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Let p be prime and X be a Haar-random n X n matrix over
Zp, the ring of p-adic integers. Let Pi(t),..., Pi(t) € Zp[t] be
monic polynomials of degree at most 2 whose images modulo
p are distinct and irreducible in F[t], where F, denotes the
finite field of p elements. For each j, let G; be a finite module
over Zy[t]/(P;(t)). We show that as n goes to infinity, the
probabilities that cok(P;(X)) ~ G; are independent, and
each probability can be described in terms of a Cohen—Lenstra
distribution. We also show that for any fixed n, the probability
that cok(P;(X)) ~ G, for each j is a constant multiple of the
probability that cok(Pj(X)) ~ G;/pG; for each j, where X
is an m X n uniformly random matrix over IF,. These results
generalize work of Friedman and Washington and prove new
cases of a conjecture of Cheong and Huang.
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1. Introduction

Throughout this paper, let p be a prime. For a commutative ring R, let Mat, (R)

denote the set of n x n matrices with entries in R and let I,, denote the n x n iden-
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tity matrix. The Haar measure on the additive group Mat,(Z,) = Z , with respect
to its compact p-adic topology, allows one to choose a random matrix X € Mat,(Z,).
Let cok(X) denote the cokernel of X. In [5], Friedman and Washington proved that the
probability that cok(X) is isomorphic to a fixed finite abelian p-group G converges to
|Aut(G)| 7 [I;2,(1 — p~%) as n — oo. In particular, this probability is inversely propor-
tional to the size of the automorphism group of G. For odd p, this probability is the one
given in an influential conjecture of Cohen and Lenstra on the distribution of p-parts of
class groups of imaginary quadratic fields, first introduced in [2]. Motivated by function
field analogues of the Cohen—Lenstra conjecture, Friedman and Washington also proved
that

o0

1 .
li Prob k(X —I,)~G)= —— | [1-p7"),
oo xeci(i(zp)(co ( )=C) [Aut(G)| E( o

that is,

. cok(X) =0,
nh—>ngo Xel\f/g?nb(Zp) (COk(X I )’i >

( lim  Prob  (cok(X) = O)) ( lim  Prob  (cok(X —1I,) ~ G)) .
n—00 X Matn (Z,) n—00 X EMaty (Zp)

Our first main theorem is a generalization of these results. For a commutative ring R
and an R-module G, let Autr(G) denote the group of R-linear automorphisms of G.

Theorem 1.1. Let Pi(t),..., Pi(t) € Zy[t] be monic polynomials of degree at most 2 whose
images modulo p are distinct and irreducible in Fy[t]. For each j, let G be a finite module
over Zp[t]/(Pj(t)). We have

\ i

cok(P; (X))

. G
lim Prob ( forléyélj)

n—00 X eMaty, (Zp)

l
= (1 _p—ideg(Pj)) )
Jl;[l |Autzp[t1/<P (G5l <l—1

There are explicit formulas for the sizes of the automorphism groups appearing in this

e

result. We give one such formula in Lemma 3.7 and another in the discussion directly
following it.

Theorem 1.1 may be surprising to the reader because if we take | = 2 with Py(t) =¢
and Po(t) =t — 1, then for any n, many events regarding the matrices P;(X) = X and
Py(X) = X — I, are dependent as the entries of X completely determine the entries of
X — I,, and vice versa. Nevertheless, Theorem 1.1 shows that, for example, the event
cok(X) ~ Z/pZ becomes independent from the event cok(X — I,,) ~ Z/pZ as n — cc.
Theorem 1.1 also proves many new cases of a conjecture of Cheong and Huang [1,
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Conjecture 2.3]. We note that the conjecture needs to be slightly modified from their
version, as explained below. In [1, Theorem C], Cheong and Huang proved Theorem 1.1
when Gy = --- = Gj—1 = 0 and deg(P;) = 1, so our result is a significant improvement
of theirs.

Conjecture 1.2 (cf. [1, Conjecture 2.3]). The conclusion of Theorem 1.1 holds without
specifying any conditions on the degrees of Pi(t),..., P(t) € Zy[t].

Remark 1.3. Conjecture 1.2 is stated slightly differently in [1, Conjecture 2.3]. In that
version, each module G, over Z,[t]/(P;(t)) is only assumed to be a finite abelian p-group.
We note that cok(P;(X)) has a Z,[t]/(P;(t))-module structure where the action of ¢ is
given via left multiplication by X. This implies that some finite abelian p-groups do
not arise as cok(P;j(X)) for any X. For example, if deg(P;) > 1, then cok(P;(X)) is
a vector space over F,[t]/(P;(t)), so dimp, (cok(P;(X))) is a multiple of deg(P;), where
X € Mat,, (F,) is the image of X modulo p. Therefore, we see that cok(P;(X)), considered
as a finite abelian p-group, cannot be isomorphic to Z/pZ. As noted in [1, Remark 2.2]
or [2, Example 5.9], there is a Cohen—Lenstra distribution on the set of isomorphism
classes of finite modules over any DVR whose residue field is finite, that is, a distribution
in which each module appears with frequency inversely proportional to its number of
automorphisms. One may check that Z,[t]/(P;(t)) is indeed a DVR with its unique
maximal ideal generated by p and its residue field is isomorphic to Fy[t]/(P;()). We see
that Conjecture 1.2 is a natural correction of [1, Conjecture 2.3]. This change affects
only Conjecture 2.3 in [1], not any theorems in that paper.
Let G be a finite module over R = Z,[t]/(P;(t)). Since R is a PID, we have

G = Zp[t] /(P (1)) x - x Zy[t]/ (P (£)*),

for some partition A = (A1,..., A.). In this case we say G has type A. Using this correspon-
dence between finite R-modules and partitions, we can check that any finite R-modules
G and G are isomorphic as modules over R if and only if they are isomorphic as finite
abelian p-groups. We will use this observation in our proofs without mentioning it again.

Theorem 1.1 follows from the following stronger result that holds for any fixed n €
Z =1, which is also a generalization of a result of Friedman and Washington in [5]. Let
P(t) € Z,[t] be a monic polynomial whose reduction modulo p is irreducible in F,[¢] and
let G be a finite module over Z,[t]/(P(t)). Define

T pdea(P) (G) = dim]deeg(P) (G/p@G),

where we identify Facer) = Fp[t]/(P(t)).
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Theorem 1.4. Let Pi(t),..., Pi(t) € Zy[t] be monic polynomials of degree at most 2 whose
images modulo p are distinct and irreducible in F,[t] and let ¢; = pieePs) - For each j,
let G; be a finite module over Zy[t]/(P;(t)). We have

Prob cok(P;(X)) ~ G, _
X €Mat,, (Z,) for1<j < l

rq,(G5)? 7q; (G;) i =
H q;" LY (—-q7)? Prob cok(Pj(X)) ~ G, /pG; .
|Autzp[t 1/(P; (t))(G )| XeMat, (Fp) Jor1<j <l

Remark 1.5. Theorem 1.4 is trivial when n < 2221 dimg, (G /pG;) since each side of the
equality is 0. This follows from the discussion of the basics of the F,[t]-module structure
of a matrix X € Mat,,(F,) given at the start of Section 3.3 and the fact that cok(P;(X))
(mod p) =~ cok(P;(X)).

Theorem 1.4 follows from the following enumerative result for matrices in
Mat,, (Z /pN+1Z) with a fixed reduction modulo p.

Theorem 1.6. Assume the notation and hypotheses in Theorem 1.}. Fix any X €
Mat,, (Fp,) such that for each 1 < j <1, we have

dimp, (cok(P;(X))) = rq, (Gy).
Choose any N € Z>q such that pNG; =0 for 1 < j <1. Then

X € Mat,(Z/pN*17Z): .
1 Tq; (GJ) Tq; (GJ) 1 —1\2
4 cok(P;(X)) ~ G, _ N T Y IL2r (A—-q)
for 1<j <l 1 1Autz e ) (G
and X = X (mod p)

In particular, the left-hand side does not depend on the choice of X € Mat,, (F,).

Conjecture 1.7. The conclusion of Theorem 1./ holds without specifying any conditions
on the degrees of Pi(t),...,Pi(t).

Conjecture 1.8. The conclusion of Theorem 1.6 holds without specifying any conditions
on the degrees of Py(t),..., Pi(t).

Remark 1.9. Conjecture 1.7 implies Conjecture 1.2 in the same way that Theorem 1.4
implies Theorem 1.1, and Conjecture 1.8 implies Conjecture 1.7 in the same way that
Theorem 1.6 implies to Theorem 1.4. When this paper was nearly completed, we were
surprised during personal communication with Jungin Lee that Conjecture 1.2 can be
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proven with a different method. This argument now appears in Lee’s preprint [6]. How-
ever, Lee does not prove Theorem 1.4 or Theorem 1.6, and Conjectures 1.7 and 1.8
remain open.

Friedman and Washington prove the special case of Theorem 1.6 where [ = 1 and
deg(Py) = 1. Our proof of Theorem 1.6 is based on theirs but involves additional inputs
related to the Smith normal form and the minors of a matrix. We study the conditions
on the entries of a matrix over Z/p™ T1Z that determine whether or not its cokernel is
isomorphic to a particular finite module G. We then apply elementary operations for
block submatrices, which we summarize in Lemma 3.4, so that we can apply the [ = 1
case multiple times to prove Theorem 1.6.

There are several approaches to understanding the distribution of cok(X) for X €
Mat,,(Z,) that have appeared since the original result of Friedman and Washington. One
approach that plays a major role in other work on cokernels of families of random p-adic
matrices is the method of moments where one studies the expected number of surjections
from cok(X) to a fixed finite abelian p-group. See [9], [3, Section 8], and [10,11] for more
on this perspective. Evans gives a Markov chain approach to this problem in [4]. Van
Peski gives a new approach to this result in his work on cokernels of products of p-adic
random matrices in [8]. It is not immediately clear how to adapt any of these approaches
to study cases of Theorem 1.1 where [ > 1, or where | = 1 and deg(P;) = 2.

2. Theorem 1.6 implies Theorem 1.4 and Theorem 1.4 implies Theorem 1.1
We begin this section by recalling two key lemmas from [1].
Lemma 2.1 ([I], Lemma 4.3). Let | € Z>1 and G1,...,G; be finite abelian p-groups.

Choose any N € Zxq such that pN Gy = -+ = pNG; = 0. For any monic polynomials
fi(t), ..., fi(t) € Zp[t] and n € Z>1, we have

b [(CORHED =G cok(f;(X)) ~ Gy
X eMat, (Z,) for1 <5< X eMat, (Z/pN+17) for1 <5<

The next result follows from [1, Theorem 2.10] and [1, Lemma 5.3].

Lemma 2.2. Let | € Z>1, 11,...,11 € Zxo, and Py(t),...,P/(t) € Fy[t] be distinct irre-
ducible polynomials. We have

lim  Prob dimg, 1 (p, (1) (cok (P4 X)) =
n—00 X eMat, (F,) for1<j <l

7r deg(P;) H ( p—ideg(Pj))
= H 1(1 _p—zdeg(PJ))2 :
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Proof that Theorem 1.6 implies Theorem 1.4 and Theorem 1.4 implies Theorem 1.1.
Throughout the proof, we write R; = Z,[t]/(P;(t)) and g¢; := pieFi) so that
F,, = F,[t]/(P;(t)). By applying Lemma 2.1, we see that it is enough to prove the
desired statements with Mat,, (Z/pN*1Z) in place of Mat,,(Z,). Moreover, as explained
in Remark 1.5, we may assume that n > 2221 dimg,, (cok(P; (X)).

Theorem 1.6 implies that

X € Mat,(Z/pNH1Z)
# cok(P;(X)) ~ G =
for1 <5<

! 7qJ (G ) H:ijl(GJ)(l B ;1)2 X S Matn(Fp) :

H - -4 cok(Pj(X)) ~ G;/pG;
o |[Autg, (G)| for 1 <5<

Dividing by p®V+1n* = #Mat,,(Z/pNT1Z) and noting that #Mat,,(F,) = ", we have

Prob cok(P;(X)) ~ G,
X €eMaty, (Z/pN+1Z) for 1 <5< l
X € Mat,,(F,) :
# ¢ cok(P;(X)) ~ G;/pG;

_ ﬁ ’r‘q] (G ) H::l(cj)(l _ qj_i)2 fOI‘ 1 < j < l
j=1 |AutRj (Gj)l #Matn (]Fp)
ra; (G)? 17a(Gy) . .
_ H [z -} o [ cok(P(X)) = Gy/pG;
paie |Autr, (G;)| XeMat,, (F,) for 1 <j <1 ’

so Theorem 1.4 follows.
Next, assume Theorem 1.4. Applying Lemma 2.2 with r; = r,;(G;) shows that

n—00 X cMat,, () for 1 <7<l rq;(Gj)

J=1 [LZ (- q;i>2

Starting from the statement of Theorem 1.4, applying Lemma 2.1 and then taking n — oo
implies that

Y 1 _7’q-(Gj)2 00 i
. ~ . . Y C 1—q°
lim Prob (COk(PJ (X)) = G;/pG; ) — H 4; IT=i( 4; )

lim Prob COk(P'(X
n—o00 X eMat,, (Z/pN+1Z) for1 <y

. Z
N R
TQ
~—

ra;(G3)? 1ra; (G))

H L 70— g " TR0 -7
= , ) rq; (Gj) —i
[Auty, (G;)] [LE 7 (1 —q?




642 G. Cheong, N. Kaplan / Journal of Algebra 604 (2022) 636—663

l
E[AutR |H1_q ’

so Theorem 1.1 follows. O
3. Proof of Theorem 1.6 whenl =1

In this section we prove Theorem 1.6 when [ = 1.
3.1. Useful lemmas

When [ = 1 and deg(P1) = 1, we counsider the following more general version of
Theorem 1.6.

Lemma 3.1. Let (R,m) be a complete DVR with finite residue field R/m = F,, let G
be a finite R-module, and choose any N € Zxqo such that mNG = 0. For any a €
R/mN*1 n € Zso, and X € Mat,(F,) satisfying cok(X — al,) ~ G/mG, where & €
F, = R/m is the image of o modulo m, we have

X € Mat,(R/m"N+1): ) qrq(G)2 Hf“q(G)(l —q1)?
# B el = G o = N Tt
and X = X (mod m) R

where ry(G) := dimg, (G/mG).

Lemma 3.1 can be deduced from the arguments introduced by Friedman and Wash-
ington in [5] although they only discuss the case R = Z,. In this section, we give a
different proof of this result. We need to apply this more general version of Lemma 3.1
in our proof of Theorem 1.6 when at least one of the polynomials P;(t) has degree 2.

The following lemma, which we learned from personal communication with Jungin
Lee, is crucial to our proof of Theorem 1.6 when at least one of the polynomials P;(t)

has degree 2.

Lemma 3.2 (Lee). Given m € Zxq, let P(t) € (Z/p™Z)[t] be a monic polynomial of
degree d. Consider

= (Z/p" D))/ (P() = Z/p"L @ UZ/p"L) ® - &t~ (Z/p"L).
Fiz X € Mat,(Z/p™Z). The map

(Z/pm™zZ)" Sy R"
W — cokr(X —tI,) := m

defined by ¥ ([v]) = [v], where v € (Z/p™Z)", is an R-linear isomorphism.

(K
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Proof. Since P(t) =0in R = (Z/p™Z)[t]/(P(¢)), we have P(z) = (z — t)Q(x) for some
Q(z) € Rx]. For w € (Z/p™Z)™, we have

P(X)w = (X — 1) Q(X)w

in R™, so v is well-defined. Since

G(Eo]) = P([X0]) = [Xv] = [tv] = t[v],

we see that ¢ is R-linear.

Suppose ¥([v]) = 0 in R"/(X — tI,)R™. Let v € (Z/p™Z)™ be any representative of
[v]. There exist wo,...,wq—1 € (Z/p™Z)™ such that when considered as an element of
R,

v = (X —tL,)(wo + twy + - + 9 Twg_4)

= Xwp + EXU)l + -+ Ed_led_l — (LT’LUO + 1?2’11)1 + -+ fdwd_l)
= Xwy + Z(le — wo) + ?(X’wg — wl) + -+ Ed_l(de,1 — wd,g) — t_d’wdfl.

Writing P(t) = t¢ + ag_1t%~* + - -- + a1t + ao, this implies that as an element of R,

v =Xwo + apwg—1 + E(le — wo + alwd,l) + P(XU)Q —wy + agwd,1)+

c TN (X wg g — wag + ag_1wa_1).

Since v € (Z/p™Z)", the decomposition R = Z /p"Z @ t(Z/p™Z) ® - - &t~ Y(Z/p™Z)
implies that as elements of (Z/p™Z)",

v = Xwg + aowq_1,
wo = Xwy + a1w4—1,

wy = Xwy + aswq—1,
wq—2 = Xwg—1 + ag_1wq—1-

Therefore, as an element of (Z/p™Z)",

v = Xwy + agwq_1
2
= X“w1 + a1 Xwgy—_1 + apwg—1

3 2
= X wqy + ag X wg—1 + a1 Xwg_1 + agwg—1

-1 a2
=X""wg 2+ ag o2 X T wg 1 + - + a1 Xwgo1 + apwg—1
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1 —2
= X1+ ag 1 X wa 1+ ag_o X Pwa_y -+ ar Xwa_1 + agwa_1

= (Xd + ad_le_l + ad_ng_Q + -+ a X + ao)wd_l = P(X)wd_l.

This means [v] =0 in (Z/p™Z)"/P(X)(Z/p™Z)", and we conclude that 1 is injective.
Given any vy + tvy + -+ + 1t lvy_; € R™, where each v; € (Z/p™Z)", we have

[Uo + Xvg+ -+ Xd_lvdfl] = [UO + fvl R Ed_l’l)dfl]
in R"/(X — tI,)R™. This shows that 1 is surjective. O
3.2. Proof of Theorem 1.6 whenl =1

We now use Lemma 3.1 to prove Theorem 1.6 when [ = 1. Let P(t) € Z[t] be a monic
polynomial of degree at most 2 whose reduction modulo p is irreducible in F,[t]. Let ¢ :=
pdee(P). We want to show that for any finite module G over Z,[t]/(P(t)), N € Zxq such
that pVt1G = 0, and X € Mat,(F,) with r(G) := dimg, (G /pG) = dimg, (cok(P(X))),

we have

X e Matn(Z/pNJrlZ) : ) qrq(G)2 Hf'q(G)(l _ qu‘)z
# cok(P(X)) ~ G =p" L :

and X = X (mod p) |Autz, 1P (@)

Proof. Lemma 3.1 with R = Z,, gives the result we need for deg(P) = 1, so we suppose
that deg(P) = 2. In this case, we have ¢ = p®. For ease of notation, we write P(t) for
the image of P(t) in (Z/pNT'Z)[t]. Suppose A € Mat,,(F,) satisfies

dimp, (cok(P(A4))) = 14(G).

For the rest of the proof, let R = (Z/pN*1Z)[t]/(P(t)). Lemma 3.2 implies that

X € Mat,(Z/pNt17Z): X € Mat,(Z/pN*12z):
# cok(P(X)) ~ G =# cokp(X —tI,) ~ G
and X = A (mod p) and X = A (mod p)

We claim that the size of this set is independent of the choice of A.
The decomposition R = (Z /pNt1Z) @ #(Z/pN+17Z) gives a decomposition Mat,,(R) =
Mat,, (Z /pNT1Z) @ tMat,,(Z /pN+1Z). This decomposition shows that

Z = X +1Y € Mat,(R): (X,Y) € Mat,(Z/pN12Z)2:
CNp = F# cokp(Z) ~ G =# cokp(X +tY) ~ G,
and Z = A — tI,, (mod p) X=AandY = -1, (mod p)

We explicitly compute cu ,, which turns out to be independent of A. We have



G. Cheong, N. Kaplan / Journal of Algebra 604 (2022) 636—663 645

(X,Y) € Mat,, (Z/pNT17Z)2:
CN.n =H# cokr(X +tY) ~ G,
X=AandY = -1, (mod p)

X € Mat,(Z/pN*t17Z):

Z # 1 cokr(X +t(pM - I,,)) ~ G
pMepMat, (Z/pN+1Z) and X = A (mod p)

For any pM € pMat,,(Z/pN+1Z), we have a bijection

X' € Mat,,(Z/pNt17Z): X € Mat,(Z/pN*t17Z):
cokp(X' +t(pM — I,,)) =~ G } < cokp(X —tI,) ~ G
and X’ = A (mod p) and X = A (mod p)

given by X' — X = —X'(pM — I,,)*. Since |[pMat,,(Z/pNT1Z)| = pM*, we have

X € Mat,(Z/(pN*1)):
2 —
N =pN" - # cokp(X —tl,) ~ G ,
and X = A (mod p)

and so
X € Mat,(Z/pN*1Z):
ennp N = # cok(P(X))~G
and X = A (mod p)

Moreover, Lemma 3.1 implies

r 2 Tq G —1
onn2 @D T (1= g7)?
|Autz, (1/(p() (G)]

)

CN,n =P

because ¢ = p?. Therefore,

X € Mat, (Z/(p+1): e
# COk(P(X)) ~ G =cCpN p_an :pNan «(@ H’L:(l )(1 —q )2

O
and X = A (mod p) |Autz, i1 (P (G)]

3.8. Qutline of the proof of Lemma 3.1

In the rest of this section, we prove Lemma 3.1. Without loss of generality, we may
assume o = 0. We show that given

e a finite R-module G,
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o N € Z> such that m¥G = 0, and
o X € Mat,(F,) such that cok(X) ~ G/mG as F,-vector spaces,

we have

X € Mat,, (R/m"*1): (@ T77a(@) (1 _ —iy2
2qTa aq 1— 7
# cok(X) ~ G = ¢Nn 4 l}:tl (é)| q ") . 1)
and X = X (mod m) utgr

In order to give the outline of our argument, we recall some linear algebra related to
X € Mat,, (Fy). We can give ' an [F,[t]-module structure by defining the ¢-action as left
multiplication by X on the n x 1 matrices over IF,. With this structure in mind, we may
write X to also mean the corresponding F,[t]-module, namely the F,-vector space Fy
together with the action of X. Given any irreducible polynomial P(t) € F[t], we have

cok(P(X)) ~ ker(P(X)) ~ X[P®]/PX[P™]

as F,-vector spaces, where X[P*°] denotes the P-part of the F,[t]-module X. For ease of

notation, throughout the proof we let r = r,(G). Since cok(X) ~ G/mG ~ F;, we have

X[t%) = By [t]/ (™) x -+ x Fyt]/ (™)

as Fq[t]—modules, where mi; > mg > --- > m, > 1. In other words, the matrix X hasr
Jordan blocks corresponding to the eigenvalue 0 with sizes mq,...,m,.
Our argument is divided into three main steps:

1. We prove that it is enough to show that (1) holds for X € Mat,,(F,) of the special

form
~ 0 0 O
X=101id 0],
0 0 M
where

o id=Ty, 4+ +m,—r, the (my+---+m. —r) x (mg + - +m, —r) identity matrix,
and
. MG GLnf(m1+---+mr)(Fq)~
2. For X of this form, we prove that the left-hand side of (1) is

alkanel #{uA € uMat,(R/mNT1): cok(ud) ~ G},

where u is a uniformizer of R (i.e., a generator for its maximal ideal, so m = (u) =
uR).
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3. We prove that

qu2+r2 HZ:1(1 _ q—i)2.
|Autr(G)|

#{uA € uMat,(R/m 1) cok(ud) ~ G} =

Remark 3.3. Friedman and Washington prove Lemma 3.1 in [5, p. 236]. Their proof is
similar to the one outlined above. They reduce the statement to the count given in the
third main step. Then they note that cok(uA’) ~ H if and only if cok(A’) ~ uH. Finally,
they compute

#{A" € Mat,.(R/m™*1): cok(A') ~ uH}

using [5, Proposition 1].

The final part of our argument is longer but works more directly with the entries of
the matrices we consider. In particular, we describe conditions on a matrix over R/m~V+!
that determine whether or not its cokernel is isomorphic to a particular module G. We
give a full proof of Lemma 3.1 because several of the pieces are important for the proof
of the general case of Theorem 1.6. We also believe that the techniques in our proof may

be useful for other problems about cokernels of families of random p-adic matrices.
We now carry out the first part of our three step strategy.

Proof of Lemma 3.1: Step (1). By switching rows and columns of X, there exist
Q1,Q2 € GL,,(F,) such that

)

0

0
0 M
where

e id is the (my +---+m, —r) X (m1 + -+ - +m, — r) identity matrix, and
L4 M € GLn_(ml_;'_..‘_;,_mT)(}Fq).]

Fix lifts Q1,Q2 € Mat, (R/mN*1) of Q;,Q2, meaning Q; = Q; (mod m) for i €
{1,2}. Since Q1,Q2 € GL,(F,), we have Q1,Qs € GL,(R/mN*!). Fix a lift M €
GLy— (o) (R/mN L) of M. )

For any lift X € Mat,(R/m™*1) of X, note that Q; XQs € Mat,(R/m" 1) is a
lift of @1 XQ,. On the other hand, if Y € Mat, (R/mN*t1) is a lift of Q;XQs, then

L In [5, p. 234, (11)], these Q1 and Q2 are taken to be inverses of each other, but it is not possible to find

such matrices in general. For example, the 2 X 2 matrix [8 (1]} is not similar to any matrix of the form

{8 g} with d # 0. Nevertheless, this is an easy fix.
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Q'Y Q5! € Mat,,(R/mN*1) is a lift of X. This gives a bijection between the lifts of X
to Mat,, (R/m~*1) and the lifts of Q; X Q2 to Mat,,(R/m~*1). Hence, the number of lifts
X € Mat,(R/mN*1) of X is equal to the number of lifts Y = Q; X Qo € Mat,, (R/mN+1)
of Q1XQ5. Since cok(Y) = cok(Q1XQ2) ~ cok(X), it is enough to count the lifts
Y = Q1 XQs € Mat,,(R/m™N*1) of Q1 XQ2 with cok(Y) ~G. O

3.4. FElementary operations for block submatrices

Before we carry out the second main step of the proof of Lemma 3.1, we recall some
material about elementary row and column operations for block submatrices. Let R be
a commutative ring and X € Mat,(R). Each of the following three elementary row
operations corresponds to left multiplication by a matrix in GL, (R):

 BExchange the i-th row X(;) with the j-th row X(;y for any distinct 4,j € [1,n];
o Multiply X(;) by a unit in R for any i € [1,n];
» Replace X(;) with X(;) + aX(;y for any a € R and any distinct 4, j € [1,7].

Likewise, each of the following three elementary column operations corresponds to right
multiplication by a matrix in GL, (R):

« Exchange the i-th column X with the j-th column X V) for any distinct 7, j € [1,n];
o Multiply X by a unit in R for any i € [1,n];
+ Replace X with X® 4+ aX ) for any a € R and any distinct ,5 € [1,n].

Note that elementary (row or column) operations do not change the isomorphism class
of cok(X).

A key technique in the proof Lemma 3.1 is an analogous method for elementary
operations with block submatrices of X. Let n be a positive integer and nq,...,ns > 1
satisfy ny +---+mns = n. We subdivide X € Mat,,(R) into block submatrices where X
is an n; X n; matrix over R:

[é.J]

X1, X(1,2] X[1,5-1] X[1,4]
Xy Xpg Xigs-1) X2
X = : : : :
Xis—1,1] X[s—1,2] " Xps—1,-1 X[s—1,9]
Xis 1 Xis2) 0 X[gs—1] Xs,s]

)

Lemma 3.4 (Elementary operations for block submatrices). Keeping the notation as above,
fix distinct i,5 € [1,s]. Any of the following three elementary block row operations on
X € Mat,(R) corresponds to left multiplication of X by a matriz in GL,(R):

1. Exzchange the i-th (block) row Xy = [Xpap, -+, Xp,s)] with the j-th row Xp; =
[(Xpap - Xyl
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2. Multiply X5y = [Xpap, -+, X,s)] on the left by any g € GLy,(R) to get gXp;) =
[gX[i,1]7 e 7gX[i7s]]7'

3. For any n;xn; matriz A, replace X with X +AXp;) = [ X +AX ), Xpg+
AX[j,q]-

Likewise, any of the following three column block row operations on X € Mat,(R) cor-
responds to right multiplication of X by a matriz in GL,(R):

X,
1. Ezxchange the i-th (block) column X[ = : with the j-th column XUl =
s,
X,
Xs,g)
X1, X9
2. Multiply X" = on the right by any g € GL,, (R) to get Xllg = ;
s, Xis.19
X+ Xp 4
3. For an n; x n; matriz A, replace X with X1 4 xUIA =
Kis) + XA

In particular, the operations above do not change the isomorphism class of cok(X).

Proof. We note that
T
Xy
(X[, aX[i,s]]T = :
T
X[i,s]
Therefore, the column operations are given by taking the transposes of the row operations
and it is enough to prove Lemma 3.4 for the block row operations.

The operations (1) and (3) follow directly from the corresponding ones from the usual
elementary operations. The operation (2) corresponds to left multiplication by the block
diagonal matrix with blocks Iy, Iy, ..., In;_y, 95 Insyys - - - In,, that is, the matrix that
comes from replacing the [i,4]-block of the identity matrix with g. This finishes the
proof. O

Proof of Lemma 3.1: Step (2). Suppose that X € Mat,,(F,) is of the form described in
Step (1) of the outline of the proof given in Section 3.3. Recall that R is a complete
DVR with maximal ideal m and residue field R/m = F,. Let u be a uniformizer of R, so
m = (u).
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Any lift of X € Mat,,(F,) to Mat,,(R/m*1) is of the form

ud; uAs uAs
X = UA4 id + UA5 UAG
wAr uAsg M +uAy

)

where uAy, uds, uAs, uAy, uls, uls, uAz, ulg, uly are matrices over R/mV+1 all of
whose entries are in (u) such that

o uA; € uMat,(R/mMN*1),
o uAs € uMat,y, 4., —r(R/mNY) id = Ly, 4,1, and
e ulg € uMatn,(mhL...err)(R/mN+1).

Choose representatives a1, . . ., oy € R/m~*1 for the equivalence classes in (R/mN+1)/
(m/mN+1) ~ R/m = F,. The filtration R/m™*! > m/mN*1 5 ... 5 m¥ /mN*1 shows
that each element of R/m™*! can be written uniquely as ag + aju + --- + anyu?,
where each a; is equal to some «;. So each entry of the matrix uAy is of the form
au+asu?+- - -+ayuy where each a; is equal to some «;. There are qN"2 total possible
choices for the entries of uAy, uds, uAs, uAy, uAs, ule, uls, ulg, udy over R/mN+1 if
we do not require any condition on cok(X). We count choices for which cok(X) = G.

First, we freely choose uA := (uds,uAs, uldy, uls, ulg, uldz, uAs, uAg). There are
gV (n?*=r%) possible choices for uA. We claim that given ©A and uwA; there exist P; 4,4
and P54 € GL, (R/m~N+1) depending on uA but not uA;, such that

UAuAl,pA 0 0
Pl,uAXPZ,uA = 0 id + uBua 0 y (2)

where
UBuA = U(A5 — ’LLA(,‘(M + UAg)ilAg),

and ©A, 4,44 depends on uA; and uA. We prove the existence of these matrices
Pi A, P2 ua by describing (block) row and column operations that we can apply to
X, using Lemma 3.4. Since id + uBpa and M + uAg are invertible modulo m, they are
also invertible as matrices over R/m~N*1. Therefore,

cok(X) =~ cok(P1yaX Py ya) > cok(uAa, vwa)-

The sequence of (block) row and column operations that we apply to X makes it clear
that the map taking uA; to uAyua, ,a is a bijection from uMat,(R/mY*1) to itself.
Therefore, the number of choices of udy, uds,...,udg for which cok(udya, va) ~ G is
equal to
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gv =) #{uA € uMat,(R/m™*1): cok(ud) ~ G}.

Given a choice of uA, we now describe the (block) row and column operations taking
X to the matrix on the right-hand side of (2). Applying Lemma 3.4, subtract

UAS(M + uAg)fl[uA% UAAE;7 M + U,Ag}
:[u2A6(M —|— UA9)71A7,U2A6(M + uAg)ilAg, UA@]

from the second block row of X to get

uA1 UAQ uA3
U(A4 —UA6(M+UA9)71A7) ld+U(A5 —uAg(M+UA9)71A8) 0
uAy uAsg M +uAg

Next, subtract

UA3(M + uAg)_l[uA7,uAg, M + ’U,Ag]
:[U2A3(M + uAg)_1A7,U2A3(M + uAg)_lAg, uAg]

from the first block row to get

U(Al — uAg(M + uAg)_1A7) u(A2 — U,Ag(M + uAg)_lAg) 0
w(Ay — uAg(M + udg) A7) id +u(As — ude(M + udy)~LAg) 0
uAy uAsg M +uAg

Now subtract

0 0
’U,AS(M + uAg)_l 0 = 0
M + UAQ uAg
from the second block column and then subtract
0 0
’U,A7<M + uAg)_l 0 == 0
M + UAQ ’LLA7
from the first block column to get
U(A1 — UAg(M + UA9)71A7) u(Ag — uAg(M + UAg)ilAg) 0
U<A4 —UA6<M+UA9)_1A7) 1d+u(A5 —UAG(M+UA9)_1A8) 0

Since id + u(As — udg(M +uAg) L Ag) is invertible over R/m~ 1 we may apply similar
arguments to get rid of the blocks directly above it and directly to the left of it. This
gives a matrix of the desired form where wAq, 4, 44 is the upper left block.
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It is clear that changing the entries of uA; changes the entries of u(A; — uAsz(R +
uAg) 1 A7), and therefore also changes the entries of uA, 4, ,a. What we have described
above is a bijection from uMat,.(R/m™*1) to itself, defined by taking uA; to uA, 4, ua-
This completes the proof of Step (2). O

3.5. Counting matrices with a given cokernel

Before completing the proof of Step (3) of the outline given in Section 3.3, which
finishes the proof of Lemma 3.1, we recall some additional facts.

Lemma 3.5. Let R be a PID and X € Mat,(R) have rank r over the fraction field
of R. There exist P,QQ € GL,(R) such that PXQ = S is a diagonal matriz whose
diagonal entries (s1,82,...,8:,0,...,0) satisfy s; | six1 for all 1 < i < r — 1. Since
cok(X) ~ cok(PXQ) = cok(S), we have

cok(X) 2 R/s1iR®R/soR®---®R/s;, RO R"".
Moreover, these s; are uniquely determined up to multiplication by a unit of R, and

81+ 8; = ged(i x i minors of X).

We call these s1,...,s, the invariant factors of cok(X).

The following formula for the number of X € Mat,,(F,) of given rank is well-known.

Lemma 3.6. For any integers n > 1 and 0 < r < n, the number of rank r matrices in
Mat,, (F,) is

n®—(n—r)> H?:l(]' -q7") H?:n—r-l—l(]' - q_i).
[LTo (=) Il (L —a7)

We will use the following formula for the number of automorphisms of a finite module

over a complete DVR whose residue field is finite. See for example [5, p. 236] for a proof.
Lemma 3.7. Let (R, m) be a complete DVR with a finite residue field R/m =F,. Suppose
G~ (R/m®)™ x -+ X (R/m®)"*

for integers ey > eq > --->ep =1 andry,...,rp = 1. Then

k
|Autr(G)| = Hq—m IGL,, (F,)| H gmin(eies)rir
i=1

1<i,j<k



G. Cheong, N. Kaplan / Journal of Algebra 604 (2022) 636—663 653

We give an alternate expression for [Autz(G)| from [7, p. 181]. We will not need it in
this paper, but in some circumstances it is more convenient to use than the expression
in Lemma 3.7. Suppose (R,m) and F, are as in the statement of the lemma and G
is a finite R-module of type A. Let m;(A) be the number of parts of \ of size ¢ and
Ap =m;(A) +mis1(A) + -+ Then,

mi(X)

[Autr(G)] = ¢== O TT [T @ =g

i1 j=1

This expression is equivalent to the one from [7, p. 181] since n(\) = 3,5, (g)
For clarity, we state Step (3) of the proof outline given in Section 3.3 as a separate

result.

Lemma 3.8. Let (R, m) be a complete DVR with a finite residue field R/m =TF, and let
u be a uniformizer of R. Let G be a finite R-module with r4(G) := dimg, (G/mG) = r
and N € Zxq satisfy mNG = 0. We have

2,2 .
qNT +r H:Zl(l _ q—z)2

#{uA € uMat, (R/mV*1): cok(ud) ~ G} = Autz(G)]

As mentioned in Remark 3.3, this result is proven by Friedman and Washington [5,
p. 236]. We give a different proof here that more directly considers the conditions on
the entries of a matrix that determine whether or not its cokernel is isomorphic to a
particular module G.

Proof. As in the proof of Step (2) of Lemma 3.1, choose representatives ai,...,a, €

N+1 can be expressed

R/m™*1 for the equivalence classes of R/m. Every element of R/m
uniquely as ag + aju + asu?® + --- + ayu’, where each a; is equal to some oj. Let

uA € Mat,.(R/mV*1) and express each entry of uA in this form. We have
uA = uA; +ulAs + -+ uN Ay,

where each A; is an 7 X r matrix with entries in {a1,...,aq}.

We would like to use Lemma 3.5 to describe the conditions on a matrix in
Mat, (R/mN+1) that determine whether or not its cokernel is isomorphic to G. How-
ever, Lemma 3.5 only applies for matrices with entries in a PID. Therefore, we take lifts
of our matrices to R. Choose uA € uMat,(R) to be a fixed lift of ud € Mat,.(R/mN+1).

We see that for any i, j, the (i,7) entry of uA is congruent to the (,7) entry of uA

N+1 /
q

are representatives of the equivalences classes of

modulo m™ 1. Consider the projection map m: R — R/m and suppose af,...,«

!
q

R/m. Expressing each entry of uA in terms of its u-adic digit expansion, we can write

satisfy m(a}) = ;. Note that of, ..., «

UAZU,Al +U2A2 +-~-+UNAN +’LLN+1AN+1 + -
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where each A; is an r x r matrix with entries in {a],...,aq}. For ease of notation, we
identify A; with its image in Mat, (F,) under the map defined by reducing each entry
modulo m. When we refer to the rank of the matrix A; we always mean the rank of this
matrix in Mat,, (F,).

We now apply Lemma 3.5 to uA to determine the conditions on the entries of
Ay, As, As, ... that imply cok(ud) ~ G. Since uNG = 0, Lemma 3.5 implies that
cok(uA) ~ G if and only if cok(uA) ~ G. Therefore, these conditions are independent of
the choice of Ay41,Any2,.... We count choices of Ay, ..., Ay for which cok(ufi) ~ @G,
completing the proof.

Since R is a PID with unique maximal ideal m = (u), by the classification of modules
over a PID there are unique integers e; > ey > --- > e > 1 and r1,...,7 > 1 such that

G~ (R/m®)™ x - x (R/m®)™ = (R/u®*R)™ x -+ X (R/u®*R)"™".

Since r = r,(G), we have ry +- - -+ 1 = r. By assumption, u”VG = 0, which is equivalent
to N > ey.

The invariant factors of cok(ufl) are only determined up to multiplication by a unit,
so we can assume each one is of the form ™ for some m > 1. We order the invariant
factors by these exponents since u™! | ™2 if and only if m; < mo. By Lemma 3.5, the
smallest invariant factor of cok(uA) is equal to the greatest common divisor of the 1 x 1
minors of uA. Therefore, u* is the smallest invariant factor of cok(uA) if and only if
Ay =Ay=---=A,,_, =0and A,, is nonzero.

Our next goal is to count the invariant factors of this smallest size.

Claim: Suppose that 41 = Ay =--- = A,,_, = 0. Then cok(u[l) has exactly r; invariant

factors u®* if and only if A., has rank ry.

Proof of Claim. The rank of A., is the largest m such that there exists a nonzero m xm
minor of A,,. Suppose i € [1,7]. By Lemma 3.5 applied to uA, we have s;---5; =
ged(i x ¢ minors of uA). As explained above, since A; = Ay = -+ = A, 1 = 0, if
A,, # 0, then u®* = s, is the smallest invariant factor of cok(uA). Since s; | - - | 4, we
see that (u®* )" | sy ---s;.

If there exists a nonzero rj X 7, minor of A, , then there is an 7, X ry minor of uA
equal to (u®*)™ times a unit in R. This implies ged(ry, x rj minors of uA) = (u*)™*,
and therefore cok(uA) has at least rj, invariant factors equal to u®.

By the same reasoning, if there is a nonzero (ry + 1) x (ry + 1) minor of A.,, then
cok(uA) has at least 7 +1 invariant factors equal to u*. Therefore, cok(uA) has exactly
), invariant factors equal to u®* if and only if A., € Mat,(F,) has rank 7. O

Given Ay = Ay =--- = A,,_1 = 0 and A., with rank 4, we find the constraints on
Ag, 41, Ac, 12, ... that determine whether cok(uA) has no invariant factors between u°*
and v~ and exactly r,_; invariant factors equal to u®*~'. Since A,, has rank 7, there
exist Pa,, ,Qa,, € GL;(F,) such that
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0 O
PAek AekQAek, = |:0 Irk:| .

Let P;lek be an arbitrary lift of Pa, to GL,(R) and Q%ek be an arbitrary lift of Q4,,
to GL,(R). We have

cok(uA) ~ Cok(PAek ule;‘Ek) = cok (u* Al + uek+1A’ek+l +oo0),

where A = PA% AjQ;lek'

We claim that the next smallest size of an invariant factor of cok(uA) after u®* is u® -1
if and only if A} ,,...,A,, | _; have all of their entries in the top left (r —7z) x (r —ry)
corner equal to 0 and A, _ has a nonzero entry in its top left (r —rx) x (r — ) corner.

Suppose j € [ex+1,e,-1—1]. If A;- has a nonzero entry in its top left (r—rg) x (r—rg)
corner, then there is an (ry + 1) X (r, + 1) minor of uA equal to v/ (u® )™ times a unit in
R. Lemma 3.5 now implies that the next smallest invariant factor of cok(uA) after u*

has size at most u’.

1
€k—1—

(r — r1) corner equal to 0. Every (ry + 1) X (15 + 1) minor of PA% ule;‘ek is divisible

Now suppose Af, 4q,...,A 1 have all of their entries in the top left (r — ry) x

by w1 (u)™. Lemma 3.5 implies that the next smallest invariant factor of cok(uA)
after u* is at least u-1. If there is a nonzero entry in the top left (r —rg) x (r —rg)
corner of A, _, then there is an (ry + 1) X (rj, + 1) minor of uA equal to w1 (u®* )™
times a unit in R. If every entry in the top left (r —ry) x (r — ) corner of A} is 0,
then every (1 4 1) x (1 + 1) minor of uA is divisible by u®~1+*(u® )™ Thus, this next
smallest invariant factor of cok(uA) is equal to u®*~' if and only if there is a nonzero
entry in the top left (r —ry) x (r —ry) corner of A} .

Suppose that the second smallest invariant factor of cok(uA) is equal to u¢-1. We now
determine the number of invariant factors of this size. For any ¢, the greatest common
divisor of the (rx +t) x (1 +t) minors of PA% ule;l% is divisible by (u® )™ (u-1)t. By
Lemma 3.5, there are at least ¢ invariant factors of cok(uA) equal to u-' if and only
if there is an (rg 4+ t) X (rg + t) minor of P;‘% UAQ:“% equal to (u® )" (u®-1)" times a
unit in R.

Consider the top left (r —ry) x (r —ry) corner of A, . Suppose it has rank ¢. This
matrix has a nonzero ¢ xt minor, but each of its (t4+1) X (¢41) minors is 0. Therefore, there
isa (rp +1t) X (rp +t) minor of le‘lek uAQ’A% equal to (u® )™ (u—1) times a unit in R,
but no (rp+t+1) x (1, +t+1) minor of PA% UAQ;‘% is equal to (u®* )™ (u®—1)+1 times
a unit in R. We conclude that cok(uA) has exactly r,_; invariant factors equal to u®—
if and only if ¢ = r;_1. As above, we multiply by appropriate PAEkil , QfAek—l € GL,(R).
We then repeat this argument for the remaining invariant factors of G.

When considering the matrix that determines the number of invariant factors of
cok(uA) equal to u®, we need the top left r; x r; piece of an (r1 + ry) x (r; + r2)
submatrix to have rank r;. There are no conditions on the remaining 2rir, + 7‘% entries
of this submatrix. Similarly, when we consider the matrix that determines the number of
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invariant factors of cok(uA) equal to u¢?, we need the top left (r; +15) x (1 +72) piece
of an (r1 + ro +73) X (r1 + r2 + 73) submatrix to have rank ro. There are no conditions
on the remaining 2(ry + ro)rs + r3 entries of this submatrix. Continuing in this way, we
see that the total number of choices of uA € Mat,(R/m¥*+1) for which cok(ud) ~ G is
equal to

k—1

X € Ma’t"‘_(rk"!‘rk—1+"'+"‘k—i+1) (Fq) : F L (N—e)(r342ri Y cciT5)

I1# - g G,
P rank(X) = rg_;

We have

K 2 2 k 2
q izt (N—ei)(ri+2r; Zl§j<1ﬁrj) — qu —2i=1€iT; —2 Z1<J‘<i<k €iTiTj

Nr?

= min(e;,e;)rir;
R

sincer =7y + -+ rg.
Applying Lemma 3.6 shows that

k—1
H# X e Ma’t""_("'k+7'k—1+“'+7"k—i+1)(]Fq):
Fairs rank(X) = rp_;

. (= (0 g2 (L= )
((1 - qfl)(l — q*2) - (1 — q*T‘l)) S ((1 _ q*l)(l — qu) . (1 — q*Tk))

2 H::1(1 — q_i)2
(242 ’
g~ (rit+ ’“)|GLT1(Fq)|""GLT’I«(]F‘I”

=4q

Therefore, we have

k—1
( H ” { X e Matrf(rk+rk_1+...+rk_i+1)(Fq)5 } ) (quzl(Nfei)(rquZri Zlgjdrj))

Pl rank(X) = ri—;
2 2 .
qu +r H;:1<1 _ q—z)Q
k _ i P P
[licia i |GL, (Fg)| H1<i,j<k gmin(eseg)riv

VL (- g )?
Aut(G)] ’

where in the last step we applied Lemma 3.7. O
4. The proof of Theorem 1.6

In this section, we use the special case of Theorem 1.6 where [ = 1 to prove Theo-
rem 1.6 in general. We first recall some notation and assumptions. We are given
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« monic polynomials Pi(t),...,P(t) € Zp[t] of degree at most 2 whose images in
[F,[t] are distinct and irreducible and a finite module G over Z[t]/(P;(t)) for each
I<j<l,

e N € Z>g such that pVG; = 0 for each 1 < j <, and

e X Mat,, (F,,) such that for each 1 < j <1,

dim]qu (COk(Pj (X))) =Ty (Gj),

where ¢; = pdes(Fs)

We count lifts X € Mat, (Z/pN*t'Z) of X such that for each 1 < j < [ we have
cok(P;(X)) ~ Gj.

Proof of Theorem 1.6. We use an argument similar to two steps of the proof outline
given for Lemma 3.1 in Section 3.3. There exists Q € GL,,(F,) such that

J0 - 0 0
0 J, - 0 0

Q'XQ=|: + .. o,
0 0 - J 0
0 0 - 0 M

where each eigenvalue of J; over F,, is a root of P;(t) and M is a square matrix over F,,
with no eigenvalue over F,, that is a root of any of Pi(t),..., P,(t). Note that if G; is
trivial, then J; is the empty matrix.

Fix a lift @ € GL,(Z/pN*1Z) of Q € GL,(F,). Given a lift X € Mat,(Z/pN*+1Z)
of X € Mat,, (F,), the matrix Q7' XQ is a lift of Q'XQ. On the other hand, if Y €
Mat,, (Z /pNT1Z) is a lift of Q1 X Q, then QY Q! is a lift of X. Note that P;(Q~'XQ) =
Q7 'P;(X)Q. As in Step (1) of the proof of Lemma 3.1 described in Section 3.3, taking
advantage of this bijection between the lifts of X and the lifts of Q~'XQ, it is enough
to prove Theorem 1.6 for the case where

Ji 0 0 0
0 Jy 0 O
X=|: +
o o --- J 0
o o0 --- 0 M

Fix j € [1,1] and let R; := (Z/pNt1Z)[t]/(P;(t)). Over R;/pR; = F,[t]/(P;(t)), the
matrix J; — tid is not invertible, while for any k # j, the matrix Jj, — ¢id is invertible.
The matrix M — tid is also invertible.
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Any lift X € Mat,,(Z/pN*t1Z) of X is of the form

pAi1 + 1 DA12 S DPAY DAL 141
pAa pAss+Jy - pAgy PA2 141
X=| L : :
PA PAj2 e pAp+J DAL I+1
PAL411 pAiti2 o Aty PAti 1+ M

where the pA; are matrices over Z/pN*+1Z all of whose entries are 0 modulo p, and each
of Ji,...,Ji, M is the unique lift to Z/pV+1Z with entries in {0,1,...,p— 1} of the cor-
responding matrix over F,,. Let ny,...,n;,ni11 € Zsg so that pA;; € pMat,,, (Z/pN+17Z)
for 1 < i <1+ 1. In particular, n =ny +--- +n; +nyy1-

A key idea in this argument is to work with expansions of elements of Z/pN+1Z in
terms of powers of p, and to use these expansions of elements to give similar expansions
for matrices. Each entry of pA; is of the form aip + asp® + -+ + an—_1p™ ! + anp?,
where a; € {0,1,...,p— 1}. Without any constraints there are pN”2 total lifts X of X.
Recall that by Lemma 3.2, we have cok(P;(X)) ~ cokg, (X —tI,).

We choose a sequence of (block) row and column operations from Lemma 3.4 to
transform the matrix X — tI,,, which is equal to

pAn + J1 — tid pAia - pAy DAL 141
PA2 pAgy + Jo —tid .- pAy PA2 141
: : : : (3)
PAN PA2 - pAp+J—tid PALI1
PAL411 PAi112 e PAI11, pAiy1+1 + M —tid

into the block diagonal matrix whose blocks are given by
5 20 | 7.2~0) 5 2n() | 7.2~0) o
pA+Jy—tid+p By +tpCy”, ... pAy+J—tid+p” B +tpC)" , p A1 141+ M —tid,

where p2Bi(j),p2C’i(j) € p?Mat,,, (Z/pVN*t1Z) depend on pAy with 1 < s,t <1+ 1 except
they do not depend on pA;;. We conclude that X — tI,, and this block diagonal matrix
have isomorphic cokernels over R;.

Suppose i, j € [1,1] are distinct. Since J; — tid is invertible over R;/pR;, we see that
pAy 4 J; — tid + szZ-(j) + prCi(j) is invertible over R;. Similarly, pA; 41,41 + M — tid is
invertible over R;. This implies

cok(P;(X)) ~ cokg, (X —t1,)
~ COkRj (ijj + Jj —tid +p2B§j) + fpoéj))

= cokp, (J; + pAj; + p* By - #(id — p*C{)).

Multiplying by an invertible matrix does not change the isomorphism class of the cok-
ernel, so
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COkR]. (Jj +ijj + pQBJ(-j) — {(id — pQCJ(-j)))
~ cokp, ((id — p?CY)"L(J; + pAy; + p*BY)) — tid)
~ cok(Pj ((id - p20§j))71(Jj + pA;; +p23§j)))).

Fix any choices for {pAg: 1 <s,t <141, s#t} and also fix a choice of pA;4q 141.
Note that there are pN(”Q*(”fJF"'*”?)) total possible choices for these matrices. The
matrices szi(J) , pQCi(j) € p*Mat,,, (Z /pNT1Z)) play an important role in our proof. Given

)

choices for the pA,; above and for pA;;1 ;41 we can think of p2Bi(j and p2C’i(j) as being

functions of (pAi1,...,pAi—1,i—1,PAit1,i+1,-- -, PAy). We usually do not usually include
(

this dependence in the notation for szZ—j ) and pQCZ-(j ) because it would make things much

harder to read, but in a few cases we include this additional notation for emphasis.
Consider the function ®p that takes (pAi1,pAss, ..., pAy) to

((id - pZCfl))il(Jl +pAn —|—p23§1)), oo, (id = pQC’l(l))*l(Jl +pAy + szl(l))) )
So @y is a map from pMat,,, (Z/pNt1Z) x --- x pMat,, (Z/pN*t1Z) to

Y; € Mat,,, (Z/pNT17Z): v Vi€ Mat,, (Z /pNH1Z):
Y1 = J; (mod p) Y, = J; (mod p) '

Claim: @ is a bijection.

Assuming the claim for now, we complete the proof of Theorem 1.6. By the discus-
sion above, gok(Pj(X)) ~ G; for each j if and only if cok(P;((id — pQCJ(J))’l(Jj +
pAjj +p2B§])))) ~ @, for each j. Since @y is a bijection, the number of choices for
(pAi1,...,pAy) such that cok(P;(X)) ~ G; for each j is equal to

4 (Y1,...,Y)) € Mat,, (Z/pN*t1Z) x -+ x Mat,, (Z/pVT17Z)
cok(P;(Y;)) ~ G, and Y; = J; (mod p) for 1 < j <1 '

It is clear that this is equal to

ﬁ Y; € Mat,,, (Z/pNT'Z) :
HH#3 conmmy =6, amd vy = oy (mod )

By the I = 1 case of Theorem 1.6, this is equal to

rq. (G;)? +7q; (G5) i
ﬁpNn§ ;" 7 ILE (A -q")?
=1 |Autz, 11 (p, () (G5)]

N(n?—(

Multiplying by p ni+4n7)) to account for all possible choices of {pAg: 1 <s,t <

l+1, s#t} and pA;11 41 completes the proof of Theorem 1.6.
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We now need only prove that ® is a bijection. Since ® is a map between finite sets
of the same size, we need only prove that it is surjective. We define a sequence of maps
®y,...,Pn_1, Py and prove that each one is a bijection. Let k € [1, N]. Our next goal
is to define the map Py.

e For each element of {pAg: 1 < s,t <1+ 1, s #£ t}, let pA[sli] be the matrix over
7, /p*+17Z such that pAy = pAE? (mod pkt1).

o Let pAyﬂl,lH be the matrix over Z/p**'Z such that PAIL1 41 = pAyi]u+1
(mod p*+l).

For each j € [1,1], choose a matrix pA;; € Mat,, (Z/p*™'Z). We construct a matrix
analogous to the one given in (3) using pAis,... ,pA”,pAl[]i]l,lJrl and the elements of
{pA[;i]: 1<s,t<l+1, s+#t} We then apply the same sequence of (block) row and

column operations that we applied to the matrix in (3). This gives a block diagonal
matrix whose blocks are given by
pAn + Jy — fid + p?BYY + P00 L pAy + gy — Hid + pP BYY 4 PP,
PALt1141 + M —tid,

where p2Bi(j’k),p20i(j’k) € p*Mat,,, (Z /p*+1Z) are functions of the collection of matrices

(pA11,. .. PAi—1i—1,DAit1i41, - - - DAL). A key thing to note is that for any 1 < k' <
k<N, if pAj; = pA’; (mod p*'+1) for each j € [1,1], then
2 glk) () 4 A1 A A
P b; (PA11, .- pAi—1i-1,PAiv1iv1, - -, PAR)

',k?/ ’
= pQBi(] )(pAllla'~-apA;—1,i—17pA;'+1,i+1a--~7pA;l) (mod pk H)-

An analogous result holds for the matrices pQCi(j ) and pQCi(j k),

We define a map

@y : pMat,, (Z/p*1Z) x --- x pMat,, (Z/p"'72) —

Y; € Mat,,, (Z/p**1Z): ‘o x Y, € Mat,,, (Z /p*1Z):
Y1 = J; (mod p) Y, = J; (mod p)

that takes (pA11,pAas,...,pAy) to
(Ga = p2Cf) 7 4 pAn + 9B, - (d = 92 TN+ pAn + 9B
Now that we have defined @1, ..., Py, we see that they are compatible with reducing

the inputs modulo powers of p. More precisely, for any 1 < k' <k < N, if pA;; = pA;- j
(mod p¥'*1) for every j € [1,1], then
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Op.(pArr, pAza, ..., pAu) = Bpr(pAly, pAhy, ... . pAy)  (mod p*' ).
We now prove that ®; is a bijection. We have
(id — pPCYN) YTy + pAj; + p*BYY) = J; + pAy;  (mod p?),

so it is clear that ®; is a bijection.

We now assume that ®;_; is a bijection and prove that ®; is a surjection. Choose
(Y1,...,Y)) such that for each j, we have Y; € Maty,,(Z/p*™'Z) with Y; = J; (mod p).
Such a matrix can be written uniquely as

Yy = J;+pSt 4+ p2s 4 phst,

where each Sj[i] is an m; x n; matrix with entries in {0,1,...,p — 1}. Define Yj’ €
Mat,,, (Z/p*Z) by

Y] = J;+pSH 4+ p2sP il
s0 Y; =Y/ (mod p*).
Since ®j_1 is a bijection, there exists (pA};,...,pA)) € pMat,, (Z/p*Z) x -+ x
pMat,,, (Z /p*Z) such that for each j € [1,1],
(ld_pQCj(]kfl))—l(Jj +pA/j +p2BJ(-j’k71)> _ JJ +pS£1] +p25£2] + .. +pk_1sj[-k71] — }/j/

J

There are unique n; X n; matrices Tj[kl] with entries in {0,1,...,p — 1} such that

pAL, = pTl) 1 27l 4 g ph=iple-)

Let pA? (Tj[k]) € pMat,,, (Z/p**'Z) be defined by

pAL(TH) = (ij[1] + T g pkflT][k—l]) + T,
where Tj[k] is an n; x n; matrix with entries in {0,1,...,p — 1}.
We claim that there exist Tl[k], e ,Tl[k] such that

oy (pai(r), .. (@) = (i, D).

For any choice of (Tl[k], o ,Tl[k]), since for each j € [1,1] we have pA;(Tj[k]) = pA);
(mod p*), we see that

& (pA (T, . pAT(T) = @4 (AL, pAY) = (V... Y/)  (mod pb).
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For each j there exists an n; x n; matrix S with entries in {0,1,...,p — 1} such that
. k)N — * k i,k
(id = pC) 7 (s + pAS (1) + 9 BPY)
= J; +pSH 4+ p2 8P ot ST RS € Mat,, (2/pF 1 2).
The crucial observation is that because of the factor of p?,
j k w rlk w rlk j K w« rlk w« rlk
PBIN (pATY), . pAr(r))  and  prOP P panrl), . par ()

depend on pAj (Tl[k])7 o ,pAZ‘(Tl[k]) but they do not depend on Tl[k]7 o 7Tl[k]. That is,

once we have fixed choices for (Ti[l], e ,Ti[k_l]) for each i, the matrices p2Bj(-j’k),p2CJ(»j’k)
are determined. Therefore, we see that each ST depends only on a choice of Tj[k] and not

1#]

on the choices for T;™ where i # j.

K3
By definition, a different choice of Tj[k] gives a different matrix pA;f(Tj[k]). It is now

clear that a different matrix pA; (Tjk) gives a different matrix S7. That is, the map taking
(k]
1™ to
. FON ; Y € Mat,,. (Z/p**17Z):
d - p?CYNY (T 4 pAL(TH) + p? B J "
(1 p j ) (J+p J(] )+p j )E }/]*E}/jl (modpk)

is injective. Since this is an injective map between finite sets of the same size, it is
a bijection. We conclude that there is a choice of (T} 1[k], e ,Tl[k]) such that for each
j € [1,1], we have

. i, k)N — * k i,k
(id = p O M) 7N+ AT (1) + B = ¥

Therefore, @}, is a surjection and so, a bijection. Continuing in this way, we conclude
that &, is a bijection. O
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