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This paper focuses on addressing uncertainties in disasters when considering lateral transshipment opportunities
for pre-positioning relief supplies. To deal with uncertain demands the problem is formulated as a two-stage
stochastic programming model, which decides simultaneously on the locations of relief facilities and the allo-
cations of relief supplies to demand nodes. Meanwhile, different damage levels caused by disasters are consid-
ered and reflected by a survival rate of usable stocked relief items. Multiple types of supplies with various

priorities, values and spaces are explored. A real-world case study based on the Gulf Coast region of the United
States is conducted to illustrate the application of the developed model. By comparison with the direct shipment
solution, the lateral transshipment solution is demonstrated to be more cost-effective and flexible. The sensitivity
analysis of out-of-stock penalty cost and maximum travel distance provides managerial insights for relief

agencies.

1. Introduction

The world is frequently affected by natural disasters, which typically
cause catastrophic consequences for humanity. According to the most
recent statistics from the Centre for Research on the Epidemiology of
Disasters (CRED), there were 315 climate-related and geophysical
disaster events recorded in 2018 with 11,804 deaths and $131.7 billion
in damages, and over 68 million people affected across the world [1]. A
recent example is the hurricanes Florence and Michael that successively
occurred in September and October in 2018, which caused more than
120 deaths and $50 billion in economic losses, and the vast eastern
coastal states of the United States from north to south were affected.
These facts reveal the importance of disaster management in mitigating
the negative effects of disasters [2]. Disaster management can be divided
into four phases, namely, mitigation, preparedness, response and re-
covery [3,4]. This research mainly deals with two types of decisions:
storing relief supplies in advance at storage facilities before a disaster
occurs and distribution of these items from storage facilities to affected
communities right after a disaster occurs. Therefore it can be classified
within the preparedness and response phrases.

In the preparedness phase, one of the strategies that are commonly
applied upon the occurrence of a disaster is to pre-position relief
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commodities (e.g., water and food) at strategic locations so that these
supplies are readily available and can be delivered to affected commu-
nities as soon as possible once natural disasters strike [5]. On one hand,
inadequate relief items and/or untimely delivery will cause ineffective
emergency response, and thus resulting in the increase in human
suffering and even loss of life. On the other hand, over-investment in
stock of relief commodities would incur very high inventory costs and
occupy too much public funds. Therefore, it is cost-effective to estimate
the demands for the relief supplies at affected community. However,
because of the unpredictable nature of disasters (e.g., occurrence fre-
quency and location), demand for relief supplies is highly uncertain, and
most of the time it is difficult to make pre-positioning decisions.

The “traditional’’ logistics systems are usually considered to be hi-
erarchical, where commodities are transported from one echelon to the
next, i.e. manufacturers, wholesalers, retailers etc. Due to the uncer-
tainty of demand, the commodities may be in short at some locations
while abundant at other locations. To alleviate the mismatch between an
actual demand and an available stock in strategy locations under the
inability to replenish from a central warehouse, the practice of allowing
horizontal transportation within the same echelon, namely, lateral
transshipment was proposed [6]. Lateral transshipment is mostly applied
in the commercial logistics systems, especially for low-demand,
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high-value items (e.g. spare parts) in emergency orders. As slow-moving
expensive items, spare parts require a quick response to an infrequent
demand. Lateral transshipment allows for an additional source of pro-
curement from a nearby location once a stockout of spare parts occurs.
This leads to cost reduction and service improvement compared to
networks without lateral transshipment.

Considering the nature of emergency and infrequency in the hu-
manitarian logistics, lateral transshipment can also be an appropriate
and efficient alternative to alleviating the suffering of victims within the
shortest possible time. When lateral transshipment is applied in the
humanitarian logistics, a storage facility can obtain the relief supplies
from a nearby facility if it cannot satisfy the immediate need of victims
from its own inventory. This strategy can reduce the burden of pre-
positioning more relief supplies with high inventory cost at the stor-
age facilities or waiting for the next shipment from upper agencies.
However, due to the uncertainty of natural disasters and the non-profit
nature of humanitarian relief, the importance of lateral transshipment
has not been recognized much in the field of humanitarian logistics and
the relevant literature is scarce.

In this paper, we develop a two-stage stochastic programming model
to make integrated decisions on facility location, stocking levels for re-
lief supplies, and distribution of those supplies to demand locations
including lateral transshipment after a disaster, with uncertainty in
demand. In the first stage (i.e., the preparedness phrase), decision var-
iables include the location and size of storage facilities, as well as
amounts of relief supplies pre-positioned at the facilities. These de-
cisions have to be made in the presence of uncertainty about future
demands. In the second stage (i.e., the response phrase), decision vari-
ables involve the distribution of available relief supplies to demand lo-
cations by direct shipment or lateral transshipment. These decisions are
made after the realization that the uncertainty is known, and are con-
ditional on the first-stage decisions. The developed model aims to make
the optimal first-stage decisions, under uncertainty about the conditions
to be faced in the second stage.

The major contributions of this paper are summarized as follows:

e The lateral transshipment option is incorporated into the pre-
positioning humanitarian logistics. The relief supplies can be trans-
ported directly from relief facilities to demand locations (i.e., direct
shipment), or through other relief facilities (i.e., lateral trans-
shipment). The biggest advantage of the lateral transshipment
network over the one without lateral transshipment is its flexibility
in replenishing of supplies. This advantage is particularly significant
when demands for relief supplies are uncertain.

We consider two aspects of uncertainty for a disaster: the uncertain
demand for relief supplies and the uncertainty of the damage degree
to the supplies pre-positioned at the relief facilities. The stock of
relief supplies pre-positioned at the relief facilities may be destroyed
or partially damaged by a disaster, which determines the available
amount of supplies for disaster relief. In this study, a set of scenarios
are used to characterize the possible disasters, and the extent of
damage caused by the disasters to the relief supplies pre-positioned
at the facilities is taken into account when defining the scenarios.
The problem studies multiple types of relief supplies rather than only
one single type. In practice, various types of relief supplies are
needed aftermath of a disaster, and these supplies have different
values and priorities, as well as occupying spaces. Therefore, how to
coordinate and manage multiple types of relief materials is also a
research focus in this paper.

The rest of the paper is organized as follows. Relevant literature is
reviewed in Section 2. In Section 3, the problem is described and the
mathematical models are developed for both direct shipment and
lateral transshipment cases. In Section 4, a case study is presented
and the sensitivity analysis is conducted. Finally, we conclude our
work and discuss possible future research directions in Section 5.
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2. Literature review

The relevant literature can be categorized into two major groups:
pre-positioning strategy in disaster response and lateral transshipment
problem.

2.1. Pre-positioning strategy in disaster response

Pre-positioning of relief supplies is an effective strategy to help relief
agencies improve their capacity of preparedness and emergency
response to various natural disasters. The literature on the pre-
positioning of relief supplies is relatively rich. For example, Rawls and
Turnquist [7] was the first to present a two-stage stochastic mixed
integer programming model in determining relief facility locations and
quantities of various types of relief supplies to be pre-positioned at the
relief facilities while considering the uncertainty about disasters and the
availability of the transportation network. Duran et al. [8] evaluated the
effect that pre-positioning relief items would have on the average
relief-aid emergency response time for CARE International. Galindo and
Batta [9] developed a model to investigate the pre-positioning of sup-
plies in preparation for a hurricane under potential destruction of
pre-positioned supplies. Rezaei-Malek et al. [10] developed an inte-
grated model for designing a robust disaster relief logistics network with
perishable commodities. Chen et al. [11] developed a two-stage delivery
process model to characterize relief materials’ delivery after a disaster,
in which storage materials are delivered in the first stage and all back-
logged demands are satisfied in the second stage. Ni et al. [12] proposed
a min-max robust model to simultaneously optimize the decisions of
facility location, emergency inventory pre-positioning, and relief de-
livery operations within a single-commodity disaster relief network. Hu
and Dong [13] presented a two-stage stochastic programming model to
address the joint decision-making of pre-positioning of relief supplies
and supplier selection under disruption risks in humanitarian relief.
More work related to the pre-positioning of relief supplies can refer to
the review paper by Sabbaghtorkan et al. [14].

Pre-positioning problems usually involve decision-making for both
preparedness and response phrases of disaster management. To be more
specific, these decisions include determining the level of preparedness
(e.g. location and inventory level of relief supplies) in the pre-disaster
phase, and then distribution of relief supplies to affected community
in the post-disaster phase [15,16]. Thus, two-stage stochastic pro-
gramming is one of the most commonly-used methodology, which is
powerful to handle uncertainty by using probabilistic scenarios to
represent disasters and their consequences.

2.2. Lateral transshipment

Lateral transshipment has been widely studied in commercial logis-
tics. Most of the commercial lateral transshipment research is related to
the low-demand and high-value commodities (e.g., spare parts). Wong
et al. [17] developed a multi-item, continuous review model of
two-location inventory systems for repairable spare parts. Olsson [18]
investigated the application of lateral transshipment in a single-echelon
continuous review inventory system for spare parts with two parallel
locations. Meissner and Senicheva [19] developed an approximate dy-
namic programming model to examine multi-location inventory systems
under periodic review with multiple opportunities for lateral trans-
shipment within one order cycle. Avci [20] presented a mean-CVaR
approach to investigate the effects of lateral transshipment and expe-
dited shipping on supply chain performance in a retail system with
multiple distribution centers and multiple retailers. Wijk et al. [21]
investigated the optimal lateral transshipment policies for a two location
inventory problem with multiple demand classes.

Different from commercial logistics, humanitarian logistics mainly
involve a surge of demand for relief supplies with low value, such as
bottled water, tents, food etc. There has been few literature on lateral
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transshipment in humanitarian logistics. The practice of lateral trans-
shipment in humanitarian logistics can be sourced from Lodree et al.
[22], where supplies were transshipped among retailers to satisfy the
unfulfilled demands. Later on, Rottkemper et al. [23] developed a
transshipment model for distribution and inventory relocation under
uncertainty in humanitarian operations. Caunhye et al. [24] developed a
location-routing model with recourse for integrated preparedness and
response planning under uncertainty, and transshipment was incorpo-
rated into the model. Baskaya et al. [25] developed three mathematical
models (i.e., direct shipment model, lateral transshipment model and
maritime lateral transshipment model) to investigate the inclusion of
lateral transshipment opportunities into the humanitarian relief chain.
Coskun et al. [26] developed a mathematical model that takes cooper-
ation between agencies into consideration to characterize
stock-prepositioning decisions of relief agencies.

2.3. Research distinction

As discussed above, the two-stage stochastic programming approach
has been proposed to address both preparedness and response decisions.
However, most of these decisions do not consider the lateral trans-
shipment option. Moreover, the lateral transshipment is usually dis-
cussed in the commercial logistics and there is rare literature on the
inclusion of lateral transshipment into the humanitarian logistics.
Furthermore, the limited literature on the lateral transshipment in hu-
manitarian logistics didn’t consider the diversity of relief supplies as
well as the destructive effect of natural disasters on the relief supplies
pre-positioned at the relief facilities. To fill these research gaps, we
develop a two-stage stochastic programming model to incorporates the
lateral transshipment option into the humanitarian logistics. The relief
supplies can be transported directly from relief facilities to demand lo-
cations (i.e., direct shipment), or through other relief facilities (i.e.,
lateral transshipment). Our model considers the uncertain demand for
relief supplies and the destructive effect of natural disasters on the relief
supplies pre-positioned at the relief facilities. Furthermore, the diversity
of relief supplies is also considered in our study.

3. Modeling
3.1. Problem description

We consider a humanitarian logistics system consisting of two ech-
elons, namely, storage facilities and demand points, as shown in Fig. 1.
We assume that storage facilities are willing to share sufficient and
reliable information about their current inventories with other storage
facilities. At the planning stage, the demand for relief supplies at a
certain location is uncertain, since it is not yet known whether, or where
a disaster will occur. The uncertainty can be presented by a set of
discrete scenarios, which can be defined using the location and the scale
of a disaster, as well as the demand for each type of relief supply [7,13].

To react to the possible natural disasters as soon as possible, a certain
amount of relief supplies should be pre-positioned at storage facilities. A
fixed cost will be incurred if a storage facility is made available.
Meanwhile, the quantity of the relief supplies pre-positioned must not
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Fig. 1. Relief items flow in the humanitarian logistics system.
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exceed the capacity of the storage facilities. In addition, part or all of the
relief supplies pre-positioned at a given storage facility may be
destroyed by the disaster, which is affected by the scale and the location
of disasters. The degree of damage can be represented by a parameter,
called survival rate, which is also a part of the scenario definitions.

After a disaster occurs, the survived stocks of the relief supplies in the
storage facilities are distributed across a transportation network to meet
demands in the affected community. There are two types of material
shipments: direct shipment and lateral transshipment, as shown in
Fig. 1. Direct shipment is defined as the situations where relief supplies
are transported from storage facilities to demand nodes. Each demand
node is assigned to only one storage facility and the stocks on hand are
used to satisfy the assigned demands first. If there is an excess inventory,
the holding cost will be incurred. On the other hand, if the demand for a
particular relief commodity cannot be satisfied, a penalty cost for the
shortage of this commodity will be incurred. In addition, lateral trans-
shipment between storage facilities is also possible. If a storage facility
cannot satisfy the assigned demand using its own stock on hand, it may
“borrow’” the excess stock from other storage facilities, which would
incur a lateral transshipment cost. For each storage facility, it is allowed
to use at most one other facility for lateral transshipment. The decision-
makers need to balance the out-of-stock penalty cost, holding cost and
the lateral transshipment cost.

This study aims to identify an optimal strategy that combines de-
cisions on storage facility locations, stocking levels for relief supplies,
and distribution of those relief supplies to multiple demand points after
a disaster, with uncertainty in demand and usable pre-positioned stocks
of relief supplies.

3.2. Direct shipment model

To model the problem described above, a direct shipment model (Py)
without considering lateral transshipment should be developed first.
The direct shipment problem can be formulated as a two-stage stochastic
mixed integer programming model. In the first stage, the decision var-
iables include the location and size of storage facilities, as well as
amounts of relief supplies pre-positioned at the facilities. These de-
cisions have to be made in the presence of uncertainty about future
demands. In the second stage, the decision variables involve the distri-
bution of available relief supplies in response to specific scenario di-
sasters. These decisions are made after the realization that the
uncertainty is known, and are conditional on the first-stage decisions.
The notations for the direct shipment model are presented as follows.

Sets:

I Set of candidate locations for relief storage facility, indexed by i;
J Set of demand locations, indexed by j;

K Set of types of relief commodities, indexed by k;

L Set of size categories of relief storage facilities, indexed by [;

S Set of possible disaster scenarios, indexed by s.

Parameters:

Q]’SS Demand for commodity k at location j in scenario s;

P Occurrence probability of scenario s;

Dy Distance between location i and location j;

R Maximum distance that a relief commodity can travel;

©; Storage capacity of a relief facility of category [;

o« Unit storage space requirement for commodity k;

FCy Unit fixed cost incurred by opening a relief facility of size category I in
location i;

ACk Unit procurement cost for commodity k;

TCk Unit transport cost for commodity k per kilometer in scenario s;

PCk Unit penalty cost for the shortage of commodity k in scenario s;

HCk Unit holding cost for surplus of commodity k in scenario s;

LCk Unit operational cost to process the lateral transshipment for commodity k in
scenario s;

f,“ Proportion of stocked relief commodity k at location i remaining useable after

a disaster in scenario s;

M A big enough positive number.

First-Stage Decision Variables:

(continued on next page)
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(continued)
Yi Binary decision variable which indicates whether a relief facility of capacity
category [ is built at location i (value 1) or not (value 0);
g~ Quantity of relief commodity k pre-positioned at location i;
Second-Stage Decision Variables:
XJ[;_: Quantity of commodity k transported from relief facility i to demand location
Jj in scenario s;
2z Binary decision variable which indicates whether demand location j is

ij
assigned to relief facility i in scenario s (value 1) or not (value 0);

Auxiliary Decision Variables:
u]’fs Unsatisfied demand of commodity k at demand location j in scenario s;

v Surplus quantity of commodity k at facility location i in scenario s.

The complete direct shipment model (Py) is formulated as below.
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(7) guarantees that each demand location j is assigned to only one relief
facility. Constraint (8) ensures that a demand location only can be
assigned to a relief facility that is opened. Constraint (9) ensures that
relief commodities cannot be sent from a relief facility to a demand
location unless that demand location is assigned to that relief facility.
Constraints (10) and (11) define restrictions on decision variables.

3.3. Model considering lateral transshipment

When the lateral transshipment option is considered, the model can
be developed on the basis of the direct shipment model (Py). A new
index i’ under the set I is introduced to denote the relief facilities used as
lateral transshipment source. In addition to the parameters and decision
variables used in the direct shipment model, a new parameter LC¥ is

(Po) min =33 FCyu+ 33 Ac + Y p_( TC Dy + PCiu* + HC! k\> )

iel leL kekK iel seS iel jeJ kekK

Subject to:
foj'f:Qj’ff—uf’ Viel,keK,seS (2)
i€l
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X <Mz, VieljelkeK,seS (C)]
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yi,z; €40,1} VieljeJ,keK,leLseS a1

The objective function (1) minimizes the expected costs over all
scenarios resulting from the selection of the pre-positioning locations
and facility sizes, the commodity procurement and stocking decisions,
the shipments of the supplies to the demand points, unmet demand
penalties and holding costs for unused material. Constraints (2) and (3)
define the flow conservations in the network at each demand location
and relief facility, for every commodity and every scenario. These two
conservations of flow indirectly define the unmet demand and the un-
used stocks, respectively. Constraint (4) limits the travel distance of
relief items. Due to the emergency nature of disaster relief, the relief
supplies usually need to be delivered to demand points as soon as
possible. The requirement for the time spent on the road limits the
maximum travel distance. Constraint (5) makes sure that stocked com-
modities are assigned to opened facilities and that the space taken by
these resources does not exceed the facility capacity. Constraint (6)
limits the number of open facilities at node i to at most one. Constraint

used to denote the unit operational cost to process the lateral trans-
shipment for commodity k in scenario s. The additional decision vari-
ables are defined as follows:

xjffj Quantity of commodity k transported from relief facility i to
demand location j through facility i’ in scenario s;

i Binary decision variable which indicates whether the supplies
are transported from facility i to demand location j through lateral
transshipment node i’ in scenario s (value 1) or not (value 0).

Then the complete lateral transshipment model (P;) can be devel-

oped as below.
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The objective function (12) again minimizes the expected costs over
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all scenarios resulting from the selection of the pre-positioning locations
and facility sizes, the commodity procurement and stocking decisions,
the shipments of the supplies to the demand points, additional cost
incurred by lateral transshipment, unmet demand penalties and holding
costs for unused material. Constraints (13) and (14) define the flow
conservations in the network at each demand location and relief facility,
for every commodity and every scenario. These two conservations of
flow indirectly define the unmet demand and the unused stocks,
respectively. Constraints (4) and (15) limit the travel distance of relief
items. Constraint (16) ensures that relief item cannot be sent through a
relief facility unless lateral transhipment is allowed. Constraints (17)-
(18) allow only the open relief facility pairs to engage in lateral tran-
shipment. Constraint (19) gives the priority order between the direct
shipment and lateral transshipment. When 2;; = 1, the demand at node j
will be met first by the relief supplies pre-positioned at facility node i’; if
the stock at facility node i’ is insufficient for the demand at node j, it will
“borrow’’ the excess stock from facility node i, i.e. f;; = 1. Constraints
(20)—(21) define restrictions on decision variables.

4. Case study

In this section, a case study based on real-world hurricanes in the
Gulf of Mexico region of the southeastern United States is used to
illustrate the two-stage stochastic programming model as well as pro-
vide managerial implications.

4.1. Data preparation

The case study is designed based on the research network from the
work of Rawls and Turnquist [7], and 15 nodes were selected as demand
locations as well as candidate locations for storage facilities, as shown in
Fig. 2. Table 1 lists the index and the corresponding location name of
these nodes. Therefore, sets I and J both contain 15 locations. Distances
between each pair of nodes were obtained using Google Distance Matrix
APL For the sake of simplicity, the distance between a facility to the
demand location at the same node is assumed to be 0. The maximum
distance for relief commodities to travel is assumed to be 500 miles,
which ensures that nearly half of the demand points can be covered by
one storage facility, no matter where the facility is located.

Three emergency commodities are considered here: drinking water,
food, and medicine. The unit of drinking water is assumed to be 1000
gallons. Food is assumed to be in the form of meals-ready-to-eat (MREs)
and its unit is 1000 meals. Medicine is designed to be in the form of first-
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Table 1
Node indices and the corresponding location names.
Index  Location Index  Location Index  Location
1 Brownsville, TX 6 Shreveport, LA 11 Tallahassee,
FL
2 Corpus Christi, 7 Beaumont, TX 12 Orlando, FL
TX
3 San Antonio, TX 8 Baton Rouge, 13 Tampa, FL
LA
4 Houston, TX 9 New Orleans, 14 Miami, FL
LA
5 Jackson, MS 10 Mobile, AL 15 Key West, FL
Table 2

Unit storage volume occupied, purchase price and transportation cost for each
commodity.

Commodity o(ft®) AC($) TC ($/mile)
Water (1000 gals) 144.6 647.7 0.3

Food (1000 meals) 83.33 5420 0.04
Medicine 1.16 140 5.80E-04

Table 3
Categories, fixed costs, and storage capacity of facilities.

Size category Descriptor Fixed cost (%) Storage capacity (ft%)
1 Small 19,600 36,400

2 Medium 188,400 408,200

3 Large 300,000 780,000

aid kits. The values of storage volume occupied, purchase price and
transportation costs for commodities in Table 2, and categories, fixed
costs and storage capacity of facilities in Table 3 are from the work of
Rawls and Turnquist [7]. Moreover, the unit transshipment cost for each
commodity is assumed to be 1% of the purchase price, the unit holding
costs are assumed to be 25% of the purchase price, and the unit penalty
costs are assumed to be 10 times the purchase price. For the sake of
simplicity, we assume that some parameters are scenario independent,
including unit direct shipment cost, unit lateral transshipment cost, unit
holding cost, and unit penalty cost for not satisfying demand for sup-
plies. The values of these parameters are designed to be relatively
realistic, but should only be regarded as the illustrative purpose.
According to the statistics from the Atlantic Oceanographic and

N MNCOLLALANT
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Fig. 2. The network for the case study.
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Meteorological Laboratory (AOML), a total of 281 hurricanes struck the
Gulf of Mexico region between 1851 and 2018, and these hurricanes can
be classified into five categories based on the Saffir-Simpson Scale. The
numbers of hurricanes for categories 1 to 5 are 118, 77, 62, 20 and 4,
respectively. Thus, the frequencies of hurricanes for categories 1 to 5 can
be estimated to be 0.4199, 0.274, 0.2206, 0.0712 and 0.0142, respec-
tively. Based on historical records, three hurricanes for each category
are used to construct scenarios to represent potential demands and
damage in the network. Therefore, the occurrence probability of each
scenario can be estimated by dividing the frequency of the corre-
sponding category by 3. Table 4 summarizes the scenario definitions,
which specify the network damage and the total demands for water,
food and medicine. The detailed demands data under each scenario can
be found in Mendeley data. In these scenarios, the relief commodities
stocked at the landfall nodes are assumed to be damaged, and the
damage degree is proportional to the Saffir-Simpson Hurricane Scale.
Specifically, for a hurricane scale of category 1, 20% of the relief sup-
plies pre-positioned at the landfall node are damaged; when the hurri-
cane scale increases by one level, the damage degree would increase by
20%; when the hurricane scale reaches category 5, all relief supplies pre-
positioned at the landfall nodes would be destroyed.

4.2. Baseline results

The established lateral transshipment model (P;) was programmed
in AMPL and solved using the commercial solver CPLEX 12.4. All nu-
merical experiments were run on a laptop with Intel i7-8550U CPU and
8 GB of RAM under a Windows 10 environment. For comparison pur-
poses, the results of the lateral transshipment problem (P;) will be used
as baseline results when evaluating the results of direct shipment model
(Po), where lateral transshipment is not allowed.

For the lateral transshipment problem (P;), there are 208,155 con-
straints and 203,940 variables (including 6150 binary variables), which
was solved in about 156 s of CPU time. The results of first-stage decision
variables in the lateral transshipment problem are summarized in
Table 5. A total of five storage facilities are opened, distributed widely
across the network, which ensures that each demand point can be
covered geographically by at least one facility within the maximum
travel distance. Four of the five facilities store all three commodity
types, and one facility in Mobile only stores food and medicine. More-
over, the selection of storage locations needs to balance the demand for
relief supplies and the damage degree by hurricanes. For instance, New
Orleans and Miami are not selected as the facility locations although the
demands in both cities are much higher than those selected five loca-
tions since both of the two cities are very prone to hurricanes. In addi-
tion, the space utilization rate of facilities in east region is relatively
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Table 5
Results of fist-stage decision variables in baseline version.
Node  City Facility Water Food Medicine  Space
size (1000 (1000 utilization
gals) meals) rate
4 Houston Small 84 110 104 58.88%
8 Baton Medium 1078 386 513 46.21%
Rouge
10 Mobile Small 0 209 104 48.18%
11 Tallahassee =~ Medium 1455 1281 1314 78.07%
12 Orlando Large 5222 297 187 100%
Total = 7839 2283 2222
Table 6
The lateral transshipment activities in the baseline solution.
Scenario  Lateral transshipment activities
Water Food Medicine
1 (8,4,2,28), (8,4,3,40)
2 (4,8,9,14)
3 (10,8,5,1)
5 (8,4,3,62), (10,8,4,13), (8,4,3,60)
(10,8,5,1)
6 (11,10,9,1281) (11,10,9,1314)
7 (11,12,14,636) (11,12,13,180), (11,12,13,266),
(11,12,14,907) (11,12,14,864)
8 (11,12,13,635) (11,12,13,180), (11,12,13,266),
(11,12,14,907) (11,12,14,864)
9 (11,12,13,636) (11,12,13,180), (11,12,13,449),
(11,12,14,907) (11,12,14,681)
10 (4,8,9,8), (4,8,9,74), (4,8,9,70),

(11,12,13,407) (11,12,13,175),
(11,12,14,702)
11 (4,8,9,3),

(11,12,14,711)

(11,12,13,449),
(11,12,14,386)
(4,8,9,104),
(11,12,14,1314)

12 (11,10,9,1133) (11,10,9,1179), (11,10,9,1127)
(11,12,14,102)
15 (4,8,9,117) (4,8,9,107) (4,8,9,92)

* The four numbers in parentheses represent the original facility node, the
transshipment facility node, demand node and quantity of commodities engaged
in the lateral transshipment, respectively.

higher than those in west region, especially in Orlando, whose space
utilization rate reaches up to 100%. The very high space utilization in
Orlando is due to Florida is quite hurricane-prone area. Even if we
preposition much more relief supplies there, most of them could be

damaged.

Regarding the decisions made in the second stage, the relief supplies
are distributed by either direct shipment or lateral transshipment. In

Table 4
Scenario definitions.

Scenario Hurricane Category Landfall node Occurrence probability Water Food Medicine
demand demand demand
(1000 gals) (1000 meals) (units)

1 1 1 4 0.14 310 465 443

2 2 1 9 0.14 1275 138 306

3 3 1 9 0.14 341 565 537

4 4 2 9 0.091 771 1418 1350

5 5 2 4 0.091 651 1030 980

6 6 2 9 0.091 1112 1983 1887

7 7 3 14 0.074 7497 1771 1685

8 8 3 13 0.074 8772 1909 1991

9 9 3 13 0.074 7838 2336 2222

10 10 4 14 0.024 8268 3189 3035

11 11 4 14 0.024 2234 1474 10529

12 12 4 9 0.024 3005 2892 11879

13 13 5 10 0.005 17917 627 4479

14 14 5 10 0.005 18227 1092 4922

15 15 5 11 0.005 18258 1192 5016
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general, the demand points are usually serviced by the nearest storage
facilities. A total of 44 lateral transshipment activities occurred in 12
scenarios, as summarized in Table 6, and there is no lateral activity in
scenarios #4, #13 and #14. In half of those 12 scenarios, all three
commodity types are transshipped, and in the remaining scenarios, only
one or two commodity types are transshipped. Moreover, there are only
eight assignment relationships in the 44 lateral activities, i.e., (4, 8, 9),
(8, 4,2), (8,4, 3), (10, 8, 4), (10, 8, 5), (11,10, 9), (11, 12, 13) and (11,
12, 14). The three numbers in parentheses represent the original facility
node, the transshipment facility node, and demand node in the lateral
transshipment activities, respectively. It can be found that the facility-
demand point assignments in the lateral transshipment activities are
almost unchanged for different scenarios and commodities. For instance,
all three commodities are transshipped from facility #4 to demand node
#9 through facility #8 in both scenarios #10 and #15.

The overall objective function value for this solution is $25, 667,918,
and the composition of the total cost is shown in Fig. 3. The largest part
in the total cost is the commodity acquisition cost, which accounts for
approximately 65%. Note that the sum of the penalty cost for unsatisfied
demand and the holding cost for the surplus of commodities accounts for
a quarter of the total cost, which is a direct result of the distribution of
demand across scenarios. Specifically, a hurricane of category 1 has the
highest occurrence probability, but the resulting demand for relief
supplies is not very large. In contrast, the demand for relief supplies
caused by a hurricane of category 5 is very large, but its occurrence
probability is very low. The pre-positioned relief supplies are not suffi-
cient to satisfy all the demand in the worst-case scenarios due to the low
occurrence probability. The out-of-stock penalty cost is directly pro-
portional to the gap between the actual demand and the pre-positioned
stock level. If the pre-positioned stock can satisfy the highest demand,
the out-of-stock penalty cost will be reduced to zero. However, in that
situation, due to the very low occurrence probability of high demand, a
high holding cost will be incurred with a high probability and the
acquisition cost will increase accordingly. The developed model can find
an optimal trade-off between the out-of-stock penalty cost and the
holding cost.

4.3. Comparison with direct shipment model

To explore the effect of lateral transshipment on the solution, the
direct shipment problem (Py) was solved in the same computing envi-
ronment as the lateral transshipment problem (P;), and the parameters
were assigned the same values as the corresponding values in Section
4.1. The direct shipment problem contains 15,330 constraints and
14,940 variables (including 1680 binary variables), which was solved in

Facility
construction cost
60%

Transshipment
cost
2.54%

Direct shipment
cost
5.02%

Fig. 3. The composition of the total cost for the baseline solution.
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Table 7
Results of fist-stage decision variables in the direct shipment problem.

Node  City Facility Water Food Medicine  Space

size (1000 (1000 utilization
gals) meals) rate
2 Corpus Small 5 7 7 3.61%
Christi

7 Beaumont Medium 1162 1388 1419 69.9%

11 Tallahassee ~ Medium 1997 472 449 80.5%

12 Orlando Large 4679 1106 1052 98.71%
Total = 7843 2973 2927

about 19 s of CPU time. Table 7 presents the results of first-stage decision
variables in the direct shipment problem.

The solution to the direct shipment problem has a total of four open
facilities, and two of the facility locations are the same as in the lateral
transshipment problem, but the mix of supplies pre-positioned is
different. It is worth noting that the new opened facility #2 in Corpus
Christi only stocks 5 units of water, 7 units of food and 7 units of
medicine, and its space utilization rate is only 3.61%. The extremely low
utilization rate of facility #2 shows that setting up a facility here is not a
wise choice, but in order to meet the demands of the surrounding areas,
a relief facility has to be set up here. Furthermore, this also reveals that
the lateral transshipment option can make the pre-positioning and dis-
tribution of relief supplies more flexible.

The optimal objective function value for the direct shipment problem
(Py) is $28, 860, 246, which is an increase of $3,192, 329 compared with
the optimal total cost of the lateral transshipment case, indicating that
the lateral transshipment plan is more cost-effective than the direct
shipment plan. Table 8 compares each composition of the total costs for
the direct shipment problem (Py) and the lateral transshipment problem
(P;). Compared with the direct shipment problem, when the lateral
transshipment is included, there is a decrease in the commodity acqui-
sition cost, direct shipment cost and the hold cost for the surplus of relief
supplies, which is partially offset by an increase in the facility con-
struction cost, the lateral transshipment cost and the out-of-stock pen-
alty cost. The greatest reduction is in the commodity acquisition cost,
which decreases by $3,841,800, indicating that fewer relief supplies are
pre-positioned at storage facilities. Meanwhile, the decrease in the pre-
positioned relief supplies leads to an increase in the penalty cost for
unmet demand, and a decrease in the holding cost.

4.4. Sensitivity analysis

In this section, we conduct sensitivity analysis to study how the out-
of-stock penalty cost and the maximum travel distance will affect the
decisions on the pre-positioning and distribution of relief supplies. All
the cases will be compared with the baseline results presented in Section
4.2,

4.4.1. The out-of-stock penalty cost

In the baseline case in Section 4.2, for each type of relief commod-
ities, the out-of-stock penalty cost is assumed to be ten times its pro-
curement price, which indicates that these three types of relief
commodities are equally important. In practice, the importance of
different goods may not be the same in most instances. Generally
speaking, the drinking water and food are essential to daily life and
should be given more attention. If there are injured people, medicines
are most needed and should be put more emphasis. In this section, three
instances as shown in Table 9 are designed to explore the impact of out-
of-stock penalty cost on the optimal solution.

These three cases are solved in the same computing environment,
and the results are summarized in Table 10, together with the baseline
results for comparison. Note that the quantity of medicine pre-
positioned in case C is more than five times that of the baseline case,
while the amounts of water and food stay almost unchanged. The reason
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Table 8

The composition of the overall costs for Py and P; (in US dollars $).
Problem FC AC DC TC PC HC Total cost
Py 696,400 21,603,400 195,186 0 3,052,380 3,312,880 28,860,246
Py 716,000 17,761,600 138,114 69,893 4,620,800 2,361,510 25,667,917
Difference 19,600 —3,841,800 -57,072 69,893 1,568,420 —951,370 —3,192,329

* FC represents the facility construction cost; AC represents the commodity acquisition cost; DC represents the direct shipment cost; TC represents the lateral
transshipment cost; PC represents the out-of-stock penalty cost; HC represents the holding cost for the surplus of supplies.

Table 9
Case description and setting.

Name Setting

Case A PC! is increased to 100 times AC!, while PC? and PC® are kept at 10 times
AC? and AC®, respectively;

Case B PC? is increased to 100 times AC?, while PC' and PC® are kept at 10 times
AC! and AC®, respectively;

Case C  PC® is increased to 100 times AC®, while PC? and PC® are kept at 10 times

AC? and AC®, respectively.

* PCk(k = 1,2, 3) denote the unit penalty cost for the shortage of water, food and
medicine, respectively; ACK(k = 1,2, 3) represent the unit procurement cost for
water, food and medicine, respectively.

Table 10
Case results.

Baseline Case A Case B Case C

case
Quantity of relief supplies pre-positioned
Water (1000 gals) 7839 11,534 7842 6479
Food (1000 meals) 2283 2966 3189 2334
Medicine 2222 2937 2926 11,870
Number of facilities 5 4 4 4
Small-size 2 1 1 1
Medium-size 2 1 2 2
Large-size 1 2 1 1
Total cost ($) 25,667,918 38,092,668 29,441,720 28,797,928
Construction cost ($) 716,000 808,000 696,400 696,400
Acquisition cost ($) 17,761,600 23,957,000 22,773,300 18,511,300
Direct shipment cost 138,114 147,915 104,744 134,237

)
Lateral transshipment 69,893 74,853 53,006 67,931
cost ($)

Out-of-stock cost ($) 4,620,800 9,394,810 2,230,010 6,789,820
Holding cost ($) 2,361,510 3,710,090 3,584,260 2,598,240

behind this phenomenon is that the relief commodity with a higher out-
of-stock penalty cost is more emergent, and the demand for it should be
satisfied first. Once such relief supplies are out of stock, a very high
penalty cost will be incurred. Therefore, it is safe to draw a conclusion
that the higher the out-of-stock cost of a relief commodity (namely the
greater importance of this item), would lead to that more such relief
supplies are pre-positioned.

Furthermore, compared with the baseline case, one more large-size
facility is opened in case A, which results an increase in the facility
construction cost by $92,000. While one small-size facility is closed in
case B and case C. These results are attributed to the intrinsic feature of
relief supplies. As can be seen from the second column of Table 2, water
is the most space-consuming and medicine is the least space-consuming.
Therefore, when an approximate amount of increased relief supplies is
pre-positioned, the occupied space to stock water is much larger than
medicine. In addition, the total costs of all three cases increase
dramatically compared with the baseline case, especially in case A. The
increase in the total cost is mainly attributed to the huge increase in the
commodity acquisition cost, which indicates more relief supplies are

pre-positioned.

4.4.2. The maximum travel distance

In the baseline case, the maximum travel distance is assumed to be
500 miles. The time spent on the road is positively related to the distance
traveled. Due to the emergency of disasters, the relief supplies usually
need to be delivered to demand points as soon as possible. The
requirement for the time spent on the road limits the maximum travel
distance. To explore the impact of the maximum travel distance on the
solution, several experiments are conducted where the maximum travel
distances ranging from 100 miles to 900 miles while the other parameter
values stay the same as in Section 4.1. The results are depicted in Fig. 4.

From Fig. 4, it is obvious that the commodity acquisition cost and
out-of-stock penalty cost account for the vast majority of the overall
costs, regardless of the maximum travel distances. Moreover, it also can
be found that the overall costs and the number of open facilities decrease
with the increase in the maximum travel distances. To be more specific,
when the maximum travel distances range from 100 to 300 miles, the
overall costs decrease steadily from $49.1 million to $29.8 million; when
the maximum travel distances range from 300 to 900 miles, the overall
costs decrease slightly from $29.8 million to $25.5 million.

To further explore the reasons behind this, we found that when the
maximum travel distance is short enough, the affected area covered by a
storage facility is also very small. Thus it needs to build more facilities to
satisfy the demands as much as possible, otherwise, it will incur more
penalty cost. Meanwhile, the majority of the opened storage facilities are
small-sized and the space utilization rate is very low when the maximum
travel distance is short enough. For instance, when the maximum travel
distance is 100 miles, the storage facility at node #5 only stocks 1 unit of
water, 1 unit of food and 1 unit of medicine. In the extreme situation
where the maximum travel distance is less than the distance between
any two nodes, the storage facility at any node can only meet its own
demand and cannot provide any relief supply to any other node, and
there is no lateral transshipment activity in this instance. Thus it needs
to find an optimal tradeoff between the facility construction cost and the
out-of-stock penalty cost. With the increase in the maximum travel
distance, the scope covered by a storage facility also increases and the
number of open supply facilities decreases accordingly. Meanwhile,
some small-sized facilities are expanded and more relief supplies are pre-
positioned, which leads to a decrease in the out-of-stock penalty cost.
Although the decrease in the out-of-stock penalty cost is partially offset
by the increase in the commodity acquisition cost, the overall cost still
decreases. When the maximum travel distance is long enough, the scope
covered by a storage facility is also very large accordingly. In the
meanwhile, the travel time will become very long when relief supplies
travel a long distance. However, the demand for the relief is very urgent
in reality, and the maximum travel time is limited. Therefore, the overall
cost stays stable when the maximum travel distance is long enough.

From the above analysis, we can conclude that the solution with a
greater value of R is more flexible. When R is small enough, in order to
satisfy the demand in the affected area, the only strategy is to build a
large number of storage facilities, which results in a very low space
utilization rate for many facilities. With the increase in the maximum
travel distance, a storage facility can serve more demand nodes and the
decision-makers have more options to cope with the hurricanes. For
example, those small-size facilities with low space utilization rate can be



Y. Wang et al.

mmmm Facility construction cost

Out-of-stock cost

mmm Surplus holding cost

Socio-Economic Planning Sciences 74 (2021) 100930

mmm Commodity acquisition cost = Transportation cost

—#—No. of storage facilities

14

Number of storage facilities

60
50 X_12
= ﬁ\
2 40 +—
E - ,
a30 1
@ I
B 20 — o
[e]
(8}
0 - . . . . . . . . [
100 200 300 400 500 600 700 800 900

The maximum travel distance (mile)

Fig. 4. Sensitivity analysis results for the maximum travel distance.

integrated into large-size facilities. However, it is not wise to endlessly
increase the value of R due to the emergency nature of disaster relief. As
can be seen in Fig. 4, when R exceeds 300 miles, there is little change in
the overall cost. In practice, the decision-makers need to seek a balance
between the time limit for humanitarian relief and the overall cost.

5. Conclusions

In this study, lateral transshipment is included in humanitarian relief
logistics. A two-stage stochastic programming model is formulated to
address the joint decision-making of pre-positioning and distribution of
relief supplies under uncertain environment. These uncertainties
include the occurrence probability, landfall nodes, the damage degree of
hurricanes, as well as the corresponding demand for relief supplies, and
all these uncertainties are defined in a set of scenarios. The developed
model minimizes the overall cost (including the facility construction
cost, commodity acquisition cost, transportation cost, holding cost and
out-of-stock penalty cost) and considers the uncertainties of disasters.

A case study addressing hurricane threats in the Gulf of Mexico re-
gion of the southeastern United States is conducted to illustrate the
developed two-stage stochastic programming model. By comparison
with direct shipment solution, the lateral transshipment solution is
demonstrated to be more cost-effective and flexible. The sensitivity
analysis of out-of-stock penalty cost and maximum travel distance also
has provided some managerial insights for relief agencies. First, if a type
of relief supply is urgently needed, it can be assigned a higher stockout
penalty cost, which will result in an increase in its pre-stock to guarantee
timely delivery of this commodity. Second, the solution with greater
maximum travel distance is more cost-effective and flexible, but it also
should be subject to the time limit for humanitarian relief.

There are two major directions for future research. First, more
practical factors should be taken into account to extend the developed
model. For instance, the priority of demand points should be considered.
In practice, the situation in some demand points is more urgent and
should be served first [27]. Furthermore, the priority of demand points
may change dynamically with the progress of the rescue work. In
addition, the assumption that each storage facility is allowed to use at
most one other facility for lateral transshipment can be relaxed in our
future work. Second, this study conducts a case study with 15 nodes in
15 scenarios, and it is efficient to solve those experiments using com-
mercial solvers. However, real-world problems are usually more
complicated and as the scale of the problem grows, it is computationally
expensive to solve the developed model. Therefore, developing an effi-
cient algorithm for large-scale problems will be another major effort in
our future work, and possible algorithms include 2-step solution,

L-shaped, progressive hedging and sample approximation algorithm
[28].
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