTs 219 

In this section we use the synthetic storm dataset to examine SLTs under climate change. Figure 220 
3 examines the CDF of MLI. We find that the probability for short TC-MLI (MLI between TCs; 221 
Figs. 3a–3h) increases from the control to the future climate (e.g., in Louisiana the probability of 222 
MLI < 20 days increases from 0.49 to 0.65), while the predicted degree of increase varies among 223 
climate models. The probability for short hurricane-MLI (MLI between hurricanes; Figs. 3i-3p) 224 
also increases (e.g., in Louisiana the probability of hurricane-MLI < 20 days increases from 0.52 225 
to 0.61), and the changes in the Gulf Coast regions and Florida are larger than those in East 226 
Coast regions. The overall chance of the hurricane-MLI being smaller than 20 days for the Gulf 227 
Coast (Texas to West Florida) increases from 0.46 to 0.59 and for East Coast (East Florida to 228 
North Carolina) increases from 0.46 to 0.56 (not shown). All changes pass the two-sample 229 
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Kolmogorov-Smirnov test on differences in distributions (with 5% significance level) and are 230 
hence statistically significant. 231 

 232 

To assess overall sequential landfall risk, we combine MLI, SID, and multi-landfall frequency to 233 
compute return period of MII (Figure 4). The change in MII is significant, which is dominated by 234 
the change in MLI and landfall frequency rather than SID (not shown). For example, the return 235 
period of a 10-day TC-MII would decrease by about half for most regions from the control to 236 
future climate (e.g., in Louisiana the return period decreases from 15 years to 8 years). We found 237 
more significant increase of the chance of experiencing a short hurricane-MII (break between 238 
hurricane impacts). In Louisiana the return period of a 20-day hurricane-MII would decrease 239 
from 35 to 4 years. For the Gulf Coast (Texas to West Florida) the return period of a 20-day 240 
hurricane-MII would decrease from 12 to one year, and for the East Coast (East Florida to North 241 
Carolina) it will decrease from 25 to two years (not shown). 242 

 243 

To better understand the change of SLTs in the future, we examine the change of annual landfall 244 
frequency 𝝀 and seasonality 𝝈 in the control and future climate simulations from the six climate 245 
models. We find that the averages of both 𝝀 and 𝝈 increase in the future. The increase in 246 
average 𝝀 from the control to the future climate ranges from 2.38 to 6.31 storms across the 247 
regions while the increase in average 𝝈 ranges from 3.69 to 4.87 days. The increase in 𝝀 is a 248 
composite result of increased basin-wide genesis frequency and northward expansion of track 249 
density (Emanuel 2021). The projected change in 𝝀 over the 21th century is beyond the historical 250 
variation from the period of 1979-1999 to the period of 2000-2019 (increase by up to 0.9 storms) 251 
while the increase in 𝝈 is within the historical variation (increase by up to 9.6 days). According 252 
to the Poisson-Gaussian model (Fig. 2c), such changes in storm frequency and seasonality lead to 253 
the significant decrease of MLI (e.g., in Louisiana expected MLI decreases from around 17 days 254 
to 6 days; Fig. 3) and MII (Fig. 4), resulting from increased storm activity in the peak season.  255 

  256 

5 Conclusions 257 

This study examines various climatological features of SLTs using observation and climate 258 
model projections for U.S. East and Gulf Coasts. We describe SLTs with storm landfall interval 259 
(MLI), impact duration (SID), and impact interval (MII). We find East Florida, West Florida, 260 
and Louisiana are most prone to sequential SLTs risk. Except for Texas, the landfall frequency 261 
and annual mean SID have significantly increased since 1979, with the largest increase in 262 
landfall frequency found in Mississippi-Alabama (+0.04±0.0182 storms/year) and the largest 263 
increase in SID found in Louisiana (+0.0286±0.0105 days/year).  MLI decreases for most 264 
regions, except West Florida and Mississippi-Alabama, by up to 0.94±0.75 days/year (South 265 
Carolina). Although the trend is not statistically significant due to data limitation, the increase of 266 
landfalling storms indicate increased potential for short MLI for most regions in the U.S. Coasts. 267 
The decreasing potential of MLI and increases in landfall frequency and SID indicate decreased 268 
MII and thus an increased impact from SLTs for most coastal areas. Applying a Poisson-269 
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Gaussian model, we found the decrease of MLI is consistent with the increase of annual landfall 270 
frequency, although the storm season has also been slightly expanding. Previous findings of 271 
more storms (Webster et al. 2005, Wang and Toumi 2021) and longer storm stalling time (Hall 272 
and Kossin 2019) and our results of increased likelihood of temporally compounding storms 273 
consistently indicate an increased TC threat along the U.S. coastlines over the past decades.   274 

Climate projections using a synthetic storm model indicate SLTs will significantly increase 275 
under the SSP5 8.5 scenario, especially for the Gulf Coast. The return period of a 10-day MII 276 
between TCs would decrease by about half for most coastal regions over the 21st century (e.g., in 277 
Louisiana from 15 years to 8 years). The chance of experiencing a short MII between hurricanes 278 
would increase more significantly (e.g., in Louisiana the return period of a 20-day hurricane-MII 279 
would decrease from 35 years to 4 years). This large increase in SLTs is consistent with the 280 
projected significant increase of annual landfall frequency in the model (increased by 2.38-6.31 281 
storms on average over the 21st century for US coast) although the storm season is projected to 282 
be slightly expanding. Previous research has projected a global slowdown of storm translation 283 
speed (Emanuel 2021) and more landfalling storms in the future (Emanuel 2013, Emanuel 2021).  284 
Consistent with the previous findings, this study shows explicitly that the time intervals between 285 
storm impacts may significantly decrease in the future. 286 

This study highlights a new type of TC hazard resulting from temporally compounding landfalls 287 
while previous studies focus on single-storm hazards such as surge (Marsooli et al. 2019), 288 
rainfall (Emanuel 2017), and compound flooding (Gori et al. 2020). Previous findings on 289 
intensified single-storm hazards calls for improvement of coastal reliability while this study on 290 
increased SLTs urges the improvement of coastal resilience. For example, the power system in 291 
Texas requires around 17 days to fully recover after hurricane landfall (Ouyang et al. 2012). For 292 
Texas, hurricane-MII being less than 17 days is a 40-year event in the current climate but would 293 
be a less-than-10-year event in the future (Figure 4i). To be prepared for potentially more 294 
frequent SLTs in the future, the recovery time of power grids and other infrastructure systems 295 
may need to be shortened along U.S. coastlines. 296 

This study used a specific synthetic storm model to investigate SLTs in the future climate. This 297 
storm model predicts increased TC frequencies (Emanuel 2013, 2021) while large uncertainties 298 
still exist on how TC frequency will change in the future (Knutson et al. 2020). This study 299 
underlines again the importance of accurately projecting TC frequency, which greatly influences 300 
the estimation of SLTs and other TC hazards (Marsooli et al. 2019). It is important for future 301 
studies to use other methods, including regional (Wright et al. 2015) and global climate models 302 
that can explicitly simulate intense TCs (e.g., Bhatia et al. 2018), to validate the change of SLTs 303 
in the future found in this study.  304 

Data Availability Statement 305 

The analysis results and data from this study are deposited to the NSF DesignSafe‐CI and can be 306 
accessed online (https://www.designsafe-ci.org/data/browser/projects/7419478767301693931-307 
242ac117-0001-012/). The hurricane dataset IBTrACS can be accessed from the National 308 
Climatic Data Center (https://www.ncdc.noaa.gov/ibtracs/). The original synthetic tropical 309 
cyclone datasets used in this study are freely available from Kerry Emanuel for research 310 
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purposes. For the details and availability of the synthetic datasets, please refer to Emanuel (2021) 311 
(DOI: https://doi.org/10.1175/JCLI-D-20-0367.1)  312 
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 534 

Figure 1. Analysis of historical SLTs from 1979-2020. Upper panels: East Louisiana. (a). Annual 535 
landfall frequency, (b). Annual mean storm impact duration (SID), and (c). Annual minimal 536 
landfall interval (MLI); for (a), (b), and (c), the red line indicates the trend from 1979. (d). CDF 537 
of MLI from the data (red dots) and GPD fit (black curve) using data from 1979-2020. Bottom 538 
panels: U.S. East and Gulf coasts. Annual change (𝑦𝑒𝑎𝑟&!) of (e). landfall frequency, (f). mean 539 
SID, and (g). MLI. (h). Scale of fitted GPD of MLI of 1979-2020.  540 
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 543 
Figure 2. Analysis of the relationship between minimal landfall interval (MLI) and TC 544 
climatology features. (a) Observed relationship between MLI and annual landfall frequency. (b) 545 
Observed relationship between landfall frequency, 𝜆, and standard deviation of the landfall day, 546 
𝜎. 𝜆 and 𝜎 are fitted for each of the two periods (1979-1999 and 2000-2019). (c) Expectation of 547 
MLI in the 𝜆 and 𝝈 space in the Poisson-Gaussian model; black dots are the observed 𝜆 and 𝜎 as 548 
in (b). (d). Comparison of simulated expectation and observed mean of MLI; only locations with 549 
more than three years of records of multi-storm landfalls are shown.  550 
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Figure 3. CDF of minimal landfall interval between TCs (TC-MLI) in (a) Texas, (b) Louisiana, 553 
(c) Mississippi-Alabama, (d) West Florida, (e) East Florida, (f) Georgia, (g) South Carolina, and 554 
(h) North Carolina. (i)-(p) are same as (a)-(h), but for hurricanes (hurricane-MLI). The CDF is 555 
calculated based on data in years when at least two TCs (or hurricanes) make landfall at a 556 
milepost in the region. Blue dots show observations (for TCs only), black curve shows the 557 
reanalysis-based simulation for the historical period, red curve shows the weighted average 558 
projection for the future climate, and the spread of the six climate models is shown as error bars. 559 
Bias-correction based on the reanalysis simulation is applied for the climate projections. (For 560 
North Carolina, three of six climate models (CanESM5, CNRM-CM6-1, IPSL-CM6A-LR) 561 
cannot predict SLTs for hurricanes in the historical period due to limited number of intense 562 
storms in historical simulations, so we omit the SSP5 8.5 simulations from these climate models 563 
for this location.)  564 
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 567 
Figure 4. Same as Fig. 3, but for return period of minimal impact interval (MII).  568 


