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A B S T R A C T   

This paper focuses on addressing uncertainties in disasters when considering lateral transshipment opportunities 
for pre-positioning relief supplies. To deal with uncertain demands the problem is formulated as a two-stage 
stochastic programming model, which decides simultaneously on the locations of relief facilities and the allo
cations of relief supplies to demand nodes. Meanwhile, different damage levels caused by disasters are consid
ered and reflected by a survival rate of usable stocked relief items. Multiple types of supplies with various 
priorities, values and spaces are explored. A real-world case study based on the Gulf Coast region of the United 
States is conducted to illustrate the application of the developed model. By comparison with the direct shipment 
solution, the lateral transshipment solution is demonstrated to be more cost-effective and flexible. The sensitivity 
analysis of out-of-stock penalty cost and maximum travel distance provides managerial insights for relief 
agencies.   

1. Introduction 

The world is frequently affected by natural disasters, which typically 
cause catastrophic consequences for humanity. According to the most 
recent statistics from the Centre for Research on the Epidemiology of 
Disasters (CRED), there were 315 climate-related and geophysical 
disaster events recorded in 2018 with 11,804 deaths and $131.7 billion 
in damages, and over 68 million people affected across the world [1]. A 
recent example is the hurricanes Florence and Michael that successively 
occurred in September and October in 2018, which caused more than 
120 deaths and $50 billion in economic losses, and the vast eastern 
coastal states of the United States from north to south were affected. 
These facts reveal the importance of disaster management in mitigating 
the negative effects of disasters [2]. Disaster management can be divided 
into four phases, namely, mitigation, preparedness, response and re
covery [3,4]. This research mainly deals with two types of decisions: 
storing relief supplies in advance at storage facilities before a disaster 
occurs and distribution of these items from storage facilities to affected 
communities right after a disaster occurs. Therefore it can be classified 
within the preparedness and response phrases. 

In the preparedness phase, one of the strategies that are commonly 
applied upon the occurrence of a disaster is to pre-position relief 

commodities (e.g., water and food) at strategic locations so that these 
supplies are readily available and can be delivered to affected commu
nities as soon as possible once natural disasters strike [5]. On one hand, 
inadequate relief items and/or untimely delivery will cause ineffective 
emergency response, and thus resulting in the increase in human 
suffering and even loss of life. On the other hand, over-investment in 
stock of relief commodities would incur very high inventory costs and 
occupy too much public funds. Therefore, it is cost-effective to estimate 
the demands for the relief supplies at affected community. However, 
because of the unpredictable nature of disasters (e.g., occurrence fre
quency and location), demand for relief supplies is highly uncertain, and 
most of the time it is difficult to make pre-positioning decisions. 

The ‘‘traditional’’ logistics systems are usually considered to be hi
erarchical, where commodities are transported from one echelon to the 
next, i.e. manufacturers, wholesalers, retailers etc. Due to the uncer
tainty of demand, the commodities may be in short at some locations 
while abundant at other locations. To alleviate the mismatch between an 
actual demand and an available stock in strategy locations under the 
inability to replenish from a central warehouse, the practice of allowing 
horizontal transportation within the same echelon, namely, lateral 
transshipment was proposed [6]. Lateral transshipment is mostly applied 
in the commercial logistics systems, especially for low-demand, 
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high-value items (e.g. spare parts) in emergency orders. As slow-moving 
expensive items, spare parts require a quick response to an infrequent 
demand. Lateral transshipment allows for an additional source of pro
curement from a nearby location once a stockout of spare parts occurs. 
This leads to cost reduction and service improvement compared to 
networks without lateral transshipment. 

Considering the nature of emergency and infrequency in the hu
manitarian logistics, lateral transshipment can also be an appropriate 
and efficient alternative to alleviating the suffering of victims within the 
shortest possible time. When lateral transshipment is applied in the 
humanitarian logistics, a storage facility can obtain the relief supplies 
from a nearby facility if it cannot satisfy the immediate need of victims 
from its own inventory. This strategy can reduce the burden of pre- 
positioning more relief supplies with high inventory cost at the stor
age facilities or waiting for the next shipment from upper agencies. 
However, due to the uncertainty of natural disasters and the non-profit 
nature of humanitarian relief, the importance of lateral transshipment 
has not been recognized much in the field of humanitarian logistics and 
the relevant literature is scarce. 

In this paper, we develop a two-stage stochastic programming model 
to make integrated decisions on facility location, stocking levels for re
lief supplies, and distribution of those supplies to demand locations 
including lateral transshipment after a disaster, with uncertainty in 
demand. In the first stage (i.e., the preparedness phrase), decision var
iables include the location and size of storage facilities, as well as 
amounts of relief supplies pre-positioned at the facilities. These de
cisions have to be made in the presence of uncertainty about future 
demands. In the second stage (i.e., the response phrase), decision vari
ables involve the distribution of available relief supplies to demand lo
cations by direct shipment or lateral transshipment. These decisions are 
made after the realization that the uncertainty is known, and are con
ditional on the first-stage decisions. The developed model aims to make 
the optimal first-stage decisions, under uncertainty about the conditions 
to be faced in the second stage. 

The major contributions of this paper are summarized as follows:  

• The lateral transshipment option is incorporated into the pre- 
positioning humanitarian logistics. The relief supplies can be trans
ported directly from relief facilities to demand locations (i.e., direct 
shipment), or through other relief facilities (i.e., lateral trans
shipment). The biggest advantage of the lateral transshipment 
network over the one without lateral transshipment is its flexibility 
in replenishing of supplies. This advantage is particularly significant 
when demands for relief supplies are uncertain.  

• We consider two aspects of uncertainty for a disaster: the uncertain 
demand for relief supplies and the uncertainty of the damage degree 
to the supplies pre-positioned at the relief facilities. The stock of 
relief supplies pre-positioned at the relief facilities may be destroyed 
or partially damaged by a disaster, which determines the available 
amount of supplies for disaster relief. In this study, a set of scenarios 
are used to characterize the possible disasters, and the extent of 
damage caused by the disasters to the relief supplies pre-positioned 
at the facilities is taken into account when defining the scenarios.  

• The problem studies multiple types of relief supplies rather than only 
one single type. In practice, various types of relief supplies are 
needed aftermath of a disaster, and these supplies have different 
values and priorities, as well as occupying spaces. Therefore, how to 
coordinate and manage multiple types of relief materials is also a 
research focus in this paper. 
The rest of the paper is organized as follows. Relevant literature is 
reviewed in Section 2. In Section 3, the problem is described and the 
mathematical models are developed for both direct shipment and 
lateral transshipment cases. In Section 4, a case study is presented 
and the sensitivity analysis is conducted. Finally, we conclude our 
work and discuss possible future research directions in Section 5. 

2. Literature review 

The relevant literature can be categorized into two major groups: 
pre-positioning strategy in disaster response and lateral transshipment 
problem. 

2.1. Pre-positioning strategy in disaster response 

Pre-positioning of relief supplies is an effective strategy to help relief 
agencies improve their capacity of preparedness and emergency 
response to various natural disasters. The literature on the pre- 
positioning of relief supplies is relatively rich. For example, Rawls and 
Turnquist [7] was the first to present a two-stage stochastic mixed 
integer programming model in determining relief facility locations and 
quantities of various types of relief supplies to be pre-positioned at the 
relief facilities while considering the uncertainty about disasters and the 
availability of the transportation network. Duran et al. [8] evaluated the 
effect that pre-positioning relief items would have on the average 
relief-aid emergency response time for CARE International. Galindo and 
Batta [9] developed a model to investigate the pre-positioning of sup
plies in preparation for a hurricane under potential destruction of 
pre-positioned supplies. Rezaei-Malek et al. [10] developed an inte
grated model for designing a robust disaster relief logistics network with 
perishable commodities. Chen et al. [11] developed a two-stage delivery 
process model to characterize relief materials’ delivery after a disaster, 
in which storage materials are delivered in the first stage and all back
logged demands are satisfied in the second stage. Ni et al. [12] proposed 
a min-max robust model to simultaneously optimize the decisions of 
facility location, emergency inventory pre-positioning, and relief de
livery operations within a single-commodity disaster relief network. Hu 
and Dong [13] presented a two-stage stochastic programming model to 
address the joint decision-making of pre-positioning of relief supplies 
and supplier selection under disruption risks in humanitarian relief. 
More work related to the pre-positioning of relief supplies can refer to 
the review paper by Sabbaghtorkan et al. [14]. 

Pre-positioning problems usually involve decision-making for both 
preparedness and response phrases of disaster management. To be more 
specific, these decisions include determining the level of preparedness 
(e.g. location and inventory level of relief supplies) in the pre-disaster 
phase, and then distribution of relief supplies to affected community 
in the post-disaster phase [15,16]. Thus, two-stage stochastic pro
gramming is one of the most commonly-used methodology, which is 
powerful to handle uncertainty by using probabilistic scenarios to 
represent disasters and their consequences. 

2.2. Lateral transshipment 

Lateral transshipment has been widely studied in commercial logis
tics. Most of the commercial lateral transshipment research is related to 
the low-demand and high-value commodities (e.g., spare parts). Wong 
et al. [17] developed a multi-item, continuous review model of 
two-location inventory systems for repairable spare parts. Olsson [18] 
investigated the application of lateral transshipment in a single-echelon 
continuous review inventory system for spare parts with two parallel 
locations. Meissner and Senicheva [19] developed an approximate dy
namic programming model to examine multi-location inventory systems 
under periodic review with multiple opportunities for lateral trans
shipment within one order cycle. Avci [20] presented a mean-CVaR 
approach to investigate the effects of lateral transshipment and expe
dited shipping on supply chain performance in a retail system with 
multiple distribution centers and multiple retailers. Wijk et al. [21] 
investigated the optimal lateral transshipment policies for a two location 
inventory problem with multiple demand classes. 

Different from commercial logistics, humanitarian logistics mainly 
involve a surge of demand for relief supplies with low value, such as 
bottled water, tents, food etc. There has been few literature on lateral 
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transshipment in humanitarian logistics. The practice of lateral trans
shipment in humanitarian logistics can be sourced from Lodree et al. 
[22], where supplies were transshipped among retailers to satisfy the 
unfulfilled demands. Later on, Rottkemper et al. [23] developed a 
transshipment model for distribution and inventory relocation under 
uncertainty in humanitarian operations. Caunhye et al. [24] developed a 
location-routing model with recourse for integrated preparedness and 
response planning under uncertainty, and transshipment was incorpo
rated into the model. Baskaya et al. [25] developed three mathematical 
models (i.e., direct shipment model, lateral transshipment model and 
maritime lateral transshipment model) to investigate the inclusion of 
lateral transshipment opportunities into the humanitarian relief chain. 
Coskun et al. [26] developed a mathematical model that takes cooper
ation between agencies into consideration to characterize 
stock-prepositioning decisions of relief agencies. 

2.3. Research distinction 

As discussed above, the two-stage stochastic programming approach 
has been proposed to address both preparedness and response decisions. 
However, most of these decisions do not consider the lateral trans
shipment option. Moreover, the lateral transshipment is usually dis
cussed in the commercial logistics and there is rare literature on the 
inclusion of lateral transshipment into the humanitarian logistics. 
Furthermore, the limited literature on the lateral transshipment in hu
manitarian logistics didn’t consider the diversity of relief supplies as 
well as the destructive effect of natural disasters on the relief supplies 
pre-positioned at the relief facilities. To fill these research gaps, we 
develop a two-stage stochastic programming model to incorporates the 
lateral transshipment option into the humanitarian logistics. The relief 
supplies can be transported directly from relief facilities to demand lo
cations (i.e., direct shipment), or through other relief facilities (i.e., 
lateral transshipment). Our model considers the uncertain demand for 
relief supplies and the destructive effect of natural disasters on the relief 
supplies pre-positioned at the relief facilities. Furthermore, the diversity 
of relief supplies is also considered in our study. 

3. Modeling 

3.1. Problem description 

We consider a humanitarian logistics system consisting of two ech
elons, namely, storage facilities and demand points, as shown in Fig. 1. 
We assume that storage facilities are willing to share sufficient and 
reliable information about their current inventories with other storage 
facilities. At the planning stage, the demand for relief supplies at a 
certain location is uncertain, since it is not yet known whether, or where 
a disaster will occur. The uncertainty can be presented by a set of 
discrete scenarios, which can be defined using the location and the scale 
of a disaster, as well as the demand for each type of relief supply [7,13]. 

To react to the possible natural disasters as soon as possible, a certain 
amount of relief supplies should be pre-positioned at storage facilities. A 
fixed cost will be incurred if a storage facility is made available. 
Meanwhile, the quantity of the relief supplies pre-positioned must not 

exceed the capacity of the storage facilities. In addition, part or all of the 
relief supplies pre-positioned at a given storage facility may be 
destroyed by the disaster, which is affected by the scale and the location 
of disasters. The degree of damage can be represented by a parameter, 
called survival rate, which is also a part of the scenario definitions. 

After a disaster occurs, the survived stocks of the relief supplies in the 
storage facilities are distributed across a transportation network to meet 
demands in the affected community. There are two types of material 
shipments: direct shipment and lateral transshipment, as shown in 
Fig. 1. Direct shipment is defined as the situations where relief supplies 
are transported from storage facilities to demand nodes. Each demand 
node is assigned to only one storage facility and the stocks on hand are 
used to satisfy the assigned demands first. If there is an excess inventory, 
the holding cost will be incurred. On the other hand, if the demand for a 
particular relief commodity cannot be satisfied, a penalty cost for the 
shortage of this commodity will be incurred. In addition, lateral trans
shipment between storage facilities is also possible. If a storage facility 
cannot satisfy the assigned demand using its own stock on hand, it may 
‘‘borrow’’ the excess stock from other storage facilities, which would 
incur a lateral transshipment cost. For each storage facility, it is allowed 
to use at most one other facility for lateral transshipment. The decision- 
makers need to balance the out-of-stock penalty cost, holding cost and 
the lateral transshipment cost. 

This study aims to identify an optimal strategy that combines de
cisions on storage facility locations, stocking levels for relief supplies, 
and distribution of those relief supplies to multiple demand points after 
a disaster, with uncertainty in demand and usable pre-positioned stocks 
of relief supplies. 

3.2. Direct shipment model 

To model the problem described above, a direct shipment model (P0) 
without considering lateral transshipment should be developed first. 
The direct shipment problem can be formulated as a two-stage stochastic 
mixed integer programming model. In the first stage, the decision var
iables include the location and size of storage facilities, as well as 
amounts of relief supplies pre-positioned at the facilities. These de
cisions have to be made in the presence of uncertainty about future 
demands. In the second stage, the decision variables involve the distri
bution of available relief supplies in response to specific scenario di
sasters. These decisions are made after the realization that the 
uncertainty is known, and are conditional on the first-stage decisions. 
The notations for the direct shipment model are presented as follows.  

Sets:  
I Set of candidate locations for relief storage facility, indexed by i; 
J Set of demand locations, indexed by j; 
K Set of types of relief commodities, indexed by k; 
L Set of size categories of relief storage facilities, indexed by l; 
S Set of possible disaster scenarios, indexed by s. 
Parameters: 
Qks

j  Demand for commodity k at location j in scenario s; 

Ps  Occurrence probability of scenario s; 
Dij  Distance between location i and location j; 
R Maximum distance that a relief commodity can travel; 
Θl  Storage capacity of a relief facility of category l; 
θk  Unit storage space requirement for commodity k; 
FCil  Unit fixed cost incurred by opening a relief facility of size category l in 

location i; 
ACk  Unit procurement cost for commodity k; 
TCk

s  Unit transport cost for commodity k per kilometer in scenario s; 

PCk
s  Unit penalty cost for the shortage of commodity k in scenario s; 

HCk
s  Unit holding cost for surplus of commodity k in scenario s; 

LCk
s  Unit operational cost to process the lateral transshipment for commodity k in 

scenario s; 
ρks

i  Proportion of stocked relief commodity k at location i remaining useable after 
a disaster in scenario s; 

M  A big enough positive number. 
First-Stage Decision Variables: 

(continued on next page) 

Storage
Facility 1

Demand
Point 1

Storage
Facility 2

Demand
Point 5

Demand
Point 4

Demand
Point 2

Lateral Transshipment

Direct
Shipment

Demand
Point 3

Direct
Shipment

Fig. 1. Relief items flow in the humanitarian logistics system.  
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(continued ) 

yil  Binary decision variable which indicates whether a relief facility of capacity 
category l is built at location i (value 1) or not (value 0); 

qk
i  Quantity of relief commodity k pre-positioned at location i; 

Second-Stage Decision Variables: 
xks

ij  Quantity of commodity k transported from relief facility i to demand location 
j in scenario s; 

zs
ij  Binary decision variable which indicates whether demand location j is 

assigned to relief facility i in scenario s (value 1) or not (value 0); 
Auxiliary Decision Variables: 
uks

j  Unsatisfied demand of commodity k at demand location j in scenario s; 

vks
i  Surplus quantity of commodity k at facility location i in scenario s.  

The complete direct shipment model (P0) is formulated as below.   

Subject to: 
∑

i∈I
xks

ij = Qks
j − uks

j ∀j ∈ J, k ∈ K, s ∈ S (2)  

∑

j∈J
xks

ij + vks
i = ρks

i ⋅qk
i ∀i ∈ I, k ∈ K, s ∈ S (3)  

Dij ⋅ zs
ij ≤ R ∀i ∈ I, j ∈ J, s ∈ S (4)  

∑

k∈K
θk ⋅ qk

i ≤
∑

l∈L
Θl⋅yil ∀i ∈ I (5)  

∑

l∈L
yil ≤ 1 ∀i ∈ I (6)  

∑

i∈I
zs

ij = 1 ∀s ∈ S, j ∈ J (7)  

∑

j∈J
zs

ij ≤
∑

l∈L
M ⋅yil ∀i ∈ I, s ∈ S (8)  

xks
ij ≤ M⋅zs

ij ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (9)  

xks
ij , uks

i , vks
i , qk

i ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K, s ∈ S (10)  

yil, zs
ij ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L, s ∈ S (11) 

The objective function (1) minimizes the expected costs over all 
scenarios resulting from the selection of the pre-positioning locations 
and facility sizes, the commodity procurement and stocking decisions, 
the shipments of the supplies to the demand points, unmet demand 
penalties and holding costs for unused material. Constraints (2) and (3) 
define the flow conservations in the network at each demand location 
and relief facility, for every commodity and every scenario. These two 
conservations of flow indirectly define the unmet demand and the un
used stocks, respectively. Constraint (4) limits the travel distance of 
relief items. Due to the emergency nature of disaster relief, the relief 
supplies usually need to be delivered to demand points as soon as 
possible. The requirement for the time spent on the road limits the 
maximum travel distance. Constraint (5) makes sure that stocked com
modities are assigned to opened facilities and that the space taken by 
these resources does not exceed the facility capacity. Constraint (6) 
limits the number of open facilities at node i to at most one. Constraint 

(7) guarantees that each demand location j is assigned to only one relief 
facility. Constraint (8) ensures that a demand location only can be 
assigned to a relief facility that is opened. Constraint (9) ensures that 
relief commodities cannot be sent from a relief facility to a demand 
location unless that demand location is assigned to that relief facility. 
Constraints (10) and (11) define restrictions on decision variables. 

3.3. Model considering lateral transshipment 

When the lateral transshipment option is considered, the model can 
be developed on the basis of the direct shipment model (P0). A new 
index i’ under the set I is introduced to denote the relief facilities used as 
lateral transshipment source. In addition to the parameters and decision 
variables used in the direct shipment model, a new parameter LCk

s is 

used to denote the unit operational cost to process the lateral trans
shipment for commodity k in scenario s. The additional decision vari
ables are defined as follows: 

xks
ii’j: Quantity of commodity k transported from relief facility i to 

demand location j through facility i’ in scenario s; 
f s
ii’j: Binary decision variable which indicates whether the supplies 

are transported from facility i to demand location j through lateral 
transshipment node i’ in scenario s (value 1) or not (value 0). 

Then the complete lateral transshipment model (P1) can be devel
oped as below. 

(P1) minC’=
∑

i∈I

∑

l∈L
FCilyil +

∑

k∈K

∑

i∈I
ACkqk

i +
∑

s∈S
Ps

{
∑

i∈I

∑

j∈J

∑

k∈K
TCk

s Dijxks
ij +

∑

i,i’∈I:i’∕=i

∑

j∈J

∑

k∈K

[
TCk

s

(
Dii’ +Di’j

)
+LCk

s

]
xks

ii’j +
∑

k∈K

∑

j∈J
PCk

s uks
j +

∑

k∈K

∑

i∈I
HCk

s vks
j

}

(12) 

Subject to: 
Constraints (4)–(11) 

∑

i∈I
xks

ij +
∑

i,i’∈I:i’∕=i

xks
ii’j = Qks

j − uks
j ∀j ∈ J, k ∈ K, s ∈ S (13)  

∑

j∈J
xks

ij +
∑

j∈J

∑

i’∈I\{i}

xks
ii’j + vks

i = ρks
i ⋅qk

i ∀i ∈ I, k ∈ K, s ∈ S (14)  

(
Dii’ + Di’j

)
⋅ f s

ii’j ≤ R ∀i, i’ ∈ I, i ∕= i’, j ∈ J, s ∈ S (15)  

xks
ii’j ≤ M⋅f s

ii’j ∀i, i’ ∈ I, i ∕= i’, j ∈ J, k ∈ K, s ∈ S (16)  

∑

j∈J

∑

i’∈I\{i}

f s
ii’j ≤

∑

l∈L
M⋅yil ∀i ∈ I, s ∈ S (17)  

∑

j∈J

∑

i∈I\{i’}

f s
ii’j ≤

∑

l∈L
M⋅yi’l ∀i’ ∈ I, s ∈ S (18)  

∑

i∈I\{i’}

f s
ii’j ≤ zs

i’j ∀i’ ∈ I, j ∈ J, s ∈ S (19)  

xks
ii’j ≥ 0 ∀i, i’ ∈ I, i ∕= i’, j ∈ J, k ∈ K, s ∈ S (20)  

f s
ii’j ∈ {0, 1} ∀i, i’ ∈ I, i ∕= i’, j ∈ J, s ∈ S (21) 

The objective function (12) again minimizes the expected costs over 

(P0) ​ min C =
∑

i∈I

∑

l∈L
FCilyil +

∑

k∈K

∑

i∈I
ACkqk

i +
∑

s∈S

∑

i∈I

∑

j∈J

∑

k∈K
Ps

(
TCk

s Dijxks
ij + PCk

s uks
j + HCk

s vks
i

)
(1)   
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all scenarios resulting from the selection of the pre-positioning locations 
and facility sizes, the commodity procurement and stocking decisions, 
the shipments of the supplies to the demand points, additional cost 
incurred by lateral transshipment, unmet demand penalties and holding 
costs for unused material. Constraints (13) and (14) define the flow 
conservations in the network at each demand location and relief facility, 
for every commodity and every scenario. These two conservations of 
flow indirectly define the unmet demand and the unused stocks, 
respectively. Constraints (4) and (15) limit the travel distance of relief 
items. Constraint (16) ensures that relief item cannot be sent through a 
relief facility unless lateral transhipment is allowed. Constraints (17)– 
(18) allow only the open relief facility pairs to engage in lateral tran
shipment. Constraint (19) gives the priority order between the direct 
shipment and lateral transshipment. When zs

i’j = 1, the demand at node j 
will be met first by the relief supplies pre-positioned at facility node i’; if 
the stock at facility node i’ is insufficient for the demand at node j, it will 
‘‘borrow’’ the excess stock from facility node i, i.e. f s

ii’j = 1. Constraints 
(20)–(21) define restrictions on decision variables. 

4. Case study 

In this section, a case study based on real-world hurricanes in the 
Gulf of Mexico region of the southeastern United States is used to 
illustrate the two-stage stochastic programming model as well as pro
vide managerial implications. 

4.1. Data preparation 

The case study is designed based on the research network from the 
work of Rawls and Turnquist [7], and 15 nodes were selected as demand 
locations as well as candidate locations for storage facilities, as shown in 
Fig. 2. Table 1 lists the index and the corresponding location name of 
these nodes. Therefore, sets I and J both contain 15 locations. Distances 
between each pair of nodes were obtained using Google Distance Matrix 
API. For the sake of simplicity, the distance between a facility to the 
demand location at the same node is assumed to be 0. The maximum 
distance for relief commodities to travel is assumed to be 500 miles, 
which ensures that nearly half of the demand points can be covered by 
one storage facility, no matter where the facility is located. 

Three emergency commodities are considered here: drinking water, 
food, and medicine. The unit of drinking water is assumed to be 1000 
gallons. Food is assumed to be in the form of meals-ready-to-eat (MREs) 
and its unit is 1000 meals. Medicine is designed to be in the form of first- 

aid kits. The values of storage volume occupied, purchase price and 
transportation costs for commodities in Table 2, and categories, fixed 
costs and storage capacity of facilities in Table 3 are from the work of 
Rawls and Turnquist [7]. Moreover, the unit transshipment cost for each 
commodity is assumed to be 1% of the purchase price, the unit holding 
costs are assumed to be 25% of the purchase price, and the unit penalty 
costs are assumed to be 10 times the purchase price. For the sake of 
simplicity, we assume that some parameters are scenario independent, 
including unit direct shipment cost, unit lateral transshipment cost, unit 
holding cost, and unit penalty cost for not satisfying demand for sup
plies. The values of these parameters are designed to be relatively 
realistic, but should only be regarded as the illustrative purpose. 

According to the statistics from the Atlantic Oceanographic and 

Fig. 2. The network for the case study.  

Table 1 
Node indices and the corresponding location names.  

Index Location Index Location Index Location 

1 Brownsville, TX 6 Shreveport, LA 11 Tallahassee, 
FL 

2 Corpus Christi, 
TX 

7 Beaumont, TX 12 Orlando, FL 

3 San Antonio, TX 8 Baton Rouge, 
LA 

13 Tampa, FL 

4 Houston, TX 9 New Orleans, 
LA 

14 Miami, FL 

5 Jackson, MS 10 Mobile, AL 15 Key West, FL  

Table 2 
Unit storage volume occupied, purchase price and transportation cost for each 
commodity.  

Commodity θ(ft3) AC($)  TC ($/mile)  

Water (1000 gals) 144.6 647.7 0.3 
Food (1000 meals) 83.33 5420 0.04 
Medicine 1.16 140 5.80E-04  

Table 3 
Categories, fixed costs, and storage capacity of facilities.  

Size category Descriptor Fixed cost ($) Storage capacity (ft3) 

1 Small 19,600 36,400 
2 Medium 188,400 408,200 
3 Large 300,000 780,000  
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Meteorological Laboratory (AOML), a total of 281 hurricanes struck the 
Gulf of Mexico region between 1851 and 2018, and these hurricanes can 
be classified into five categories based on the Saffir-Simpson Scale. The 
numbers of hurricanes for categories 1 to 5 are 118, 77, 62, 20 and 4, 
respectively. Thus, the frequencies of hurricanes for categories 1 to 5 can 
be estimated to be 0.4199, 0.274, 0.2206, 0.0712 and 0.0142, respec
tively. Based on historical records, three hurricanes for each category 
are used to construct scenarios to represent potential demands and 
damage in the network. Therefore, the occurrence probability of each 
scenario can be estimated by dividing the frequency of the corre
sponding category by 3. Table 4 summarizes the scenario definitions, 
which specify the network damage and the total demands for water, 
food and medicine. The detailed demands data under each scenario can 
be found in Mendeley data. In these scenarios, the relief commodities 
stocked at the landfall nodes are assumed to be damaged, and the 
damage degree is proportional to the Saffir-Simpson Hurricane Scale. 
Specifically, for a hurricane scale of category 1, 20% of the relief sup
plies pre-positioned at the landfall node are damaged; when the hurri
cane scale increases by one level, the damage degree would increase by 
20%; when the hurricane scale reaches category 5, all relief supplies pre- 
positioned at the landfall nodes would be destroyed. 

4.2. Baseline results 

The established lateral transshipment model (P1) was programmed 
in AMPL and solved using the commercial solver CPLEX 12.4. All nu
merical experiments were run on a laptop with Intel i7-8550U CPU and 
8 GB of RAM under a Windows 10 environment. For comparison pur
poses, the results of the lateral transshipment problem (P1) will be used 
as baseline results when evaluating the results of direct shipment model 
(P0), where lateral transshipment is not allowed. 

For the lateral transshipment problem (P1), there are 208,155 con
straints and 203,940 variables (including 6150 binary variables), which 
was solved in about 156 s of CPU time. The results of first-stage decision 
variables in the lateral transshipment problem are summarized in 
Table 5. A total of five storage facilities are opened, distributed widely 
across the network, which ensures that each demand point can be 
covered geographically by at least one facility within the maximum 
travel distance. Four of the five facilities store all three commodity 
types, and one facility in Mobile only stores food and medicine. More
over, the selection of storage locations needs to balance the demand for 
relief supplies and the damage degree by hurricanes. For instance, New 
Orleans and Miami are not selected as the facility locations although the 
demands in both cities are much higher than those selected five loca
tions since both of the two cities are very prone to hurricanes. In addi
tion, the space utilization rate of facilities in east region is relatively 

higher than those in west region, especially in Orlando, whose space 
utilization rate reaches up to 100%. The very high space utilization in 
Orlando is due to Florida is quite hurricane-prone area. Even if we 
preposition much more relief supplies there, most of them could be 
damaged. 

Regarding the decisions made in the second stage, the relief supplies 
are distributed by either direct shipment or lateral transshipment. In 

Table 4 
Scenario definitions.  

Scenario Hurricane Category Landfall node Occurrence probability Water 
demand 
(1000 gals)  

Food 
demand 
(1000 meals)  

Medicine 
demand 
(units)  

1 1 1 4 0.14 310 465 443 
2 2 1 9 0.14 1275 138 306 
3 3 1 9 0.14 341 565 537 
4 4 2 9 0.091 771 1418 1350 
5 5 2 4 0.091 651 1030 980 
6 6 2 9 0.091 1112 1983 1887 
7 7 3 14 0.074 7497 1771 1685 
8 8 3 13 0.074 8772 1909 1991 
9 9 3 13 0.074 7838 2336 2222 
10 10 4 14 0.024 8268 3189 3035 
11 11 4 14 0.024 2234 1474 10529 
12 12 4 9 0.024 3005 2892 11879 
13 13 5 10 0.005 17917 627 4479 
14 14 5 10 0.005 18227 1092 4922 
15 15 5 11 0.005 18258 1192 5016  

Table 5 
Results of fist-stage decision variables in baseline version.  

Node City Facility 
size 

Water 
(1000 
gals) 

Food 
(1000 
meals) 

Medicine Space 
utilization 
rate 

4 Houston Small 84 110 104 58.88% 
8 Baton 

Rouge 
Medium 1078 386 513 46.21% 

10 Mobile Small 0 209 104 48.18% 
11 Tallahassee Medium 1455 1281 1314 78.07% 
12 Orlando Large 5222 297 187 100%   

Total = 7839 2283 2222   

Table 6 
The lateral transshipment activities in the baseline solution.  

Scenario Lateral transshipment activities  

Water Food Medicine 

1  (8,4,2,28), (8,4,3,40)  
2 (4,8,9,14)   
3  (10,8,5,1)  
5  (8,4,3,62), (10,8,4,13), 

(10,8,5,1) 
(8,4,3,60) 

6  (11,10,9,1281) (11,10,9,1314) 
7 (11,12,14,636) (11,12,13,180), 

(11,12,14,907) 
(11,12,13,266), 
(11,12,14,864) 

8 (11,12,13,635) (11,12,13,180), 
(11,12,14,907) 

(11,12,13,266), 
(11,12,14,864) 

9 (11,12,13,636) (11,12,13,180), 
(11,12,14,907) 

(11,12,13,449), 
(11,12,14,681) 

10 (4,8,9,8), 
(11,12,13,407) 

(4,8,9,74), 
(11,12,13,175), 
(11,12,14,702) 

(4,8,9,70), 
(11,12,13,449), 
(11,12,14,386) 

11  (4,8,9,3), 
(11,12,14,711) 

(4,8,9,104), 
(11,12,14,1314) 

12 (11,10,9,1133) (11,10,9,1179), 
(11,12,14,102) 

(11,10,9,1127) 

15 (4,8,9,117) (4,8,9,107) (4,8,9,92) 

* The four numbers in parentheses represent the original facility node, the 
transshipment facility node, demand node and quantity of commodities engaged 
in the lateral transshipment, respectively. 
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general, the demand points are usually serviced by the nearest storage 
facilities. A total of 44 lateral transshipment activities occurred in 12 
scenarios, as summarized in Table 6, and there is no lateral activity in 
scenarios #4, #13 and #14. In half of those 12 scenarios, all three 
commodity types are transshipped, and in the remaining scenarios, only 
one or two commodity types are transshipped. Moreover, there are only 
eight assignment relationships in the 44 lateral activities, i.e., (4, 8, 9), 
(8, 4,2), (8, 4, 3), (10, 8, 4), (10, 8, 5), (11, 10, 9), (11, 12, 13) and (11, 
12, 14). The three numbers in parentheses represent the original facility 
node, the transshipment facility node, and demand node in the lateral 
transshipment activities, respectively. It can be found that the facility- 
demand point assignments in the lateral transshipment activities are 
almost unchanged for different scenarios and commodities. For instance, 
all three commodities are transshipped from facility #4 to demand node 
#9 through facility #8 in both scenarios #10 and #15. 

The overall objective function value for this solution is $25, 667, 918, 
and the composition of the total cost is shown in Fig. 3. The largest part 
in the total cost is the commodity acquisition cost, which accounts for 
approximately 65%. Note that the sum of the penalty cost for unsatisfied 
demand and the holding cost for the surplus of commodities accounts for 
a quarter of the total cost, which is a direct result of the distribution of 
demand across scenarios. Specifically, a hurricane of category 1 has the 
highest occurrence probability, but the resulting demand for relief 
supplies is not very large. In contrast, the demand for relief supplies 
caused by a hurricane of category 5 is very large, but its occurrence 
probability is very low. The pre-positioned relief supplies are not suffi
cient to satisfy all the demand in the worst-case scenarios due to the low 
occurrence probability. The out-of-stock penalty cost is directly pro
portional to the gap between the actual demand and the pre-positioned 
stock level. If the pre-positioned stock can satisfy the highest demand, 
the out-of-stock penalty cost will be reduced to zero. However, in that 
situation, due to the very low occurrence probability of high demand, a 
high holding cost will be incurred with a high probability and the 
acquisition cost will increase accordingly. The developed model can find 
an optimal trade-off between the out-of-stock penalty cost and the 
holding cost. 

4.3. Comparison with direct shipment model 

To explore the effect of lateral transshipment on the solution, the 
direct shipment problem (P0) was solved in the same computing envi
ronment as the lateral transshipment problem (P1), and the parameters 
were assigned the same values as the corresponding values in Section 
4.1. The direct shipment problem contains 15,330 constraints and 
14,940 variables (including 1680 binary variables), which was solved in 

about 19 s of CPU time. Table 7 presents the results of first-stage decision 
variables in the direct shipment problem. 

The solution to the direct shipment problem has a total of four open 
facilities, and two of the facility locations are the same as in the lateral 
transshipment problem, but the mix of supplies pre-positioned is 
different. It is worth noting that the new opened facility #2 in Corpus 
Christi only stocks 5 units of water, 7 units of food and 7 units of 
medicine, and its space utilization rate is only 3.61%. The extremely low 
utilization rate of facility #2 shows that setting up a facility here is not a 
wise choice, but in order to meet the demands of the surrounding areas, 
a relief facility has to be set up here. Furthermore, this also reveals that 
the lateral transshipment option can make the pre-positioning and dis
tribution of relief supplies more flexible. 

The optimal objective function value for the direct shipment problem 
(P0) is $28, 860, 246, which is an increase of $3, 192, 329 compared with 
the optimal total cost of the lateral transshipment case, indicating that 
the lateral transshipment plan is more cost-effective than the direct 
shipment plan. Table 8 compares each composition of the total costs for 
the direct shipment problem (P0) and the lateral transshipment problem 
(P1). Compared with the direct shipment problem, when the lateral 
transshipment is included, there is a decrease in the commodity acqui
sition cost, direct shipment cost and the hold cost for the surplus of relief 
supplies, which is partially offset by an increase in the facility con
struction cost, the lateral transshipment cost and the out-of-stock pen
alty cost. The greatest reduction is in the commodity acquisition cost, 
which decreases by $3,841,800, indicating that fewer relief supplies are 
pre-positioned at storage facilities. Meanwhile, the decrease in the pre- 
positioned relief supplies leads to an increase in the penalty cost for 
unmet demand, and a decrease in the holding cost. 

4.4. Sensitivity analysis 

In this section, we conduct sensitivity analysis to study how the out- 
of-stock penalty cost and the maximum travel distance will affect the 
decisions on the pre-positioning and distribution of relief supplies. All 
the cases will be compared with the baseline results presented in Section 
4.2. 

4.4.1. The out-of-stock penalty cost 
In the baseline case in Section 4.2, for each type of relief commod

ities, the out-of-stock penalty cost is assumed to be ten times its pro
curement price, which indicates that these three types of relief 
commodities are equally important. In practice, the importance of 
different goods may not be the same in most instances. Generally 
speaking, the drinking water and food are essential to daily life and 
should be given more attention. If there are injured people, medicines 
are most needed and should be put more emphasis. In this section, three 
instances as shown in Table 9 are designed to explore the impact of out- 
of-stock penalty cost on the optimal solution. 

These three cases are solved in the same computing environment, 
and the results are summarized in Table 10, together with the baseline 
results for comparison. Note that the quantity of medicine pre- 
positioned in case C is more than five times that of the baseline case, 
while the amounts of water and food stay almost unchanged. The reason 

Facility 
construction cost

2.60%

Commodity 
acquisition cost

64.49%
Direct shipment 

cost
5.02%

Transshipment 
cost
2.54%

Out-of-stock 
cost

16.78%

Surplus 
cost
8.57%

Fig. 3. The composition of the total cost for the baseline solution.  

Table 7 
Results of fist-stage decision variables in the direct shipment problem.  

Node City Facility 
size 

Water 
(1000 
gals) 

Food 
(1000 
meals) 

Medicine Space 
utilization 
rate 

2 Corpus 
Christi 

Small 5 7 7 3.61% 

7 Beaumont Medium 1162 1388 1419 69.9% 
11 Tallahassee Medium 1997 472 449 80.5% 
12 Orlando Large 4679 1106 1052 98.71%   

Total = 7843 2973 2927   
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behind this phenomenon is that the relief commodity with a higher out- 
of-stock penalty cost is more emergent, and the demand for it should be 
satisfied first. Once such relief supplies are out of stock, a very high 
penalty cost will be incurred. Therefore, it is safe to draw a conclusion 
that the higher the out-of-stock cost of a relief commodity (namely the 
greater importance of this item), would lead to that more such relief 
supplies are pre-positioned. 

Furthermore, compared with the baseline case, one more large-size 
facility is opened in case A, which results an increase in the facility 
construction cost by $92, 000. While one small-size facility is closed in 
case B and case C. These results are attributed to the intrinsic feature of 
relief supplies. As can be seen from the second column of Table 2, water 
is the most space-consuming and medicine is the least space-consuming. 
Therefore, when an approximate amount of increased relief supplies is 
pre-positioned, the occupied space to stock water is much larger than 
medicine. In addition, the total costs of all three cases increase 
dramatically compared with the baseline case, especially in case A. The 
increase in the total cost is mainly attributed to the huge increase in the 
commodity acquisition cost, which indicates more relief supplies are 

pre-positioned. 

4.4.2. The maximum travel distance 
In the baseline case, the maximum travel distance is assumed to be 

500 miles. The time spent on the road is positively related to the distance 
traveled. Due to the emergency of disasters, the relief supplies usually 
need to be delivered to demand points as soon as possible. The 
requirement for the time spent on the road limits the maximum travel 
distance. To explore the impact of the maximum travel distance on the 
solution, several experiments are conducted where the maximum travel 
distances ranging from 100 miles to 900 miles while the other parameter 
values stay the same as in Section 4.1. The results are depicted in Fig. 4. 

From Fig. 4, it is obvious that the commodity acquisition cost and 
out-of-stock penalty cost account for the vast majority of the overall 
costs, regardless of the maximum travel distances. Moreover, it also can 
be found that the overall costs and the number of open facilities decrease 
with the increase in the maximum travel distances. To be more specific, 
when the maximum travel distances range from 100 to 300 miles, the 
overall costs decrease steadily from $49.1 million to $29.8 million; when 
the maximum travel distances range from 300 to 900 miles, the overall 
costs decrease slightly from $29.8 million to $25.5 million. 

To further explore the reasons behind this, we found that when the 
maximum travel distance is short enough, the affected area covered by a 
storage facility is also very small. Thus it needs to build more facilities to 
satisfy the demands as much as possible, otherwise, it will incur more 
penalty cost. Meanwhile, the majority of the opened storage facilities are 
small-sized and the space utilization rate is very low when the maximum 
travel distance is short enough. For instance, when the maximum travel 
distance is 100 miles, the storage facility at node ♯5 only stocks 1 unit of 
water, 1 unit of food and 1 unit of medicine. In the extreme situation 
where the maximum travel distance is less than the distance between 
any two nodes, the storage facility at any node can only meet its own 
demand and cannot provide any relief supply to any other node, and 
there is no lateral transshipment activity in this instance. Thus it needs 
to find an optimal tradeoff between the facility construction cost and the 
out-of-stock penalty cost. With the increase in the maximum travel 
distance, the scope covered by a storage facility also increases and the 
number of open supply facilities decreases accordingly. Meanwhile, 
some small-sized facilities are expanded and more relief supplies are pre- 
positioned, which leads to a decrease in the out-of-stock penalty cost. 
Although the decrease in the out-of-stock penalty cost is partially offset 
by the increase in the commodity acquisition cost, the overall cost still 
decreases. When the maximum travel distance is long enough, the scope 
covered by a storage facility is also very large accordingly. In the 
meanwhile, the travel time will become very long when relief supplies 
travel a long distance. However, the demand for the relief is very urgent 
in reality, and the maximum travel time is limited. Therefore, the overall 
cost stays stable when the maximum travel distance is long enough. 

From the above analysis, we can conclude that the solution with a 
greater value of R is more flexible. When R is small enough, in order to 
satisfy the demand in the affected area, the only strategy is to build a 
large number of storage facilities, which results in a very low space 
utilization rate for many facilities. With the increase in the maximum 
travel distance, a storage facility can serve more demand nodes and the 
decision-makers have more options to cope with the hurricanes. For 
example, those small-size facilities with low space utilization rate can be 

Table 8 
The composition of the overall costs for P0 and P1 (in US dollars $).  

Problem FC AC DC TC PC HC Total cost 

P0  696,400 21,603,400 195,186 0 3,052,380 3,312,880 28,860,246 
P1  716,000 17,761,600 138,114 69,893 4,620,800 2,361,510 25,667,917 
Difference 19,600 −3,841,800 −57,072 69,893 1,568,420 −951,370 −3,192,329 

* FC represents the facility construction cost; AC represents the commodity acquisition cost; DC represents the direct shipment cost; TC represents the lateral 
transshipment cost; PC represents the out-of-stock penalty cost; HC represents the holding cost for the surplus of supplies. 

Table 9 
Case description and setting.  

Name Setting 

Case A PC1 is increased to 100 times AC1, while PC2 and PC3 are kept at 10 times 
AC2 and AC3, respectively;  

Case B PC2 is increased to 100 times AC2, while PC1 and PC3 are kept at 10 times 
AC1 and AC3, respectively;  

Case C PC3 is increased to 100 times AC3, while PC2 and PC3 are kept at 10 times 
AC2 and AC3, respectively.  

* PCk(k = 1, 2, 3) denote the unit penalty cost for the shortage of water, food and 
medicine, respectively; ACk(k = 1, 2, 3) represent the unit procurement cost for 
water, food and medicine, respectively. 

Table 10 
Case results.   

Baseline 
case 

Case A Case B Case C 

Quantity of relief supplies pre-positioned 

Water (1000 gals) 7839 11,534 7842 6479 
Food (1000 meals) 2283 2966 3189 2334 
Medicine 2222 2937 2926 11,870 
Number of facilities 5 4 4 4 
Small-size 2 1 1 1 
Medium-size 2 1 2 2 
Large-size 1 2 1 1 
Total cost ($)  25,667,918 38,092,668 29,441,720 28,797,928 
Construction cost ($)  716,000 808,000 696,400 696,400 
Acquisition cost ($)  17,761,600 23,957,000 22,773,300 18,511,300 
Direct shipment cost 

($)  
138,114 147,915 104,744 134,237 

Lateral transshipment 
cost ($)  

69,893 74,853 53,006 67,931 

Out-of-stock cost ($)  4,620,800 9,394,810 2,230,010 6,789,820 
Holding cost ($)  2,361,510 3,710,090 3,584,260 2,598,240  
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integrated into large-size facilities. However, it is not wise to endlessly 
increase the value of R due to the emergency nature of disaster relief. As 
can be seen in Fig. 4, when R exceeds 300 miles, there is little change in 
the overall cost. In practice, the decision-makers need to seek a balance 
between the time limit for humanitarian relief and the overall cost. 

5. Conclusions 

In this study, lateral transshipment is included in humanitarian relief 
logistics. A two-stage stochastic programming model is formulated to 
address the joint decision-making of pre-positioning and distribution of 
relief supplies under uncertain environment. These uncertainties 
include the occurrence probability, landfall nodes, the damage degree of 
hurricanes, as well as the corresponding demand for relief supplies, and 
all these uncertainties are defined in a set of scenarios. The developed 
model minimizes the overall cost (including the facility construction 
cost, commodity acquisition cost, transportation cost, holding cost and 
out-of-stock penalty cost) and considers the uncertainties of disasters. 

A case study addressing hurricane threats in the Gulf of Mexico re
gion of the southeastern United States is conducted to illustrate the 
developed two-stage stochastic programming model. By comparison 
with direct shipment solution, the lateral transshipment solution is 
demonstrated to be more cost-effective and flexible. The sensitivity 
analysis of out-of-stock penalty cost and maximum travel distance also 
has provided some managerial insights for relief agencies. First, if a type 
of relief supply is urgently needed, it can be assigned a higher stockout 
penalty cost, which will result in an increase in its pre-stock to guarantee 
timely delivery of this commodity. Second, the solution with greater 
maximum travel distance is more cost-effective and flexible, but it also 
should be subject to the time limit for humanitarian relief. 

There are two major directions for future research. First, more 
practical factors should be taken into account to extend the developed 
model. For instance, the priority of demand points should be considered. 
In practice, the situation in some demand points is more urgent and 
should be served first [27]. Furthermore, the priority of demand points 
may change dynamically with the progress of the rescue work. In 
addition, the assumption that each storage facility is allowed to use at 
most one other facility for lateral transshipment can be relaxed in our 
future work. Second, this study conducts a case study with 15 nodes in 
15 scenarios, and it is efficient to solve those experiments using com
mercial solvers. However, real-world problems are usually more 
complicated and as the scale of the problem grows, it is computationally 
expensive to solve the developed model. Therefore, developing an effi
cient algorithm for large-scale problems will be another major effort in 
our future work, and possible algorithms include 2-step solution, 

L-shaped, progressive hedging and sample approximation algorithm 
[28]. 
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