eScholarship
Combinatorial Theory

Title
Numerical semigroups, polyhedra, and posets I: the group cone

Permalink
https://escholarship.org/uc/item/5b43h4dqg

Journal
Combinatorial Theory, 1(0)

ISSN
2766-1334

Authors

Kaplan, Nathan
O'Neill, Christopher

Publication Date
2021

DOI
10.5070/C61055385

Copyright Information

Copyright 2021 by the author(s).This work is made available under the terms of a
Creative Commons Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/5b43h4dq
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

COMBINATORIAL THEORY 1 (2021), #19 combinatorial-theory.org

NUMERICAL SEMIGROUPS, POLYHEDRA, AND POSETS I:
THE GROUP CONE

Nathan Kaplan*! and Christopher O’ Neill?

YWUniversity of California, Irvine, CA, U.S.A.
nckaplan@math.uci.edu
2San Diego State University, San Diego, CA, U.S.A.
cdoneill@sdsu.edu

Submitted: Apr 11, 2021; Accepted: Sep 23, 2021; Published: Dec 15, 2021
© The authors. Released under the CC BY license (International 4.0).

Abstract. Several recent papers have explored families of rational polyhedra whose integer
points are in bijection with certain families of numerical semigroups. One such family,
first introduced by Kunz, has integer points in bijection with numerical semigroups of fixed
multiplicity, and another, introduced by Hellus and Waldi, has integer points corresponding
to oversemigroups of numerical semigroups with two generators. In this paper, we provide
a combinatorial framework from which to study both families of polyhedra. We introduce
a new family of polyhedra called group cones, each constructed from some finite abelian
group, from which both of the aforementioned families of polyhedra are directly determined
but that are more natural to study from a standpoint of polyhedral geometry. We prove that
the faces of group cones are naturally indexed by a family of finite posets, and illustrate how
this combinatorial data relates to semigroups living in the corresponding faces of the other
two families of polyhedra.

Keywords. Polyhedron, numerical semigroup
Mathematics Subject Classifications. 52B05, 20M 14

1. Introduction

Let Z, denote the set of nonnegative integers. A numerical semigroup S is a subset of Z-
that contains 0, is closed under addition, and has finite complement in Z- (the final condition is
equivalent to requiring the greatest common divisor of the elements of S is 1). We often specity
a numerical semigroup via generators, writing

S={ny,....,ng) ={ang + -+ ang:ay,...,a € Zso}
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for the numerical semigroup generated by 71, . . ., ng. Itis known that any numerical semigroup
has a unique generating set that is minimal with respect to containment; its cardinality is known
as the embedding dimension of S. The set of gaps of S, denoted G(S), is the finite set Z~ \ S.
The cardinality of this set is the genus g(S) of S. The smallest positive element of S is called
the multiplicity of S, denoted m(.S).

To motivate the contents of this manuscript, we survey two counting problems involving
numerical semigroups. Each problem can be realized as an integer point counting problem in
some family of rational polyhedra. One of the primary insights of this manuscript is to identify
a strong combinatorial connection between these polyhedra.

1.1. Counting by multiplicity and genus

There has been much recent interest in counting numerical semigroups by genus; see the survey
article [14] for an overview of problems and results in this area. Let N(g) denote the number of
numerical semigroups S with g(S) = ¢. Bras-Amords computed the first 50 values of N(g) and
made several conjectures about the behavior of this function [4]. Zhai determined the asymptotic
growth rate of N(g), thereby proving N(g) < N(g + 1) for g sufficiently large [24]. However,
the following conjecture remains open, as the smallest upper bound for possible exceptions is
well out of range of computation [17, Section 6].

Conjecture 1.1 (Bras-Amoros). For all g > 1, we have N(g) < N(g + 1).

One approach to Conjecture 1.1 is to study a more refined counting problem. Let N,,(g)
denote the number of numerical semigroups S with m(.S) = m and g(S) = g. See [15, Table 1]
for some values of N,,(g).

Conjecture 1.2 ([15, Conjecture 7]). Forany m > 2and g > 1, N,,(g) < N,u(g + 1).

In order to state what is known about N,,(g) we introduce some additional notation. A
quasipolynomial of degree d is a function f: Z~, — C of the form

f(n) = ca(m)n® 4 cg_1(n)n™* + - 4+ ¢o(n)

with periodic functions ¢; having integer periods, c; # 0. The function ¢, is called the leading
coefficient of f.

Theorem 1.3 ([15, Proposition 7], [1, Theorem 4]). Fix m € Zs.

(a) There is a quasipolynomial p,,(g) of degree m — 2 such that N,,(g) = pm(g) for all suffi-
ciently large g.

(b) The leading coefficient of p,,(g) is constant.

The proof of Theorem 1.3 uses Ehrhart theory and a bijection between numerical semi-
groups of multiplicity m and certain integer points in a rational polyhedron P,,, called the Kunz
polyhedron (we defer the formal definition to Section 4). In particular, this yields a geometric
interpretation of the leading coefficient of p,,(g). Additionally, the face structure of P,, was
studied in [5] to provide a new approach to a longstanding conjecture of Wilf [23].
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1.2. Counting oversemigroups

Let S be a numerical semigroup. An oversemigroup of S is a numerical semigroup 7" with
T O S. Let o(S) denote the number of oversemigroups of S. Since G(.9) is a finite set, and any
numerical semigroup 7' O S has G(T') C G(S) and is determined by its set of gaps, it is clear
that o(S) is finite.

Hellus and Waldi study the function o(.S) in the case S = (n, ¢) is the smallest semigroup
containing n, ¢ and ged(n, ¢) = 1. For simplicity, write o(n, ¢) = o({(n, q)).

Theorem 1.4 ([13, Theorem 1.1]). Let n > 2 be a positive integer.

(a) There is a quasipolynomial H,(q) of degree n — 1 taking the value o(n, q) at each positive
integer q relatively prime to n.

(b) The leading coefficient \(n) of H,(q) is constant and

1 1
oo S S e

Like Theorem 1.3, the proof of Theorem 1.4 uses a bijection between oversemigroups of
(n,q) and certain integer points in a rational polyhedral cone O,,, which we refer to here as
the oversemigroup cone. The leading coefficient A\(n) again has a geometric interpretation, as
the volume of a particular cross section of O,,, from which the bounds in Theorem 1.4(b) are
obtained in [13]. We defer the formal definition of O,, to Section 5.

1.3. Enter the group cone

The goal of this manuscript is to provide a common framework for studying the combinatorial
structure of the Kunz polyhedron P, and the oversemigroup cone O,, via the introduction of a
new family of polyhedra, the group cone C(G) of a finite abelian group G (Definition 3.1), which
has also appeared in the context of discrete optimization as the cone of subadditive functions [12,
18].

* We give a combinatorial description of the faces of C(G) in terms of certain partially
ordered sets. In doing so, we complete the partial description of the faces of the Kunz
polyhedron from [5], and provide a previously unknown description of the faces of the
oversemigroup cone. In both settings, the poset corresponding to a face F' manifests within
the divisibility posets of all semigroups lying in F'.

* We identify particular cross sections of the group cone whose relative volumes equal the
leading coefficients of the quasipolynomials in Theorems 1.3 and 1.4. This implies that
obtaining a triangulation for the group cone, which is a common method for computing
or bounding cross section volumes, simultaneously yields control over the leading coeffi-
cients of both quasipolynomials.
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Several subsequent papers have already made use of the framework established here. First,
one operation that has been studied extensively in the numerical semigroup literature is called
gluing, and in [2], the gluing operation is realized geometrically via a collection of combina-
torial embeddings of group cones. Second, a major technique for understanding a numerical
semigroup S is to study its minimal presentations, which encode minimal algebraic relations
among the generators of S, and in [11], a combinatorial connection is given between the face of
P, containing S and the minimal presentations of S. Said another way, the face lattice of the
group cone gives a stratification of the set of all numerical semigroups, wherein the numerical
semigroups within each stratum have minimal presentations of a particular combinatorial type.
Third, in forthcoming work, the ideas of this paper are used to develop a combinatorial recipe
for specializing free resolutions of numerical semigroup algebras.

After defining the necessary terminology from polyhedral geometry in Section 2, we intro-
duce the group cone C(G) in Section 3 and study the combinatorial data associated to its faces.
Sections 4 and 5 contain formal definitions of the Kunz polyhedron P, and the oversemigroup
cone O, respectively, and provide precise connections to the faces of the group cone. Com-
bining results in these sections gives a direct correspondence between the Kunz polyhedron and
the oversemigroup cone. In Section 6, we reduce the task of obtaining the precise leading co-
efficients of the quasipolynomial formulas in the counting problems described above to that of
finding a triangulation of the corresponding group cone. We conclude with Section 7, wherein
we present an improved algorithm for computing the Apéry set of a numerical semigroup S. We
also include an appendix with some computational data related to the quasipolynomial functions
introduced above.

2. Background

In this section, we provide the necessary definitions related to convex rational polyhedra and
partially ordered sets. For more thorough introductions, see [3, 25] and [22].

A partially ordered set (or poset, for short) is a set () equipped with a relation =< (called a
partial order) that is reflexive, antisymmetric, and transitive. Given ¢, ¢ € @), we write ¢’ < ¢
whenever ¢’ < g and q # ¢'. We say ¢ covers ¢ if ¢ < ¢ and there does not exist ¢” € ) with
¢ < ¢" < q. If (Q, <) has a unique minimal element 0 € Q, the atoms of () are the elements
that cover 0. Posets are often depicted using a Hasse diagram in which the elements of () are
drawn so that whenever ¢ covers ¢/, ¢ is drawn above ¢’ and an edge is drawn from ¢ down to ¢'.
See Figure 3.2 for examples.

A rational polyhedron P C R is the set of solutions to a finite list of linear inequalities with
rational coeflicients, that is,

P={zcR%: Az < b}

for some matrix A and vector b. If none of the inequalities can be omitted without altering P,
we call this list the H-description or facet description of P (such a list of inequalities is unique
up to reording and multiplying both sides by a positive constant). The inequalities appearing in
the H-description of P are called facet inequalities of P.

Given a facet inequality a1z, +- - - + a4z < bof P, the intersection of P with the hyperplane



COMBINATORIAL THEORY 1 (2021), #19 5

a1x1+- - -+aqry = biscalled afacet of P. A face F' of P is asubset of P equal to the intersection
of some collection of facets of P. The set of facets containing F' is called the H-description or
facet description of F. The dimension of a face I’ is the dimension dim(F’) of the affine linear
span of F'. We say Fis a vertex if dim(F") = 0, an edge if dim(F') = 1 and F is bounded, a ray
(or an extremal ray) if dim(F') = 1 and F is unbounded, and a ridge if dim(F') = d — 2.

If the origin is the unique point lying in the intersection of all facets of P (or, equivalently,
if b = 0 in the H-description of P), then we call P a pointed cone. Separately, we say P is a
polytope if P is bounded. If P is a pointed cone, then any face /' equals the nonnegative span
of the rays of P it contains, and if P is a polytope, then any face /' equals the convex hull of the
set of vertices of P it contains; in each case, we call this the V-description of F'.

The set of faces of a polyhedron P forms a poset under containment that is a lattice (i.e., any
two faces have a unique greatest common descendant and a unique least common ancestor) and
is graded by dimension (i.e., whenever F' covers I”, we have dim(F") = dim(F”) + 1). If P is
a polytope, then every face of P equals the convex hull of some collection of vertices of P and
the intersection of some collection of facets of P, meaning the face lattice is both atomic and
coatomic.

3. The group cone

We begin by defining the group cone of a finite abelian group.

Definition 3.1. Fix a finite abelian group (G, +) and let m = |G|. The group cone C(G) is the
set of all points z € R satisfying

Tq+ Ty = Tapp for a,be G\ {0} with a+b#£0, (3.1)
where the coordinates are indexed by the nonzero elements of G.

Lemma 3.2. For any finite abelian group G, the group cone C(G) is full-dimensional. If m =
|G| > 3, then the inequalities in (3.1) comprise the H-description of C(G).

Proof. The first claim follows from the fact that for each nonzero a € G, the vector v with v, = 2
and v, = 1 for b # a lies in C(G), since R™~! is spanned by these vectors.

For the second claim, suppose m > 3. We first verify that for each a € G'\ {0}, the inequality
xq = 0is redundant. Let k = |a|. The key is for any = € C(G),

g =Tg+ (c— Dy = xoq+ (¢ —2)xg = T3, + (c—3)Tq = -+ = T
for any positive integer ¢ < k. As such, if £ > 3, then
(k4+1)xzq =22, + (k — 1)xq 2 Tog + T(h—1)a = Ta,
while if & = 2, then there exists some b € G \ {0, a}, so
Ty + 2T4 2 Thpq + Ty = Tp.

In either case, we obtain x, > 0. Lastly, given a,b € G \ {0} with a + b # 0, we see the point
x € C(G) withz, = 2, = 2, 2415 = 4, and x, = 3 for all ¢ ¢ {a,b,a + b} satisfies every
inequality in (3.1) strictly except z, + Tp = Tqrp- [
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The remainder of this section is dedicated to a combinatorial interpretation of the face lattice
of the group cone in terms of Kunz-balanced posets.

Definition 3.3. Fix a finite abelian group G. A Kunz-balanced poset on G is a poset < with
ground set GG such that for all a,b,€ G, a < b implies b — a = b. Since b < b implies
0=0b—0=0bforall b € G, any Kunz-balanced poset has unique minimal element 0 € G.

Throughout the rest of this section, when we have a finite abelian group GG and a subgroup
H C G, we write z for the image of z in G/H.

Theorem 3.4. There is an injective function
F+— (H,=)
sending each face F of C(G) to a pair (H, =), where
H={0u{heG:x,=0forallz € F} CG

is a subgroup of G' and < is the Kunz-balanced poset on G/ H with minimal element 0 and the
property that x, + x, = T, is a facet equation for F if and only if a =< a + .

Proof. Fora,b € H\ {0} with a 4+ b # 0, we have
0=+ Tp 2 Tays,
s0 xq4p = 0 for all x € F'. As such, H is a subgroup of G. Also, for all x € F,
To =T+ [H|vp 2 Topn + ([H| = Dz =+ 2 Tayjmpn = Ta

foreacha € G\ H and h € H, meaning x, = 1, whenevera = b € G/H.

Next, define a reflexive relation < on G/ H with unique minimal element 0 such that for each
nonzero a, b € G with a+b # 0, we have @ < a+ b whenever , +x;, = x,, forall z € F (note
that < is well defined by the last sentence of the preceding paragraph). If z, + x;, = 2,4, and
ZTarp + T_p = T4, then x, = —x_4p, and nonnegativity of = implies z;, = 0. We conclude =< is
antisymmetric. Lastly, if distinct nonzero a, b, ¢ € G satisfy x, +x,_, = xp and xp, + 2. = .,
then

Te=Tp+ Tep = Lo+ Thog + Tep 2 Ty + Tog 2 Te

implies x, + r._, = ., 0 = is transitive and thus a partial order. Since < is Kunz-balanced by
construction, the proof is complete. 0

Definition 3.5. Given a face F' C C(G) corresponding to (H, <) under Theorem 3.4, we call H
the Kunz subgroup of I’ and < the Kunz poset of F'.

Example 3.6. The group cone C(Z,) C R? has 4 rays and 4 2-dimensional facets. Figure 3.1
depicts the Kunz-balanced poset corresponding to each of these eight proper nontrivial faces.
Notice that whenever two faces F, I’ C C(G) satisfy F' C F”, the Kunz subgroup of F’ contains
the Kunz subgroup of F”, and if these subgroups coincide, then the Kunz poset of F' refines
the Kunz poset of F”. In particular, the lower right ray has nontrivial Kunz subgroup since the
posets of its facets have contradictory orderings (indeed, 1 < 3 in one while 3 < 1 in the other).
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S =N W

Figure 3.1: The group cone C(Z,) with the Kunz poset of each proper, positive-dimensional
face.

The following is an immediate corollary of the proof of Theorem 3.4.

Corollary 3.7. For each subgroup H C G, the injection C(G/H) — C(G) given as x — y
with y, = xg for each a € G \ {0} induces an injection on face lattices.

Remark 3.8. The automorphism group of G acts on the group cone C(G) by permuting the
coordinates of each x € C(G), which induces an action on the face lattice of C(G) and thus
on the associated Kunz posets under Theorem 3.4. In particular, a face is fixed by a particular
automorphism of G if and only if its Kunz poset is fixed as well.

Example 3.9. The cone C(Zg) has 11 extremal rays, each of which is the nonnegative span of
one of the following primitive integer vectors:

(1,0,1,0,1) (1,2,3,4,5) (5,4,3,2,1) (1,2,1,2,1)
(1,2,0,1,2) (1,2,3,4,2) (2,4,3,2,1) (1,2,3,2,1)
(2,1,0,2,1) (1,2,3,1,2) (2,1,3,2,1).

The 3 rays in the first column are those whose Kunz subgroup H is nontrivial. The ray
(1,0,1,0,1) has Kunz subgroup H = {0, 2,4} and is the image of the single ray generated by
(1) in C(Zy) under the embedding in Corollary 3.7. The other 2 rays, namely (1, 2,0, 1,2) and
(2,1,0,2,1), both have Kunz subgroup H = {0, 3} and are embeddings of the rays generated
by (1,2) and (2, 1) in C(Z3), respectively.

The remaining 8 rays each have their Kunz poset on Zg as depicted in Figure 3.2. Each of
the first 6 posets appears next to the poset lying in the same orbit under the action of the auto-
morphism group of Zg discussed in Remark 3.8, and the last 2 are fixed by both automorphisms.
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1 4 2
2

3 5 1

4

5 0 0

0
(5,4,3,2,1)  (1,2,3,4,2)  (2,4,3,2,1)
3 26 4

1
4
0 0

(1,2,3,1,2) (1,2,3,2,1) (1,2,1,2,1)

Figure 3.2: The Kunz posets of the extremal rays of C(Zg) in Example 3.9.

This is also visually evident in the Hasse diagrams of Figure 3.2, where the last 2 are again the
ones fixed under both automorphisms.

Proposition 3.10. Fix a face F of C(G) with Kunz subgroup H and poset (G/H, <), and fix
a,b € G/H. Let M C G/H denote the set of atoms of <.

(a) If a < b, then b covers a if and only if b — a € M. In particular, each cover relation of <
can be naturally labeled by an element of M.

(b) The coordinates of any point v € F' are uniquely determined by the values of the coordinates
Ty, form € M. In particular, dim F' < |M|.

Proof. Since part (a) depends only on the poset structure of <, and the injection in Corollary 3.7
preserves dimension, it suffices to assume H = {0} in both parts.
Suppose a < b, so that x, = z, + 7. If a < ¢ < b, then

Tat Tpqg =Tp =T+ Tpc =Toq+ Te—qg + Tp—e

meaning Ty, = Te_q + Tp_.. Thismeansc —a <b—a,sob—a ¢ M.
Conversely, if a < bbut b — a ¢ M, then some nonzero element c satisfies ¢ < b — a. By
transitivity, c < b — a < b, so

Thpe T+ Te =Tp = Ty + Tp—g = Ty + Te + To—a—c,

from which we conclude a < b — ¢ < b.
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Next, suppose b € G is nonzero and not an atom, so that b covers some other element a € G.
By part (a), b = a + m for some m € M, and x;, = x, + ,,, so part (b) now follows from
induction on the height of b in <. O]

Remark 3.11. The inequality on dim F'in Proposition 3.10(b) can be strict, as demonstrated by 6
of the 8 posets in Example 3.9. Also, the number of maximal elements of a Kunz poset need not
bound the dimension of its corresponding face in the group cone in either direction. Indeed, the
poset corresponding to the ray (1,2,1,2,1) of C(Zg) in Example 3.9 has 2 maximal elements,
and the 2-dimensional facet in C(Z,) with defining equation x3 = 1 + x5 has only 1 maximal
element.

The following two propositions demonstrate that not every Kunz-balanced poset on an abe-
lian group G corresponds to a face of C(G). They also provide evidence that characterizing
precisely the set of Kunz-balanced posets that correspond to faces is likely difficult in general;
see Remark 3.16.

Proposition 3.12. Fix a face F' C C(G) with Kunz poset < and trivial Kunz subgroup. If
a,b,c € G\ {0} satisfya < a+banda+b<a+b+c thena <a+canda+c<a+b+c

Proof. Under the given assumptions, a + b and a + b + ¢ are nonzero since neither is minimal
under <. Additionally, a + ¢ must be nonzero, since otherwise

b<a+b<a+b+c=0b,
which is impossible. Any x € F' has z, + ¥, = x4p and o1 + T = Taipier SO
Tatbte = Ta + Ty + Te 2 Tage + Tp 2 Taybie
This implies x, + z. = T41. and T,y + Tp = Toipre, as desired. ]

Remark 3.13. Proposition 3.12 is a kind of “diamond property” that is a reflection of the com-
mutativity of G; see the left graphic in Figure 3.3 for a depiction.

Proposition 3.14. Fix a face F' C C(G) with Kunz poset < and trivial Kunz subgroup, a sub-
group G' C G with |G'| odd, and a € G \ G’ with 2a ¢ G'. The following are equivalent:

(a) for some b € G', we have i < 2i + b for everyi € a + G'; and
(b) i < jforeachi € a+ G andj € 2a + G'.

Proof. The condition 2a ¢ G’ ensures every element of G in both statements is nonzero. For
any b € G, if g, ¢ € G’ satisfy 2(a + g) + b = 2(a + ¢’) + b, then the order of g — ¢’ in G
divides 2, and since |G| is odd, we can conclude g = ¢’. From this, we obtain

Z 2xa+g > Z L2a+g (32)
geG geG’

for all x € C(G) by applying each inequality =; + x; 4 > 2;4p exactly once for each i € a+G'.
As such, if (a) holds for some b € G, then equality holds in (3.2), so (a) must hold for all b € G’,
from which (b) follows. Since (b) clearly implies (a), this completes the proof. [



10 Nathan Kaplan, Christopher O’Neill

at+b+c

a+b

Figure 3.3: In each of the depicted Hasse diagram excerpts, the thin lines are consequences of
the thick lines.

Remark 3.15. We give an example of Proposition 3.14 where G = Zo, G' = {0,3,6},anda = 1.
This example is depicted in the middle of Figure 3.3. Doubling any element of a+G’ = {1,4, 7}
yields a distinct element of 2 + G’ = {2, 5,8}, and this forces all possible relations ¢ < ¢ for
c €1+ G and ¢ € 2+ G’ to hold once the relations 1 < 2,4 < 8, and 7 < 5 hold. Intuitively,
the sums of elements of 1 + G’ are “evenly distributed” in 2 + G’, so once sufficiently many
relations between them are included, the rest must also appear.

Remark 3.16. Propositions 3.12 and 3.14 are not the only restrictions on Kunz posets. For
example, when G = Zg, intersecting the facets x; + 5 = x¢ and x3 + x7; = 2 yields a face
whose poset is depicted on the right in Figure 3.3. This is particularly noteworthy since it is an
example of two facets with no variables in common whose intersection is not a ridge (a face of
codimension 2), a phenomenon that does not occur in C(Z,,) for m < 7. In fact, the face of
C(Zsg) corresponding to this poset only has dimension 2.

Problem 3.17. Determine when a given pair (H, <) of a subgroup H C G and a Kunz-balanced
poset < on G/H corresponds to a face F' C C(G).

4. The Kunz polyhedron

We begin this section by defining the Kunz polyhedron F,, and explaining the bijection between
its integer points and numerical semigroups containing m. Although many of the results in this
section have appeared elsewhere, we state them here using the language of Section 3. Doing so
answers [5, Problem 3.14] by providing a complete combinatorial characterization of the faces
of P,, (Theorem 4.6).

One of the primary new insights of this section is Corollary 4.7, which identifies a cor-
respondence between integer points in C(Z,,) and numerical semigroups containing m. This
correspondence first identifies these points of C(Z,,) with integer points in P,,. This allows
one to move freely between the inequalities defining P, and those defining C(Z,,). This is of-
ten helpful when working with particular families of semigroups, since the homogeneity of the
inequalities defining C(Z,,) makes them easier to work with.

Definition 4.1. Let S be a numerical semigroup. The Apéry set of .S with respect to an element
m € S is the set
Ap(S;m)={se S:s—m¢g&S}.
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It is easily shown Ap(.S; m) has precisely m elements, each in a distinct equivalence class mod-
ulo m. More precisely, Ap(S;m) = {0,ay,...,an_1} where each a; = i mod m is the smallest
element of S in its equivalence class modulo m. For each i, we can write a; = k;m + i for some
k; € Z=o. The vector (kq,...,k,_1) is called the Kunz coordinate vector of S with respect to
m. Let KV,, denote the function that takes a numerical semigroup containing m to its Kunz
coordinate vector with respect to m.

It is easy to see that not every vector (21, ..., zm—1) € ZZ; ! is the Kunz coordinate vector
of a numerical semigroup containing m. The following set of linear inequalities that determine
the image of KV, in ZZ" ! can be found in [16, 19].

Definition 4.2. For m > 2, the Kunz polyhedron P,, C R™! is the set of points (21, . .., Z,_1)
satisfying

2+ 2 =2 ziqj, forall 1 <i <
SUS

1 — 1 with 74+ 5 < m,
2+ 2+ 12 2iyjm, forall

—1with i+ j >m,

Jj<m
1< J<m

and the strict Kunz polyhedron P, C R™! is given by P, = P,, NRZ L

Remark 4.3. The terminology used for P, and P/, varies across the literature. It has often been
called the “Kunz polytope,” although this conflicts with the conventions of polyhedral geome-
try, where “polytopes” are bounded polyhedra. This was corrected in [5], wherein P, and P/,
were called the “relaxed Kunz polyhedron” and “Kunz polyhedron” respectively. We believe the
names in Definition 4.2 are the most appropriate, as (i) nonnegativity and positivity inequalities
are frequently viewed as implicit or extra in the lattice point and integer optimization literature,
and (ii) we will see below that the relationship between numerical semigroups and the faces of
P, is more direct than the connection to faces of P/, as P/ has several additional faces that
come from the inequalities z; > 1.

Theorem 4.4 ([16, 19]). Let m > 2.

(a) The map KV,, gives a bijection between numerical semigroups with multiplicity m and
integer points in P),.

(b) The map KV,, gives a bijection between numerical semigroups containing m and integer
points in P,.

Notation 1. Given a numerical semigroup S and a face F' C P,,, we write S € F' and say “S is
in the face ' to mean the Kunz coordinates of S lie in F, that is, KV ,,(S) € F.

In what follows, we show that the Kunz polyhedron P, is a translation of the group cone
C(Zy,), inducing a correspondence between their faces.

Definition 4.5. Let S be a numerical semigroup containing m with

Ap(S;m) ={0,a1,...,am 1}
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so that a; = ¢ mod m for each i. The Apéry poset of S is the divisibility poset of S restricted to
Ap(S;m), that is, with a; preceeds a; whenever a; — a; € S. The Kunz poset of S is the poset

A(S;m) = (Zim, X)

defined by ¢ < j whenever a; — a; € S. Said another way, A(S; m) is the divisibility poset of
Ap(S;m) where each element is labeled with its equivalence class modulo m.

The following result is basically equivalent to [5, Theorem 3.10] stated in the language of
Section 3.

Theorem 4.6. The Kunz polyhedon P,, is a translation of C(Z,). Moreover, any numerical
semigroup S in the interior of a face F' of P,, has Kunz poset A(S;m) equal to the Kunz poset
of F.

Proof. As in the proof of [5, Theorem 3.10], the translation C(Z,,) — P, is given by
r T4 (-4, —n),

a fact which can be readily checked by substituting into the defining inequalities of F,,,.

For the second claim, note that if a face ' C C(Z,,) has nontrivial Kunz subgroup H C Z,,,
then some coordinate of the corresponding face F” of P,, must be negative throughout F’. As
such, any face F’ containing semigroups has trivial Kunz subgroup, and so the result now follows
from [5, Theorem 3.10]. L]

The following gives a method to identify semigroups in the group cone C(Z,,) directly.
Corollary 4.7. Fix a point (z1,...,2m-1) € Z’;O_l, let a; = z;m + 1 for each i, and fix a face
F' C P,,. The following are equivalent:

(i) (z1,.-.,2m-1) € F; and
(ii) (a1,...,am—1) lies in the face ' C C(Z,,) corresponding to F.
In both cases, {0, a, . ..,an_1} is the Apéry set of a numerical semigroup.
Proof. This follows immediately upon checking the appropriate facet equations. 0

Notation 2. In analogy with Notation 1, we say S lies in the face F" C C(Z,,) corresponding to
F' if S satisfies the conditions of Corollary 4.7.

The action of Aut(G) on C(G) given by coordinate permutation induces an action on the
face lattice of C((), and consequently on the face lattice of P,,. The following result implies
the property “has a numerical semigroup” is preserved by this action.

Corollary 4.8. A face of P,, contains numerical semigroups if and only if every face in its orbit
under the action of (Zy,)* = Aut(Z,,) on P, contains numerical semigroups.
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Proof. Fix g,h € Z>, with gh = 1 mod m. Suppose S is a numerical semigroup in F
with Apéry set Ap(S;m) = {0,ay,...,am_1}. By Corollary 4.7, a = (ay,...,an_1) lies
in the corresponding face of C(Z,,). Acting on a by § € Aut(Z,,) yields the point ' =
(an, Gz, - - ., Agm-1)1), and scaling a’ by g yields (gan, gasn, . - ., gam—-1)s) in the same face as
a’, where all of the subscripts are taken modulo m. Moreover, we see

ga;, = gth = 1 mod m,

so Corollary 4.7 implies that {0, gas, gass, - - ., gam—1)n} is the Apéry set of some numerical
semigroup in the appropriate face of F,,. O

Corollary 4.9 implies that in classifying the possible posets A(.S; n) for fixed n, it suffices to
consider semigroups with m(.S) = n.

Corollary 4.9. Given a numerical semigroup S and any element n € S, there exists a numerical
semigroup T with m(T) = n and A(T;n) = A(S;n).

Proof. This follows from Theorem 4.4, as the vector difference of KV,,(.S) and the vertex of
P, must have all positive entries, so adding a multiple of this difference to KV, (.5) yields an
integer point with all positive entries. [

Remark 4.10. There are two reasons why a face /' C F,,, may fail to contain any points corre-
sponding to numerical semigroups. The first is that some coordinates are negative throughout
F; such faces are fully characterized by Theorem 3.4. The second is that F' contains positive
rational points but no integer points, a property that is also reflected in the corresponding Kunz
poset; Example 4.11 demonstrates this.

Example 4.11. Let m = 6. The Kunz polyhedron F is obtained by translating C(Zg) by the vec-
tor v = (—%, —%, —%, —%, —%), so Example 3.9 implies P has 11 extremal rays. Of these rays,
only the 2 with vector directions (1,2,3,4,5) and (5,4, 3,2, 1) contain integer points. These
correspond to the rays of C(Zg) whose Kunz posets are total orderings; see Figure 3.2.

The 3 rays of Py that correspond to rays of C(Zg) that are not listed in Figure 3.2 each have
a coordinate that is always negative. For example, in the face v + rR-, with vector direction
r = (1,0,1,0, 1), every vector has second coordinate —%.

The remaining 6 rays of P contain points with all positive entries but still do not contain
integer points. This can be verified numerically from the coordinates of the vector direction of
each ray, but can also be verified by proving that the corresponding posets in Figure 3.2 cannot
occur as the Apéry poset of a numerical semigroup.

(i) The poset for the ray with vector direction (1,2, 3,4,2) has 2 < 4 and 5 < 4, meaning an
Apéry set {0, aq, . .., as } with this divisibility poset would have to satisfy 2a; = a4 = 2as.
This is impossible since as and a5 are distinct modulo 6.

(ii) The poset for the ray with vector direction (1,2, 3, 1,2) poses a similar issue since both
1 < 2 and 4 < 2 must hold.
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(iii) The poset for the ray with vector direction (1,2, 3,2, 1) cannot be the Apéry poset of a
numerical semigroup since such an Apéry set {0, ay, ..., as} would have to satisfy a; =
a1 + as = 3ay as well as ag = a4 + a5 = 3as. This is impossible since a; # as.

(iv) Suppose that the poset for the ray with vector direction (1,2, 1,2, 1) occurred as the Apéry
poset of a numerical semigroup with Apéry set {0, a1, as, as, aq, as}. Since we have ay =
2a; = as + as, either ag < a; < as or as < a; < as. In either case, it is impossible to
have a, = 2a5 = a; + as. This gives a contradiction.

Corollary 4.8 implies the remaining 2 rays of Fj also contain no integer points.

Problem 4.12. Characterize, in terms of its Kunz poset, the conditions under which a given face
F' contains numerical semigroups.

Throughout this section, we only utilize group cones C(G) for cyclic G.

Problem 4.13. Is there an analogue of Corollary 4.7 for C(G) when G is not necessarily cyclic?
In particular, is there some family of semigroups in natural bijection with the integer points in
some translation of C(G)?

5. Faces of the oversemigroup cone

In this section, we give a definition of the oversemigroup cone O,, C R" and explain the cor-
respondence between integer points of O,, and numerical semigroups containing n. We then
give a connection between O,, and the group cone C(Z,, ). Combining this with the results of the
previous section gives a correspondence between O,, and the Kunz polyhedron P,.

Definition 5.1. For n > 2, the oversemigroup cone O,, C R" is the set of points (y1, ..., Yx»)
satisfying

Vi +y; < Yigj, forall 1 <
<

1
Yi +Y; < Yigjn + Y, forall 1l <1

<j<n—1with 14+ 75 <n, and
1<JEn

—1with 1 4+ 7 > n.

We also set notation for a particular face of the cone O,,, defining O/, C R" by
O, = O, N {y, = 0}.

Note that we can view O/, as a cone in R"~*.

Proposition 5.2 ([13, Lemma 4.1]). Fix g,n > 1 with ged(n,q) = 1. Every integer point
y € O, with y,, = q naturally corresponds to a numerical semigroup S containing n and q with
Apéry set
Ap(S;n) ={q—ny, 2¢ —nys, ..., (n—1)g — ny,_1, 0}.
Unlike the Kunz polyhedron, any numerical semigroup S with n € S corresponds to in-

finitely many points in O,,, one for each ¢ € S with gcd(n, ¢) = 1. Some of this redundancy is
handled by the following proposition.
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Proposition 5.3. Fixn > 2. Every y € O,, can be written uniquely in the form

y=y +uy(1,2,...,n)

where y' € O,, and y| = 0. Moreover, if y corresponds to a numerical semigroup S, then y' also
corresponds to S, and y,, € Ap(S;n) if and only if y; = 0.

Proof. Ify € Oy, theny =y —y1(1,2,...,n) € O,, since for i + j < n we have

(i —iy) + (5 —Jy) = vi+y; — @+ )y <y — (04 )0

and for 2 + 7 > n we have

(i —iy1) + (w5 —gy) =y +y; — (i + ) < Wij—n — @+ 7 = n)y1) + (Y — n01).

This proves the first claim. For the second claim, since

ged(y),,n) = ged(yn, — yan,n) = ged(yn, n) =1

we know 3 must correspond to some numerical semigroup S’ under Proposition 5.2. Moreover,
foreachi =1,...,n, we have

iy, — ny; = i(Yn — nyr) — n(y; — iy1) = iyn — nY;

so Ap(S’;n) = Ap(S9;n) and thus S = S’. The final claim follows from Proposition 5.2, since
yn — yan € Ap(S;n) implies that y,, € Ap(S;n) if and only if y; = 0. O

By Proposition 5.3, (1,2,...,n) € O, is the only ray with positive first coordinate. Every
face of O, that is not contained in O/, is simply the Minkowski sum of some face of O, with
the ray (1,2,...,n). This implies that in order to characterize the face lattice of O, it suffices
to characterize the face lattice of O/,. In the theorem below, we choose to think of O/, as a cone
in R*~1,

Theorem 5.4. For each n > 2, the linear map (Yo, . .., yn) — (21,...,2T,_1) given by

TL= ny B2 = 2Yn— Y2, T3 = Y — Y3, eey Tpel = Y — Ynoa
maps O, bijectively onto C(Zy,). Additionally, if a numerical semigroup S corresponds to a point
y in the relative interior of some face F' C O, then applying the action of the automorphism
0 of Ly, with o(1) = y,, to each element of the ground set of A(S;n) yields the Kunz-balanced
poset of the face of C(Z,,) corresponding to F.

Proof. For clarity of notation we set y; = 0 for the rest of the proof. We prove the first part of
the statement by comparing the defining hyperplanes for O/, and for C(Z,,). For each inequality
T +x; = x4 of C(Z,) with 1 <1 < j < n — 1, there are 2 cases:

(i) if2 4+ j < n, then
%yn —Yi — Y =T T T 2 Ty = Hijn — Yitj>

which simplifies to y; + y; < y;4;; and
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(ii) if 2+ 5 > n, then

itj _ _ _ itjn
WUn T Yi Y =X+ X 2 i = Tigjn = = Yn — Yitj—n,

which simplifies to y; + y; < Yitj—n + Un-

Since C(Z,,) and O/, are both full dimensional cones in R™~, this proves the first claim.

Next, suppose S corresponds to a point y in the relative interior of a face F' of O/,. Under
the above transformation, Proposition 5.2 implies Ap(S;n) = {0,nzy,...,nz,_1}, (note that
the elements may not be written in order modulo n). Elements of Ap(S;n) are distinct modulo
n, so each nz; must be positive. This means the Kunz subgroup of the image of F' in C(Z,)
is trivial. However, nx; = vy,, so applying o to each of nxy,...,nx; in the Kunz poset () of
S yields the Kunz poset corresponding to the image of F' in C(Z,). In particular, each facet
equation z; + z; = x;4; of F indicates divisibility as elements of Ap(S;n), so we obtain
o~ (i) 2o i+ ) in Q. O

Remark 5.5. Composing the maps in Theorem 5.4 and Theorem 4.6 pairs each face F' C O/, with
a face F’ of the Kunz polyhedron P,,. We see that F’ contains an integer point corresponding to
anumerical semigroup if and only if F” does, even though integer points of ' do not necessarily
get sent to integer points of F” under this composition.

Example 5.6. The cone Oy C R has 12 extremal rays. One is the span of (1,2,3,4,5,6),
as described in Proposition 5.3. The remaining 11 rays, whose sum equals O/, each equal the
nonnegative span of one of the following primitive integer vectors:

(0,1,1,2,2,3) (0,0,0,0,0,1) (0,1,2,3,4,5) (0,0,1,1,2,3)
(0,0,1,1,1,2) (0,0,0,0,1,2) (0,0,1,2,3,4) (0,0,0,1,2,3)
(0,1,2,2,3,4) (0,0,0,1,1,2) (0,1,1,2,3,4).

Each ray above corresponds to the analogously positioned vector in Example 3.9 after truncating
the initial O coordinate and applying the bijection in Theorem 5.4. The only two that contain
integer points corresponding to numerical semigroups are those generated by (0,0,0,0,0,1)
and (0, 1,2, 3,4,5), since these are the only ones with last coordinate relatively prime to 6.

Much of the structure highlighted in Example 5.6 would not be readily clear without the
explicit bijection in Theorem 5.4, as the Apéry set construction in Proposition 5.2 breaks down
for points whose last coordinate is not coprime to n.

6. Leading coefficients of Ehrhart quasipolynomials

Recall that N,,(g) equals the number of numerical semigroups with multiplicity m and genus g,
and o(n, ¢) equals the number of numerical semigroups containing two relatively prime integers
n and ¢. These functions coincide with quasipolynomials p,,(g) (for g > 0) and H,(q) by
Theorems 1.3 and 1.4, respectively.

The main result of this section is Theorem 6.1, which expresses the leading coefficients in
the quasipolynomials p,,(¢) and H,,(q) in terms of an arbitrary triangulation of the group cone
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C(Zy,). Finding an explicit triangulation is still open (Problem 6.3), and will likely require first
characterizing the extremal rays of C(Z,, ).

Let «y(m) denote the leading coefficient of p,,(¢). In what follows, given a subset P of
Euclidean space whose affine linear span has dimension d, the relative volume of P, denoted
vol(P), is the d-dimensional Euclidean volume of P normalized with respect to the sublattice
of the affine span of P.

For each m > 2, [1, Theorem 4] and Proposition 5.2 imply the leading cofficients of p,,(g)
and H,,(q) are given by

y(m) = vol(C(Zy,) N{x € R™ iy + -+ + 2,1 = 1}) and (6.1)
A(m) = vol(O,, N {z e R™" " : 2, = 1}), (6.2)
respectively, where vol(—) denotes relative volume and || - ||; denotes the ¢;-norm. As stated

previously, both (6.1) and (6.2) use Ehrhart’s theorem [10]. For a different perspective on the
function o(n, ¢) that exploits a bijection between oversemigroups of (n, ¢) and integer points in
a different polyhedron, see [8].

Fix m € Z-» and a triangulation 7 of C(Z,,). For each simplicial cone 7" € T, write

V(T) =vol(T N {z € R™ " : 1 + - + g = 1))

1,1 s Tm—1,1
= L det
— 2 .
(m —2)! H 7l Plmet Tl
(]
for the relative volume of TN {z € R™ : xy + -+ + z,,_1 = 1}, where ry, ..., 7, are

directional vectors of the rays of 7. By [1, Theorem 4], the leading coefficient of p,,(g) equals

vol (C(Zm) N{x € R™ g + -+ + 2y = 1}) = Y V(T).
TeT

The leading coefficient A(m) of H,,(q) is the relative volume of
Q=0,N{zeR™:z, =1}
By Proposition 5.3, () is a pyramid over
Q=0 N{zreR"! 1, =1}
with height L. Under the linear map in Theorem 5.4, the image of Q' in C(Z,,) is
Q" =C(Zm) N {21 =},
and combining factors from each of the above operations, we obtain

vol(Q) = ;VOI(Q’) = mVOI(Q”) = ;vol(mQ").

m(m — 1) mm=t(m — 1)
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The final observation is that for each T" € T, we have
i1

HﬁHl'

V(T) =vol(Tn{z e R™ " 12y =1}) ||

Note that, as a consequence of Theorem 3.4, every nonzero vector on a ray of C(Z,, ) has nonzero
first coordinate. This proves the following.

Theorem 6.1. The leading coefficient of the quasipolynomial p,,(g) is

Ym) = S V(T),

TeT
and the leading coefficient of the quasipolynomial H,,(q) is
1 71
A = V(T —_—
TeT r,€T ’

Example 6.2. Let m = 4. One triangulation of C(Z,4) consists of the cones

T1 :R>0(1,0,1) +R>0(1,271) +R20(172,3> and
Ty =Roo(1,0,1) + Roo(1,2,1) + Ro0(3,2, 1),
which have relative volumes (as defined above)
1 11 113
V(Tl):g—l6 det |0 2 2 :2%1 and V(Tg):% det |0 2 2 :2—14.
11 3 1 11

As such, the leading coefficient of p,(g) is

V(T +V(T) = L

12

and the leading coefficient of the H,(q) is

L 48V (T}) + 16V(T)) = L

192 727

which agree with the computations in [1] and [13], respectively.

Problem 6.3. For each finite abelian group G, find a triangulation of C(G).

7. Computing the Apéry set of a numerical semigroup

In the process of writing this paper, an improved implementation of the Apéry set function was
written for the GAP package numericalsgps [9]. The original implementation, based on the
circle-of-lights algorithm proposed by Wilf [23], enumerates each positive integer, beginning at
the multiplicity m, and stops when all m — 1 positive elements a4, ..., a,,—1 of the Apéry set
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have been obtained. The key idea is that one only needs to enumerate within equivalence classes
modulo m for which a; has not yet been found, and checking if a given integer n = 7 mod m lies
in Ap(S, m) can be done by checking if n = a; + a;_; for some previously obtained elements
aj, a;j_; € Ap(S,m). In this sense, the circle-of-lights algorithm is in fact computing the Apéry
poset of S.

Algorithm 1, in contrast, walks up the Kunz poset instead of the Apéry poset. The Apéry set
elements are obtained starting with the bottom of the Kunz poset and using Proposition 3.10(b)
to check potential cover relations above each new element. New elements are traversed in the
order in which they are encountered, using a queue (first-in-first-out) data structure, and only the
smallest element in each equivalence class modulo m is retained (denoted as a(0), ..., a(m—1)
in the algorithm).

The resulting implementation is particularly effective for numerical semigroups with

(i) “small” embedding dimension, or

(ii) some generators that are much larger than the multiplicity (i.e., those represented by “large
points” in the Kunz polyhedron),

as such semigroups can have long sequences of successive integers outside of Ap(S,m). We
ran calculations for large numbers of randomly chosen numerical semigroups and include a
representative sample comparing the runtimes of Algorithm 1 and the original implementation
in Table 7.1.

Algorithm 1. Computes the Apéry set of a numerical semigroup from its generators.

function APERYSETOFNUMERICALSEMIGROUP(M, Ny, . . . , M)
Initialize a queue @) <= 0
a(0) <~ 0and a(i) < oo foreachi=1,...,m —1

while |Q| > 0 do
Dequeue n < @, disregarding any with n > a(n mod m)
forall g =ny,...,n; do
if n+ g < a((n+ g) mod m) then
a((n4+g) modm) < n+g
Enqueue Q) <~ n+g
end if
end for
end while
return {0,a(1),...,a(m —1)}
end function

Remark 7.1. Algorithm 1 does not make any reference to the Apéry or Kunz posets, but the
underlying idea uses this poset structure. This appears to be relatively common in the numerical
semigroup literature, where other results utilize this additional structure without referring to it
explicitly.
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S GAP [9] Algorithm 1
(1000, 1001) 90 ms 0 ms
(10000, 10001) 6720 ms 10 ms
(27143, 30949, 35207) 52250 ms | 40 ms
(50632, 225750, 249397, 468508) | 176480 ms | 140 ms

Table 7.1: Runtimes for Apéry set computations, each using GAP and the package
numericalsgps [9].
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Appendix: Quasipolynomial data

The number of integer points in the intersection of the group cone C(G) with the hyperplane
Zﬁ'{l x; = g is given by a quasipolynomial Ls(g) of degree |G| — 2. It is known that the
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G Leading coefficient Next coefficient Period
Zs 1/3 - 3
Zy 1/12 - 12
Zs, 1/135 2/45 30
ZLg 71/(2%-35.7) (5-71)/(2%-35-7) 22.32.5.7
L (23-71)/(2°-3*-5%-7) (23-71)/(2°-3%-5%.7) | 22-3-5-7
Zs (113 -108461) (113 -108461) 24.32.5.7-11-13
J(2M 375372 11-13) | /(2M 3653711 -13)
73 1/8 - 2
7z 1/(21 -3 5%) 7/(2M . 5?) 20
72 3001/(2*-3%-5%.72.11) | 3001/(2%-3%.5%.7.11) | 3%.5.7-11
Zy X Ly | 479/ (211 - 37 . 5?) (7-479)/(2' - 39 - 52) 24.3%.5
Table 7.2: Data for L,,(g), obtained using Normaliz [7].
m | Leading coefficient Next coefficient Period Initial g
3 11/3 - 3 2
4 | 1/12 1/2 6 4
5 | 1/135 4/45 30 7
6 | 71/(2*-35-7) (5-71)/(22-35-7) 22.32.5.7 111
7 1 (23-71)/(2°-3*-5%-7) | (23-71)/(28-3%-5%-7) | 22-3-5-7 | 16
Table 7.3: Data for p,,(g), obtained using Normaliz [7].
m | Leading coefficient Next coefficient Period
3 | 1/12 1/2 3
4 | 1/72 1/6 6
5 | 13/(25-3%.5) 13/(2% - 3%) 30
6 |59/(2°-3%.5%) 59/(28 - 3%.5) 60
7 | 231349/(213-37-5%.7) 231349/(21% - 35 . 53) 23.32.5.7
8 | (11-29-383)/(2%.33%.5%.73) | (11-29-383)/(211-33.5%.7%) | 23.32.5.7
9 | (115837 - 30622157) (115837 - 30622157) 24.32.5.7-11
/(22130 .55 . 71 112) /(21837 .55 . 7. 112)
10 | (1321 - 58869143 - 1493426677) | (1321 - 58869143 - 1493426677) | 21-33 - 5.
/(225 . 3165575 . 113 . 13?) /(22431 . 5175 . 113 . 132) 7-11-13

Table 7.4: Data for H,,(q), obtained using Normaliz [7].
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leading coefficient of L(g) equals the (relative) volume of the intersection P of C(G) with

£|1—1 x; = 1, and the next coefficient (when it is constant) equals half the (relative) surface
area of P. Tables 7.2 and 7.3 give coefficient and period data on L (g) and p,,(g), respectively.
Note that it is proven in [1] that the leading coefficient of L (g) with G = Z,, equals the leading
coefficient of p,,(g). We also include in the latter table the initial value N of g for which p,,(g)
coincides with N,,(¢g) forall g > N.

On the other hand, H,,(q) is a quasipolynomial of degree m — 1 whose constant leading
coefficient is described geometrically in Theorem 6.1. If ged(m, q) = 1, H,,,(q) coincides with
o(m, q), the number of oversemigroups of (m, ¢). Table 7.4 gives the top two coeflicients and
period of H,,(g). It is important to note that the period of H,,(q) (on all values) may be strictly
larger than that of o(m, q) (considered only when ged(m, q) = 1).

Examining the data in Tables 7.2 and 7.3 suggests the following.

Conjecture 7.2. The following hold.

(a) For each G with |G| > 5, the coefficients of the two highest degree terms of Lq(g) are
constant, and their quotient equals (1)),

(b) For each m > 4, the coefficients of the two highest degree terms of p,,(g) are constant, and
their quotient equals 2(™; 1) :

(c) Foreachm > 3, p,,(g) = Ny (g) for g > (’”2_1), but p,,(g) # N(g) for g = (m;)
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