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Abstract 9 

Tropical cyclone (TC) rainfall hazard assessment is subject to the bias in TC climatology 10 

estimation from climate simulations or synthetic downscaling. In this study, we investigate the 11 

uncertainty in TC rainfall hazard assessment induced by this bias using both rain gauge and radar 12 

observations and synthetic-storm-model-coupled TC rainfall simulations. We identify the 13 

storm’s maximum intensity, impact duration, and minimal distance to the site to be the three 14 

most important storm parameters for TC rainfall hazard, and the relationship between the 15 

important storm parameters and TC rainfall can be well captured by a physics-based TC rainfall 16 

model. The uncertainty in the synthetic rainfall hazard induced by the bias in TC climatology can 17 

be largely explained by the bias in the important storm parameters simulated by the synthetic 18 

storm model. Correcting the distribution of the most biased parameter may significantly improve 19 

rainfall hazard estimation. Bias correction based on the joint distribution of the important 20 

parameters may render more accurate rainfall hazard estimations; however, the general technical 21 

difficulties in resampling from high dimensional joint probability distributions prevent more 22 

accurate estimations in some cases. The results of the study also support future investigation of 23 

the impact of climate change on TC rainfall hazards through the lens of future changes in the 24 

identified important storm parameters.  25 

1. Introduction  26 

Extreme rainfall is one of the tropical cyclones (TCs) hazards that have significant impacts 27 

on coastal (Gori et al. 2022) and inland (Aryal et al. 2018) areas. Recent events of TC 28 

extreme rainfall include Hurricane Harvey in 2017, Hurricane Florence in 2018, and 29 

Hurricane Ida in 2021, which induced economical losses of $125 billion, $24.23 billion, and 30 

$50.1 billion, respectively. Studies have also warned that TC rainfall hazard may greatly 31 

increase in the future (Emanuel 2017, Hall and Kossin 2019), suggesting that better 32 

understanding of TC rainfall and the associated hazards is urgently needed.  33 

One way to study TC rainfall is from the physics perspective, namely examining the different 34 

physical mechanisms that contribute to TC rainfall. The understanding of TC rainfall 35 

mechanisms has advanced over the past few decades. The rainfall in eyewall regions and 36 

primary rainbands is dominated by convective rainfall, while the rainfall in outer rainbands is 37 
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mostly caused by stratiform rainfall, which is weaker but covers larger areas (Houze 2010). 38 

Studies have shown that the frictional effect (Shapiro 1983), topographic forcing (Cheung et 39 

al. 2008, Yang et al. 2011), vertical wind shear (Braun and Wu 2006, Willoughby et al. 40 

1984), and vortex stretching related to TC intensity evolution (Lu et al. 2018) are four 41 

important mechanisms for TC rainfall generation.  42 

Another way to study TC rainfall is from the hazard perspective, that is, to understand the 43 

characteristics of TCs that are likely to produce extreme rainfall. For example, one would 44 

expect stronger TCs to produce more rainfall than weaker TCs, and the locations that are 45 

closer to a TC’s center to receive more rainfall than more distant locations (Rodgers and 46 

Adler 1981). Another example is that Hurricane Harvey stalled around Houston for several 47 

days, which is one reason Harvey caused extreme flooding in Houston (Hall and Kossin 48 

2019). These examples point out that several TC-related parameters may influence the 49 

possibility of extreme TC rainfall hazard. In this study, we aim to better understand which 50 

TC-related parameters may control TC rainfall hazard.  51 

Such an improved understanding of the relationships between the important TC parameters 52 

and rainfall hazard will be useful for assessing TC rainfall hazard. First, it will help us 53 

understand and reduce the bias in estimated TC rainfall hazard. One approach to simulating 54 

TC rainfall hazard involves coupling a synthetic storm model and a physics-based TC rainfall 55 

model (Emanuel et al. 2017), neither of which is free of bias. Previous studies focused on the 56 

uncertainties of the TC rainfall model (Lu et al. 2018, Xi et al. 2020, Feldmann et al. 2019). 57 

However, the synthetic storm models are known to have bias in storm parameters including 58 

locations, translation speed, and intensity (Emanuel et al. 2008, Lee et al. 2017, Jing and Lin 59 

2020), which will induce bias in the simulated rainfall hazard. Thus, it is worth also 60 

exploring whether the bias of simulated rainfall hazard could be significantly reduced by 61 

bias-correcting the probability distributions of storm parameters that are important for 62 

rainfall. This understanding can also support rainfall hazard assessment using parametric 63 

rainfall models (e.g., Tuleya et al. 2007, Villarini et al. 2021). Second, knowledge of 64 

important parameters for TC rainfall hazard will be useful for understanding the change of 65 

TC rainfall hazard due to climate change. While a number of studies have discussed the 66 

macroscopic changes of TC rainfall under climate change, such as changes of averaged TC 67 
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rain rate and rainfall area (e.g., Knuston et al. 2010, Liu et al. 2018), very few studies have 68 

quantified the effects of climate change on TC rainfall hazards at landfall (e.g., Emanuel 69 

2017). Knowing the connection between TC parameters and rainfall hazard improves 70 

understanding of the response of TC rainfall hazards to the changes in TC climatology 71 

characteristics, such as the increased intensity (Knuston et al. 2010, Emanuel 2021), reduced 72 

translation speed (Kossin 2018, Hall and Kossin, 2019), and poleward migration of TC tracks 73 

(Yin 2005, Tamarin-Brodsky and Kaspi 2017), and helps understanding climate-model-based 74 

projections on TC rainfall hazard (Wright et al. 2015). 75 

In this study, we apply both observations and a TC rainfall model (TCR) (Emanuel 2017, 76 

Zhu et al. 2013, Lu et al. 2018) to study the important TC parameters for rainfall. TCR is a 77 

physics-based TC rainfall model that simulates TC precipitation by calculating vertical vapor 78 

transportation within TCs caused by the main rainfall generation mechanisms, including 79 

frictional effect, vortex stretching, baroclinic effect, and topographic effect. The model has 80 

been proven to be capable of reproducing climatology features of TC total rainfall (Feldmann 81 

et al. 2019, Xi et al. 2020) although it is less capable of reproducing climatology features of 82 

rainfall time series (Xi et al. 2020). A modeling-based investigation of TC rainfall is first 83 

performed as the observed TC rainfall is influenced by non-TC factors (such as surface 84 

roughness, atmospheric water vapor content, etc.), which are beyond the scope of this study. 85 

Also, TCR has been used to perform TC rainfall hazard analysis (Feldmann et al. 2019); thus, 86 

we can directly use the diagnosed important parameters to understand bias in TC rainfall 87 

hazard estimated by TCR. After selecting the key parameters based on the simulation, we use 88 

observations to examine the relationship between the selected parameters and the rainfall 89 

hazard and to validate the representation of these relationships in the TCR modeling.  90 

Next, we couple TCR with two synthetic storm models to assess TC rainfall hazard along the 91 

U.S. East and Gulf Coasts and to investigate the bias in the estimated rainfall hazard as 92 

connected to the bias in the important parameters. The synthetic storm models we use include 93 

the statistical-deterministic model of Emanuel et al. (2008), which is based on the Coupled 94 

Hurricane Intensity Prediction System (hereafter CHIPS), and the Princeton environment-95 

dependent Probabilistic tropical Cyclone (PepC) model (Jing and Lin 2020). To deal with the 96 

bias in TC rainfall hazard estimation caused by the bias in the important parameters in the 97 
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synthetic storm models, we investigate whether the bias of the simulated rainfall hazard can 98 

be significantly reduced by bias-correcting the probability distribution of the important 99 

parameters simulated in these synthetic storm models. Though TCR itself also have intrinsic 100 

biases (Feldmann et al. 2019, Xi et al. 2020), in this study, we focus on the bias in storm 101 

simulations and how it propagates into landfalling TC rainfall hazard estimation. 102 

The structure of this paper is the following. Section 2 revisits the synthetic storm models and 103 

TCR, summarizes the data used in this study, and introduces the bias-correction method we 104 

propose. Section 3 shows the result in storm parameter identification, TCR simulated rainfall 105 

hazard evaluation, synthetic storm model and rainfall comparison, and storm and rainfall 106 

correction. In the discussion (Section 4), we explore the potential applications of this study. 107 

We also compare the dependence of the bias in simulated rainfall hazard on storm parameters 108 

and the dependence of the bias in simulated wind hazard on storm parameters, given that the 109 

simulated wind drives TCR simulation of the rainfall. The major part of this study focuses on 110 

the total rainfall caused by TCs at a point of interest. However, the hourly maximum rain rate 111 

may also be of interest; Section 4 also briefly discusses the important parameters for the 112 

maximum rain rate.  Section 5 summarizes the conclusions of this study.  113 

2. Models, simulations, and analysis method 114 

In this study, we first identified the important TC parameters for TC rainfall hazard by 115 

analyzing both simulated and observed TC rainfall and investigating how these parameters 116 

control the statistical properties of TC rainfall hazard. Then we coupled the synthetic storm 117 

models with TCR to understand how the spatial distributions of the bias in important 118 

parameters influence the bias in the estimated rainfall hazard. We further selected 10 rain 119 

gauge stations to test whether a bias correction on the important parameters based on 120 

resampling can improve the estimation of TC rainfall hazard.  121 

2.1 Data  122 

The historical record of TCs from 1979-2018 was obtained from the International Best Track 123 

Archive for Climate Stewardship (IBTrACS). The best track data contains 6-hourly 124 

information on TC intensity and location. We used the data to investigate the important 125 

parameters for TC rainfall, to evaluate synthetic storm models, and to create the observed 126 

probability distributions of TC parameters.  127 
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 128 

Coupling the historical TCs with the TCR model requires several environmental parameters, 129 

including the 900 hPa specific humidity, deep layer (200 hPa – 850 hPa) vertical wind shear, 130 

and surface drag coefficient. Following Xi et al. (2020), we obtained these parameters from 131 

the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim 132 

reanalysis data and linearly interpolated them from 6 hourly to 1 hourly for TC rainfall 133 

simulation.  134 

We investigated how TC important parameters modulate TC rainfall hazard using the TCR 135 

model; the results were evaluated by radar rainfall observations that have a large spatial 136 

coverage. We used the Stage IV quantitative precipitation estimation (Lin and Mitchell 2005) 137 

from 2002-2018. Stage IV is a radar rainfall observation product that provides rainfall 138 

observation in 4-km horizontal resolution and 1-h temporal resolution. The fine resolution 139 

makes Stage IV observations preferable for analyzing landfalling TC rainfall. Stage IV has 140 

been shown to match well with observations for several historical TC events (Villarini et al. 141 

2011, Luitel et al. 2018). 142 

To evaluate the probability distribution of TC rainfall hazard simulated from IBTrACS-TCR 143 

and synthetic storm-coupled TCR and perform bias correction analysis, we obtained the 144 

historical record of TC rainfall at 10 coastal and inland locations across the United States 145 

from 1979-2018. The 10 rain gauge observations, obtained from National Centers for 146 

Environmental Information (NCEI), are in daily time resolution and are interpolated to 147 

hourly time steps. We used gauge observations instead of Stage IV radar observations 148 

because accurately estimating the probability distributions of TC rainfall requires long 149 

observation histories while Stage IV observation started in 2002. 150 

2.3 Synthetic storm models 151 

To generate synthetic storms for TC rainfall hazard assessment, we used two synthetic storm 152 

models: CHIPS and PepC. First, we used PepC-generated U.S. landfalling storms to analyze 153 

the storm parameters that control TC rainfall. We use only one synthetic model to generate 154 

data for this analysis as the relationship between storm parameters and simulated rainfall that 155 

we seek is determined solely by the TCR model. Then, CHIPS and PepC models were used 156 

to generate two large sets of US landfalling storms to understand and compare their 157 
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performances when coupled with TCR. The detailed formulation of CHIPS and PepC can be 158 

found in previous research (Emanuel et al. 2008, Jing and Lin 2020); here we briefly 159 

summarize the models. 160 

CHIPS consists of three parts: a genesis model, a TC track model, and an intensity model. 161 

The genesis of TC is modeled by a random seeding process. After generation, the TC is 162 

moved by the beta drift and steering wind. The steering wind is modeled by the linear 163 

combination of synthetic winds at 850 hPa and 200 hPa levels. The intensity of the storm is 164 

modeled with an air-sea coupled TC dynamic model.  This study used 5018 US landfalling 165 

TCs under the historical climate (1980-2005) generated from CHIPS (Marsooli et al. 2019). 166 

PepC follows a structure similar to that of CHIPS but is a statistical model. The genesis 167 

component is environment-dependent, and the number of TC seeds in each grid is predicted 168 

by a cluster-based Poisson regression model. Instead of using a beta-advection model for TC 169 

motion, PepC employs an analog-wind model that involves the steering wind as well as 170 

observed track patterns. The intensity evolution is modeled as a 3-state environment- 171 

dependent hidden Markov chain. This study uses 3013 U.S. landfalling synthetic storms 172 

generated by this model (Jing and Lin 2020). 173 

2.4 A physics-based TC rainfall model (TCR) 174 

Lu et al. (2018) provided a detailed description of TCR; here we briefly summarize the 175 

model. TCR generates rainfall by computing the vertical vapor flux through the top of the 176 

boundary layer. The vertical vapor flux is computed as the product of the vertical velocity 177 

across the top of the boundary layer and specific humidity. The model computes the vertical 178 

velocity at the top of the TC boundary layer as the sum of the vertical velocities generated by 179 

five mechanisms: topographic forcing, frictional effect, vortex stretching, baroclinic effect, 180 

and radiative cooling. The model requires a wind profile as input; we use the wind profile 181 

proposed by Chavas et al. (2015) to drive TCR, as Xi et al. (2020) found that this wind 182 

profile works better than three other wind profiles. The horizontal resolution of the model 183 

was set to be 0.05°×0.05°, following previous research (Lu et al. 2018, Xi et al. 2020). The 184 

drag coefficient in the model is a function of surface roughness, independent of storm 185 
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features. The horizontal resolution of drag coefficient parameter was set to be 0.25°x0.25°, 186 

following Feldmann et al. (2019). 187 

 188 

2.5 Simulations and analysis method 189 

In the main results, we focused on ETR as the rainfall hazard. ETR is defined as the total 190 

rainfall precipitated by the TC to a point of interest (POI) while the TC is within 300 km to 191 

the location, following Feldmann et al. (2019). (A distance threshold is used here to avoid the 192 

inclusion of rainfall from other weather systems.) Another reason we focused on ETR is that 193 

recently Hurricanes Harvey and Florence produced dramatic total rainfall that caused 194 

destructive inundation and flooding in Houston and North Carolina, respectively. To 195 

determine the important TC-related parameters for ETR, we first examined the TCR 196 

simulation and then evaluate the findings with observations. TCR proved to be reliable in 197 

previous studies in reproducing the statistics of ETR (Feldmann et al. 2019, Xi et al. 2020), 198 

and TCR provides us with both a larger amount of data than the Stage IV observations and 199 

the flexibility of excluding the influence of non-TC parameters (detailed later). We coupled 200 

the 3013 PepC synthetic storms with TCR to identify storm parameters that are important for 201 

ETR and the favorable conditions (in terms of the selected parameters) for extreme rainfall. 202 

The drag coefficient and specific humidity were set to be constant, 0.002 and 0.012, 203 

respectively, to represent conditions on land. We set the drag coefficient and specific 204 

humidity as constant in this experiment to help us focus on the parameters that relate only to 205 

storm track and intensity. We divided the continental United States into 0.5°x0.5° grid points, 206 

and each point is a POI in this study. We interpolated the simulated ETR for each storm into 207 

these POIs and computed the values of the tentative important storm parameters for each POI 208 

in each storm event. The 0.5°x0.5° analysis grid is sufficient for resolving the rainfall 209 

variability caused by the spatial variability of TC characteristics, and the rainfall variability 210 

caused by spatial difference of surface future is largely removed in this experiment by setting 211 

a constant drag coefficient. We then performed least absolute shrinkage and selection 212 

operator (LASSO) regression (Tibshirani 1996) with the tentative parameters and varied the 213 

penalty coefficient to reduce the number of important parameters. After identifying subset of 214 
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important parameters, we examined how the probability distribution of the important 215 

parameters influenced the chance of extreme rainfall events. 216 

We simulated synthetic storms and assessed rainfall hazard from the two synthetic storm 217 

models: CHIPS and PepCs. To understand and reduce the bias of estimated rainfall hazard 218 

induced by the bias in storm climatology, we propose a method for bias-correcting the 219 

rainfall hazard through bias-correcting the probability distribution of the important TC 220 

parameters, as also a way to further investigate the relationship between the important TC 221 

parameters and rainfall hazard. We employ the importance sampling method. That is, while 222 

the synthetic storms originally have an equal probability of occurrence in the simulated 223 

dataset, we adjust the probability of occurrence for each storm according to joint probability 224 

distributions of selected parameters in the simulation relative to the observations.  225 

Specifically, the probability of exceedance of a certain rainfall level 𝜂! is 226 

ℙ(𝜂 > 𝜂!) = ∫𝟏"(𝒙)&"! 𝑝(𝒙)𝑑𝒙 = ∫𝟏"(𝒙)&"!
'(𝒙)
((𝒙)

𝑞(𝒙)𝑑𝒙 = 𝔼((
𝟏"(𝒙)&"!'(𝒙)

((𝒙)
)        (1) 227 

where 𝟏"(𝒙)&"! is the indicator function for whether a storm with parameter 𝒙 will generate 228 

rainfall larger than 𝜂!. The nominal distribution (or the target distribution),	𝑝(𝒙), is fitted by 229 

the observed joint distributions of the important parameters. The importance distribution, 230 

𝑞(𝑥), is the distribution which we can draw samples from. In this study, the importance 231 

distribution is the joint distributions of the important parameters from the synthetic storm 232 

simulation. 𝔼((𝒙) denotes the expectation of 𝑥 over the sample space of the synthetic storm 233 

parameters. 234 

The expectation in (1) can be estimated statistically, as in (2): 235 

𝔼( 0
𝟏"(𝒙)&"!𝑝(𝒙)

𝑞(𝒙) 1 ≈
1
𝑛5

1"*(𝒙')&"!𝑝̂(𝒙+)
𝑞7(𝒙+)

=	
,

+-.

1
𝑛51"*(𝒙')&"!𝑤(𝒙+)

,

+-.

, 𝒙+~𝑞7								(2) 236 

where 𝑛 is the number of simulated storms that influence the POI. 𝒙+ stands for the vector of 237 

parameters for the i-th storm in the synthetic dataset. 𝑝̂(𝒙+) is the estimated joint probability 238 

density function for the important parameters evaluated with the observations; 𝑞7(𝒙+) is the 239 

same but evaluated with the synthetic storm dataset.	𝜂̂(𝒙+)		represents	the	TCR	simulated	240 
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rainfall	level,	as	an	approximation	for	the	real	rainfall	level,	for	given	storm	parameters. 241 

In practice, one can compute the rainfall exceedance probability using equation (2) or, 242 

equivalently, assign each storm a weight 𝑤(𝒙+) =
'/(𝒙')
(/(𝒙')

 and resample the storm events to 243 

generate a new storm dataset with equal occurrence probabilities to calculate the rainfall 244 

exceedance probability directly. In theory, the joint probability distribution of the important 245 

parameters in the new storm dataset should match the observations, but sampling errors exist, 246 

especially if 𝒙+ has high dimensions. In this study, we used the resampling method to 247 

calculate the rainfall exceedance probability and check the probability distribution of the 248 

important parameters after resampling.    249 

The above formulations show that if the selected parameters control the estimated rainfall 250 

probability distribution, the rainfall hazard estimation would be largely influenced by the 251 

adjustment of probability distribution of the parameters. Further, in theory, the estimated 252 

rainfall hazard will have no bias if three conditions comply: the TCR has no bias, the selected 253 

parameters fully control TC rainfall estimation, and in practice the resampling process 254 

matches the probability distributions of the parameters exactly with observations. In practice, 255 

however, the important sampling with irregular probability distributions, especially with high 256 

dimensional probability distributions, can be challenging. Nevertheless, as a first attempt, we 257 

explore the potential of such a statistical method in bias-correcting rainfall hazard estimation. 258 

To simplify the resampling process, we assumed the correlations of the important parameters 259 

can be modeled using the Gaussian copula. We used the Gaussian copula to model the joint 260 

feature for two reasons. First, the high-dimensional Gaussian copula is generally 261 

implemented in statistical packages and can be easily fitted. Second, we tested several Vine 262 

copulas, and they have performances similar to the simpler Gaussian copula in modeling the 263 

joint probability distribution of important parameters. To avoid the uncertainty introduced by 264 

selecting different forms of copulas for different locations, we thus use the Gaussian copula 265 

for each POI in the United States.  266 

To understand the spatial distribution of rainfall hazard and how the important parameters 267 

affect the bias, we examined the differences between CHIPS-TCR simulation and PepC-TCR 268 

simulation based on the differences of the spatial distributions of the important parameters. 269 

We also examined the rainfall return levels and their spatial distribution corresponding to 10-270 
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year, 50-year, and 100-year return periods in coastal states from CHIPS-TCR and PepC-TCR 271 

simulations. To compute the return levels 𝐿, we used Equation (3) 272 

 273 

𝐿 = 𝐹0.S1 +
ln U1 − 1

𝑇1
X

𝜆 Z	(3) 274 

 275 

where 𝑇1 is the return period desired, 𝜆 is the storm frequency for the POI, F is the 276 

cumulative density function of the simulated ETR, and storms are assumed to arrive as a 277 

Poisson process (Lin et al. 2012). To focus on the differences of simulated return levels 278 

caused by the differences in TC characteristic parameters, we excluded the differences in 279 

storm frequency in the two synthetic storm models by using the observed historical 280 

frequency. 281 

   282 

3. Results 283 

3.1 Storm Parameter Selection and Favorable Conditions for Extreme ETR 284 

We selected important parameters for TC rainfall hazard from the following tentative 285 

parameters evaluated when the storm is within 300 km of the POI:  mean intensity of the 286 

storm; maximum intensity of the storm; mean distance of the storm to POI; minimal distance 287 

of the storm to POI; mean translation speed of the storm; heading of the storm when it is 288 

nearest to the POI; duration of the storm; and mean radius of the maximum wind. The 8 289 

parameters described here are fed into a LASSO regression between the 8 parameters and the 290 

simulated ETR for the POI. Data from all POIs in the continental United States are grouped 291 

together to perform the LASSO regression. After gradually increasing the regularization 292 

coefficient, we reduced the number of responding parameters to 3. The selected parameters 293 

are maximum intensity, duration, and minimal distance within 300 km. As shown in Figure 294 

1, the highest correlation coefficient of the LASSO-predicted ETR and TCR-simulated ETR 295 

when using only the 3 parameters is 0.6618, compared to the correlation coefficient around 296 
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0.6686 when the regression uses all 8 of the tentative parameters. The result shows that these 297 

three parameters are particularly important for the ETR in the TCR simulation. The 298 

regression coefficients for the maximum intensity and duration are positive while the 299 

coefficient for minimal distance is negative; as expected, intense storms with long impact 300 

times will cause heavy precipitation if they move close to the POI.  301 

 302 

Figure 1. Lasso parameter selection process for important storm parameters for ETR. a). 303 
Correlation coefficient between Lasso-predicted ETR and TCR-simulated ETR against the 304 
regularization coefficient; b). Number of responding factors against the regularization 305 
coefficient. The regularization stands for the weight that modulates the importance of the L2 306 
regularization term in Lasso. The increase of the regularization coefficient reduces the 307 
number of variables selected in the simulation. 308 

 309 

The parameter selection is relatively robust. The selection of 300 km as a threshold (for both 310 

ETR and storm parameters) was based on previous research on TC rainfall hazard 311 

simulations (Feldmann et al. 2019) although other thresholds (e.g., 500 km, 600 km) were 312 

also used in previous studies (Xi et al. 2020). We briefly test the results using a 500-km 313 

threshold. We find the duration and minimal distance are still the important parameters for 314 

ETR; however, the other important parameter becomes the mean intensity, rather than the 315 

maximum intensity, when the TC is within 500 km of the POI. For the 300-km radius, the 316 
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corresponding duration of storm is relatively short, so the rain rate when the storm is most 317 

intense is relatively important to ETR. However, for the 500-km radius, the corresponding 318 

duration of the storm is relatively long, so the rain rate when the storm is most intense is less 319 

important. Also, to test whether the selection of parameters is location-dependent, we also 320 

performed the LASSO regression using data for individual POIs. It is found that the duration 321 

and minimal distance are always selected. For some locations the maximum intensity is 322 

selected but in other locations the mean intensity is selected. However, it is noted that for 323 

most cases, larger maximum intensity corresponds to larger mean intensity (R = 0.87).  In 324 

each case, storm heading, translation speed, and radius of maximum wind are not selected.  325 

The asymmetric feature of TC rainfall caused by storm translation could be important for the 326 

rainfall hazard produced by single cases, but such asymmetry was smoothed out when we 327 

sampled a large number of TCs to estimate TC rainfall hazard, as TCs can approach from any 328 

direction to a POI.  The mean radius of maximum wind is correlated with storm intensity, 329 

and its impact on the ETR for a specific POI may also depend on distance.  330 

Applications of identifying the important parameters for TC rainfall include investigating the 331 

criteria for a storm to produce extreme rainfall and evaluating whether a rainfall model such 332 

as TCR can generate extreme rainfall under the same conditions that favor extreme rainfall in 333 

reality. To explore the favorable conditions (regarding the 3 selected parameters) to generate 334 

extreme ETR, we examined the joint and marginal probability distributions of the 3 selected 335 

parameters under two conditions, extreme rainfall events and ordinary rainfall events. We 336 

defined extreme rainfall events as the events whose ETR exceed 99-th percentile of all the 337 

observed or simulated ETR. Both observations and IBTrACS-TCR simulation (rainfall 338 

simulation driven by observed storm parameters) show that ordinary rainfall events (<99-th 339 

percentile) usually happen when maximum intensity is less than 30 m/s, as shown in Figure 340 

2a & b. Both simulation and observations show that short duration favors a weak rainfall 341 

event, and the duration for weak rainfall is usually less than 50 hours. For extreme rainfall 342 

events (Figure 2c & d), we found that the intensity and duration in both observations and 343 

simulation extends to larger values, showing that intense TCs and/or the TCs lingering 344 

around the POI induce extreme rainfall. For extreme rainfall events, the minimal distance in 345 

both simulation and observations concentrates at small values while in ordinary events the 346 

minimal distance is uniformly distributed. This result implies that shorter minimal distance 347 
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favors extreme rainfall events. For the joint distributions of pairs of parameters, we found 348 

that extreme rainfall events in both the simulation and observations show the following 349 

shared features: (1) for intensity and distance, when intensity is low, the distance is also short 350 

so that extreme rainfall can be produced by relatively weak TCs; (2) for intensity and 351 

duration, when intensity is small, there are long duration cases to favor extreme rainfall 352 

generation while when duration is short, intense TCs generate extreme rainfall; and (3) the 353 

joint probability distribution of distance and duration concentrates in short distances and 354 

longer durations. The simulation shares similar features with observations in the 355 

abovementioned characteristics of marginal and joint probability distribution, implying that 356 

the simplified physics-based TC rainfall model generates extreme rainfall events provided 357 

the conditions that favor extreme rainfall events in the observations.   358 
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 359 

Figure 2. Probability distributions of the important parameters for ETR in different rainfall 360 
groups. (a) (b). Marginal and joint distribution of the three important parameters for ordinary 361 
rainfall event (<99% percentile) for Stage IV observations (<196.55 mm) and TCR simulation 362 
(<152.2 mm), respectively; (c) (d). Same as (a) (b), but for extreme rainfall (>=99% percentile) 363 
events for Stage IV observations (>= 196.55 mm) and TCR simulation (>=152.2 mm). (e) (f) 364 
marginal and joint distribution of minimal distance and duration conditioned on ETR>=100 mm 365 
and maximum storm intensity lower than 17.5 m/s (tropical storm intensity) for Stage IV 366 
observations and TCR simulation, respectively.  367 

 368 

Previous research found that on the storm level, TCR may not reproduce the spatial 369 

distribution of the TC rainfall for specific storms (e.g., weak storms or those affected by 370 
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other synoptic systems) as in the observations (Xi et al. 2020); however, the TCR is able to 371 

reproduce the correct averaged rainfall climatology, e.g., spatial distribution of annual 372 

average TC rainfall (Xi et al. 2020) and TC rainfall probability distribution (Feldmann et al. 373 

2019). The findings in this study provide another perspective from which to understand the 374 

performance of TCR. The ETR of TC can be viewed as a dependent random process that is 375 

largely controlled by important parameters (maximum intensity, duration, and minimal 376 

distance) but that can be influenced by other parameters and larger-scale synoptic systems 377 

(Xi et al. 2020), which can be viewed as random forcing. At the storm-level, the random 378 

forcing can be an important factor to determine ETR, but for a large sample of storms, the 379 

probability distribution of ETR may be controlled mainly by the probability distribution of 380 

the important parameters. The finding that the TCR responds to the important parameters in 381 

the same way as the observed rainfall statistically, especially for the extreme events, 382 

indicates that TCR is a capable model for TC rainfall hazard assessment.  383 

We also found that weak TCs can sometimes generate significant amounts of rainfall in the 384 

observations while TCR simulations have a very strict condition (minimal distance < 100 385 

km) for producing heavy rainfall by weak TCs. Here we compare the joint and marginal 386 

probability distributions of minimal distance and duration of TCs below tropical storm 387 

intensity (<17.5m/s) that produce ETR larger than 100 mm. We found that in the 388 

observations, these events are usually favored in cases with short minimal distance (Figure 389 

2e), but it is possible for a storm far from the POI (up to 270 km) to produce heavy rain. In 390 

the IBTrACS-TCR simulation, though, the cases in which weak TCs generate heavy rainfall 391 

can happen only when the distance is smaller than 100 km. Thus, the weak-TC-heavy-rain 392 

events are more likely to happen in reality than in the TCR simulation. One possible 393 

explanation is that the structure of weak TCs may not be compact and symmetric, which 394 

violates the assumption of TCR. The other possible reason is that the heavy rainfall 395 

associated with weak TCs is likely to be linked with other synoptic systems that are not taken 396 

into consideration in TCR or related to extratropical transitions with baroclinic effects not 397 

well captured by TCR.  We also note that rainfall produced in TCR can be regarded as 398 

convective rainfall while rainfall in a distant rainband (may or may not be within 300 km 399 

from the TC center) is stratiform. The above analysis shows that though TCR reproduces 400 
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extreme rainfall when conditions are favorable for TCs to generate extreme rainfall, TCR 401 

misses the unusual cases when TCs are less intense but still produce extreme rainfall.   402 

3.2. Spatial Distribution of Simulated Important Storm Parameters in USA and Their 403 

Relationship with Simulated Rainfall Hazard 404 

Section 3.1 identifies three important TC-related parameters that significantly influence TC 405 

rainfall hazard. Here we explore how the bias and uncertainty of these parameters influence 406 

the simulated TC rainfall hazard by analyzing the rainfall hazard across the United States, 407 

estimated by two synthetic storm models (CHIPS and PepC) coupled with TCR. First, we 408 

present the spatial distributions of the mean of the three important parameters from both 409 

observations and synthetic storm simulations (Figure 3). The mean of maximum intensity 410 

from CHIPS and PepC matches well with observations of the Texas Coast and the tip of 411 

Florida. However, both CHIPS and PepC underestimate the mean of maximum intensity on 412 

the East Coast, especially at high latitudes. PepC also underestimates storm intensity and 413 

overestimates minimal distance for locations inland. Both of these biases are related to the 414 

oversimplified TC decay model in PepC when storms are over landmasses. The 415 

overestimation of minimal distance results from the short on-land lifetime of TCs in the PepC 416 

model, resulting in most of the TCs not moving close to inland POIs. For the minimal 417 

distance, PepC performs well along the Southern Coast (from Texas to Alabama), but it 418 

shows overestimation from coastal Florida to the Northeast. CHIPS underestimates the 419 

minimal distance in west Florida and overestimates the minimal distance in other U.S. 420 

coastal areas, although the overestimation from CHIPS is less significant than the 421 

overestimation from PepC. PepC overestimates the duration of the storms in Florida and in 422 

high latitudes on the East Coast, while CHIPS underestimates the duration along the South 423 

Coast and East Coast. 424 
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 425 

Figure3. Spatial distribution of the mean of the three parameters. (a) (b) (c). Mean of 426 
maximum intensity of IBTrACS, CHIPS, and PepC; (d) (e) (f). Mean of minimal distance; 427 
(g) (h) (i). Mean of duration. 428 

The differences in the important parameters estimated by the two synthetic storm models can 429 

be used to understand the different performances of the synthetic storm models for rainfall 430 

hazard estimation.  Here we show the return level estimated from CHIPS-TCR and PepC-431 

TCR for return periods of 10-years, 50-years, and 100-years (Figure 4). One difference 432 

between the two coupled models is that PepC-TCR predicts higher rainfall hazard on the East 433 

Coast. The differences in minimal distance and maximum intensity in the East Coast in PepC 434 

and CHIPS are not significant (Fig. 3b-c, 3e-f); however, the duration of a storm simulated 435 

by PepC is much longer than the duration simulated by CHIPS (Figure 3h-i), which leads to 436 

higher rainfall hazard on the East Coast estimated by the PepC-TCR simulation. The two 437 

models also show differences in rainfall hazards in Coastal Texas, where PepC simulates 438 

higher rainfall hazard than CHIPS. In Coastal Texas, though the maximum intensity 439 

simulated by PepC is around 84% of the maximum intensity simulated by CHIPS, the 440 
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minimal distance simulated by PepC is 13% lower than that in CHIPS, and the mean duration 441 

in PepC is around 50% longer than that in CHIPS in Coastal Texas. The higher rainfall 442 

hazard in Texas estimated by PepC is a result of longer duration and shorter minimal 443 

distance, despite the storm intensity in this dataset is slightly lower.  444 

 445 
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Figure 4. Return level of the simulated rainfall hazard. (a)(b). 10-year return period; (c)(d). 446 
50-year return period; (e)(f). 100-year return period; (a)(c)(e). CHIPS-TCR; (b)(d)(f). PepC-447 
TCR.  448 

 449 

We have explored the spatial distribution of the mean of the parameters. Here we briefly 450 

discuss the correlations of these parameters (Figure 5). Though there is no physical reason 451 

for duration and minimal distance to be related to storm intensity, they may be statistically 452 

related. We found that for most coastal areas, the linear correlation between each pair of the 453 

three parameters is small. However, if the direction of motion and translation speed of storms 454 

near a POI have low variability across the storms, the minimal distance and duration should 455 

be negatively correlated. Thus, a significant negative correlation between the minimal 456 

distance and duration in Coastal Texas implies that the motion of storms in this area has low 457 

variability. In the next section, we model the joint probability distribution of the three 458 

important parameters by Gaussian copula, to partly capture the weak correlations between 459 

the three parameters.  460 

 461 
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 462 

Figure 5. Correlation of the selected parameters in observations, CHIPS synthetic storms, and 463 
PepC synthetic storms. Figures a), b), c) Correlation between maximum intensity and 464 
minimal distance for IBTrACS, CHIPS, and PepC, respectively; d), e), f) Correlation 465 
between maximum intensity and duration for IBTrACS, CHIPS, and PepC, respectively; g), 466 
h), i) Correlation between duration and minimal distance for IBTrACS, CHIPS, and PepC, 467 
respectively. The locations that are marked by black dots are where the correlation is 468 
significant, and the absolute value of the correlation coefficient is larger than 0.3. 469 

 470 

3.3. Probability Distribution of Important Parameters and Storm Probability 471 

Correction 472 

The findings in Section 3.1 indicate a way to examine the bias of rainfall hazard probability 473 

distribution simulated by TCR coupled with synthetic storm models, that is, to examine the 474 

differences of the three important parameters in the synthetic storm simulation and 475 

observations. Section 3.2 shows the difference of the mean of important parameters in two 476 

synthetic storm models and the effects on rainfall hazards. Here we further discuss how 477 

features of the probability distribution of the parameters influence the probability distribution 478 
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of the simulated rainfall. we selected 10 locations (shown in Figure 6) and compared the 479 

probability distribution of the ETR in the two model simulations at each location. The 10 480 

locations are selected to cover the coastal locations from Gulf Coast to the Northeast, with 481 

Atlanta as a representative for inland regions. We did not select locations in regions with 482 

complex terrains (the Appalachian Mountains) or affected significantly by synoptic-system-483 

influenced TC rainfall events (Texas), as the bias of simulated rainfall in these locations are 484 

largely induced by the bias in TCR (Xi et al. 2020). 485 

For each location, for ETR exceedance probability distribution, we compare the rain gauge 486 

observations (black dot in Figure 7 upper panels) and IBTrACS-TCR simulations (purple dot 487 

in Figure 7 upper panels); a relatively small difference between the two confirms that the bias 488 

in TCR is small for the selected location. The bias that caused by the synthetic storm 489 

simulations from CHIPS (red solid line in Figure 7 upper panels) and PepC (blue solid line in 490 

Figure 7 upper panels) are shown by comparing their hazard curves with IBTrACS-TCR. 491 

Then we applied the storm probability correction method introduced in Section 2.3 to 492 

examine the influence of the bias in parameters on the estimated rainfall hazard and to 493 

investigate if bias-correcting the probability distribution of the important parameters can lead 494 

to significantly better estimation of the ETR distribution, i.e., becoming closer to the 495 

IBTrACS-TCR simulations. We present the bias correction based on marginal distributions 496 

(dashed red and blue lines in Figure 7 upper panels for CHIPS and PepC respectively) of the 497 

three individual parameters to show how a single parameter influences the estimated ETR 498 

exceedance rate and present the bias correction based on joint distributions of three 499 

parameters (dotted red and blue lines in Figure 7 upper panels for CHIPS and PepC 500 

respectively) to explore the possibility of using joint probability distribution to correct 501 

rainfall exceedance probability.  502 

To connect the bias in the rainfall hazard to that in the storm parameters, we also compare the 503 

probability distribution of each individual parameter from historical observation (solid black 504 

line in Figure 7 lower panels), synthetic storm model simulations (solid red and blue lines in 505 

Figure 7 lower panels for CHIPS and PepC respectively), and the resampled results based on 506 

the probability distribution of the corresponding individual parameter (dashed red and blue 507 

lines in Figure 7 lower panels for CHIPS and PepC respectively) and the joint probability of 508 
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the parameters (dotted red and blue lines in Figure 7 lower panels for CHIPS and PepC 509 

respectively). 510 

 511 

512 

Figure 6. Locations of rain gauge observations. 513 

For most of the 10 selected sites, we found that the IBTrACS-TCR has no significant bias 514 

compared to gauge observations in the low rainfall region, where the estimation of the 515 

exceedance rate from observations has limited uncertainty. We acknowledge that for some 516 

other locations not considered here such as Texas and mountainous areas, IBTrACS-TCR has 517 

noticeable bias compared to rain gauge observations. However, in this study, we focus on the 518 

bias that caused by storm simulations. In the 10 selected sites, we found in Charleston, 519 

Jacksonville, Miami, New Orleans, and Tallahassee both CHIPS-TCR and PepC-TCR 520 

coupled TCR perform well compared to the IBTrACS-TCR simulation. Thus, for these 521 

locations, correcting the bias based on single important parameters shows limited effects on 522 

changing the probability distribution of ETR, especially at the low ETR regime, where the 523 

uncertainty of ETR from the rain gauge observations is small. However, applying the bias 524 

correction based on the joint parameters may worsen the rainfall hazard estimation for these 525 

sites, e.g., Charleston and New Orleans, with possible reasons discussed later.  526 
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We then examined how the bias of the parameters in the other five locations contributes to 527 

the bias of rainfall hazard simulated. PepC simulation in Atlanta significantly underestimates 528 

TC rainfall hazards. The underestimation is related to the overestimation of minimal distance 529 

and underestimation of duration at this inland location (as shown in the probability 530 

distributions), though the intensity is overestimated. As expected, bias correction based on 531 

storm intensity has no effect on correcting the bias of simulated rainfall, but the bias 532 

correction based on minimal distance and duration improves the models’ performance. 533 

CHIPS simulated rainfall matches better with the rain gauge observations than PepC does for 534 

Atlanta with slight overestimation, but the better match is likely a combined effect of 535 

overestimation of intensity and underestimation of duration. Correcting based on the 536 

probability of maximum intensity will slightly improve the estimation of rainfall hazard, but 537 

correcting based on the probability of duration will worsen the estimation. This result shows 538 

that correcting a parameter that biases in the opposite direction of estimated rainfall bias will 539 

further worsen the estimation. Applying the bias correction based on joint probability 540 

distribution shows improvement on the rainfall hazard estimation for both PepC and CHIPS 541 

in Atlanta.  542 

In Baltimore, PepC overestimates rainfall hazard because the simulated duration and 543 

intensity probability distributions shift to larger values than in the observations. Bias 544 

correction based on these two parameters improves the simulation. For CHIPS, model 545 

simulation matches well with observations, which is likely related to the combined effect of 546 

underestimation of duration, slight overestimation of mean intensity, and underestimation of 547 

minimal distance, as seen in the probability distribution. Bias correction based on each single 548 

parameter shows limited effects on the simulation of rainfall hazard. Correction based on the 549 

joint probability distribution can improve rainfall estimation over both CHIPS and PepC. In 550 

Mobile, both CHIPS and PepC show most bias in the probability of the duration of storm, 551 

and correction based on this parameter and based on the joint distribution improves both 552 

CHIPS and PepC simulations.  553 

In Norfolk, PepC overestimates the rainfall hazard. The overestimation is mainly due to the 554 

significant overestimation of the duration of storms that impact this location. Bias correction 555 

based on duration for PepC improves the estimation of rainfall hazards. However, applying 556 
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the bias correction based on the joint probability distribution does not improve the simulation 557 

results, especially for PepC. The unsatisfactory performance of the joint probability 558 

correction of PepC occurs probably because the resampled storm intensity does not match 559 

well with observations, and the unsatisfactory performance of joint probability correction of 560 

CHIPS occurs likely due to the mismatch between resampled duration and observations. 561 

In Savannah, both PepC and CHIPS overestimate rainfall hazards, and the overestimation of 562 

PepC is more significant. CHIPS overestimates intensity and chances of short distance but 563 

slightly underestimates storm duration. Bias correction based on intensity and distance 564 

slightly improves the estimation of rainfall hazard from CHIPS. The bias of PepC is most 565 

significant in duration, and the bias correction based on duration improves the rainfall hazard 566 

estimation. Bias correction based on the joint parameters shows limited improvement for 567 

CHIPS, but it improves the rainfall estimation from PepC in Savannah. The analysis above 568 

shows that bias correction based on the most biased parameter can improve the estimation of 569 

rainfall hazards while using the joint probability cannot always improve the estimated TC 570 

rainfall hazard.  571 

 572 
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 573 

Figure 7. Comparison of the observed and simulated ETR exceedance rate and the 574 
probability distribution of parameters in the 10 selected sites. Upper panel: ETR exceedance 575 
rate. Black dot: exceedance probability of rain gauge observations; Green dot: exceedance 576 
probability of IBTrACS-TCR simulation; Red solid line: exceedance probability of CHIPS-577 
TCR; Blue solid line: exceedance probability of PepC-TCR; Red dashed line: exceedance 578 
probability of CHIPS-TCR-MP; Blue dashed line: exceedance probability of PepC-TCR-MP; 579 
MP and JP stand for performing resampling based on the marginal probability distribution 580 
and joint probability distribution, respectively. Bottom panel: probability distribution of the 581 
parameters. The numbers behind CHIPS+TCR and PepC+TCR are numbers of TCs hit the 582 
POI in each dataset. CHIPS-MP (PepC-MP) stands for the probability distribution of the 583 
important parameters in CHIPS (PepC) model based on the marginal probability distribution. 584 
CHIPS-JP (PepC-JP) stands for the probability distribution of the important parameters in 585 
CHIPS (PepC) model based on the joint probability distribution 586 

 587 
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588 

Continuation of Figure 7, for Baltimore. 589 
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 590 

Continuation of Figure 7, for Mobile. 591 
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 592 

Continuation of Figure 7, for Norfolk. 593 
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 594 

Continuation of Figure 7, for Savannah. 595 
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 596 

Continuation of Figure 7, for Charleston. 597 
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 598 

Continuation of Figure 7, for Jacksonville. 599 
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 600 

Continuation of Figure 7, for Miami. 601 
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 602 

Continuation of Figure 7, for New Orleans. 603 

 604 



35 
 

 605 

Continuation of Figure 7, for Tallahassee. 606 

Bias correction based on the joint distribution of important storm parameters may not always 607 

improve the simulation results due to the mismatch between probability distribution of the 608 

important parameters after resampling and observation. For locations where joint parameter 609 

bias correction improves the simulation results, it is still not guaranteed that the probability 610 

distribution of the resampled important parameters matches the observations. One important 611 

reason that relates to the unsatisfactory matches with the parameters is the difficulty in 612 

resampling using the importance sampling method for high dimensional probability 613 

distribution. Resampling for higher (>2) dimensional probability distribution is harder to 614 

perform than for lower dimensions. It is mathematically provable that the uncertainty of 615 

importance sampling grows with the dimension of the probability distribution (Kroese and 616 

Rubinstein, 2016). For those locations where bias correction based on the joint parameter 617 

improves the rainfall estimation, it is likely that although the corrected probability 618 

distribution does not match the observations well for each single parameter individually, the 619 

Gaussian Copula model captures the three-dimensional joint features of the three important 620 
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parameters well, and thus the corrected rainfall distribution predicted by PepC or CHIPS 621 

matches well with IBTrACS estimated rainfall distribution. We even found that in some 622 

locations (CHIPS for Charleston and New Orleans), the bias correction based on the joint 623 

parameters worsens the simulation result. Both in Charleston and New Orleans, CHIPS 624 

estimated rainfall has satisfactory performance, but the good performance is a result of the 625 

combined effects of overestimation in intensity and underestimation in duration.  626 

The above analysis shows that the distributions of the selected parameters have profound 627 

influences on the simulated TC rainfall hazard probability, and the differences of the 628 

distributions of the parameters can be used to understand the different performances of 629 

synthetic rainfall hazard assessments. We also found that bias-correction based on the single 630 

parameter that is mostly biased can usually improve the TC rainfall hazard estimation. Using 631 

the joint probability cannot always improve the estimated TC rainfall hazard due to the 632 

limited ability to match the marginal and joint distributions of all individual parameters. It is 633 

worthwhile for future research to continue developing improved statistical methods for bias 634 

correction of TC rainfall hazard. 635 

   636 

4 Discussion 637 

4.1 Wind Input and Wind Hazard 638 

As the wind input is important to the simulation of rainfall in TCR, and the strong wind itself 639 

is also an important hazard associated with TCs, here we briefly explore the simulated return 640 

period of the event hourly maximum wind. We used the wind profile model proposed by 641 

Chavas et al. (2015) to perform the wind simulation and to prepare wind profile inputs for 642 

TCR. First, we briefly discuss what TC-related parameters may be important for simulated 643 

maximum wind. As the inputs for the C15 wind profile model are only the radii of maximum 644 

wind and the maximum wind, and given the wind profile, the wind a POI experiences 645 

depends only on the distance between the POI and the TC center. Thus, three parameters are 646 

important for event maximum wind: distance, storm intensity and radius of maximum wind. 647 

The 10-year return period of the maximum wind simulated from PepC-C15 compares well 648 

with the simulation based on historical TCs while CHIPS-C15 tends to underestimate event 649 
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maximum wind (Figure 8). The differences in simulated wind from the two models explain 650 

the lower rainfall hazards estimated from CHIPS-TCR than from PepC-TCR in the Southern 651 

and East Coasts (Figure 4).  The discrepancy is due to the bias of the synthetic storm models. 652 

As the minimal distance simulated from CHIPS is larger than that in the observations (Figure 653 

3d-e), the underestimation of event maximum wind is likely due to the longer distance from 654 

TCs to the POI in CHIPS. The bias of simulated wind will be fed into TCR and influence the 655 

accuracy of the TC rainfall simulation. We further explore the return levels of event 656 

maximum wind according to 50-year and 100-year return periods using synthetic storms and 657 

the C15 wind profile model (Figure 9). We find that CHIPS-C15 and PepC-C15 show 658 

agreement on the return levels in areas that are farther than 100 km from the coast lines. 659 

PepC-C15 shows more intense wind for 50-year and 100-year return periods than CHIPS-660 

C15 in coastal areas.  661 

  662 

Figure 8. Simulated return levels for 10-year return level of event maximum wind from a). 663 
Historic-C15 b). CHIPS-C15 c). PepC-C1.5 664 

 665 

We notice that in general the discrepancies of event maximum wind are smaller than the ETR 666 

simulated by the two synthetic storm models. For example, the most significant difference 667 

between the 10-year return level for ETR from PepC-TCR and CHIPS-TCR is found in 668 

Coastal North Carolina, where the PepC-TCR simulated rainfall is two times larger than 669 

CHIPS-TCR (Fig. 4). In the wind hazard simulation, though, the maximum difference is 670 

found in Georgia, where the difference is less than 20% (Fig. 8). This finding implies that 671 

compared to ETR, event maximum wind is less sensitive to the discrepancies in the features 672 

of synthetic storms between different datasets. The reason is likely related to the different 673 

parameters that are important to the different hazards. As we have mentioned, the important 674 
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parameters for rainfall are distance, duration, and intensity of the storm. They are three 675 

physically unrelated parameters. However, the important parameters for event maximum 676 

wind are radius of maximum wind, storm intensity, and distance, and the first two parameters 677 

are found to be negatively related. Thus, there are more degrees of freedom in variables that 678 

control TC rainfall hazard than in those for wind hazard, so the simulated ETR by different 679 

models shows more discrepancies than the simulated event maximum wind. Given that the 680 

C15 wind profile itself has uncertainties and we lack observations of hourly wind covering 681 

the United States, we hereby only acknowledge the uncertainties of estimation of wind 682 

hazard from synthetic storm models without suggesting which synthetic storm model is better 683 

for wind hazard assessment.  684 

 685 

Figure 9. Simulated return levels of event maximum wind from CHIPS a) c) and PepC b) d). 686 
50-year return level: a), b); 100-year return level: c), d). 687 
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4.2 Important Parameters for Maximum Rain Rate 688 

In the main results, we focused on the hazard of ETR. Besides ETR, hourly maximum rain 689 

rate is also of interest. Hourly maximum rain rate is associated with various hazards 690 

including flash flooding and compound flooding (Gori et al. 2019), and previous research has 691 

not addressed this variable much. Here we briefly discuss the TC-related parameters that are 692 

important for the maximum rain rate from the TCR simulation. We apply the same LASSO 693 

analysis as described in Section 3.1 but change the response to hourly maximum rain rate in 694 

the TCR simulation. We found the important parameters for maximum rain rate are 695 

maximum intensity, minimal distance, and average radius of maximum wind, similar to the 696 

case for event maximum wind. The sharing of important parameters between event 697 

maximum wind and maximum rain rate indicates that the wind field feature may more 698 

critically affect maximum rain rates than ETR. Similar to event maximum wind, maximum 699 

rain rate is also a maximum value, rather than a summation value such as ETR, so the 700 

hazards of maximum rain rates and event maximum wind share similar important TC-related 701 

parameters. As noted in Xi et al. (2020), TCR tends to underestimate the chances of extreme 702 

short-term rainfall (even when driven by correct storm parameters); future studies could 703 

consider applying a hierarchical bias-correction method to bias-correct both TCR and 704 

important parameters for hourly extreme rainfall events.  705 

4.3 Potential Applications of this Study 706 

The results of this study have several potential applications. First, understanding the storm 707 

parameters important for TC rainfall can be useful to understand the bias of synthetic storm 708 

estimated TC rainfall hazard, as well as to understand the driving force for TC rainfall hazard 709 

change in the future. For example, the projected change of storm intensity (Knuston et al. 710 

2010, Emanuel 2020) and lengthened storm stalling time (Kossin et al. 2018) may both favor 711 

heavier TC rainfall in the future; applying the important sampling method developed in this 712 

study could further examine which factor has the most impact on future TC rainfall hazard 713 

change. Second, this study potentially provides a new way to correct TC hazard bias. 714 

Previous studies apply the quantile-quantile mapping method directly to bias-correct the 715 

simulated hazard probability distribution (Marsooli et al. 2019). The quantile-quantile 716 

mapping generates a good match with observations for the estimated hazard curve, but it is 717 



40 
 

not performed at the storm level, which limits the method in capturing the correlations 718 

between different hazards (wind, surge, rainfall) caused by the same storm. However, the 719 

important parameters for the other hazards may differ from the important parameters for 720 

rainfall; future studies may investigate the important storm parameters for joint hazards to 721 

support storm-level hazard bias-correction. Finally, the identification of important parameters 722 

for TC rainfall is useful to design the Joint Probability Method hazard estimation technique 723 

for TC rainfall. The Joint Probability Method generates synthetic storms that have various 724 

features (intensity, distance to POIs, translation speed, etc.), assigns probability mass 725 

(occurrence rate) for each storm based on the historical joint probability distribution of the 726 

important parameters, and applies the generated storms for hazards modeling (Toro et al. 727 

2010). Such a method performs simulations and analysis for local coastal locations and thus 728 

may have less bias locally than the basin-wide synthetic storm models such as those used in 729 

this study. The current Joint Probability Method is designed based on important parameters 730 

identified for TC surge (Toro et al. 2010); similar techniques may be applied to TC rainfall 731 

hazard estimation based on the identified important parameters for TC rainfall.   732 

 733 

5. Conclusion 734 

This study examines the important parameters that control the TC rainfall hazard. We first 735 

identified three important parameters of storms that have significant impacts on ETR and 736 

then explored the favorable conditions for extreme ETR events by analyzing both radar 737 

observations and TCR simulations. We coupled TCR with two synthetic storm models, 738 

CHIPS and PepC, to simulate TC rainfall events for TC rainfall hazard assessments. The bias 739 

of rainfall hazards simulated by the synthetic storm coupled TCR models is explained by the 740 

bias of the important parameters for TC rainfall simulated by the synthetic storm models. The 741 

main findings of this study are summarized as follows:  742 

1. Maximum intensity, minimal distance, and duration are the three most important 743 

parameters that control the ETR of a TC rainfall event. Higher intensity, shorter minimal 744 

distance, and longer duration are favorable for both historical storms and TCR to produce 745 

ETR.  746 
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2. Examination of the probability distribution of important parameters and ETR from Stage-747 

IV observations and TCR simulation shows that low intensity and short duration favor 748 

ordinary rainfall events while high intensity and long duration favor extreme rainfall 749 

events. TCR and observations share similar conditions that produce extreme rainfall 750 

events, indicating that the simplified TC rainfall theory employed by TCR can explain the 751 

occurrence of extreme rainfall. However, in TCR simulation a weak storm is unlikely to 752 

produce heavy ETR, while in observations such events are non-neglectable.  753 

3. The CHIPS-TCR and PepC-TCR have some discrepancies in terms of the estimated 754 

rainfall hazard. On the East Coast, PepC-TCR estimates higher TC rainfall hazard than 755 

CHIPS-TCR, as a result of longer TC duration predicted by PepC than CHIPS. On the 756 

Texas Coast, PepC-TCR predicts higher rainfall hazard than CHIPS-TCR due to the 757 

shorter minimal distance and longer TC duration predicted by PepC than by CHIPS. This 758 

analysis shows that the differences in the simulated important TC parameters may largely 759 

explain the differences in the simulated TC rainfall hazards.  760 

4. Bias of the TCR coupled with synthetic storm simulation can be largely explained by the 761 

bias of the three important TC-related parameters estimated by the synthetic storm 762 

models. Correcting the distribution of the most biased parameter may significantly 763 

improve rainfall hazard estimation. Bias correction based on the joint distribution of the 764 

important parameters may render more accurate rainfall hazard estimations in most but 765 

not all cases, and the matching of the probability distributions of all important parameters 766 

is not guaranteed. Bias correction based on the joint probability distribution suffers from 767 

the general technical difficulties in resampling from high-dimensional joint probability 768 

distributions, which may be further explored in future research.  769 

This study identifies the important parameters for TC rainfall hazards as a way to understand and 770 

potentially reduce the bias in TC rainfall hazard estimation. The results are obtained based on 771 

observations and a physics-based TC rainfall model that has satisfactory performance in 772 

comparison with observations (Figure 2, see also Feldmann et al. 2019, Xi et al. 2020) and full-773 

physics numerical models (Lu et al. 2018). Thus, the identified TC parameter-rainfall hazard 774 

relationships may also be used to test other TC rainfall models. The findings of the current study 775 

suggest future research also in the following ways. First, the impact of climate change on TC 776 

rainfall hazard may be assessed by investigating the changes of the identified important TC 777 
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parameters in various climate simulations and statistical downscaling datasets. For example, TC 778 

intensity (Knuston et al. 2020, Emanuel et al. 2021), track (Studholme et al. 2021, Wang and 779 

Toumi 2021), and impact duration (Xi and Lin 2021) and the correlations between these 780 

parameters may change, likely leading to changes in TC rainfall hazard. Since the TC parameter-781 

rainfall relationships are identified based on both observations and physics-based modeling, they 782 

may not change significantly under climate change. Second, the discussion of the important 783 

parameters for ETR, wind hazard (Section 4.1), and flash flooding (Section 4.2), together with 784 

previous research on the important parameters for storm surge (Resio et al. 2009, Irish et al. 785 

2009) and compound flooding (Gori et al. 2020), provide powerful tools for understanding 786 

various hazards associated with TCs and their modeling uncertainties. Moreover, the Joint 787 

Probability Method for TC rainfall hazard and multi-hazards could be developed based on the 788 

results of this study for engineering applications. Finally, in this study, we focused on the bias in 789 

rainfall hazard estimation caused by storm simulations. However, to accurately estimate TC 790 

rainfall hazard, the intrinsic bias in TC rainfall modeling (e.g., TCR) should also be investigated 791 

and corrected in future research.  792 
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