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Let p be prime and X be a Haar-random n × n matrix over 
Zp, the ring of p-adic integers. Let P1(t), . . . , Pl(t) ∈ Zp[t] be 
monic polynomials of degree at most 2 whose images modulo 
p are distinct and irreducible in Fp[t], where Fp denotes the 
finite field of p elements. For each j, let Gj be a finite module 
over Zp[t]/(Pj(t)). We show that as n goes to infinity, the 
probabilities that cok(Pj(X)) � Gj are independent, and 
each probability can be described in terms of a Cohen–Lenstra 
distribution. We also show that for any fixed n, the probability 
that cok(Pj(X)) � Gj for each j is a constant multiple of the 
probability that cok(Pj(X̄)) � Gj/pGj for each j, where X̄
is an n × n uniformly random matrix over Fp. These results 
generalize work of Friedman and Washington and prove new 
cases of a conjecture of Cheong and Huang.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let p be a prime. For a commutative ring R, let Matn(R)
denote the set of n × n matrices with entries in R and let In denote the n × n iden-
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tity matrix. The Haar measure on the additive group Matn(Zp) = Zn2

p , with respect 
to its compact p-adic topology, allows one to choose a random matrix X ∈ Matn(Zp). 
Let cok(X) denote the cokernel of X. In [5], Friedman and Washington proved that the 
probability that cok(X) is isomorphic to a fixed finite abelian p-group G converges to 
|Aut(G)|−1 ∏∞

i=1(1 − p−i) as n → ∞. In particular, this probability is inversely propor-
tional to the size of the automorphism group of G. For odd p, this probability is the one 
given in an influential conjecture of Cohen and Lenstra on the distribution of p-parts of 
class groups of imaginary quadratic fields, first introduced in [2]. Motivated by function 
field analogues of the Cohen–Lenstra conjecture, Friedman and Washington also proved 
that

lim
n→∞

Prob
X∈GLn(Zp)

(cok(X − In) � G) = 1
|Aut(G)|

∞∏
i=1

(1 − p−i),

that is,

lim
n→∞

Prob
X∈Matn(Zp)

(
cok(X) = 0,

cok(X − In) � G

)
=

(
lim

n→∞
Prob

X∈Matn(Zp)
(cok(X) = 0)

)(
lim

n→∞
Prob

X∈Matn(Zp)
(cok(X − In) � G)

)
.

Our first main theorem is a generalization of these results. For a commutative ring R
and an R-module G, let AutR(G) denote the group of R-linear automorphisms of G.

Theorem 1.1. Let P1(t), . . . , Pl(t) ∈ Zp[t] be monic polynomials of degree at most 2 whose 
images modulo p are distinct and irreducible in Fp[t]. For each j, let Gj be a finite module 
over Zp[t]/(Pj(t)). We have

lim
n→∞

Prob
X∈Matn(Zp)

(
cok(Pj(X)) � Gj

for 1 � j � l

)

=
l∏

j=1

1
|AutZp[t]/(Pj(t))(Gj)|

( ∞∏
i=1

(
1 − p−i deg(Pj))) .

There are explicit formulas for the sizes of the automorphism groups appearing in this 
result. We give one such formula in Lemma 3.7 and another in the discussion directly 
following it.

Theorem 1.1 may be surprising to the reader because if we take l = 2 with P1(t) = t

and P2(t) = t − 1, then for any n, many events regarding the matrices P1(X) = X and 
P2(X) = X − In are dependent as the entries of X completely determine the entries of 
X − In and vice versa. Nevertheless, Theorem 1.1 shows that, for example, the event 
cok(X) � Z/pZ becomes independent from the event cok(X − In) � Z/pZ as n → ∞. 
Theorem 1.1 also proves many new cases of a conjecture of Cheong and Huang [1, 
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Conjecture 2.3]. We note that the conjecture needs to be slightly modified from their 
version, as explained below. In [1, Theorem C], Cheong and Huang proved Theorem 1.1
when G1 = · · · = Gl−1 = 0 and deg(Pl) = 1, so our result is a significant improvement 
of theirs.

Conjecture 1.2 (cf. [1, Conjecture 2.3]). The conclusion of Theorem 1.1 holds without 
specifying any conditions on the degrees of P1(t), . . . , Pl(t) ∈ Zp[t].

Remark 1.3. Conjecture 1.2 is stated slightly differently in [1, Conjecture 2.3]. In that 
version, each module Gj over Zp[t]/(Pj(t)) is only assumed to be a finite abelian p-group. 
We note that cok(Pj(X)) has a Zp[t]/(Pj(t))-module structure where the action of t̄ is 
given via left multiplication by X. This implies that some finite abelian p-groups do 
not arise as cok(Pj(X)) for any X. For example, if deg(Pj) > 1, then cok(Pj(X̄)) is 
a vector space over Fp[t]/(Pj(t)), so dimFp

(cok(Pj(X̄))) is a multiple of deg(Pj), where 
X̄ ∈ Matn(Fp) is the image of X modulo p. Therefore, we see that cok(Pj(X)), considered 
as a finite abelian p-group, cannot be isomorphic to Z/pZ. As noted in [1, Remark 2.2]
or [2, Example 5.9], there is a Cohen–Lenstra distribution on the set of isomorphism 
classes of finite modules over any DVR whose residue field is finite, that is, a distribution 
in which each module appears with frequency inversely proportional to its number of 
automorphisms. One may check that Zp[t]/(Pj(t)) is indeed a DVR with its unique 
maximal ideal generated by p and its residue field is isomorphic to Fp[t]/(Pj(t)). We see 
that Conjecture 1.2 is a natural correction of [1, Conjecture 2.3]. This change affects 
only Conjecture 2.3 in [1], not any theorems in that paper.

Let G be a finite module over R = Zp[t]/(Pj(t)). Since R is a PID, we have

G � Zp[t]/(Pj(t)λ1) × · · · × Zp[t]/(Pj(t)λr ),

for some partition λ = (λ1, . . . , λr). In this case we say G has type λ. Using this correspon-
dence between finite R-modules and partitions, we can check that any finite R-modules 
G and G′ are isomorphic as modules over R if and only if they are isomorphic as finite 
abelian p-groups. We will use this observation in our proofs without mentioning it again.

Theorem 1.1 follows from the following stronger result that holds for any fixed n ∈
Z�1, which is also a generalization of a result of Friedman and Washington in [5]. Let 
P (t) ∈ Zp[t] be a monic polynomial whose reduction modulo p is irreducible in Fp[t] and 
let G be a finite module over Zp[t]/(P (t)). Define

rpdeg(P )(G) := dimF
pdeg(P ) (G/pG),

where we identify Fpdeg(P ) = Fp[t]/(P (t)).
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Theorem 1.4. Let P1(t), . . . , Pl(t) ∈ Zp[t] be monic polynomials of degree at most 2 whose 
images modulo p are distinct and irreducible in Fp[t] and let qj := pdeg(Pj). For each j, 
let Gj be a finite module over Zp[t]/(Pj(t)). We have

Prob
X∈Matn(Zp)

(
cok(Pj(X)) � Gj

for 1 � j � l

)
=

⎛
⎝ l∏

j=1

q
rqj

(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutZp[t]/(Pj(t))(Gj)|

⎞
⎠ Prob

X̄∈Matn(Fp)

(
cok(Pj(X̄)) � Gj/pGj

for 1 � j � l

)
.

Remark 1.5. Theorem 1.4 is trivial when n <
∑l

j=1 dimFp
(Gj/pGj) since each side of the 

equality is 0. This follows from the discussion of the basics of the Fq[t]-module structure 
of a matrix X̄ ∈ Matn(Fq) given at the start of Section 3.3 and the fact that cok(Pj(X))
(mod p) � cok(Pj(X̄)).

Theorem 1.4 follows from the following enumerative result for matrices in
Matn(Z/pN+1Z) with a fixed reduction modulo p.

Theorem 1.6. Assume the notation and hypotheses in Theorem 1.4. Fix any X̄ ∈
Matn(Fp) such that for each 1 � j � l, we have

dimFqj

(
cok(Pj(X̄))

)
= rqj

(Gj).

Choose any N ∈ Z�0 such that pN Gj = 0 for 1 � j � l. Then

#

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X ∈ Matn(Z/pN+1Z) :
cok(Pj(X)) � Gj

for 1 � j � l

and X ≡ X̄ (mod p)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= pNn2
l∏

j=1

q
rqj

(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutZp[t]/(Pj(t))(Gj)| .

In particular, the left-hand side does not depend on the choice of X̄ ∈ Matn(Fp).

Conjecture 1.7. The conclusion of Theorem 1.4 holds without specifying any conditions 
on the degrees of P1(t), . . . , Pl(t).

Conjecture 1.8. The conclusion of Theorem 1.6 holds without specifying any conditions 
on the degrees of P1(t), . . . , Pl(t).

Remark 1.9. Conjecture 1.7 implies Conjecture 1.2 in the same way that Theorem 1.4
implies Theorem 1.1, and Conjecture 1.8 implies Conjecture 1.7 in the same way that 
Theorem 1.6 implies to Theorem 1.4. When this paper was nearly completed, we were 
surprised during personal communication with Jungin Lee that Conjecture 1.2 can be 



640 G. Cheong, N. Kaplan / Journal of Algebra 604 (2022) 636–663
proven with a different method. This argument now appears in Lee’s preprint [6]. How-
ever, Lee does not prove Theorem 1.4 or Theorem 1.6, and Conjectures 1.7 and 1.8
remain open.

Friedman and Washington prove the special case of Theorem 1.6 where l = 1 and 
deg(P1) = 1. Our proof of Theorem 1.6 is based on theirs but involves additional inputs 
related to the Smith normal form and the minors of a matrix. We study the conditions 
on the entries of a matrix over Z/pN+1Z that determine whether or not its cokernel is 
isomorphic to a particular finite module G. We then apply elementary operations for 
block submatrices, which we summarize in Lemma 3.4, so that we can apply the l = 1
case multiple times to prove Theorem 1.6.

There are several approaches to understanding the distribution of cok(X) for X ∈
Matn(Zp) that have appeared since the original result of Friedman and Washington. One 
approach that plays a major role in other work on cokernels of families of random p-adic 
matrices is the method of moments where one studies the expected number of surjections 
from cok(X) to a fixed finite abelian p-group. See [9], [3, Section 8], and [10,11] for more 
on this perspective. Evans gives a Markov chain approach to this problem in [4]. Van 
Peski gives a new approach to this result in his work on cokernels of products of p-adic 
random matrices in [8]. It is not immediately clear how to adapt any of these approaches 
to study cases of Theorem 1.1 where l > 1, or where l = 1 and deg(P1) = 2.

2. Theorem 1.6 implies Theorem 1.4 and Theorem 1.4 implies Theorem 1.1

We begin this section by recalling two key lemmas from [1].

Lemma 2.1 ([1], Lemma 4.3). Let l ∈ Z�1 and G1, . . . , Gl be finite abelian p-groups. 
Choose any N ∈ Z�0 such that pN G1 = · · · = pN Gl = 0. For any monic polynomials 
f1(t), . . . , fl(t) ∈ Zp[t] and n ∈ Z�1, we have

Prob
X∈Matn(Zp)

(
cok(fj(X)) � Gj

for 1 � j � l

)
= Prob

X∈Matn(Z/pN+1Z)

(
cok(fj(X)) � Gj

for 1 � j � l

)
.

The next result follows from [1, Theorem 2.10] and [1, Lemma 5.3].

Lemma 2.2. Let l ∈ Z�1, r1, . . . , rl ∈ Z�0, and P1(t), . . . , Pl(t) ∈ Fp[t] be distinct irre-
ducible polynomials. We have

lim
n→∞

Prob
X̄∈Matn(Fp)

(
dimFp[t]/(Pj(t))(cok(Pj(X̄))) = rj

for 1 � j � l

)

=
l∏(

p−r2
j deg(Pj) ∏∞

i=1(1 − p−i deg(Pj))∏rj

i=1(1 − p−i deg(Pj))2

)
.

j=1
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Proof that Theorem 1.6 implies Theorem 1.4 and Theorem 1.4 implies Theorem 1.1.
Throughout the proof, we write Rj := Zp[t]/(Pj(t)) and qj := pdeg(Pj) so that 
Fqj

= Fp[t]/(Pj(t)). By applying Lemma 2.1, we see that it is enough to prove the 
desired statements with Matn(Z/pN+1Z) in place of Matn(Zp). Moreover, as explained 
in Remark 1.5, we may assume that n �

∑l
j=1 dimFp

(cok(Pj(X̄)).
Theorem 1.6 implies that

#

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cok(Pj(X)) � Gj

for 1 � j � l

⎫⎪⎬
⎪⎭ =

pNn2

⎛
⎝ l∏

j=1

q
rqj

(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutRj
(Gj)|

⎞
⎠ · #

⎧⎪⎨
⎪⎩

X̄ ∈ Matn(Fp) :
cok(Pj(X̄)) � Gj/pGj

for 1 � j � l

⎫⎪⎬
⎪⎭ .

Dividing by p(N+1)n2 = #Matn(Z/pN+1Z) and noting that #Matn(Fp) = pn2 , we have

Prob
X∈Matn(Z/pN+1Z)

(
cok(Pj(X)) � Gj

for 1 � j � l

)

=

⎛
⎝ l∏

j=1

q
rqj

(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutRj
(Gj)|

⎞
⎠

#

⎧⎪⎨
⎪⎩

X̄ ∈ Matn(Fp) :
cok(Pj(X̄)) � Gj/pGj

for 1 � j � l

⎫⎪⎬
⎪⎭

#Matn(Fp)

=

⎛
⎝ l∏

j=1

q
rqj

(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutRj
(Gj)|

⎞
⎠ Prob

X̄∈Matn(Fp)

(
cok(Pj(X̄)) � Gj/pGj

for 1 � j � l

)
,

so Theorem 1.4 follows.
Next, assume Theorem 1.4. Applying Lemma 2.2 with rj = rqj

(Gj) shows that

lim
n→∞

Prob
X̄∈Matn(Fp)

(
cok(Pj(X̄)) � Gj/pGj

for 1 � j � l

)
=

l∏
j=1

⎛
⎝q

−rqj
(Gj)2

j

∏∞
i=1(1 − q−i

j )∏rqj
(Gj)

i=1 (1 − q−i
j )2

⎞
⎠ .

Starting from the statement of Theorem 1.4, applying Lemma 2.1 and then taking n → ∞
implies that

lim
n→∞

Prob
X∈Matn(Z/pN+1Z)

(
cok(Pj(X)) � Gj

for 1 � j � l

)

=
l∏ q

rqj
(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutRj
(Gj)| ·

q
−rqj

(Gj)2

j

∏∞
i=1(1 − q−i

j )∏rqj
(Gj)

(1 − q−i)2

j=1 i=1 j
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=
l∏

j=1

1
|AutRj

(Gj)|

∞∏
i=1

(1 − q−i
j ),

so Theorem 1.1 follows. �
3. Proof of Theorem 1.6 when l = 1

In this section we prove Theorem 1.6 when l = 1.

3.1. Useful lemmas

When l = 1 and deg(P1) = 1, we consider the following more general version of 
Theorem 1.6.

Lemma 3.1. Let (R, m) be a complete DVR with finite residue field R/m = Fq, let G

be a finite R-module, and choose any N ∈ Z�0 such that mN G = 0. For any α ∈
R/mN+1, n ∈ Z�0, and X̄ ∈ Matn(Fq) satisfying cok(X̄ − ᾱIn) � G/mG, where ᾱ ∈
Fq = R/m is the image of α modulo m, we have

#

⎧⎪⎨
⎪⎩

X ∈ Matn(R/mN+1) :
Rn/(X − αIn)Rn � G

and X ≡ X̄ (mod m)

⎫⎪⎬
⎪⎭ = qNn2 qrq(G)2 ∏rq(G)

i=1 (1 − q−i)2

|AutR(G)| ,

where rq(G) := dimFq
(G/mG).

Lemma 3.1 can be deduced from the arguments introduced by Friedman and Wash-
ington in [5] although they only discuss the case R = Zp. In this section, we give a 
different proof of this result. We need to apply this more general version of Lemma 3.1
in our proof of Theorem 1.6 when at least one of the polynomials Pj(t) has degree 2.

The following lemma, which we learned from personal communication with Jungin 
Lee, is crucial to our proof of Theorem 1.6 when at least one of the polynomials Pj(t)
has degree 2.

Lemma 3.2 (Lee). Given m ∈ Z�0, let P (t) ∈ (Z/pmZ)[t] be a monic polynomial of 
degree d. Consider

R := (Z/pmZ)[t]/(P (t)) = Z/pmZ ⊕ t̄(Z/pmZ) ⊕ · · · ⊕ t̄d−1(Z/pmZ).

Fix X ∈ Matn(Z/pmZ). The map

ψ : (Z/pmZ)n

P (X)(Z/pmZ)n
→ cokR(X − t̄In) := Rn

(X − t̄In)Rn

defined by ψ([v]) = [v], where v ∈ (Z/pmZ)n, is an R-linear isomorphism.



G. Cheong, N. Kaplan / Journal of Algebra 604 (2022) 636–663 643
Proof. Since P (t̄) = 0 in R = (Z/pmZ)[t]/(P (t)), we have P (x) = (x − t̄)Q(x) for some 
Q(x) ∈ R[x]. For w ∈ (Z/pmZ)n, we have

P (X)w = (X − t̄In)Q(X)w

in Rn, so ψ is well-defined. Since

ψ(t̄[v]) = ψ([Xv]) = [Xv] = [t̄v] = t̄[v],

we see that ψ is R-linear.
Suppose ψ([v]) = 0 in Rn/(X − t̄In)Rn. Let v ∈ (Z/pmZ)n be any representative of 

[v]. There exist w0, . . . , wd−1 ∈ (Z/pmZ)n such that when considered as an element of 
Rn,

v = (X − t̄In)(w0 + t̄w1 + · · · + t̄d−1wd−1)

= Xw0 + t̄Xw1 + · · · + t̄d−1Xwd−1 − (t̄w0 + t̄2w1 + · · · + t̄dwd−1)

= Xw0 + t̄(Xw1 − w0) + t̄2(Xw2 − w1) + · · · + t̄d−1(Xwd−1 − wd−2) − t̄dwd−1.

Writing P (t) = td + ad−1td−1 + · · · + a1t + a0, this implies that as an element of Rn,

v =Xw0 + a0wd−1 + t̄(Xw1 − w0 + a1wd−1) + t̄2(Xw2 − w1 + a2wd−1)+

· · · + t̄d−1(Xwd−1 − wd−2 + ad−1wd−1).

Since v ∈ (Z/pmZ)n, the decomposition R = Z/pmZ ⊕ t̄(Z/pmZ) ⊕ · · · ⊕ t̄d−1(Z/pmZ)
implies that as elements of (Z/pmZ)n,

v = Xw0 + a0wd−1,

w0 = Xw1 + a1wd−1,

w1 = Xw2 + a2wd−1,

· · ·
wd−2 = Xwd−1 + ad−1wd−1.

Therefore, as an element of (Z/pmZ)n,

v = Xw0 + a0wd−1

= X2w1 + a1Xwd−1 + a0wd−1

= X3w2 + a2X2wd−1 + a1Xwd−1 + a0wd−1

· · ·
= Xd−1wd−2 + ad−2Xd−2wd−1 + · · · + a1Xwd−1 + a0wd−1
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= Xdwd−1 + ad−1Xd−1wd−1 + ad−2Xd−2wd−1 + · · · + a1Xwd−1 + a0wd−1

= (Xd + ad−1Xd−1 + ad−2Xd−2 + · · · + a1X + a0)wd−1 = P (X)wd−1.

This means [v] = 0 in (Z/pmZ)n/P (X)(Z/pmZ)n, and we conclude that ψ is injective.
Given any v0 + t̄v1 + · · · + t̄d−1vd−1 ∈ Rn, where each vi ∈ (Z/pmZ)n, we have

[v0 + Xv1 + · · · + Xd−1vd−1] = [v0 + t̄v1 + · · · + t̄d−1vd−1]

in Rn/(X − t̄In)Rn. This shows that ψ is surjective. �
3.2. Proof of Theorem 1.6 when l = 1

We now use Lemma 3.1 to prove Theorem 1.6 when l = 1. Let P (t) ∈ Zp[t] be a monic 
polynomial of degree at most 2 whose reduction modulo p is irreducible in Fp[t]. Let q :=
pdeg(P ). We want to show that for any finite module G over Zp[t]/(P (t)), N ∈ Z�0 such 
that pN+1G = 0, and X̄ ∈ Matn(Fp) with rq(G) := dimFq

(G/pG) = dimFq
(cok(P (X̄))), 

we have

#

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cok(P (X)) � G

and X ≡ X̄ (mod p)

⎫⎪⎬
⎪⎭ = pNn2 qrq(G)2 ∏rq(G)

i=1 (1 − q−i)2

|AutZp[t]/(P (t))(G)| .

Proof. Lemma 3.1 with R = Zp gives the result we need for deg(P ) = 1, so we suppose 
that deg(P ) = 2. In this case, we have q = p2. For ease of notation, we write P (t) for 
the image of P (t) in (Z/pN+1Z)[t]. Suppose A ∈ Matn(Fp) satisfies

dimFq
(cok(P (A))) = rq(G).

For the rest of the proof, let R = (Z/pN+1Z)[t]/(P (t)). Lemma 3.2 implies that

#

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cok(P (X)) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭ = #

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cokR(X − t̄In) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭ .

We claim that the size of this set is independent of the choice of A.
The decomposition R = (Z/pN+1Z) ⊕ t̄(Z/pN+1Z) gives a decomposition Matn(R) =

Matn(Z/pN+1Z) ⊕ t̄Matn(Z/pN+1Z). This decomposition shows that

cN,n := #

⎧⎪⎨
⎪⎩

Z = X + t̄Y ∈ Matn(R) :
cokR(Z) � G

and Z ≡ A − t̄In (mod p)

⎫⎪⎬
⎪⎭ = #

⎧⎪⎨
⎪⎩

(X, Y ) ∈ Matn(Z/pN+1Z)2 :
cokR(X + t̄Y ) � G,

X ≡ A and Y ≡ −In (mod p)

⎫⎪⎬
⎪⎭ .

We explicitly compute cN,n, which turns out to be independent of A. We have
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cN,n =#

⎧⎪⎨
⎪⎩

(X, Y ) ∈ Matn(Z/pN+1Z)2 :
cokR(X + t̄Y ) � G,

X ≡ A and Y ≡ −In (mod p)

⎫⎪⎬
⎪⎭

=
∑

pM∈pMatn(Z/pN+1Z)

#

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cokR(X + t̄(pM − In)) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭ .

For any pM ∈ pMatn(Z/pN+1Z), we have a bijection
⎧⎪⎨
⎪⎩

X ′ ∈ Matn(Z/pN+1Z) :
cokR(X ′ + t̄(pM − In)) � G

and X ′ ≡ A (mod p)

⎫⎪⎬
⎪⎭ ↔

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cokR(X − t̄In) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭

given by X ′ 	→ X = −X ′(pM − In)−1. Since |pMatn(Z/pN+1Z)| = pNn2 , we have

cN,n = pNn2 · #

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/(pN+1)) :
cokR(X − t̄In) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭ ,

and so

cN,np−Nn2
= #

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/pN+1Z) :
cok(P (X)) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭ .

Moreover, Lemma 3.1 implies

cN,n = p2Nn2 qrq(G)2 ∏rq(G)
i=1 (1 − q−i)2

|AutZp[t]/(P (t))(G)| ,

because q = p2. Therefore,

#

⎧⎪⎨
⎪⎩

X ∈ Matn(Z/(pN+1)) :
cok(P (X)) � G

and X ≡ A (mod p)

⎫⎪⎬
⎪⎭ = cN,np−Nn2

= pNn2 qrq(G)2 ∏rq(G)
i=1 (1 − q−i)2

|AutZp[t]/(P (t))(G)| . �

3.3. Outline of the proof of Lemma 3.1

In the rest of this section, we prove Lemma 3.1. Without loss of generality, we may 
assume α = 0. We show that given

• a finite R-module G,
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• N ∈ Z�0 such that mN G = 0, and
• X̄ ∈ Matn(Fq) such that cok(X̄) � G/mG as Fq-vector spaces,

we have

#

⎧⎪⎨
⎪⎩

X ∈ Matn(R/mN+1) :
cok(X) � G

and X ≡ X̄ (mod m)

⎫⎪⎬
⎪⎭ = qNn2 qrq(G)2 ∏rq(G)

i=1 (1 − q−i)2

|AutR(G)| . (1)

In order to give the outline of our argument, we recall some linear algebra related to 
X̄ ∈ Matn(Fq). We can give Fn

q an Fq[t]-module structure by defining the t-action as left 
multiplication by X̄ on the n × 1 matrices over Fq. With this structure in mind, we may 
write X̄ to also mean the corresponding Fq[t]-module, namely the Fq-vector space Fn

q

together with the action of X̄. Given any irreducible polynomial P (t) ∈ Fq[t], we have

cok(P (X̄)) � ker(P (X̄)) � X̄[P ∞]/PX̄[P ∞]

as Fq-vector spaces, where X̄[P ∞] denotes the P -part of the Fq[t]-module X̄. For ease of 
notation, throughout the proof we let r = rq(G). Since cok(X̄) � G/mG � Fr

q , we have

X̄[t∞] � Fq[t]/(tm1) × · · · × Fq[t]/(tmr )

as Fq[t]-modules, where m1 � m2 � · · · � mr � 1. In other words, the matrix X̄ has r
Jordan blocks corresponding to the eigenvalue 0 with sizes m1, . . . , mr.

Our argument is divided into three main steps:

1. We prove that it is enough to show that (1) holds for X̄ ∈ Matn(Fq) of the special 
form

X̄ =

⎡
⎣0 0 0

0 id 0
0 0 M̄

⎤
⎦ ,

where
• id = Im1+···+mr−r, the (m1 + · · · + mr − r) × (m1 + · · · + mr − r) identity matrix, 

and
• M̄ ∈ GLn−(m1+···+mr)(Fq).

2. For X̄ of this form, we prove that the left-hand side of (1) is

qN(n2−r2) · #{uA ∈ uMatr(R/mN+1) : cok(uA) � G},

where u is a uniformizer of R (i.e., a generator for its maximal ideal, so m = (u) =
uR).
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3. We prove that

#{uA ∈ uMatr(R/mN+1) : cok(uA) � G} =
qNr2+r2 ∏r

i=1(1 − q−i)2

|AutR(G)| .

Remark 3.3. Friedman and Washington prove Lemma 3.1 in [5, p. 236]. Their proof is 
similar to the one outlined above. They reduce the statement to the count given in the 
third main step. Then they note that cok(uA′) � H if and only if cok(A′) � uH. Finally, 
they compute

#{A′ ∈ Matr(R/mN+1) : cok(A′) � uH}

using [5, Proposition 1].
The final part of our argument is longer but works more directly with the entries of 

the matrices we consider. In particular, we describe conditions on a matrix over R/mN+1

that determine whether or not its cokernel is isomorphic to a particular module G. We 
give a full proof of Lemma 3.1 because several of the pieces are important for the proof 
of the general case of Theorem 1.6. We also believe that the techniques in our proof may 
be useful for other problems about cokernels of families of random p-adic matrices.

We now carry out the first part of our three step strategy.

Proof of Lemma 3.1: Step (1). By switching rows and columns of X̄, there exist 
Q̄1, Q̄2 ∈ GLn(Fq) such that

Q̄1X̄Q̄2 =

⎡
⎣0 0 0

0 id 0
0 0 M̄

⎤
⎦ ,

where

• id is the (m1 + · · · + mr − r) × (m1 + · · · + mr − r) identity matrix, and
• M̄ ∈ GLn−(m1+···+mr)(Fq).1

Fix lifts Q1, Q2 ∈ Matn(R/mN+1) of Q̄1, Q̄2, meaning Qi ≡ Q̄i (mod m) for i ∈
{1, 2}. Since Q̄1, Q̄2 ∈ GLn(Fq), we have Q1, Q2 ∈ GLn(R/mN+1). Fix a lift M ∈
GLn−(m1+···+mr)(R/mN+1) of M̄ .

For any lift X ∈ Matn(R/mN+1) of X̄, note that Q1XQ2 ∈ Matn(R/mN+1) is a 
lift of Q̄1X̄Q̄2. On the other hand, if Y ∈ Matn(R/mN+1) is a lift of Q̄1X̄Q̄2, then 

1 In [5, p. 234, (11)], these Q̄1 and Q̄2 are taken to be inverses of each other, but it is not possible to find 
such matrices in general. For example, the 2 × 2 matrix 

[0 1
0 0

]
is not similar to any matrix of the form [0 b

]
with d �= 0. Nevertheless, this is an easy fix.
0 d
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Q−1
1 Y Q−1

2 ∈ Matn(R/mN+1) is a lift of X̄. This gives a bijection between the lifts of X̄
to Matn(R/mN+1) and the lifts of Q̄1X̄Q̄2 to Matn(R/mN+1). Hence, the number of lifts 
X ∈ Matn(R/mN+1) of X̄ is equal to the number of lifts Y = Q1XQ2 ∈ Matn(R/mN+1)
of Q̄1X̄Q̄2. Since cok(Y ) = cok(Q1XQ2) � cok(X), it is enough to count the lifts 
Y = Q1XQ2 ∈ Matn(R/mN+1) of Q̄1X̄Q̄2 with cok(Y ) � G. �
3.4. Elementary operations for block submatrices

Before we carry out the second main step of the proof of Lemma 3.1, we recall some 
material about elementary row and column operations for block submatrices. Let R be 
a commutative ring and X ∈ Matn(R). Each of the following three elementary row 
operations corresponds to left multiplication by a matrix in GLn(R):

• Exchange the i-th row X(i) with the j-th row X(j) for any distinct i, j ∈ [1, n];
• Multiply X(i) by a unit in R for any i ∈ [1, n];
• Replace X(i) with X(i) + aX(j) for any a ∈ R and any distinct i, j ∈ [1, n].

Likewise, each of the following three elementary column operations corresponds to right 
multiplication by a matrix in GLn(R):

• Exchange the i-th column X(i) with the j-th column X(j) for any distinct i, j ∈ [1, n];
• Multiply X(i) by a unit in R for any i ∈ [1, n];
• Replace X(i) with X(i) + aX(j) for any a ∈ R and any distinct i, j ∈ [1, n].

Note that elementary (row or column) operations do not change the isomorphism class 
of cok(X).

A key technique in the proof Lemma 3.1 is an analogous method for elementary 
operations with block submatrices of X. Let n be a positive integer and n1, . . . , ns � 1
satisfy n1 + · · ·+ns = n. We subdivide X ∈ Matn(R) into block submatrices where X[i,j]
is an ni × nj matrix over R:

X =

⎡
⎢⎢⎢⎢⎣

X[1,1] X[1,2] · · · X[1,s−1] X[1,s]
X[2,1] X[2,2] · · · X[2,s−1] X[2,s]

...
... · · ·

...
...

X[s−1,1] X[s−1,2] · · · X[s−1,s−1] X[s−1,s]
X[s,1] X[s,2] · · · X[s,s−1] X[s,s]

⎤
⎥⎥⎥⎥⎦ .

Lemma 3.4 (Elementary operations for block submatrices). Keeping the notation as above, 
fix distinct i, j ∈ [1, s]. Any of the following three elementary block row operations on 
X ∈ Matn(R) corresponds to left multiplication of X by a matrix in GLn(R):

1. Exchange the i-th (block) row X[i] = [X[i,1], · · · , X[i,s]] with the j-th row X[j] =
[X[j,1], · · · , X[j,s]];
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2. Multiply X[i] = [X[i,1], · · · , X[i,s]] on the left by any g ∈ GLni
(R) to get gX[i] =

[gX[i,1], · · · , gX[i,s]];
3. For any ni×nj matrix A, replace X[i] with X[i]+AX[j] = [X[i,1]+AX[j,1], · · · , X[i,s]+

AX[j,s]].

Likewise, any of the following three column block row operations on X ∈ Matn(R) cor-
responds to right multiplication of X by a matrix in GLn(R):

1. Exchange the i-th (block) column X [i] =

⎡
⎢⎣

X[1,i]
...

X[s,i]

⎤
⎥⎦ with the j-th column X [j] =

⎡
⎢⎣

X[1,j]
...

X[s,j]

⎤
⎥⎦;

2. Multiply X [i] =

⎡
⎢⎣

X[1,i]
...

X[s,i]

⎤
⎥⎦ on the right by any g ∈ GLni

(R) to get X [i]g =

⎡
⎢⎣

X[1,i]g
...

X[s,i]g

⎤
⎥⎦;

3. For an nj × ni matrix A, replace X [i] with X [i] + X [j]A =

⎡
⎢⎣

X[1,i] + X[1,j]A
...

X[s,i] + X[s,j]A

⎤
⎥⎦.

In particular, the operations above do not change the isomorphism class of cok(X).

Proof. We note that

[X[i,1], · · · , X[i,s]]T =

⎡
⎢⎣

XT
[i,1]
...

XT
[i,s]

⎤
⎥⎦ .

Therefore, the column operations are given by taking the transposes of the row operations 
and it is enough to prove Lemma 3.4 for the block row operations.

The operations (1) and (3) follow directly from the corresponding ones from the usual 
elementary operations. The operation (2) corresponds to left multiplication by the block 
diagonal matrix with blocks In1 , In2 , . . . , Ini−1 , g, Ini+1 , . . . , Ins

, that is, the matrix that 
comes from replacing the [i, i]-block of the identity matrix with g. This finishes the 
proof. �
Proof of Lemma 3.1: Step (2). Suppose that X̄ ∈ Matn(Fq) is of the form described in 
Step (1) of the outline of the proof given in Section 3.3. Recall that R is a complete 
DVR with maximal ideal m and residue field R/m = Fq. Let u be a uniformizer of R, so 
m = (u).
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Any lift of X̄ ∈ Matn(Fq) to Matn(R/mN+1) is of the form

X =
[

uA1 uA2 uA3
uA4 id + uA5 uA6
uA7 uA8 M + uA9

]
,

where uA1, uA2, uA3, uA4, uA5, uA6, uA7, uA8, uA9 are matrices over R/mN+1 all of 
whose entries are in (u) such that

• uA1 ∈ uMatr(R/mN+1),
• uA5 ∈ uMatm1+···+mr−r(R/mN+1), id = Im1+···+mr−r, and
• uA9 ∈ uMatn−(m1+···+mr)(R/mN+1).

Choose representatives α1, . . . , αq ∈ R/mN+1 for the equivalence classes in (R/mN+1)/
(m/mN+1) � R/m = Fq. The filtration R/mN+1 ⊃ m/mN+1 ⊃ · · · ⊃ mN /mN+1 shows 
that each element of R/mN+1 can be written uniquely as a0 + a1u + · · · + aN uN , 
where each ai is equal to some αj . So each entry of the matrix uAk is of the form 
a1u +a2u2 + · · ·+aN uN where each ai is equal to some αj . There are qNn2 total possible 
choices for the entries of uA1, uA2, uA3, uA4, uA5, uA6, uA7, uA8, uA9 over R/mN+1 if 
we do not require any condition on cok(X). We count choices for which cok(X) ∼= G.

First, we freely choose uA := (uA2, uA3, uA4, uA5, uA6, uA7, uA8, uA9). There are 
qN(n2−r2) possible choices for uA. We claim that given uA and uA1 there exist P1,uA

and P2,uA ∈ GLn(R/mN+1), depending on uA but not uA1, such that

P1,uAXP2,uA =
[

uAuA1,pA 0 0
0 id + uBuA 0
0 0 M + uA9

]
, (2)

where

uBuA = u(A5 − uA6(M + uA9)−1A8),

and uAuA1,uA depends on uA1 and uA. We prove the existence of these matrices 
P1,uA, P2,uA by describing (block) row and column operations that we can apply to 
X, using Lemma 3.4. Since id + uBpA and M + uA9 are invertible modulo m, they are 
also invertible as matrices over R/mN+1. Therefore,

cok(X) � cok(P1,uAXP2,uA) � cok(uAA1,uA).

The sequence of (block) row and column operations that we apply to X makes it clear 
that the map taking uA1 to uAuA1,uA is a bijection from uMatr(R/mN+1) to itself. 
Therefore, the number of choices of uA1, uA2, . . . , uA9 for which cok(uAuA1,uA) � G is 
equal to
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qN(n2−r2) · #{uA ∈ uMatr(R/mN+1) : cok(uA) � G}.

Given a choice of uA, we now describe the (block) row and column operations taking 
X to the matrix on the right-hand side of (2). Applying Lemma 3.4, subtract

uA6(M + uA9)−1[uA7, uA8, M + uA9]

=[u2A6(M + uA9)−1A7, u2A6(M + uA9)−1A8, uA6]

from the second block row of X to get

[
uA1 uA2 uA3

u(A4 − uA6(M + uA9)−1A7) id + u(A5 − uA6(M + uA9)−1A8) 0
uA7 uA8 M + uA9

]
.

Next, subtract

uA3(M + uA9)−1[uA7, uA8, M + uA9]

=[u2A3(M + uA9)−1A7, u2A3(M + uA9)−1A8, uA3]

from the first block row to get
⎡
⎣u(A1 − uA3(M + uA9)−1A7) u(A2 − uA3(M + uA9)−1A8) 0

u(A4 − uA6(M + uA9)−1A7) id + u(A5 − uA6(M + uA9)−1A8) 0
uA7 uA8 M + uA9

⎤
⎦ .

Now subtract

uA8(M + uA9)−1

[ 0
0

M + uA9

]
=
[ 0

0
uA8

]

from the second block column and then subtract

uA7(M + uA9)−1

[ 0
0

M + uA9

]
=
[ 0

0
uA7

]

from the first block column to get
⎡
⎣u(A1 − uA3(M + uA9)−1A7) u(A2 − uA3(M + uA9)−1A8) 0

u(A4 − uA6(M + uA9)−1A7) id + u(A5 − uA6(M + uA9)−1A8) 0
0 0 M + uA9

⎤
⎦ .

Since id + u(A5 − uA6(M + uA9)−1A8) is invertible over R/mN+1, we may apply similar 
arguments to get rid of the blocks directly above it and directly to the left of it. This 
gives a matrix of the desired form where uAuA1,uA is the upper left block.
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It is clear that changing the entries of uA1 changes the entries of u(A1 − uA3(R +
uA9)−1A7), and therefore also changes the entries of uAuA1,uA. What we have described 
above is a bijection from uMatr(R/mN+1) to itself, defined by taking uA1 to uAuA1,uA. 
This completes the proof of Step (2). �
3.5. Counting matrices with a given cokernel

Before completing the proof of Step (3) of the outline given in Section 3.3, which 
finishes the proof of Lemma 3.1, we recall some additional facts.

Lemma 3.5. Let R be a PID and X ∈ Matn(R) have rank r over the fraction field 
of R. There exist P, Q ∈ GLn(R) such that PXQ = S is a diagonal matrix whose 
diagonal entries (s1, s2, . . . , sr, 0, . . . , 0) satisfy si | si+1 for all 1 � i � r − 1. Since 
cok(X) � cok(PXQ) = cok(S), we have

cok(X) ∼= R/s1R ⊕ R/s2R ⊕ · · · ⊕ R/srR ⊕ Rn−r.

Moreover, these si are uniquely determined up to multiplication by a unit of R, and

s1 · · · si = gcd(i × i minors of X).

We call these s1, . . . , sr the invariant factors of cok(X).

The following formula for the number of X̄ ∈ Matn(Fq) of given rank is well-known.

Lemma 3.6. For any integers n � 1 and 0 � r � n, the number of rank r matrices in 
Matn(Fq) is

qn2−(n−r)2
∏n

i=1(1 − q−i)
∏n

i=n−r+1(1 − q−i)∏n−r
i=1 (1 − q−i)

∏r
i=1(1 − q−i)

.

We will use the following formula for the number of automorphisms of a finite module 
over a complete DVR whose residue field is finite. See for example [5, p. 236] for a proof.

Lemma 3.7. Let (R, m) be a complete DVR with a finite residue field R/m = Fq. Suppose

G � (R/me1)r1 × · · · × (R/mek )rk

for integers e1 > e2 > · · · > ek � 1 and r1, . . . , rk � 1. Then

|AutR(G)| =
k∏

q−r2
i |GLri

(Fq)|
∏

qmin(ei,ej)rirj .

i=1 1�i,j�k
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We give an alternate expression for |AutR(G)| from [7, p. 181]. We will not need it in 
this paper, but in some circumstances it is more convenient to use than the expression 
in Lemma 3.7. Suppose (R, m) and Fq are as in the statement of the lemma and G

is a finite R-module of type λ. Let mi(λ) be the number of parts of λ of size i and 
λ′

i = mi(λ) + mi+1(λ) + · · · . Then,

|AutR(G)| = q
∑

i�1(λ′
i)2 ∏

i�1

mi(λ)∏
j=1

(1 − q−j).

This expression is equivalent to the one from [7, p. 181] since n(λ) =
∑

i�1
(

λ′
i

2
)
.

For clarity, we state Step (3) of the proof outline given in Section 3.3 as a separate 
result.

Lemma 3.8. Let (R, m) be a complete DVR with a finite residue field R/m = Fq and let 
u be a uniformizer of R. Let G be a finite R-module with rq(G) := dimFq

(G/mG) = r

and N ∈ Z�0 satisfy mN G = 0. We have

#{uA ∈ uMatr(R/mN+1) : cok(uA) � G} =
qNr2+r2 ∏r

i=1(1 − q−i)2

|AutR(G)| .

As mentioned in Remark 3.3, this result is proven by Friedman and Washington [5, 
p. 236]. We give a different proof here that more directly considers the conditions on 
the entries of a matrix that determine whether or not its cokernel is isomorphic to a 
particular module G.

Proof. As in the proof of Step (2) of Lemma 3.1, choose representatives α1, . . . , αq ∈
R/mN+1 for the equivalence classes of R/m. Every element of R/mN+1 can be expressed 
uniquely as a0 + a1u + a2u2 + · · · + aN uN , where each ai is equal to some αj . Let 
uA ∈ Matr(R/mN+1) and express each entry of uA in this form. We have

uA = uA1 + u2A2 + · · · + uN AN ,

where each Ai is an r × r matrix with entries in {α1, . . . , αq}.
We would like to use Lemma 3.5 to describe the conditions on a matrix in 

Matr(R/mN+1) that determine whether or not its cokernel is isomorphic to G. How-
ever, Lemma 3.5 only applies for matrices with entries in a PID. Therefore, we take lifts 
of our matrices to R. Choose uÃ ∈ uMatr(R) to be a fixed lift of uA ∈ Matr(R/mN+1). 
We see that for any i, j, the (i, j) entry of uÃ is congruent to the (i, j) entry of uA

modulo mN+1. Consider the projection map π : R → R/mN+1 and suppose α′
1, . . . , α′

q

satisfy π(α′
i) = αi. Note that α′

1, . . . , α′
q are representatives of the equivalences classes of 

R/m. Expressing each entry of uÃ in terms of its u-adic digit expansion, we can write

uÃ = uA1 + u2A2 + · · · + uN AN + uN+1AN+1 + · · ·
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where each Ai is an r × r matrix with entries in {α′
1, . . . , α′

q}. For ease of notation, we 
identify Ai with its image in Matn(Fq) under the map defined by reducing each entry 
modulo m. When we refer to the rank of the matrix Ai we always mean the rank of this 
matrix in Matn(Fq).

We now apply Lemma 3.5 to uÃ to determine the conditions on the entries of 
A1, A2, A3, . . . that imply cok(uÃ) � G. Since uN G = 0, Lemma 3.5 implies that 
cok(uA) � G if and only if cok(uÃ) � G. Therefore, these conditions are independent of 
the choice of AN+1, AN+2, . . .. We count choices of A1, . . . , AN for which cok(uÃ) � G, 
completing the proof.

Since R is a PID with unique maximal ideal m = (u), by the classification of modules 
over a PID there are unique integers e1 > e2 > · · · > ek � 1 and r1, . . . , rk � 1 such that

G � (R/me1)r1 × · · · × (R/mek )rk = (R/ue1R)r1 × · · · × (R/uek R)rk .

Since r = rq(G), we have r1 + · · ·+rk = r. By assumption, uN G = 0, which is equivalent 
to N � e1.

The invariant factors of cok(uÃ) are only determined up to multiplication by a unit, 
so we can assume each one is of the form um for some m � 1. We order the invariant 
factors by these exponents since um1 | um2 if and only if m1 � m2. By Lemma 3.5, the 
smallest invariant factor of cok(uÃ) is equal to the greatest common divisor of the 1 × 1
minors of uÃ. Therefore, uek is the smallest invariant factor of cok(uÃ) if and only if 
A1 = A2 = · · · = Aek−1 = 0 and Aek

is nonzero.
Our next goal is to count the invariant factors of this smallest size.

Claim: Suppose that A1 = A2 = · · · = Aek−1 = 0. Then cok(uÃ) has exactly rk invariant 
factors uek if and only if Aek

has rank rk.

Proof of Claim. The rank of Aek
is the largest m such that there exists a nonzero m ×m

minor of Aek
. Suppose i ∈ [1, r]. By Lemma 3.5 applied to uÃ, we have s1 · · · si =

gcd(i × i minors of uÃ). As explained above, since A1 = A2 = · · · = Aek−1 = 0, if 
Aek

�= 0, then uek = s1 is the smallest invariant factor of cok(uÃ). Since s1 | · · · | si, we 
see that (uek )i | s1 · · · si.

If there exists a nonzero rk × rk minor of Aek
, then there is an rk × rk minor of uÃ

equal to (uek )rk times a unit in R. This implies gcd(rk × rk minors of uÃ) = (uek )rk , 
and therefore cok(uÃ) has at least rk invariant factors equal to uek .

By the same reasoning, if there is a nonzero (rk + 1) × (rk + 1) minor of Aek
, then 

cok(uÃ) has at least rk +1 invariant factors equal to uek . Therefore, cok(uÃ) has exactly 
rk invariant factors equal to uek if and only if Aek

∈ Matr(Fq) has rank rk. �
Given A1 = A2 = · · · = Aek−1 = 0 and Aek

with rank rk, we find the constraints on 
Aek+1, Aek+2, . . . that determine whether cok(uÃ) has no invariant factors between uek

and uek−1 and exactly rk−1 invariant factors equal to uek−1 . Since Aek
has rank rk, there 

exist PAe
, QAe

∈ GLr(Fq) such that

k k
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PAek
Aek

QAek
=
[

0 0
0 Irk

]
.

Let P ′
Aek

be an arbitrary lift of PAek
to GLr(R) and Q′

Aek
be an arbitrary lift of QAek

to GLr(R). We have

cok(uÃ) � cok(P ′
Aek

uÃQ′
Aek

) = cok
(
uek A′

ek
+ uek+1A′

ek+1 + · · ·
)

,

where A′
j = P ′

Aek
AjQ′

Aek
.

We claim that the next smallest size of an invariant factor of cok(uÃ) after uek is uek−1

if and only if A′
ek+1, . . . , A′

ek−1−1 have all of their entries in the top left (r −rk) × (r −rk)
corner equal to 0 and A′

ek−1
has a nonzero entry in its top left (r − rk) × (r − rk) corner.

Suppose j ∈ [ek +1, ek−1 −1]. If A′
j has a nonzero entry in its top left (r−rk) ×(r−rk)

corner, then there is an (rk +1) × (rk +1) minor of uÃ equal to uj(uek )rk times a unit in 
R. Lemma 3.5 now implies that the next smallest invariant factor of cok(uÃ) after uek

has size at most uj .
Now suppose A′

ek+1, . . . , A′
ek−1−1 have all of their entries in the top left (r − rk) ×

(r − rk) corner equal to 0. Every (rk + 1) × (rk + 1) minor of P ′
Aek

uÃQ′
Aek

is divisible 

by uek−1(uek )rk . Lemma 3.5 implies that the next smallest invariant factor of cok(uÃ)
after uek is at least uek−1 . If there is a nonzero entry in the top left (r − rk) × (r − rk)
corner of A′

ek−1
, then there is an (rk + 1) × (rk + 1) minor of uÃ equal to uek−1(uek )rk

times a unit in R. If every entry in the top left (r − rk) × (r − rk) corner of A′
ek−1

is 0, 
then every (rk + 1) × (rk + 1) minor of uÃ is divisible by uek−1+1(uek )rk . Thus, this next 
smallest invariant factor of cok(uÃ) is equal to uek−1 if and only if there is a nonzero 
entry in the top left (r − rk) × (r − rk) corner of A′

ek−1
.

Suppose that the second smallest invariant factor of cok(uÃ) is equal to uek−1 . We now 
determine the number of invariant factors of this size. For any t, the greatest common 
divisor of the (rk + t) × (rk + t) minors of P ′

Aek
uÃQ′

Aek
is divisible by (uek )rk (uek−1)t. By 

Lemma 3.5, there are at least t invariant factors of cok(uÃ) equal to uek−1 if and only 
if there is an (rk + t) × (rk + t) minor of P ′

Aek
uÃQ′

Aek
equal to (uek )rk (uek−1)t times a 

unit in R.
Consider the top left (r − rk) × (r − rk) corner of A′

ek−1
. Suppose it has rank t. This 

matrix has a nonzero t ×t minor, but each of its (t +1) ×(t +1) minors is 0. Therefore, there 
is a (rk + t) × (rk + t) minor of P ′

Aek
uÃQ′

Aek
equal to (uek )rk (uek−1)t times a unit in R, 

but no (rk +t +1) ×(rk +t +1) minor of P ′
Aek

uÃQ′
Aek

is equal to (uek )rk (uek−1)t+1 times 
a unit in R. We conclude that cok(uÃ) has exactly rk−1 invariant factors equal to uek−1

if and only if t = rk−1. As above, we multiply by appropriate P ′
Aek−1

, Q′
Aek−1

∈ GLr(R). 
We then repeat this argument for the remaining invariant factors of G.

When considering the matrix that determines the number of invariant factors of 
cok(uÃ) equal to ue1 , we need the top left r1 × r1 piece of an (r1 + r2) × (r1 + r2)
submatrix to have rank r1. There are no conditions on the remaining 2r1r2 + r2

2 entries 
of this submatrix. Similarly, when we consider the matrix that determines the number of 
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invariant factors of cok(uÃ) equal to ue2 , we need the top left (r1 + r2) × (r1 + r2) piece 
of an (r1 + r2 + r3) × (r1 + r2 + r3) submatrix to have rank r2. There are no conditions 
on the remaining 2(r1 + r2)r3 + r2

3 entries of this submatrix. Continuing in this way, we 
see that the total number of choices of uA ∈ Matr(R/mN+1) for which cok(uÃ) � G is 
equal to

( k−1∏
i=0

#
{

X ∈ Matr−(rk+rk−1+···+rk−i+1)(Fq) :
rank(X) = rk−i

})(
q
∑k

i=1(N−ei)(r2
i +2ri

∑
1�j<i rj)

)
.

We have

q
∑k

i=1(N−ei)(r2
i +2ri

∑
1�j<i rj) = qNr2−

∑k
i=1 eir2

i −2
∑

1�j<i�k eirirj

= qNr2∏
1�i,j�k qmin(ei,ej)rirj

since r = r1 + · · · + rk.
Applying Lemma 3.6 shows that

k−1∏
i=0

#
{

X ∈ Matr−(rk+rk−1+···+rk−i+1)(Fq) :
rank(X) = rk−i

}

= qr2 (1 − q−1)2(1 − q−2)2 · · · (1 − q−r)2

((1 − q−1)(1 − q−2) · · · (1 − q−r1)) · · · ((1 − q−1)(1 − q−2) · · · (1 − q−rk ))

= qr2
∏r

i=1(1 − q−i)2

q−(r2
1+···+r2

k)|GLr1(Fq)| · · · |GLrk
(Fq)|

.

Therefore, we have

( k−1∏
i=0

#
{

X ∈ Matr−(rk+rk−1+···+rk−i+1)(Fq) :
rank(X) = rk−i

})(
q
∑k

i=1(N−ei)(r2
i +2ri

∑
1�j<i rj)

)

=
qNr2+r2 ∏r

i=1(1 − q−i)2∏k
i=1 q−r2

i |GLri
(Fq)|

∏
1�i,j�k qmin(ei,ej)rirj

=
qNr2+r2 ∏r

i=1(1 − q−i)2

|AutR(G)| ,

where in the last step we applied Lemma 3.7. �
4. The proof of Theorem 1.6

In this section, we use the special case of Theorem 1.6 where l = 1 to prove Theo-
rem 1.6 in general. We first recall some notation and assumptions. We are given
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• monic polynomials P1(t), . . . , Pl(t) ∈ Zp[t] of degree at most 2 whose images in 
Fp[t] are distinct and irreducible and a finite module Gj over Zp[t]/(Pj(t)) for each 
1 � j � l,

• N ∈ Z�0 such that pN Gj = 0 for each 1 � j � l, and
• X̄ ∈ Matn(Fp) such that for each 1 � j � l,

dimFqj

(
cok(Pj(X̄))

)
= rqj

(Gj),

where qj = pdeg(Pj).

We count lifts X ∈ Matn(Z/pN+1Z) of X̄ such that for each 1 � j � l we have 
cok(Pj(X)) � Gj .

Proof of Theorem 1.6. We use an argument similar to two steps of the proof outline 
given for Lemma 3.1 in Section 3.3. There exists Q̄ ∈ GLn(Fp) such that

Q̄−1X̄Q̄ =

⎡
⎢⎢⎢⎢⎣

J1 0 · · · 0 0
0 J2 · · · 0 0
...

... · · ·
...

...
0 0 · · · Jl 0
0 0 · · · 0 M

⎤
⎥⎥⎥⎥⎦ ,

where each eigenvalue of Jj over Fp is a root of Pj(t) and M is a square matrix over Fp

with no eigenvalue over Fp that is a root of any of P1(t), . . . , Pl(t). Note that if Gj is 
trivial, then Jj is the empty matrix.

Fix a lift Q ∈ GLn(Z/pN+1Z) of Q̄ ∈ GLn(Fp). Given a lift X ∈ Matn(Z/pN+1Z)
of X̄ ∈ Matn(Fp), the matrix Q−1XQ is a lift of Q̄−1X̄Q̄. On the other hand, if Y ∈
Matn(Z/pN+1Z) is a lift of Q̄−1X̄Q̄, then QY Q−1 is a lift of X̄. Note that Pj(Q−1XQ) =
Q−1Pj(X)Q. As in Step (1) of the proof of Lemma 3.1 described in Section 3.3, taking 
advantage of this bijection between the lifts of X̄ and the lifts of Q̄−1X̄Q̄, it is enough 
to prove Theorem 1.6 for the case where

X̄ =

⎡
⎢⎢⎢⎢⎣

J1 0 · · · 0 0
0 J2 · · · 0 0
...

... · · ·
...

...
0 0 · · · Jl 0
0 0 · · · 0 M

⎤
⎥⎥⎥⎥⎦ .

Fix j ∈ [1, l] and let Rj := (Z/pN+1Z)[t]/(Pj(t)). Over Rj/pRj = Fp[t]/(Pj(t)), the 
matrix Jj − t̄id is not invertible, while for any k �= j, the matrix Jk − t̄id is invertible. 
The matrix M − t̄id is also invertible.
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Any lift X ∈ Matn(Z/pN+1Z) of X̄ is of the form

X =

⎡
⎢⎢⎢⎢⎣

pA11 + J1 pA12 · · · pA1l pA1,l+1
pA21 pA22 + J2 · · · pA2l pA2,l+1

...
... · · ·

...
...

pAl1 pAl2 · · · pAll + Jl pAl,l+1
pAl+1,1 pAl+1,2 · · · pAl+1,l pAl+1,l+1 + M

⎤
⎥⎥⎥⎥⎦ ,

where the pAst are matrices over Z/pN+1Z all of whose entries are 0 modulo p, and each 
of J1, . . . , Jl, M is the unique lift to Z/pN+1Z with entries in {0, 1, . . . , p − 1} of the cor-
responding matrix over Fp. Let n1, . . . , nl, nl+1 ∈ Z�0 so that pAii ∈ pMatni

(Z/pN+1Z)
for 1 � i � l + 1. In particular, n = n1 + · · · + nl + nl+1.

A key idea in this argument is to work with expansions of elements of Z/pN+1Z in 
terms of powers of p, and to use these expansions of elements to give similar expansions 
for matrices. Each entry of pAst is of the form a1p + a2p2 + · · · + aN−1pN−1 + aN pN , 
where ai ∈ {0, 1, . . . , p − 1}. Without any constraints there are pNn2 total lifts X of X̄. 
Recall that by Lemma 3.2, we have cok(Pj(X)) � cokRj

(X − t̄In).
We choose a sequence of (block) row and column operations from Lemma 3.4 to 

transform the matrix X − t̄In, which is equal to

⎡
⎢⎢⎢⎢⎣

pA11 + J1 − t̄id pA12 · · · pA1l pA1,l+1
pA21 pA22 + J2 − t̄id · · · pA2l pA2,l+1

...
...

. . .
...

...
pAl1 pAl2 · · · pAll + Jl − t̄id pAl,l+1

pAl+1,1 pAl+1,2 · · · pAl+1,l pAl+1,l+1 + M − t̄id

⎤
⎥⎥⎥⎥⎦ (3)

into the block diagonal matrix whose blocks are given by

pA11+J1− t̄id+p2B
(j)
1 + t̄p2C

(j)
1 , . . . , pAll+Jl− t̄id+p2B

(j)
l + t̄p2C

(j)
l , pAl+1,l+1+M − t̄id,

where p2B
(j)
i , p2C

(j)
i ∈ p2Matni

(Z/pN+1Z) depend on pAst with 1 � s, t � l + 1 except 
they do not depend on pAii. We conclude that X − t̄In and this block diagonal matrix 
have isomorphic cokernels over Rj.

Suppose i, j ∈ [1, l] are distinct. Since Ji − t̄id is invertible over Rj/pRj , we see that 
pAii + Ji − t̄id + p2B

(j)
i + t̄p2C

(j)
i is invertible over Rj . Similarly, pAl+1,l+1 + M − t̄id is 

invertible over Rj . This implies

cok(Pj(X)) � cokRj
(X − t̄In)

� cokRj
(pAjj + Jj − t̄id + p2B

(j)
j + t̄p2C

(j)
j )

= cokRj
(Jj + pAjj + p2B

(j)
j − t̄(id − p2C

(j)
j )).

Multiplying by an invertible matrix does not change the isomorphism class of the cok-
ernel, so
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cokRj
(Jj + pAjj + p2B

(j)
j − t̄(id − p2C

(j)
j ))

� cokRj
((id − p2C

(j)
j )−1(Jj + pAjj + p2B

(j)
j ) − t̄id)

� cok
(
Pj

(
(id − p2C

(j)
j )−1(Jj + pAjj + p2B

(j)
j )

))
.

Fix any choices for {pAst : 1 � s, t � l + 1, s �= t} and also fix a choice of pAl+1,l+1. 
Note that there are pN(n2−(n2

1+···+n2
l )) total possible choices for these matrices. The 

matrices p2B
(j)
i , p2C

(j)
i ∈ p2Matni

(Z/pN+1Z)) play an important role in our proof. Given 
choices for the pAst above and for pAl+1,l+1 we can think of p2B

(j)
i and p2C

(j)
i as being 

functions of (pA11, . . . , pAi−1,i−1, pAi+1,i+1, . . . , pAll). We usually do not usually include 
this dependence in the notation for p2B

(j)
i and p2C

(j)
i because it would make things much 

harder to read, but in a few cases we include this additional notation for emphasis.
Consider the function ΦN that takes (pA11, pA22, . . . , pAll) to
(

(id − p2C
(1)
1 )−1(J1 + pA11 + p2B

(1)
1 ), · · · , (id − p2C

(l)
l )−1(Jl + pAll + p2B

(l)
l )

)
.

So ΦN is a map from pMatn1(Z/pN+1Z) × · · · × pMatnl
(Z/pN+1Z) to

{
Y1 ∈ Matn1(Z/pN+1Z) :

Y1 ≡ J1 (mod p)

}
× · · · ×

{
Yl ∈ Matnl

(Z/pN+1Z) :
Yl ≡ Jl (mod p)

}
.

Claim: ΦN is a bijection.
Assuming the claim for now, we complete the proof of Theorem 1.6. By the discus-

sion above, cok(Pj(X)) � Gj for each j if and only if cok
(
Pj

(
(id − p2C

(j)
j )−1(Jj +

pAjj + p2B
(j)
j )

))
� Gj for each j. Since ΦN is a bijection, the number of choices for 

(pA11, . . . , pAll) such that cok(Pj(X)) � Gj for each j is equal to

#
{

(Y1, . . . , Yl) ∈ Matn1(Z/pN+1Z) × · · · × Matnl
(Z/pN+1Z) :

cok(Pj(Yj)) � Gj and Yj ≡ Jj (mod p) for 1 � j � l

}
.

It is clear that this is equal to

l∏
j=1

#
{

Yj ∈ Matnj
(Z/pN+1Z) :

cok(Pj(Yj)) � Gj and Yj ≡ Jj (mod p)

}
.

By the l = 1 case of Theorem 1.6, this is equal to

l∏
j=1

pNn2
j
q

rqj
(Gj)2

j

∏rqj
(Gj)

i=1 (1 − q−i
j )2

|AutZp[t]/(Pj(t))(Gj)| .

Multiplying by pN(n2−(n2
1+···+n2

l )) to account for all possible choices of {pAst : 1 � s, t �
l + 1, s �= t} and pAl+1,l+1 completes the proof of Theorem 1.6.
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We now need only prove that ΦN is a bijection. Since ΦN is a map between finite sets 
of the same size, we need only prove that it is surjective. We define a sequence of maps 
Φ1, . . . , ΦN−1, ΦN and prove that each one is a bijection. Let k ∈ [1, N ]. Our next goal 
is to define the map Φk.

• For each element of {pAst : 1 � s, t � l + 1, s �= t}, let pA
[k]
st be the matrix over 

Z/pk+1Z such that pAst ≡ pA
[k]
st (mod pk+1).

• Let pA
[k]
l+1,l+1 be the matrix over Z/pk+1Z such that pAl+1,l+1 ≡ pA

[k]
l+1,l+1

(mod pk+1).

For each j ∈ [1, l], choose a matrix pAjj ∈ Matnj
(Z/pk+1Z). We construct a matrix 

analogous to the one given in (3) using pA11, . . . , pAll, pA
[k]
l+1,l+1 and the elements of 

{pA
[k]
st : 1 � s, t � l + 1, s �= t}. We then apply the same sequence of (block) row and 

column operations that we applied to the matrix in (3). This gives a block diagonal 
matrix whose blocks are given by

pA11 + J1 − t̄id + p2B
(j,k)
1 + t̄p2C

(j,k)
1 , . . . , pAll + Jl − t̄id + p2B

(j,k)
l + t̄p2C

(j,k)
l ,

pAl+1,l+1 + M − t̄id,

where p2B
(j,k)
i , p2C

(j,k)
i ∈ p2Matni

(Z/pk+1Z) are functions of the collection of matrices 
(pA11, . . . , pAi−1,i−1, pAi+1,i+1, . . . , pAll). A key thing to note is that for any 1 � k′ �
k � N , if pAjj ≡ pA′

jj (mod pk′+1) for each j ∈ [1, l], then

p2B
(j,k)
i (pA11, . . . , pAi−1,i−1, pAi+1,i+1, . . . , pAll)

≡ p2B
(j,k′)
i (pA′

11, . . . , pA′
i−1,i−1, pA′

i+1,i+1, . . . , pA′
ll) (mod pk′+1).

An analogous result holds for the matrices p2C
(j,k)
i and p2C

(j,k′)
i .

We define a map

Φk : pMatn1(Z/pk+1Z) × · · · × pMatnl
(Z/pk+1Z) →{

Y1 ∈ Matn1(Z/pk+1Z) :
Y1 ≡ J1 (mod p)

}
× · · · ×

{
Yl ∈ Matnl

(Z/pk+1Z) :
Yl ≡ Jl (mod p)

}

that takes (pA11, pA22, . . . , pAll) to

(
(id − p2C

(1,k)
1 )−1(J1 + pA11 + p2B

(1,k)
1 ), · · · , (id − p2C

(l,k)
l )−1(Jl + pAll + p2B

(l,k)
l )

)
.

Now that we have defined Φ1, . . . , ΦN , we see that they are compatible with reducing 
the inputs modulo powers of p. More precisely, for any 1 � k′ � k � N , if pAjj ≡ pA′

jj

(mod pk′+1) for every j ∈ [1, l], then
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Φk(pA11, pA22, . . . , pAll) ≡ Φk′(pA′
11, pA′

22, . . . , pA′
ll) (mod pk′+1).

We now prove that Φ1 is a bijection. We have

(id − p2C
(j,1)
j )−1(Jj + pAjj + p2B

(j,1)
j ) ≡ Jj + pAjj (mod p2),

so it is clear that Φ1 is a bijection.
We now assume that Φk−1 is a bijection and prove that Φk is a surjection. Choose 

(Y1, . . . , Yl) such that for each j, we have Yj ∈ Matnj
(Z/pk+1Z) with Yj ≡ Jj (mod p). 

Such a matrix can be written uniquely as

Yj = Jj + pS
[1]
j + p2S

[2]
j + · · · + pkS

[k]
j ,

where each S
[i]
j is an nj × nj matrix with entries in {0, 1, . . . , p − 1}. Define Y ′

j ∈
Matnj

(Z/pkZ) by

Y ′
j = Jj + pS

[1]
j + p2S

[2]
j + · · · + pk−1S

[k−1]
j ,

so Yj ≡ Y ′
j (mod pk).

Since Φk−1 is a bijection, there exists (pA′
11, . . . , pA′

ll) ∈ pMatn1(Z/pkZ) × · · · ×
pMatnl

(Z/pkZ) such that for each j ∈ [1, l],

(id − p2C
(j,k−1)
j )−1(Jj + pA′

jj + p2B
(j,k−1)
j ) = Jj + pS

[1]
j + p2S

[2]
j + · · · + pk−1S

[k−1]
j = Y ′

j .

There are unique nj × nj matrices T [k′]
j with entries in {0, 1, . . . , p − 1} such that

pA′
jj = pT

[1]
j + p2T

[2]
j + · · · + pk−1T

[k−1]
j .

Let pA∗
j (T [k]

j ) ∈ pMatnj
(Z/pk+1Z) be defined by

pA∗
j (T [k]

j ) =
(

pT
[1]
j + p2T

[2]
j + · · · + pk−1T

[k−1]
j

)
+ pkT

[k]
j ,

where T [k]
j is an nj × nj matrix with entries in {0, 1, . . . , p − 1}.

We claim that there exist T [k]
1 , . . . , T [k]

l such that

Φk

(
pA∗

1(T [k]
1 ), . . . , pA∗

l (T [k]
l )

)
= (Y1, . . . , Yl).

For any choice of (T [k]
1 , . . . , T [k]

l ), since for each j ∈ [1, l] we have pA∗
j (T [k]

j ) ≡ pA′
jj

(mod pk), we see that

Φk(pA∗
1(T [k]

1 ), . . . , pA∗
l (T [k]

l )) ≡ Φk−1(pA′
11, . . . , pA′

ll) = (Y ′
1 , . . . , Y ′

l ) (mod pk).
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For each j there exists an nj × nj matrix S∗
j with entries in {0, 1, . . . , p − 1} such that

(id − p2C
(j,k)
j )−1(Jj + pA∗

j (T [k]
j ) + p2B

(j,k)
j )

= Jj + pS
[1]
j + p2S

[2]
j + · · · + pk−1S

[k−1]
j + pkS∗

j ∈ Matnj
(Z/pk+1Z).

The crucial observation is that because of the factor of p2,

p2B
(j,k)
j (pA∗

1(T [k]
1 ), . . . , pA∗

l (T [k]
l )) and p2C

(j,k)
j (pA∗

1(T [k]
1 ), . . . , pA∗

l (T [k]
l ))

depend on pA∗
1(T [k]

1 ), . . . , pA∗
l (T [k]

l ) but they do not depend on T [k]
1 , . . . , T [k]

l . That is, 
once we have fixed choices for (T [1]

i , . . . , T [k−1]
i ) for each i, the matrices p2B

(j,k)
j , p2C

(j,k)
j

are determined. Therefore, we see that each S∗
j depends only on a choice of T [k]

j and not 
on the choices for T [k]

i where i �= j.
By definition, a different choice of T [k]

j gives a different matrix pA∗
j (T [k]

j ). It is now 
clear that a different matrix pA∗

j (T k
j ) gives a different matrix S∗

j . That is, the map taking 

T
[k]
j to

(id − p2C
(j,k)
j )−1(Jj + pA∗

j (T [k]
j ) + p2B

(j,k)
j ) ∈

{
Y ∗

j ∈ Matnj
(Z/pk+1Z) :

Y ∗
j ≡ Y ′

j (mod pk)

}

is injective. Since this is an injective map between finite sets of the same size, it is 
a bijection. We conclude that there is a choice of (T [k]

1 , . . . , T [k]
l ) such that for each 

j ∈ [1, l], we have

(id − p2C
(j,k)
j )−1(Jj + pA∗

j (T [k]
j ) + p2B

(j,k)
j ) = Yj .

Therefore, Φk is a surjection and so, a bijection. Continuing in this way, we conclude 
that ΦN is a bijection. �
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