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Abstract—An efficient quantum circuit (program) compiler aims to
minimize the gate-count - through efficient instruction translation,
routing, gate, and cancellation - to improve run-time and noise. Therefore,
a high-efficiency compiler is paramount to enable the game-changing
promises of quantum computers. To date, the quantum computing hard-
ware providers are offering a software stack supporting their hardware.
However, several third-party software toolchains, including compilers, are
emerging. They support hardware from different vendors and potentially
offer better efficiency. As the quantum computing ecosystem becomes
more popular and practical, it is only prudent to assume that more
companies will start offering software-as-a-service for quantum comput-
ers, including high-performance compilers. With the emergence of third-
party compilers, the security and privacy issues of quantum intellectual
properties (IPs) will follow. A quantum circuit can include sensitive
information such as critical financial analysis and proprietary algorithms.
Therefore, submitting quantum circuits to untrusted compilers creates
opportunities for adversaries to steal IPs. In this paper, we present a split
compilation methodology to secure IPs from untrusted compilers while
taking advantage of their optimizations. In this methodology, a quantum
circuit is split into multiple parts that are sent to a single compiler
at different times or to multiple compilers. In this way, the adversary
has access to partial information. With analysis of over 152 circuits on
three IBM hardware architectures, we demonstrate the split compilation
methodology can completely secure IPs (when multiple compilers are
used) or can introduce factorial time reconstruction complexity while
incurring a modest overhead (=~ 3% to ~ 6% on average).

Index Terms—Quantum Computing, Transpilation, Split, Obfuscation,
Overhead, Coupling Map, IP theft, Compilation

I. INTRODUCTION

The compilation is an important step to convert the quantum
programs written in high-level gate sets to the low-level (native)
gate sets tailored for the underlying hardware. The compilation is
also key to the success of the program in the actual hardware. A
well-optimized program with fewer gates and less depth can provide
meaningful results of the problem at hand from the real hardware
whereas a poorly optimized program (for identical functionality) can
produce random outcomes from the hardware.

The hardware vendors of quantum computers offer a compiler
for their hardware such as Qiskit compiler from IBM [1], QuilC
compiler [2] from Rigetti, etc. Besides, some 37¢ party software
tools, including compilers like Orquestra [3] and tKet [4], are also
appearing which supports hardware from multiple vendors. As the
quantum computing ecosystem evolves, more 3"¢ party compilers
will emerge offering potentially higher performance. This will entice
users to utilize these services. However, the trustworthiness of 37
party compilers can become a security issue [5].

A quantum circuit can include sensitive intellectual properties (IPs)
such as, the problem being solved, financial analysis, and proprietary
algorithms which must be protected from untrusted third parties. As
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Fig. 1: The proposed split compilation. The sub-circuits could be sent
to the same/different compilers.

pointed out in [5], reliance on untrusted third-party compilers can
expose the quantum circuit to threats such as information theft.

We propose an approach to obfuscate the quantum circuit that
relies on the following observations: (i) the existing compilation
techniques heavily depend on local optimization using windowing
technique i.e., the gates present in the nearest few layers of the
circuit are optimized together [6]-[8]. This is primarily due to the
poor scalability of global optimization methods. Therefore, larger
circuits can be split into smaller sub-circuits without compromising
the optimization quality significantly, and (ii) quantum circuits can
offer significant corruptibility of outputs with few omitted layers of
gates.

Proposed Idea: Based on the observations presented above, we
propose splitting the quantum circuit pre-compilation into two or
more sub-circuits. The splitting could be even (e.g., 50%-50%) or
uneven (e.g., 20%-80%). We expect an overhead since the optimiza-
tion opportunities around the splitting points will be lost (exploits
observation (i)). However, the overhead may not be significant due to
the local optimization used by the compilers. Each sub-circuit omitted
from the original circuit will heavily corrupt the functionality. More
splitting will be beneficial since it will present more combinations to
the adversary to brute force. Finally, the sub-circuits could be sent to
the same untrusted compiler in randomized order (e.g., the order of
the sub-circuits) to impose a high reverse engineering effort. Note,
the adversary lacks the oracle model so he will not be able to validate
his brute-force guess. The sub-circuits will be stitched by the designer
post-compilation. To further increase the adversarial effort, we also
propose another approach where the sub-circuits are sent to multiple
untrusted compilers. Fig. 1 exemplifies this idea further.

Contributions: In this paper we (a) propose split compilation as a
secure circuit obfuscation technique, (b) perform a complete overhead
analysis for multiple splits to be compiled on a single compiler or
distributed among multiple compilers, (c) propose a new attack mode,
where the adversary can use the coupling map of the splits to guess
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Fig. 2: Compilation (transpilation) steps from qiskit compiler. The
dark-colored passes add/remove news gates in the circuit.

the correct order, (d) propose a robust swap router layer to map
physical layout of splits to layouts of each other, (e) coherently justify
the experimental results and conclude.

Paper Organization: In the remaining of the paper, Section II
covers the background for the proposed idea. Section III describes
the threat model and the motivation. Section IV presents the proposed
idea and experimental procedure in detail. Section V contains the ex-
perimental results and corresponding analysis. Section VII concludes
the paper.

II. BACKGROUND
A. Compilation of quantum circuits

1) Gate translation: Before a quantum circuit can be executed
on hardware, it undergoes several steps. The steps, collectively, are
named compilation of quantum circuits (in IBM terminology it is
called transpilation). Fig. 2 shows the steps used in IBM’s qiskit
compiler. Quantum programs are usually written with high-level
gates. Current quantum computers support only a restricted set of
gates known as basis gates (e.g., IBM machines support following
gates {‘ID’, ‘SX’, ‘X', ‘CX’}). Therefore, any high-level
instructions are translated to native instructions of the hardware.

2) Coupling constraint and mapping: Besides instruction-set mis-
alignment, present hardware architectures have another challenge
known as coupling constraint. Fig. 3 demonstrates the constraint.
Fig. 3a shows the coupling graph of IBM’s Vigo architecture where
the nodes represent physical qubits. An edge between 2 nodes
signifies that 2-qubit operation (CX gate) between those physical
qubits are directly allowed. Fig. 3b shows a sample 3-qubit quantum
program that we want to run on the Vigo architecture. To run
the program on the hardware, each program (logical) qubit has
to be mapped to a separate physical qubit. This is known as the
initial layout which describes the starting physical-to-virtual (p2v)
qubit mapping (note, virtual-to-physical mapping renders the same
information). For this example, we assume a p2v mapping of {Q0 —
10, 01 — L1, 02 — L2}. The gate CX LO, L2 from the
program cannot be directly executed with this mapping as there is
no edge in Vigo’s coupling graph between QO (L0) and Q2 (L2)
(Fig. 3c). This is the coupling constraint. To resolve the constraint,
qubits are routed using SWAP operation so that logical qubits with
2-qubit operations become nearest neighbors. Fig. 3d shows a SWAP
gate between Q1 and Q2 which brings LO and L2 closer so that
CX L0, L2 can be applied. Note that, adding a SWAP gate modifies
the p2v mapping. After the SWAP(QL, Q2) the p2v becomes {Q0
— 10, 01 — L2, 02 — L1}. The p2v map after all gates are
finished is known as the final layout.

B. Circuit optimizations

The SWAP operation is not native to IBM architectures, and it is
decomposed using 3 alternating CX gates. Thus, the routing step
introduces more gates in the final compiled circuit. The routing
algorithms in quantum compilers aim to route efficiently to minimize

Not directly executable
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Fig. 3: (a) Coupling graph of ibmq_vigo. (b) A sample quantum
program. (c) Example of physical-to-virtual mapping of the program.
The CX L0, L2 gate cannot be directly executed as the physical qubits
QO and Q2 are not coupled. (d) Adding SWAP to resolve coupling
constraint. SWAP gate modifies the mapping.

the number of added SWAPs. The efficiency of a compiler depends
heavily on the efficiency of the routing process. Besides efficient
routing, compilers also perform several optimizations like gate can-
cellation and/or gate replacement. For example, compilers can cancel
two back-to-back CX gates working on the same set of control and
target qubits or replace a chain of single-qubit gates with a simpler
equivalent gate. The key objective is to reduce the gate count in the
final compiled (machine-executable) circuit.

C. Related work

In the classical domain, there is the concept of split manufactur-
ing [9]-[12] which protects a classical chip from untrusted foundries.
In this approach, the front-end-of-line (FEOL) (transistors) and
the backend-of-the-line (interconnects) are fabricated using separate
foundries and finally integrated into a trusted facility. The functional-
ity of a chip depends on both the transistors and the interconnection
between them. As no single untrusted foundry has information about
both, it protects the chip from IP theft, over-production, etc.

In the quantum domain, security in manufacturing a quantum
computer is not the main concern. Quantum gates of a quantum circuit
are realized using microwave or laser pulses applied on quantum bits.
The underlying quantum computing hardware is the same even for
different quantum circuits run on it. However, the quantum circuits
themselves need protection. As quantum circuits are applied on
generic quantum hardware, the split manufacturing method from the
classical domain is not directly applicable in the quantum domain for
protecting the quantum circuits.

There are several recent works on the security of quantum comput-
ing [5], [13]-[19]. In [14], authors consider an attack model where
a rogue element in the quantum cloud can report incorrect device
calibration data due to which, a user may run his/her program on
an inferior set of qubits. The authors propose inserting test points
in the circuit to detect any malicious change of calibration data.
In [16], the authors assume a similar attack model where a malicious
entity in the cloud can schedule a user circuit to inferior hardware
instead of the requested one. They propose quantum PUFs (QuPUFs)
to authenticate the requested device. A closely related work [5]
obfuscates the functionality of a quantum circuit from untrusted
compilers using dummy gates.

The works in [13], [17] address security issues in a multi-
programming environment where programs from different users run
parallel on the same hardware.
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Fig. 4: Approaches to achieve continuity of p2v mappings between
split circuits.

Another line of work [15] studies watermarking approaches for
quantum circuits, including embedding secret signatures in the de-
composition phase of the compilation. This is performed to verify
the ownership of the IP. Finally, several works exist on the IP/IC
piracy of reversible circuits [18], [19] that aim to protect reversible
IPs from untrusted foundries. Although gate-based quantum circuits
are based on reversible logic, they are not physically fabricated as
mentioned earlier.

III. THREAT MODEL

In this paper, we assume that the compiler package is cloud-based
and hosted remotely by an untrusted third party. We also assume
that the compilers involved cannot be trusted, or there could even
be some rogue adversary who could attack the netlist to retrieve
sensitive information from the quantum circuit. As a result, the user
that sends the sensitive unprotected circuit to the compiler may be
suspect of unwanted theft, counterfeiting, and many such adversarial
problems. For example, the adversary can get the sensitive outputs
of a quantum circuit by running it, and this can potentially reveal
much more information about the algorithm it was designed for or
its functionality. Hence, this could prove to be a significant problem,
as many such users look towards third-party sources to optimize
their work, make it less dense and less complex, and more efficient
in nature, both in classical and quantum worlds. This paper, thus,
proposes a novel idea in the field of obfuscation or hiding the
functionality of the insecure quantum circuit before it is sent to such
compilers or other sources. More details of this attack model are also
provided in [5].

IV. PROPOSED SPLIT COMPILATION PROCEDURE

In this section, we provide a detailed procedure of split compila-
tion. These split partial circuits are sent to the compiler in random
order to hide the true original circuit’s complete structure from the
rogue adversary. These circuits are later stitched or combined post
transpilation to recover the full compiled circuit. A basic swap layer
algorithm is designed in this paper to synchronize the coupling maps
between the two splits appropriately to ensure data integrity.

The idea of split compilation is to split a high-level quantum circuit
into two or more parts and send them to a compiler or multiple
compilers. If a single compiler is used, then the split circuits are sent
to the compiler at different times and in random order. If multiple
compilers are available, then the split circuits can be sent without
risking security.

The proposal hinges on two key questions: (i) What is the overhead
of the splitting? and (ii) How secure is the solution? We address

both questions by performing overhead analysis in terms of gate
counts for 2 to 8 splits over 152 circuits into three different IBM ar-
chitectures i.e., 5-qubit ibmq_vigo (vigo), 14-qubit ibmq_melbourne
(melbourne)', and 20-qubit ibmq_almaden (almaden).

We construct many 5-qubit, 10-qubit, 14-qubit, and 20-qubit
random circuits of varied depth (from 10 to 100 at an interval of 5)
to perform the overhead analysis of the split compilation. The 5-qubit
circuits are compiled using coupling graphs of all three architectures
whereas 10 and 14-qubit circuits are compiled for both melbourne
and almaden, and 20-qubit circuits are compiled for almaden only.
This approach covers a wide range of circuit width (number of
qubits), depth, and architectures.

We introduce a metric named weighted gate count (W) for the
overhead analysis. Not all gates have the same implementation cost
and thus trivially adding all types of gates is not a fair representation.
In IBM architectures, the native (basis) gates are *ID’, ‘RZ’,
‘SX’, ‘X’ and ‘CX’. The high-level circuit is compiled into these
gates. We use the following equation for W:

W = Weg.n(cx) + Wz.n(T) + Wez.n(sT)
= 1.0.n(cx) 4+ 0.2.n(x) + 0.1.n(sz)

The weight of 2-qubit CX gate is set to 1.0 whereas the weight
of 1-qubit SX gate is set to 0.1. This is primarily because 2-qubit
gates typically have an order of magnitude higher gate error and gate
time than 1-qubit counterparts (e.g., the average 2-qubit CX error in
the Melbourne architecture is 3.45 x 102 where average 1-qubit SX
gate error is 1.65 x 1072).

An SX gate contains one X, > pulse whereas an X gate has
two X /o pulses. Therefore, the X gate takes 2X longer to run and
typically incurs 2X more error than the SX gate. Therefore, we set
wz to 0.2. Now, RZ is a virtual gate [20] which takes zero physical
time and incurs no error. Therefore, it is omitted from the weighted
gate count equation (w,, = 0).

We compute weighted gate counts for both the original circuit and
the split combined circuit. Then, we compare and report the percent-
age change in weighted gate counts between two implementations.
Between splits, the continuity of p2v qubit mapping (layout) needs
to be maintained for data integrity. There can be two approaches to
achieve this (Fig. 4).

Approach-1: In this approach, the user needs to feed the final
layout of the previous split as the initial layout of the next split.
In that way, the continuity of maps and integrity of computation is
preserved.

Approach-2: In this approach, each split starts with its initial
layout. After compilation, the user collects the compiled circuits and
adds a SWAP layer in between compiled splits. The SWAP layer
converts the final layout of the previous split to the initial layout of
the next split, and thus, ensures continuity and integrity.

We propose a greedy algorithm for the SWAP layer. The SWAP
layer will introduce more gates in the combined circuit, potentially
increasing the overhead. We perform an overhead analysis with the
added SWAP layer. We discuss the security implications of approach—
1 and approach-2 in Section VL

Example 4.1: Consider the coupling graph of the vigo ar-
chitecture (Fig. 5). The final layout (source layout, S) of the
split-1 is {Q0 — L3, Q1 — L4, Q2 — L1, Q3 — L3,
Q4 — L0}. The initial layout (target layout, 7)) of the split—2

! Although the last version of the melbourne architecture had 15 qubits, we
used an older version with 14 qubits.
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Algorithm 1: Create SWAP layer

Input: hardware coupling graph (G), source layout (S), target
layout (T)
Output: SWAP layer (SL)

1 interim_layout <— S;

2 remaining_nodes < all out of position nodes in S;

3 num_swaps < 0;

4 while interim_layout # T do

5 min_distance < o0;

6 for node € remaining_nodes do

7 src <— node position in interim layout;

8 dest <— node position in target layout;

9 dist < shortest distance(G, src, dest);

10 h_dist « heuristic_distance(G, src, dest);

1 total_dist < dist + h_dist;

12 if rotal_dist < min_distance then

13 min_distance = dist;

14 move_from = src;

15 move_to = dest;

16 end

17 end

18 simple_path <— shortest_simple_path(G, move_from,
move_to);

19 Add SWAPs in SL;

20 distance <— edges in the simple_path;

21 num_swaps += (2 x distance - 1);

22 update interim_layout;

23 update remaining_nodes;

24 end

Vigo coupling graph

Source layout

Target layout

dist = 1
h_dist =
3(L0)+0 (L1) + 2 (L2)
+2(L3) +3(L4) =10
total_dist =1+ 10 =11

dist = 2
h_dist =
1(LO) +1(L1)+2(L2)
+2(L3)+0(L4)=6
total_dist=1+6=7

Fig. 5: An example of creating a SWAP layer using the Algorithm 1.

is {0 — L0, Q1 — L1, Q2 — L2, Q3 — L3, Q4 —
L4}. The objective is to go from the source layout to the target
layout using as few number of SWAPs as possible.

All logical qubits in S are out of position from 7', and thus,
remaining_nodes = {L0O, L1, L2, L3, L4}.

The algorithm iterates over each qubit in the remaining nodes and
computes the shortest distance (dist) from its current position to
the target position. Besides the shortest distance, the algorithm also
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Fig. 6: Trend in increase and decrease overhead (%) for approach-1
with respect to the different sized circuits (like 5q, 10q, 14q and 20q).

computes an approximate heuristic distance (s_dist). When one qubit
is moved, it changes the position of other qubits as well. Thus moving
a qubit closer to its target position may push other qubits farther from
their respective targets. The heuristic distance computes the aggregate
distance of other qubits from their targets for an intended SWAP
operation. The total distance is computed by adding the shortest
distance (dist) and the heuristic distance (h_dist). After iterating over
all remaining nodes, the algorithm picks the node with the lowest
total distance for SWAP insertion and updates the interim layout.

Suppose, the algorithm selects L1 first. Its current position is
02 and target position is Q1. Therefore, the shortest distance (dist)
between the nodes is 1. Now, swapping Q1 (L4) and Q2 (L1) will
move L1 to its target position (Q1) but in the process will move L4
farther from its target position (Q4). This is captured in the heuristic
distance (h_dist). Therefore, the h_dist is 10, and total distance for
moving L1 is 14+ 10 = 11.

Consider, L4 (Q1) is selected in the next iteration. Moving it to
the target location (Q4) will need swapping it with LO. dist for this
swap is 3. The heuristic distance after this movement is 6. Thus, the
total distance is 1+6 = 7. As it is lower than previous min_dist (11),
min_dist is updated to 7, candidate is updated to L4 (new move_from
= Q1 and move_to = Q4).

The for loop will iterate over all the remaining nodes, and the node
with the smallest total_dist will be the selected movement. From this
exercise, L4 from the source layout is selected to move from Q1 to
Q4. The simplest movement path for this is Q1 — Q3 — Q4. It
requires 2 swaps to move L4: SWAP(Q1, Q3) and SWAP(Q3, Q4),
and 1 additional SWAP(Q3, Q1) to move to LO to QI (i.e., to L4’s
initial position). These SWAPs are added to the swap layer (SL), and
the num_swaps is updated.

After this interim layout is updated to {QO — L3, 01 — LO,
02 — L1, Q3 — L2, 04 — L4} and L4 is removed from
the remaining_nodes. As the interim layout is not the same as T’
yet, the while loop will continue with the updated interim layout
and remaining nodes.

V. RESULTS AND DISCUSSIONS
This section gives an elaborate description of the experimental
results and the consequent analysis with respect to overhead.
A. Simulation Setup
We use the open-source quantum software development kit from

IBM (Qiskit) [21]? for our simulations. The software runs on Ubuntu

2We do not claim the Qiskit, tKet, QuilC compilers to be untrusted. Qiskit
compiler is used for demonstration and analysis purposes only.
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between splits for p2v mapping.

20.04 virtual machine with 8 GB RAM on an Intel Core i7-
9700K (3.60GHz) host (Windows 10). We use over 152 circuits
containing different gate operations and different sizes of qubits- 5,
10, 14, and 20 qubits. We use the ibmq_vigo, ibmq_melbourne, and
ibmq_almaden architectures for all the experiments performed [21].

B. Overhead analysis

1) Approach—1: We present the overhead of split compilation in
terms of % difference of weighted gate counts between the original
circuits and split combined circuits.

%Overhead — W (split combined) — W (original circuit)

W (original circuit) M
Fig. 6 shows distribution of these % overhead values for various
circuit widths (5, 10, 14, and 20) and for 2 splits. We observe negative
overhead i.e., weighted gate counts can drop in the split combined
circuit for ~ 47% test circuits.

The remaining circuits show small increases in gate count. From
the box-plots, we can observe that the majority of the circuits show
a percentage overhead of within 5% with an average overhead of 3%
across different circuit sizes. The highest overhead is =~ 10%.

We also plot the overhead trend for a various number of splits
ranging from 2 to 8 (Fig. 8). The trend shows the average overhead
remains stable across a various number of splits.

2) Approach—2: For approach—2, we plot results from 5-, 14-, and
20-qubit circuits to force possible worst-case overheads on the 3 IBM
architectures (Fig. 7). The SWAP layer will have more SWAP gates
if, (i) there are many displaced qubits between the final layout and
the initial layout, and (ii) connectivity between the physical qubits
is sparse. These are manifested in the boxplot for 20-qubit circuits
as they show the highest mean overhead (9.5%) and spread (o =
7.36) (max =~ 28%). Between using same final and initial layout
(low overhead) and using completely independent layouts, a mixed
approach can be adopted where a certain number of qubits in the final
layout will be kept the same and the remaining qubits will be shuffled
to get the initial layout for the next split. We re-run the compilation
for 20-qubit circuits with the mixed approach where 10-qubits are
shuffled and other 10-qubits are kept the same in the final layout.
The results show that the mean, the standard deviation, and the max
value of the overheads are 4.93%, 3.13%, and 12.7% respectively.
This is a significant drop from the previous values. We show that
even with 10 shuffled qubits it can lead to high reconstruction effort
on the adversary’s end.

3) Asymmetric split: We also perform overhead analysis for asym-
metric splits. Equally split parts may give some clue to the adversary
about which parts are related. Therefore, the original circuit can be

Splits | Mean Std Max % ckts
60-40 37 3.6 13.22 | 41.77
40-60 34 3.02 | 12.72 | 43.42
80-20 3.2 267 | 1252 | 44.74
20-80 | 4.54 3.37 | 17.48 | 44.77

TABLE I: Asymmetric splits statistics. The results show the asym-
metric split incurs a low overhead.

Overhead trend
w/number of splits

Overhead trend
w/number of splits

@ Average
4 Maximum .

LIPS PO I )

-
[$)]

Overhead (% increase)

» >

-
Overhead (% decrease)

S

-

-

*

-

¢ ® Average

4 Minimum

2 3 456 7 8
# of splits

2 3 456 7 8
# of splits

Fig. 8: Overhead trend with various number of splits. The average
overhead remains stable over different number of splits.

split unequally where each part will have a different number of layers.
The Table I shows statistics for several asymmetric splits (60%-
40%, 40%-60%, 80%-20%, and 20%-80%). We present the result
for the increase in % overhead as the decreased overhead is favorable.
Asymmetric splits also show low overheads with average overhead
ranging from ~ 3% to ~ 4.5% with a tight spread (standard deviation
~ 2.6% to ~ 3.6%).

C. On positive and negative overhead

From the overhead analysis, we observe that roughly 50% circuits
show an increase in weighted gate count while approximately 50%
circuits show a decrease. We identify that pass—4 (routing using
SWAP) is the primary factor behind the increase or the decrease in
gate counts accounting for more than 90% of the additional/removed
gates.

Theoretically, considering the whole circuit should give the best
(least) number of SWAPs. However, globally-optimized routing using
exact methods like (ILP) [7] and satisfiability modulo theorem (SMT)
solvers [22] scales poorly as the problem is NP-complete [23],
[24]. Therefore, more scalable approaches resorted to heuristics
methods [6], [8].

Heuristic algorithms also include a look-ahead capability which
enables them to consider a circuit as a whole. However, the look-
ahead capability in heuristic algorithms is approximate (to accelerate
the search). Therefore, increasing the look-ahead window up to the
whole circuit does not always guarantee the best heuristic condition.
For example, Fig. 9 shows the number of SWAPs with varied
look-ahead window sizes for a circuit. The results clearly show
that increasing the look-ahead window size does not provide a
monotonous trend and the window size of 1 resulted in the lowest
overhead.

The above discussion establishes that with scalable heuristic rout-
ing algorithms, considering the whole circuit does not necessarily
have an advantage over partial circuits. Besides, the heuristic nature of
the routing algorithm also contributes to the bipolar overhead values.
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4 Overhead trend with lookahead window size
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Fig. 9: Look-ahead trend in the SABRE [6] routing algorithm. An
increased lookahead window size does not guarantee a lower number
of SWAPs as it computes an approximate cost for better scalability.
Window sizes 4 to 7 are omitted as they do not show any overhead.

D. Design knobs for reducing overhead

In the previous section, we presented overheads for a collection
of circuits for certain compilation conditions. We explore few pa-
rameters to reduce the overhead for the worst corner cases e.g.,
routing window size, asymmetric split, and the number of shuffled
qubits (for approach—2). The user can split-compile a circuit with few
combinations of these parameters and select the combination that
provides the least weighted gate counts. However, checking many
options will increase the compilation cost for the user. Therefore,
we prescribe the following sequence to reduce the overhead: change
the number of shuffled qubits — increase window size at a step of
2 — check the asymmetric split starting with 20% — 80% (then,
40% — 60%, 60% — 40%, and 80% — 20%).

VI. SECURITY ANALYSIS

For security analysis, we consider a single untrusted compiler and
multiple untrusted compilers.

A. Scenario—1: Single untrusted compiler

In this case, the user sends the split circuits to the compilers at
different times. If all the splits are sent to the untrusted compiler
together, an adversary can try to correlate the parts and join them
to reconstruct the full circuit. Suppose, approach—1 is followed for
the split compilation i.e., the split-2 is sent for compilation with an
initial layout same as the final layout of the split—1. In such a case, an
adversary can trace back his/her compilation queue and find which
circuit matches the layout. After finding the match, an adversary
can join the circuits to get the full version. This search will take
linear time, O(k) where k is the number of n-qubit circuits in the
compilation queue in a time window.

In approach-2, the split—1 final layout and the split-2 initial layouts
are independent of each other. Therefore, any n-qubit circuit becomes
a potential candidate. By adopting the approach-2, the complexity
of circuit reconstruction can be increased. Besides, for an n-qubit
circuit, there can be n! permutations for the initial layout of split—
2. Therefore, the number of options an adversary needs to check to

reconstruct will be k x n!. If there are more than 2 splits the options
s—1

expands even more, k X H n! (s = number of splits). We present

s=1
several numerical values for various choices of s, k and n in Table II:

s—1
# of Splits (s)  Queue size (k)  # of qubits (n) k x H n!
s=1

2 1 5 120

3 1 5 14,400

4 1 5 1,728,000
2 1 10 3,628,800
3 1 10 ~ 1.3 x 1013
2 1 14 ~ 8.7 x 1010
3 1 14 ~ 7.6 x 1021

TABLE II: The possible number of options an adversary needs to
reconstruct a full circuit.

The numerical analysis shows that the number of possible options
explodes for a higher number of qubits in circuits. For circuits with
a smaller number of qubits such as, 5-qubit, splitting the circuit
into more than 2 parts can increase the reconstruction effort for an
adversary.

B. Scenario—-2: Multiple compilers

Usage of multiple compilers makes the split compilation inherently
secure since a single compiler only has partial information about the
circuit at all times. An adversary can try reconstructing the missing
layers by selecting gates from a design gate-set and placing them on
different combinations of qubits. For that, the adversary needs three
pieces of information: (i) a design gate-set (G) which the user used
to design his/her circuit, (ii) number of missing layers (L) in the
circuit and (iii) number of qubits in the circuit. Except for item—(iii),
it is unlikely that information about missing layers and the specific
design gate-set will be available to the adversary. Therefore, the
split compilation with multiple compilers becomes inherently secure.
However, we take a pessimistic stand (from the user perspective,
optimistic for adversary) and assume the adversary has all 3 pieces
of information. Using numerical examples we show that even for
such a pessimistic case it introduces a prohibitively large effort on
the adversary’s end.

Example 6.1: Consider an adversary aims to reconstruct a 5-qubit
circuit with a design gate set containing only 2-qubit {CX}. Besides,
consider there can be only 1 gate in a layer. Therefore, there can be
"p. o =5P, =20 possibilities (n = number of qubits in the circuit, r
= qubits in the selected gate) to create a single layer. If there are L
missing layers, the number becomes ("P.)" = 20”. For example,
with L = 5, this value becomes 3.2 x 10°. However, it is unlikely
that the design gate set will contain only 1 gate. In theory, any unitary
operation can be a quantum gate, and therefore, the size of the design
gate set can be large. For an extended gate set G the number of
choices becomes (3", ™P.)". Considering an optimistic case for
the adversary with only 2 types of gates in the set {CX, CCX}, a
5-qubit circuit, and 5 missing layers, the number options becomes
A2 7.7 x 10%. It will become even worse with a typical larger design
gate-set.

VII. CONCLUSION

Sensitive IPs contained in the quantum circuit such as algorithms,
data, financial or other proprictary information, can be exposed
to adversarial threats such as stealing, counterfeiting, or reverse
engineering during compilation at an untrusted third party. This paper
aims to secure the quantum circuits by splitting them and sending the
subcircuits to single or multiple compilers. We analyzed 152 circuits
on three IBM hardware architectures to evaluate the proposed idea.
Our results indicated a modest overhead of 3%-6% on average.
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