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Let fn(k) be the number of subrings of index k in Zn. We 
show that results of Brakenhoff imply a lower bound for the 
asymptotic growth of subrings in Zn, improving upon lower 
bounds given by Kaplan, Marcinek, and Takloo-Bighash. 
Further, we prove two new lower bounds for fn(pe) when 
e ≥ n − 1. Using these bounds, we study the divergence of 
the subring zeta function of Zn and its local factors. Lastly, 
we apply these results to the problem of counting orders in a 
number field.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A subring of Zn is a sublattice that contains the multiplicative identity (1, 1, . . . , 1) and 
is closed under componentwise multiplication. Let fn(k) denote the number of subrings 
of Zn of finite index k. The subring zeta function of Zn is given by

ζR
Zn(s) =

∑
S subring of

finite index in Zn

[Zn : S]−s =
∞∑

k=1

fn(k)k−s.
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There is a wider class of zeta functions for groups or rings, which are defined in [7]. For 
an extensive survey about these zeta functions, see [6]. Let 

∏
p denote the product over 

all primes. The subring zeta function has an Euler product

ζR
Zn(s) =

∏
p

ζR
Zn, p(s)

with local factors

ζR
Zn, p(s) =

∞∑
e=0

fn(pe)p−es.

Let Zp denote the p-adic integers. Note that ζR
Zn, p(s) = ζR

Zn
p
(s) where the p−es coefficient 

in the latter zeta function is the number of Zp-subalgebras of index pe in Zn
p .

When n ≤ 4, there are explicit closed formulas for ζR
Zn(s), which we summarize in the 

following theorem.

Theorem 1.1. We have

ζR
Z2(s) = ζ(s)

ζR
Z3(s) = ζ(3s − 1)ζ(s)3

ζ(2s)s

ζR
Z4(s) =

∏
p

1
(1 − p−s)2(1 − p2−4s)(1 − p3−6s)

(
1 + 4p−s

+ 2p−2s + (4p − 3)p−3s + (5p − 1)p−4s + (p2 − 5p)p−5s

+ (3p2 − 4p)p−6s − 2p2−7s − 4p2−8s − p2−9s

)
.

The case n = 2 follows from the fact that f2(k) = 1 for all positive integers k. The 
case n = 3 is originally due to Datskovsky and Wright [5] and n = 4 is due to Nakagawa 
[10]. Liu [9] gives combinatorial proofs of these formulas.

In this paper, we are motivated by three broad questions. These questions have been 
actively studied by several other authors and we summarize some known results below.

Question 1.2. For each fixed n and e, what is fn(pe) as a function of p?

For each fixed n ≤ 4 and e ≥ 0, comparing the p−es coefficients of the expression 
in Theorem 1.1 shows that fn(pe) is a polynomial in p. Liu [9] gives explicit formulas 
for fn(pe) for fixed e ≤ 5 and n > 0, which are all polynomial in p. His formula for 
e = 5 has a small error that Atanasov, Kaplan, Krakoff, and Menzel [1] correct. Further, 
the authors extend Liu’s work by giving explicit polynomial formulas for fn(pe) when 
e ∈ {6, 7, 8} and n > 0. These are the only exact formulas that are known; it is not even 
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known if fn(pe) will always be polynomial in p. In this paper, we discuss known and new 
results about lower bounds for fn(pe).

Question 1.3. What is the asymptotic growth of the number of subrings in Zn of index 
at most B?

For each fixed n, let

Nn(B) = #{S ⊂ Zn : S is a subring and [Zn : S] ≤ B} =
∑
k≤B

fn(k).

This function counts the number of subrings of index at most B in Zn. In [8], Kaplan, 
Marcinek, and Takloo-Bighash give the asymptotic growth of Nn(B) when n ≤ 5. The 
cases n ≤ 4 follow from Theorem 1.1 after applying a Tauberian theorem (see e.g. 
the appendix of [4]). It is important to note that these authors were able to prove an 
asymptotic formula when n = 5 even though no closed formula for ζR

Z5(s) is known. 
There is not even a conjecture about the asymptotic growth of Nn(B) for n ≥ 6. To 
make progress toward an answer to Question 1.3 when n ≥ 6, Kaplan, Marcinek, and 
Takloo-Bighash give upper and lower bounds for the asymptotic behavior of Nn(B).

Theorem 1.4. [8, Theorem 6]

1. Let n ≤ 5. There exists a constant Cn so that

Nn(B) ∼ CnB(log B)(
n
2)−1

as B → ∞.
2. Let n > 5. For any ε > 0,

B(log B)(
n
2)−1 	 Nn(B) 	ε B

n
2 − 7

6 +ε

as B → ∞.

The authors obtain the lower bound in Theorem 1.4(2) by computing the rightmost 
pole of the simpler Euler product 

∏
p(1 + fn(p)p−s) and then applying a Tauberian the-

orem. In this paper, we show that the results of Brakenhoff [2] lead to a new asymptotic 
lower bound for Nn(B) that improves upon Theorem 1.4(2).

Observe that Theorem 1.4 implies that ζR
Zn(s) diverges for all s ∈ C such that 
(s) ≤

1. Thus the strategy Kaplan, Marcinek, and Takloo-Bighash employ also gives a partial 
answer to the question: what is the abscissa of convergence of ζR

Zn(s)? Recall that the 
abscissa of convergence of a Dirichlet series D(s) is the unique σ ∈ R ∪ {±∞} so that 
D(s) diverges for all s with 
(s) < σ and converges for all s with 
(s) > σ. We will 
show that results of Brakenhoff [2] improve upon the lower bound for the abscissa of 
convergence of ζR

Zn(s).
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Table 1
Values of a(n) for small n.

n 6 7 8 9 10 20 50 100
a(n) 1 9

8
13
10

16
11

21
13

89
27

581
69

2379
140

Question 1.5. What is the abscissa of convergence of ζR
Zn, p(s)?

If ζR
Zn(s) converges, so do each of the local factors. Therefore the abscissa of conver-

gence for ζR
Zn(s) gives an upper bound for the abscissa of convergence for ζR

Zn, p(s) for 
each prime p. However, not much is known about lower bounds. We will provide a lower 
bound for the abscissa of convergence of ζR

Zn, p(s).

1.1. Main results

In this paper, we give partial results to the three broad questions asked in Section 1. 
First, we provide a new lower bound for the asymptotic growth of Nn(B) that improves 
upon [8] for all n ≥ 7 (see Table 1). The main elements in the proof of this theorem 
come from interpreting results of Brakenhoff [2].

Theorem 1.6. Fix n > 1 and let

a(n) = max
0≤d≤n−1

(
d(n − 1 − d)
(n − 1 + d) + 1

n − 1 + d

)
.

Then Ba(n) 	 Nn(B) as B → ∞.

Next, we study two different techniques for bounding the number of subrings in Zn of 
index pe. The first technique is an extension of Brakenhoff’s [2] results and holds more 
generally for the function that counts subrings of the ring of integers OK in a fixed 
number field K of degree n. We find a lower bound by showing that a special set of 
subgroups of OK are subrings and then bounding the number of such subgroups. This is 
detailed in Section 2. The second technique is based off Liu’s [9] work; we bound subrings 
by counting the number of n × n matrices with certain properties, see Sections 3 and 4.

We summarize our main results, which give partial answers to Questions 1.2 and 1.5. 
First, we provide new lower bounds for fn(pe) that hold for all e ≥ n − 1. We use the 
first technique to obtain Theorem 1.8. The other two theorems follow from the second 
technique.

Remark 1.7. Unless otherwise stated, maxA≤x≤B means the maximum over all integers 
x in the range [A, B].

Theorem 1.8. Fix integers n > 1 and e ≥ n − 1. For each t, set k = e − t(n − 1), 
c = � e 
 − (n − 1) and b = � e � − (n − 1). Set
t t
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h(e, n) = max
� e

2(n−1) �≤t≤� e
n−1 �

(
k(n − 1) − c2(k + t − ct) − b2(ct − k)

)
.

Then fn(pe) ≥ ph(e,n).

Theorem 1.9. Suppose that e ≥ n − 1. Let

b(n, e) = max
0≤d≤n−1

⌊
e

n − 1 + d

⌋
· d(n − 1 − d).

Then fn(pe) ≥ pb(n,e).

The lower bounds from Theorem 1.9 and the work in Section 5 lead to a lower bound 
for the abscissa of convergence of ζR

Zn, p(s).

Theorem 1.10. Fix n > 1. Let

c7(n) = max
0≤d≤n−1

d(n − 1 − d)
n − 1 + d

.

Then ζR
Zn, p(s) diverges for all s such that


(s) ≤ c7(n).

1.2. Outline of the paper

In the rest of this paper, we discuss lower bounds for various functions related to 
subrings in Zn including fn(pe), Nn(B), and the abscissa of convergence of ζR

Zn, p(s). In 
Section 2, we summarize results from Brakenhoff [2] and then show how these results 
lead to better asymptotic lower bounds for Nn(B). Brakenhoff gives a lower bound for 
fn(pe), when e ∈ [(n − 1), 2(n − 1)]. We extend his method to obtain a lower bound for 
fn(pe) for all e ≥ n − 1. In Section 3, we introduce Liu’s method of counting subrings 
in Zn by counting matrices in Hermite normal form with certain conditions. We then 
provide an algorithmic method for counting such matrices. In Section 4, we prove new 
lower bounds for fn(pe) using the method discussed in Section 3. In Section 5, we prove 
a lower bound for the abscissa of convergence of ζR

Zn, p(s). In Section 6, we connect the 
results in this paper to the problem of counting orders in a number field. Finally, in 
Section 7 we discuss further questions.

2. Extending results of Brakenhoff

In his 2009 PhD thesis [2], Brakenhoff studies similar questions to those asked in 
Section 1. Let Nfn be the set of number fields of degree n. For K ∈ Nfn, let OK be the 
ring of integers of K. Brakenhoff considers the function
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f(n, m) = max
K∈Nfn

# {R ⊂ OK : R is a subring of index m} .

An order in OK is a finite index subring of OK that contains the multiplicative identity. 
Since we assume that all subrings contain the multiplicative identity, the function f(n, m)
is also counting orders.

Lemma 2.1. [2, Lemma 5.10] Every additive subgroup G ⊂ OK that satisfies Z +m2OK ⊂
G ⊂ Z + mOK for some integer m is a subring.

Using Lemma 2.1, Brakenhoff finds a lower bound for f(n, pe) when e ∈ [n −1, 2(n −1)]. 
First we recall a definition.

Definition 2.2. Let q be a prime power. The q-binomial coefficient is given by

[
n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
.

Proposition 2.3. [2, Page 42] Fix integers n > 0 and d ∈ [0, n − 1]. Then

f(n, pn−1+d) ≥
[
n − 1

d

]
p

.

Remark 2.4. It is important to note that 
[

n−1
d

]
p

is a polynomial in p of degree d(n −1 −d).

Remark 2.5. Note that Lemma 2.1 is still true for each fixed number field K. Further, it 
is still true if we replace OK with Zn. Therefore the bound in Proposition 2.3 is also a 
lower bound for fn(pn−1+d) when d is an integer in [0, n − 1].

In Section 2.2, we extend Proposition 2.3 by providing a lower bound for fn(pe) when 
e ≥ n − 1. This extended lower bound holds for all K ∈ Nfn. In Section 4, we provide a 
different technique for bounding fn(pe).

2.1. Asymptotic lower bounds using Brakenhoff’s results

We now show that Proposition 2.3 leads to new a lower bound for the asymptotic 
growth of subrings in Zn. The main theorem in this section (Theorem 1.6) does not 
appear in [2].

Lemma 2.6. Fix n ≥ 0 and e ≥ 0. Suppose there exists a constant cn > 0 and positive 
integer a so that fn(pe) ≥ cnpa. Then ζR

Zn(s) diverges for all s such that 
(s) ≤ a+1
e .

The following corollary was not stated in Brakenhoff’s thesis.
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Corollary 2.7. Fix n > 1. Then ζR
Zn(s) diverges for all s such that


(s) ≤ max
0≤d≤n−1

(
d(n − 1 − d)

n − 1 + d
+ 1

n − 1 + d

)
.

Proof. By Remarks 2.4 and 2.5, for each fixed n > 0 and for each integer d ∈ [0, n − 1],

fn(pn−1+d) ≥ pd(n−1−d).

Applying Lemma 2.6 gives the result. �
Proof of Theorem 1.6. This follows from Corollary 2.7 and standard Tauberian theo-
rem. �

Theorem 1.6 is an improvement upon Theorem 1.4 for all n ≥ 7.

2.2. Extending Brakenhoff’s lower bound for fn(pe)

We begin by sketching the proof of Proposition 2.3, which relies on Lemma 2.1.
Take m = p in Lemma 2.1 and consider the following set

{G ⊂ OK : Z + p2OK ⊂ G ⊂ Z + pOK and dimFp

(
G/(Z + p2OK)

)
= d},

which is a subset of the set of subrings in OK of index pn−1+d. Note that there is a small 
typo on page 42 of [2]; he writes dimFp

(G/(Z + pOK)) = d. Brakenhoff proves that the 
cardinality of this set is exactly 

[
n−1

d

]
p

by showing the set is in bijection with the set of 
Fp-vector spaces in Fn−1

p of dimension d.
We now generalize this lower bound by relating subgroups satisfying the condition 

in Lemma 2.1 to subgroups in (Z/mZ)n−1. Let K be a number field of degree n and 
consider the set

{G ⊂ OK : Z + m2OK ⊂ G ⊂ Z + mOK}.

By Lemma 2.1, every finite index subgroup in this set is a subring of OK . Since OK is 
a free Z-module of rank n, OK is additively isomorphic to Zn. Let {1, v1, . . . , vn−1} be 
a basis for OK . There is a bijection between sublattices of Zn−1 and subgroups of OK

that contain Z.

Proposition 2.8. Let K be a degree n number field and let {1, v1, . . . , vn−1} be a basis 
for OK . For any m ≥ 1, Z + m2OK ⊂ G ⊂ Z + mOK if and only if G contains the 
sublattice of Zn−1 spanned by m2v1, . . . , m2vn−1 and G is contained in the sublattice of 
Zn−1 spanned by mv1, . . . , mvn−1.



370 K. Isham / Journal of Number Theory 234 (2022) 363–390
Proof. Observe that Z + m2OK is the subgroup corresponding to the sublattice of Zn−1

spanned by m2v1, . . . , m2vn−1. Therefore Z + m2OK ⊂ G if and only if G contains all 
basis elements of Z + m2OK . The second condition follows from the fact that Z + mOK

corresponds to the sublattice spanned by mv1, . . . , mvn−1. �
Theorem 2.9. Let K be a degree n number field. Fix some k ∈ N. The number of sub-
groups G of index mn−1k such that Z + m2OK ⊂ G ⊂ Z + mOK is equal to the number 
of subgroups of order k in (Z/mZ)n−1.

Proof. By the Lattice Isomorphism Theorem for groups, there is a bijection between 
subgroups G ⊂ Zn−1 such that m2Zn−1 ⊂ G ⊂ mZn−1 and subgroups G′ ⊂
mZn−1/m2Zn−1 ∼= (Z/mZ)n−1. Fix some G ⊂ Zn−1 satisfying the conditions. Then

[Zn−1 : G] = [Zn−1 : mZn−1][mZn−1 : G] = mn−1[mZn−1 : G].

Set k = [mZn−1 : G]. Let G′ be the subgroup of (Z/mZ)n−1 corresponding to G. Then 
k = [mZn−1 : G] = [(Z/mZ)n−1 : G′]. Finally, observe that the number of subgroups of 
index k in (Z/mZ)n−1 is equal to the number of subgroups of order k in (Z/mZ)n−1. �

In order to find a lower bound for fn(pe), it now suffices to count the number of 
subgroups in (Z/mZ)n−1. Specifically, we will set m = pt for some t > 0.

Definition 2.10. Let λ = (λ1, . . . , λr) be a partition. A finite abelian p-group has type λ

if G ∼= Z/pλ1Z × · · · × Z/pλrZ.

Let λ′ denote the conjugate partition of λ. We use the notation ν ⊆ λ if νi ≤ λi for 
all i = 1, . . . , r.

Theorem 2.11. [11, Page 1] Let ν ⊆ λ be partitions. Let ν′ be the conjugate partition of 
ν and λ′ be the conjugate partition of λ. The number of subgroups of type ν in a finite 
abelian p-group of type λ is equal to

∏
j≥1

pν′
j+1(λ′

j−ν′
j)

[
λ′

j − ν′
j+1

ν′
j − ν′

j+1

]
p

.

Using this theorem, we can give an exact formula for the number of subgroups of type 
ν in a finite abelian p-group of type λ = (t, t, . . . , t).

Corollary 2.12. The number of subgroups of type ν in (Z/ptZ)n−1 is equal to

∏
pν′

j+1((n−1)−ν′
j)

[
(n − 1) − ν′

j+1
ν′

j − ν′
j+1

]
.

j≥1 p
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Proof. Set λ = (t, . . . , t) with the t repeated n −1 times. Observe that λ′ = (n −1, . . . , n −
1) where the term n − 1 is repeated t times. Then apply Theorem 2.11. �
Proposition 2.13. The expression in Corollary 2.12 is a polynomial in p of degree

t∑
j=1

ν′
j(n − 1 − ν′

j).

Proof. The degree of 
[

n
k

]
p

is equal to k(n − k). Therefore the degree of each term in the 
product is

ν′
j+1(n − 1 − ν′

j) + (n − 1 − ν′
j+1 − (ν′

j − ν′
j+1))(ν′

j − ν′
j+1).

Simplifying and then adding all terms together gives the result. �
Theorem 2.14. Fix n > 1 and let λ = (t, . . . , t) be the type of the group G = (Z/ptZ)n−1. 
Let k ∈ [0, t(n − 1)]. Set b = �k

t � and c = � k
t 
. Then the number of subgroups of G of 

order pk is a polynomial in p with degree

k(n − 1) − c2(k + t − ct) − b2(ct − k).

Proof. By Proposition 2.13, for each ν ⊆ λ = (t, t, . . . , t), the degree of the polynomial 
that counts the number of subgroups of type ν is

t∑
j=1

ν′
j(n − 1 − ν′

j).

The number of subgroups of type ν ⊆ λ is equal to the number of subgroups of type 
ν′ ⊆ λ′. Therefore we seek to maximize the degree of the polynomials counting subgroups 
of order pk in (Z/ptZ)n−1 by considering the subgroups of type ν′ ⊆ λ′ = (n −1, . . . , n −1)
where the n − 1 is repeated t times subject to the constraint 

∑t
j=1 ν′

j = k. Observe that 
the degree is as large as possible when 

∑t
j=1(ν′

j)2 is minimized subject to the constraint 
that 

∑t
j=1 ν′

j = k. Over R, this function is minimized when ν′
j = k

t for all j = 1, . . . t. 
However, each ν′

j must be an integer. Thus take i of the ν′
j = � k

t � and the rest equal to 
� k

t 
 subject to the constraint i�k
t � + (t − i)� k

t 
 = k. Then

t∑
j=1

(ν′
j)2 = i

⌊
k

t

⌋2

+ (t − i)
⌈

k

t

⌉2

.

Solving the constraint for i gives i = t� k 
 − k. The result follows. �
t
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Theorem 2.14 gives the degree of the polynomial that counts the number of subgroups 
of order pk in (Z/ptZ)n−1 for each k ∈ [0, t(n − 1)]. Applying Theorem 2.9 and Theo-
rem 2.14 gives a lower bound for the number of subrings of index pt(n−1)+k in Zn for 
each k ∈ [0, t(n − 1)]. We can now state a lower bound for subrings of index pe based 
on these results. Moreover, our result holds for the function that counts subrings in OK

of index pe; however for consistency throughout this paper, we state the result for the 
function fn(pe), which counts subrings in Zn of index pe.

Corollary 2.15. Fix integers n > 1 and e ≥ n − 1. Fix an integer t so that t(n − 1) ≤ e ≤
2t(n − 1). Let k = e − t(n − 1). Set b = � e

t � − (n − 1) and c = � e
t 
 − (n − 1). Then

fn(pe) ≥ pk(n−1)−c2(k+t−ct)−b2(ct−k).

Remark 2.16. The bound in Corollary 2.15 is as large as possible when t | e. Observe that 
the exponent of the bound reduces in this case. We find that if t(n − 1) ≤ e ≤ 2t(n − 1)
and t | e, then

fn(pe) ≥ p(e−t(n−1))(2(n−1)− e
t ).

Finally, we prove Theorem 1.8.

Proof of Theorem 1.8. This theorem follows from Corollary 2.15, taking a maximum 
over all t so that t(n − 1) ≤ e ≤ 2t(n − 1). �
3. A method for counting subring matrices

We now introduce a combinatorial method for counting subrings due to Liu [9]. In 
Section 4, we will use this method to find a different bound for subrings of prime power 
index in Zn. In this section, we begin by describing Liu’s method for counting subrings 
and we then describe a simpler algorithm for counting subrings based on row reduction.

Definition 3.1. A n ×n matrix with entries in Z is in Hermite normal form if A = (aij)i,j

is upper triangular and 0 ≤ aij < aii for all 1 ≤ i < j ≤ n.

Definition 3.2. An n × n matrix A in Hermite normal form is a subring matrix of index 
k if

1. det(A) = k.
2. The identity (1, 1, . . . , 1)T is in the column span of A.
3. For all 1 ≤ i ≤ j ≤ n, if vi = (v1, v2, . . . , vn)T and vj = (w1, w2, . . . , wn)T are 

columns of A, then vi ◦ vj = (v1w1, v2w2, . . . , vnwn)T is in the column span of A.
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A subring matrix A is irreducible if det(A) = pe, every element in the first n − 1
columns is divisible by p, and the last column is (1, 1, . . . , 1)T . A subring in Zn of index 
pe is irreducible if for every (v1, . . . , vn) ∈ Zn, v1 ≡ v2 ≡ · · · ≡ vn (mod p).

Liu justifies the terminology “irreducible subring” by showing that any subring S of 
index pe in Zn can be written uniquely as a direct sum of irreducible subrings Si in Zni , 
see [9, Theorem 3.4].

In [9], Liu shows that there is a bijection between subrings in Zn of index k and 
subring matrices with determinant k. He also shows that there is a bijection between 
irreducible subrings of Zn of index pe and irreducible subring matrices with determinant 
pe.

Let gn(k) be the number of irreducible subrings of index k in Zn. Observe that gn(k)
is denoted gn+1(k) in [9].

Proposition 3.3. [9, Proposition 4.4] There is a recurrence relation

fn(pe) =
e∑

i=0

n∑
j=1

(
n − 1
j − 1

)
fn−j(pe−i)gj(pi).

By the above recurrence relation, to understand fn(pe), it suffices to understand gj(pi)
for each prime p, j ≤ n and i ≤ e. In particular, we study the number of irreducible 
subring matrices of index pe. These matrices have the following form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

pe1 pa12 pa13 · · · pa1(n−1) 1
pe2 pa23 · · · pa2(n−1) 1

pe3 · · · pa3(n−1) 1
. . .

...
...

pen−1 1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

where 0 ≤ aij < pei−1 for each 1 ≤ i < j ≤ n − 1.

Definition 3.4. We say that the matrix A as written above has diagonal (pe1 , . . . , pen−1 , 1).

Let Cn,e denote the number of compositions of e into n − 1 parts. The diagonals 
corresponding to irreducible subring matrices with determinant pe are in bijection with 
the compositions in Cn,e. If a matrix has diagonal (pe1 , . . . , pen−1 , 1), abusing notation 
we also say the matrix has diagonal α = (e1, . . . , en−1) ∈ Cn,e. Let gα(p) be the number 
of irreducible matrices with diagonal α ∈ Cn,e. Then

gn(pe) =
∑

gα(p).

α∈Cn,e
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The authors of [9] and [1] prove that fn(pe) is polynomial in p when e ≤ 8 and n > 0
by providing exact formulas for the number of irreducible subrings with each possible 
diagonal and then using the recurrence relation from Proposition 3.3.

Let Col(A) denote the Z-column span of the matrix A. For each α ∈ Cn,e, the authors 
of [9] and [1] determine formulas for gα(p) by considering all closure conditions vi ◦ vj ∈
Col(A) explicitly in order to find conditions on the variables aij. In general, finding all 
the closure conditions for a given diagonal can be complicated.

Example 3.5. [1, Page 19] Let α = (3, 2, 1, 1). The corresponding matrix is

⎛
⎜⎜⎜⎝

p3 pa12 pa13 pa14 1
p2 pa23 pa24 1

p 0 1
p 1

1

⎞
⎟⎟⎟⎠

with a1j ∈ [0, p2) for j = 2, 3, 4 and a2j ∈ [0, p) for j = 3, 4. Atanasov et al. illus-
trate their method for finding the closure conditions. For example, consider v2 ◦ v2 =
(p2a2

12, p4, 0, 0, 0)T . They note that v2 ◦ v2 must be a linear combination of the first two 
columns, so it suffices to understand how to write (p2a2

12, p4)T as a linear combination 
of (p3, 0)T and (pa12, p2)T . We must take p2 times this second column, so we obtain

(
p2a2

12
p4

)
= λ

(
p3

0

)
+ p2

(
pa12
p2

)
(1)

for some λ ∈ Z. In order for Equation (1) to hold, p3 | p2a12 and thus p | a12. Thus the 
closure condition corresponding to v2 ◦ v2 is a12 ≡ 0 (mod p). Atanasov et al. compute 
the closure conditions for other pairs of columns using similar methods and noting that 
the equations are simpler when they replace a12 with pa′

12. The final conditions are

(a2
13 − a13) − (a2

23 − a23)a′
12 ≡ 0 (mod p)

(a2
14 − a14) − (a2

24 − a24)a′
12 ≡ 0 (mod p)

a13a14 − a23a24a′
12 ≡ 0 (mod p).

We show that by using the method of row reduction, we can find these conditions in 
an algorithmic way. This method has two advantages. First, it simplifies proofs about 
counting the number of irreducible subrings with a given diagonal. Second, since it is 
algorithmic, it is easily implementable in a computer algebra system.

Recall that the closure conditions are of the form vi ◦ vj ∈ Col(A) for each 1 ≤ i ≤
j ≤ n. These conditions are satisfied if and only if A�xi,j = vi ◦vj has a solution �xi,j ∈ Zn

for every 1 ≤ i ≤ j ≤ n. By basic linear algebra, a solution �xi,j exists if and only if 
the last column in the reduced echelon form of the matrix [A vi ◦ vj ] has integer entries. 
We illustrate the row reducing steps below. Note that we omit the column (1, 1, . . . , 1)T
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corresponding to the identity in Zn since it is clear that vi ◦ (1, 1, . . . , 1)T is in the Z-
column span of A for all 1 ≤ i ≤ n and if i, j �= n, then the nth entry in vi ◦ vj is 0. 
Suppose we have a matrix

A =

⎛
⎜⎜⎜⎜⎝

pe1 pa12 pa13 · · · pa1(n−1) x1
pe2 pa23 · · · pa2(n−1) x2

pe3 · · · pa3(n−1) x3
. . .

...
pen−1 xn−1

⎞
⎟⎟⎟⎟⎠

where the last column contains the first n − 1 entries of the vector vi ◦ vj =
(x1, x2, . . . , xn−1, xn)T for some pair (i, j) so that 1 ≤ i ≤ j ≤ n − 1. We begin by 
dividing each row i by pei in order to make every diagonal entry equal to 1, obtaining 
the matrix

A →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 pa12
pe1

pa13
pe1 · · · pa1(n−1)

pe1
x1
pe1

1 pa23
pe2 · · · pa2(n−1)

pe2
x2
pe2

1 · · · pa3(n−1)
pe3

x3
pe3

. . .
...

1 xn−1
pen−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that since the matrix is upper triangular, it is not necessary to make any 
more divisions. From here, we row reduce and we note that finding conditions on aij so 
that vi ◦ vj is in the Z-span of the first n − 1 columns is equivalent to finding conditions 
on aij so that the entries in the last column are in Z. Thus, for each fixed vi ◦ vj , we are 
counting the number of solutions to expressions of the form

h
(c)
ij =

f
(c)
ij ( �aij)

pr
∈ Z (2)

where f (c)
ij is a multivariate polynomial with coefficients in Z, 1 ≤ c ≤ n − 1, and r is 

an integer depending on i, j, and c. Note that for this fixed vi ◦ vj , xi+1 = xi+2 = · · · =
xn−1 = 0. This allows us to use the row reduction process on the smaller i × (i + 1)
matrix formed by taking the first i columns of A, augmenting vi ◦ vj , and then removing 
the rows i + 1, . . . , n − 1. We will make use of this simplification in Section 4.

Let pr be the largest denominator that occurs in all expressions h(c)
ij in Equation (2). 

Then the rational functions h(c)
ij are in Z if and only if the numerators f (c)

ij ≡ 0 mod pr. 
Thus counting the simultaneous system h

(c)
ij ∈ Z is essentially the same as counting 

points to a simultaneous vanishing of the polynomials f (c)
ij modulo pr. Note that these 

problems are not exactly the same as the variables aij live in the range [0, pei−1) and we 
may have ei − 1 > r. However, since all expressions have denominator at worst pr, then 
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the congruence conditions for the variables only matter modulo pr. For any ei −1 > r, we 
can simply multiply the point count for the variety by pei−1−r. Thus up to polynomial 
factors, it is sufficient to understand the varieties defined over Z/prZ defined by the 
polynomials f (c)

ij .

Remark 3.6. In general, counting points on varieties over a ring is a difficult problem. 
It is easier to consider varieties over Fp, however these denominators that occur are 
often larger than p. Sometimes it is possible to reduce the denominators to all be p by 
using clever substitution. In these cases, we can say more about the point counts of the 
varieties.

We summarize the method described in this section as follows.

Algorithm 3.7. Input a diagonal (e1, . . . , en−1) with integers ei ≥ 0 for all 1 ≤ i ≤ n − 1.

1. Create the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

pe1 pa12 pa13 · · · pa1(n−1) 1
pe2 pa23 · · · pa2(n−1) 1

pe3 · · · pa3(n−1) 1
. . .

...
...

pen−1 1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

in the variables aij for 1 ≤ i < j ≤ n − 1. If ei = 0 or 1, set aij = 0 for all 
i < j ≤ n − 1.

2. For each vi ◦ vj with 1 ≤ i ≤ j ≤ n − 1, row reduce [A vi ◦ vj ] to A′ over Q. Add the 
entries of the rightmost column of A′ to a list.

3. Return the list formed in Step 2. All elements in this list are of the form fij(�aij)
pr for 

some r ≥ 0.

4. A new lower bound for fn(pe) via irreducible subring matrices

We now provide a lower bound for the number of subrings in Zn of index pe using 
techniques from Section 3. That is, we find a lower bound for fn(pe) by bounding the 
number of irreducible subrings of index pe in Zn. These results will lead to a new lower 
bound for the abscissa of convergence of ζR

Zn, p(s), which will be discussed in Section 5.

4.1. Bounding the number of irreducible subring matrices

Fix an integer d ∈ [0, n −1] and let k, 	 be positive integers so that 	 ≥ �k
2 
. Let Cn,d,k,�

denote the set of compositions of kd + 	(n − 1 − d) into n − 1 parts that contain exactly 
d terms equal to k and n − 1 − d terms equal to 	. In other words, each α ∈ Cn,d,k,� is 
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a permutation of the composition (k, k, . . . , k, 	, 	, . . . , 	) with k appearing d times and 	
appearing n − 1 − d times.

Proposition 4.1. Let n > 1. Fix an integer d ∈ [0, n − 1] and let k, 	 be positive integers 
so that 	 ≥ � k

2 
. For a fixed α ∈ Cn,d,k,�, let Aα be a matrix in Hermite normal form 
with diagonal α that satisfies the following conditions for each pair 1 ≤ i < j ≤ n − 1:

1. if aii = pk and ajj = p�, then aij ≡ 0 (mod p� k
2 �)

2. otherwise, aij = 0.

Then Aα is an irreducible subring matrix.

Proof. Let Aα be as described in the statement of the proposition. We must show that 
vi ◦ vj ∈ Col(Aα) for all 1 ≤ i ≤ j ≤ n. Let r1, . . . , rd be the columns containing pk. 
There are three cases to consider.

First, suppose that i = rm for some integer m ∈ [1, d]. Then vi = (0, · · · , 0, pk,

0, · · · , 0)T . Fix some integer j ∈ [1, n]. Suppose the ith entry of vj is equal to x. Then 
vi ◦ vj = xvi ∈ Col(Aα). Notice that we made no assumption about the entries of vj .

Second, suppose the ith entry of vi is p� and let j > i such that j /∈ {r1, . . . , rd}. 
The only possible nonzero entries in vi ◦ vj are in the rows {i1, . . . , id}. Therefore vi ◦
vj ∈ Col(Aα) if and only if vi ◦ vj is a linear combination of vr1 , . . . , vrd

. By applying 
the technique established in Section 3, we need to understand whether the following 
augmented matrix has integer solutions

A′
α =

⎛
⎜⎜⎜⎝

pk 0 · · · 0 p2� k
2 �ar1iar1j

pk · · · 0 p2� k
2 �ar2iar2j

. . .
...

...
pk p2� k

2 �ardiardj

⎞
⎟⎟⎟⎠ .

Observe that vi ◦ vj ∈ Col(Aα) if and only if

v = (p2� k
2 �ar1iar1j , p2� k

2 �ar2iar2j , · · · , p2� k
2 �ardiardj)T ∈ Col(A′

α).

By applying the row reduction technique, we see that v ∈ Col(A′
α) if and only if

pk | p2� k
2 �armiarmj

for each integer m ∈ [1, d]. This condition holds for all m ∈ [1, d].
Finally, suppose that vi has a p� in the ith entry and consider vi ◦ vi. Then vi ◦ vi ∈

Col(Aα) if and only if vi ◦ vi is a linear combination of vi and vr1 , . . . , vrd
. Consider the 

matrix
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A′
α =

⎛
⎜⎜⎜⎜⎜⎝

pk 0 · · · 0 p� k
2 �ar1i p2� k

2 �a2
r1i

pk · · · 0 p� k
2 �ar2i p2� k

2 �a2
r2i

. . .
...

...
...

pk p� k
2 �ardi p2� k

2 �a2
rdi

p� p2�

⎞
⎟⎟⎟⎟⎟⎠

.

After applying the row reduction method, vi ◦ vi ∈ Col(Aα) if and only if

pk |
(

p2� k
2 �a2

rmi − p�+� k
2 �armi

)

for all integers m ∈ [1, d]. This holds for all possible choices of armi since 	 ≥ � k
2 
. �

Example 4.2. Let α = (2, 1, 2, 1, 2). The matrix Aα corresponding to Proposition 4.1 has 
the form

⎛
⎜⎜⎜⎜⎜⎝

p2 pa12 0 pa14 0 1
p 0 0 0 1

p2 pa34 0 1
p 0 1

p2 1
1

⎞
⎟⎟⎟⎟⎟⎠

.

There are exactly p3 irreducible subring matrices of this form since Aα is a subring 
matrix for any choice of a12, a14, a34 ∈ [0, p).

Example 4.3. Let α = (3, 5, 3, 3, 5). Setting k = 5, we have �k
2 
 = 3. The matrix Aα

corresponding to Proposition 4.1 has the form

⎛
⎜⎜⎜⎜⎜⎝

p3 0 0 0 0 1
p5 p3a23 p3a24 0 1

p3 0 0 1
p3 0 1

p5 1
1

⎞
⎟⎟⎟⎟⎟⎠

.

When i = 2, aij ∈ [0, p2). There are exactly p4 such irreducible subrings matrices.

We now discuss a method for computing the number of subring matrices that have 
the form given in Proposition 4.1.

Definition 4.4. A north-east lattice path P is a path in Z2 starting at the origin and 
ending at (u, v) so that every step in the path is either a step one unit to the north or 
one unit to the east.

The area of a path is the area enclosed by the path, the x- and y-axes, and the line 
x = u. Denote the area by Area(P ).
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Fix α ∈ Cn,d,k,� and let Aα be a matrix as in Proposition 4.1. Let Pα denote the 
lattice path from (0, 0) to (n − 1 − d, d) so that the ith step in the path is a northerly 
step if the ith entry of α is k and is an easterly step if the ith entry of α is 	.

Theorem 4.5. Let α ∈ Cn,d,k,� and let Aα be as in Proposition 4.1. Then the number of 
such matrices Aα is equal to p(k−� k

2 �)·Area(Pα).

Proof. Observe that a non-diagonal element aij ∈ Aα is nonzero if and only if i < j and 
αi = k, αj = 	. In this case any choice of aij ∈ [0, pk−� k

2 �) leads to an irreducible subring 
matrix. By the definition of Pα, we see that

Area(Pα) = #{i < j : αi = k and αj = 	}.

Therefore the number of irreducible subring matrices Aα satisfying the conditions in 
Proposition 4.1 is

(
p(k−� k

2 �)
)Area(Pα)

. �
Corollary 4.6. For each α ∈ Cn,d,k,�, we have gα(p) ≥ p(k−� k

2 �)·Area(Pα).

Example 4.7. Let α = (2, 1, 2, 1, 2). The north-east lattice path Pα goes from (0, 0) to 
(2, 3), following the steps: north, east, north, east, north. This path is depicted below.

The area of this path is equal to 3 and k − �k
2 
 = 1, verifying our claim in Example 4.2

that there are exactly p3 irreducible subring matrices that have diagonal α and satisfy 
the properties listed in Proposition 4.1.

Remark 4.8. For each α ∈ Cn,d,k,� let Aα be a matrix satisfying Proposition 4.1. Let 
Pα be the corresponding north-east lattice path. Set γ = (k, k, . . . , k, 	, . . . , 	) ∈ Cn,d,k,�. 
Observe that Area(Pγ) ≥ Area(Pα) for all α ∈ Cn,d,k,�. Therefore the degree of the main 
term in our bound is always equal (k − � k

2 
)Area(Pγ).

Corollary 4.9. Set γ = (k, . . . , k, 	, . . . , 	). Then gγ(p) ≥ p(k−� k
2 �)d(n−1−d).

Proof. The north-east lattice path Pγ is a rectangle with vertices (0, 0), (n −1 −d, 0), (n −
d − 1, d), and (0, d). This rectangle has area d(n − 1 − d). The result follows from Theo-
rem 4.5. �
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To conclude this section, we show that the method of counting subrings recovers the 
bound for fn(pn−1+d) when d ∈ [0, n −1] given in Proposition 2.3, thus giving a different 
proof of this proposition.

Lemma 4.10. [3, Page 116] Let P be the set of north-east lattice paths from (0, 0) to (u, v)
and let q be a prime power. Then

∑
P ∈P

qArea(P ) =
[
u + v

v

]
q

.

Corollary 4.11. Fix integers n > 1 and d ∈ [0, n − 1]. Then gn(pn−1+d) ≥
[

n−1
d

]
p
.

Proof. Recall that gn(pe) =
∑

α∈Cn,e
gα(p). We can bound gn(pn−1+d) from below by 

counting the number of irreducible subrings with diagonal α ∈ Cn,d,2,1. The set Cn,d,2,1

is in bijection with the set of north-east lattice paths from (0, 0) to (d, n −1 −d). Fix some 
α ∈ Cn,d,2,1. By Theorem 4.5, for the corresponding lattice path Pα, gα(p) ≥ pArea(Pα). 
By Lemma 4.10,

gn(pn−1+d) ≥
∑

α∈Cn,d,2,1

gα(p) ≥
[
n − 1

d

]
p

. �

Since fn(pe) ≥ gn(pe) for all e ≥ 0, fn(pn−1+d) ≥
[

n−1
d

]
p
. Thus this method of 

bounding subrings in Zn gives exactly the same bound as Proposition 2.3.

4.2. Optimizing the bound for gn(pe)

In this section, we optimize the exponent (k−�k
2 
)d(n −1 −d). Fixing n, Corollary 4.9

implies that

fn(pe) ≥ gn(pe) ≥ p(k−� k
2 �)d(n−1−d)

for each 0 ≤ d ≤ n − 1 and k, 	 ∈ Z≥1 so that 	 ≥ k
2 and e ≤ kd + 	(n − 1 − d). It is 

important that k, 	 ≥ 1; if e < n −1, then gn(pe) = 0. In order to obtain the best possible 
bound for fn(pe) in terms of n and e, we optimize the exponent (k − � k

2 
)d(n − 1 − d)
over Z.

Proof of Theorem 1.9. The term k − � k
2 
 is maximized when k = 2j for some j ∈ N. 

Recall that we are subject to the constraint kd + 	(n − 1 − d) ≥ e for some 	 ≥ � k
2 
. 

Therefore j ≤ � e
d+(n−1) �. Set j = � e

d+(n−1) � so that it is as large as possible.
Then (k − � k

2 
)d(n − 1 − d) ≥ � e
d+(n−1) � · d(n − 1 − d). Taking a maximum over all 

0 ≤ d ≤ n − 1 gives the result. �



K. Isham / Journal of Number Theory 234 (2022) 363–390 381
The above proposition gives the best possible bound for (k − � k
2 
)d(n − 1 − d) subject 

to the constraints that 	 ≥ �k
2 
 and kd + 	(n − 1 − d) ≥ e. We now give a weakening of 

Theorem 1.9, which will be helpful later. The benefit of the following proposition is that 
the maximum is taken over real numbers rather than integers.

Proposition 4.12. Suppose that e ≥ n − 1. Let

c(n, e) = max
0≤C≤1

(
e

(
C − C2

C + 1 (n − 1) + C − 1
C + 1

)
−

(
(C − C2)(n − 1)2 + (C − 1)(n − 1)

))

where the maximum is taken over R. Then fn(pe) ≥ pc(n,e).

Proof. For any fixed integer d ∈ [0, n −1], d = �C(n −1)� for some real number C ∈ [0, 1]. 
Starting from the bound given in Theorem 1.9, for any C ∈ [0, 1],

(
k − �k

2 

)

d (n − 1 − d)

≥
⌊

e

�C(n − 1)� + (n − 1)

⌋
· �C(n − 1)� · (n − 1 − �C(n − 1)�)

≥
(

e

�C(n − 1)� + (n − 1) − 1
)

(C(n − 1) − 1)(1 − C)(n − 1)

≥
(

e

(C + 1)(n − 1) − 1
)

(C(n − 1) − 1)(1 − C)(n − 1)

=
(

e

(C + 1)(n − 1) − 1
) (

(C − C2)(n − 1)2 + (C − 1)(n − 1)
)

= e

(
C − C2

C + 1 (n − 1) + C − 1
C + 1

)
−

(
(C − C2)(n − 1)2 + (C − 1)(n − 1)

)
.

Taking a maximum over all real numbers C ∈ [0, 1] gives the result. �
4.3. Comparison of Theorems 1.8 and 1.9

Consider the bounds from Theorems 1.8 and 1.9. We compared these lower bounds 
for various values of n and e in Sage and found that they grow at very similar rates. The 
bound from Theorem 1.8 seems to be slightly better than the bound from Theorem 1.9
for each fixed n and for sufficiently large e. Let h(n, e) be the bound from Theorem 1.8
and let b(n, e) be the bound from Theorem 1.9. We provide Table 2 summarizing some 
of this data.

Next, we show that there are subrings that are counted using one of the two techniques, 
but not the other.



382 K. Isham / Journal of Number Theory 234 (2022) 363–390
Table 2
Values of the bounds from Theorems 1.8 and 1.9.

n e logp h(n, e) logp b(n, e)
6 10 0 6
6 20 16 12
6 30 24 24
6 300 256 252
6 1000 856 852
10 10 8 8
10 20 16 20
10 30 36 40
10 300 460 460
10 1000 1538 1520

Example 4.13. Let n = 3 and e = 7. Consider the following matrix.

A =

⎛
⎝p3 p2 1

0 p4 1
0 0 1

⎞
⎠

This is an irreducible subring matrix with diagonal α = (3, 4). The matrix A satisfies 
Proposition 4.1. Therefore our technique from Section 4 counts the matrix A in the lower 
bound for f3(p7).

Let G be the subgroup generated by the columns of A. Then G does not satisfy the 
condition Z + p4Z3 ⊂ G ⊂ Z + p2Z3 since (0, p4, 0)T is not in the Z-column span of 
A. Therefore our technique from Section 2.2 does not count the subgroup corresponding 
to A.

Example 4.14. Let n = 4. Let G be the subgroup generated by (1, 1, 1, 1), (p3, 0, 0, 0), 
(p2, p3, 0, 0), and (0, 0, p2, 0). Then Z + p4Z4 ⊂ G ⊂ Z + p2Z4.

The subgroup G corresponds to the matrix

A =

⎛
⎜⎝

p3 p2 0 1
0 p3 0 1
0 0 p2 1
0 0 0 1

⎞
⎟⎠ .

Our technique from Section 2.2 includes G in the lower bound for f4(p8). However, our 
technique from Section 4 does not since A violates the conditions in the statement of 
Proposition 4.1.

It is not too difficult to give conditions on when the columns of a subring matrix 
satisfying Proposition 4.1 will generate a subgroup G satisfying Lemma 2.1. We state 
this below in Proposition 4.15. However, it is much more difficult to determine when 
a subgroup G satisfying Lemma 2.1 corresponds to a subring matrix MG satisfying 
Proposition 4.1. The main obstacle here is that the closure conditions to determine 
whether MG is a subring matrix are complicated.
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Proposition 4.15. Let A be a subring matrix satisfying Proposition 4.1 with columns 
v1, . . . , vn−1, (1, . . . , 1)T . Let G be the subgroup generated by vT

1 , . . . , vT
n−1, and (1, . . . , 1). 

Then there exists an r such that Z + p2rZn ⊂ G ⊂ Z + prZn if and only if

	 =

⎧⎨
⎩

k
2 2 | k

k+1
2 or k+3

2 2 � k.

Proof. Let w1 = (1, 0, . . . , 0), w2 = (0, 1, . . . , 0), . . . , wn−1 = (0, . . . , 0, 1, 0), and wn =
(1, . . . , 1) be a basis for Zn. By Proposition 2.8, it suffices to understand conditions on 
r, k, and 	 so that p2rwi is contained in the lattice spanned by G and vi is contained in 
the lattice L spanned by {prw1, . . . , prwn−1} for all 1 ≤ i ≤ n − 1.

Observe that vi is in L if and only if

r ≤ min
(⌈

k

2

⌉
, k, 	

)
=

⌈
k

2

⌉
.

By applying the row reduction method, p2rwi is in the lattice spanned by G if and 
only if the following three conditions hold:

1. k ≤ 2r

2. 	 ≤ 2r

3. k ≤ 2r − 	 + � k
2 
.

We can simplify the four conditions to the following:

1. r = �k
2 


2. � k
2 
 ≤ 	 ≤ 3� k

2 
 − k. �
Finally, we demonstrate an upper bound for each of our lower bounds, which can be 

derived as corollaries of Theorems 1.8 and 1.9 respectively.

Corollary 4.16. Let h(n, e) be the exponent of the lower bound from Theorem 1.8. Then 
h(n, e) ≤ (3 − 2

√
2)(n − 1)e.

Proof. By Remark 2.16, for each fixed t ∈ [ e
2(n−1) , e

n−1 ], we have

h(n, e) ≤ (e − t(n − 1))(2(n − 1) − e

t
).

Taking a maximum over all t in this range over R gives the result. �
Corollary 4.17. Let b(n, e) be the exponent of the lower bound from Theorem 1.9. Then 
b(n, e) ≤ (3 − 2

√
2)(n − 1)e.
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Proof. Removing the floor function and optimizing over R gives the result. �
It is interesting to note that our two different methods lead to lower bounds that are 

very close asymptotically.

5. Divergence of local factors

In this section, we use the lower bounds for fn(pe) from Section 4 to find lower bounds 
for the abscissa of convergence of ζR

Zn, p(s). It is less clear how to use the bound from 
Theorem 1.8 to derive a result about the divergence of ζR

Zn, p(s) since the exponent is 
quadratic in e. While some results are known about the divergence of ζR

Zn(s), not much 
is known about the divergence of the local factors. We fill this gap and also provide a 
partial answer to Question 1.5.

For each lower bound pB of fn(pe) given in Section 4, we can determine the poles 
of the series 

∑
e≥n−1 pBp−es. Since fn(pe) ≥ pB whenever e ≥ n − 1, then ζR

Zn, p(s) ≥∑
e≥n−1 pBp−es. Therefore ζR

Zn, p(s) diverges whenever the simpler series diverges.
First, let

b(n, e) =
⌊

e

n − 1 + d

⌋
· d(n − 1 − d)

as in Theorem 1.9. In order to simplify the geometric series, we set

F (d, e, n) = ed(n − 1 − d)
n − 1 + d

− d(n − 1 − d)

and note that b(n, e) ≥ F (d, e, n)

Lemma 5.1. Fix n > 1. Then 
∑

e≥n−1 pF (d,e,n)p−es diverges for all s such that 
(s) ≤
d(n−1−d)

n−1+d .

Proof. Consider
∑

e≥n−1
pF (d,e,n)p−es = p−d(n−1−d)

∑
e≥n−1

(
p

d(n−1−d)
n−1+d −s

)e

.

This series diverges for all s such that 
(s) ≤ d(n−1−d)
n−1+d . �

Lemma 5.2. Let n > 1 and

G(C, e, n) = e

(
C − C2

C + 1 (n − 1) + C − 1
C + 1

)
−

(
(C − C2)(n − 1)2 + (C − 1)(n − 1)

)
.

Then 
∑

e≥n−1 pG(C,e,n)p−es diverges for all s such that 
(s) ≤
(

C−C2
(n − 1) + C−1

)
.
C+1 C+1
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Proof. Consider
∑

e≥n−1
pG(C,e,n)p−es = p−

(
(C−C2)(n−1)2+(C−1)(n−1)

) ∑
e≥n−1

p
e
(

C−C2
C+1 (n−1)+ C−1

C+1

)
p−es

= p−
(
(C−C2)(n−1)2+(C−1)(n−1)

) ∑
e≥n−1

(
p

(
C−C2

C+1 (n−1)+ C−1
C+1 −s

))e

The series diverges for all s such that 
(s) ≤ C−C2

C+1 (n − 1) + C−1
C+1 . �

Consider the bound G(C, e, n) used in Lemma 5.2. In order to maximize G(C, e, n)
as a function in n, consider max0≤C≤1

C−C2

C+1 = 3 − 2
√

2. The maximum occurs when 
C =

√
2 − 1. Plugging in this value of C, we obtain the following corollary.

Corollary 5.3. Let n > 1 and let G(C, e, n) be as in Lemma 5.2. Setting C =
√

2 − 1, we 
find that 

∑
e≥n−1 pG(1−

√
2,n)p−es diverges for all s such that 
(s) ≤ (3 − 2

√
2)(n − 1) +

1 −
√

2.

Lemma 5.1 and Corollary 5.3 combined give the proof of Theorems 1.10. Recall that
∑
e≥0

fn(pe)p−es ≥
∑

e≥n−1
pBp−es

for each choice of bound B as above. Therefore the previous lemmas give regions where 
the local factors of ζR

Zn(s) diverge. Observe that fn(pe) ≥ pF (d,e,n) for all integers d ∈
[0, n −1] and fn(pe) ≥ pG(C,e,n) for all real numbers C ∈ [0, 1], so we can take a maximum 
over all d in Lemma 5.1 or over all C in Lemma 5.2 to find the largest possible regions 
of divergence for these geometric series.

It is possible that there are poles further to the right of the ones found above in 
the given geometric series. Consider the bound in Lemma 5.1. When s > c7(n), ζR

Zn(s)
diverges if

∑
p

p−d(n−1−d) · p
d(n−1−d)(n−1)

n−1+d −(n−1)s

1 − p
d(n−1−d)

n−1+d −s

diverges for all 0 ≤ d ≤ n − 1. It is a simple computation to show that this series 
converges on s > c7(n). Similar computations show that we cannot find a larger region 
of divergence for the local factors by using Lemma 5.2 and Corollary 5.3 either. Thus 
Theorem 1.10 gives the best possible lower bound for the abscissa of convergence of 
ζR
Zn, p(s) given our lower bounds for fn(pe).

Proof of Theorem 1.10. Set

b(n, e) =
⌊

e
⌋

d(n − 1 − d)

n − 1 + d
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and

F (d, e, n) = ed(n − 1 − d)
n − 1 + d

− d(n − 1 − d).

By Theorem 1.9, fn(pe) ≥ pb(n,e) ≥ pF (d,e,n) for each e ≥ n − 1. Therefore

ζR
Zn, p(s) =

∑
e≥0

fn(pe)p−es ≥
∑

e≥n−1
pF (d,e,n)p−es.

By Lemma 5.1, the simpler geometric series diverges for all s such that 
(s) ≤ d(n−1−d)
n−1+d

and thus ζR
Zn, p(s) diverges on the same region. Taking a maximum over all integers 

d ∈ [0, n − 1] and applying a Tauberian theorem gives the result. �
The following proposition is strictly worse than Theorem 1.10 – it comes from choosing 

a specific value of C ∈ [0, 1] – but is easier to use directly.

Proposition 5.4. Fix n > 1. Then ζR
Zn, p(s) diverges for all s such that


(s) ≤ (3 − 2
√

2)(n − 1) + 1 −
√

2.

Proof. The proof is similar to that of Theorem 1.10, replacing Lemma 5.1 with Corol-
lary 5.3. �
6. Orders in a number field

We now study a related zeta function and use results from previous sections to find 
new lower bounds for the number of orders in a number field. Let K be a number field 
of degree n with ring of integers OK . Let

FK(k) = #{O ⊂ OK : O is a order of OK and |disc(O)| = k}.

Recall that there is a relation between disc(O) and disc(OK) given by

disc(O) = disc(OK)[OK : O]2.

Consider the order zeta function

ηK(s) =
∑

O order of OK

|disc(O)|−s =
∞∑

k=1

FK(k)k−s.

This zeta function is closely related to the zeta function

η̃K(s) =
∑

[OK : O]−s
O order of OK
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by the relation ηK(s) = |disc(OK)|−sη̃K(2s).
Notice that η̃K(s) also has an Euler product 

∏
p η̃K,p(s) indexed over the rational 

primes where

η̃K,p(s) =
∑

O order of OK

[OK ⊗Z Zp : O]−s.

If p splits completely, then OK ⊗Z Zp
∼= Zn

p . Therefore for all primes p that split 
completely,

η̃K,p(s) = ζR
Zn

p
(s) = ζR

Zn, p(s).

Let NK(B) =
∑

X≤B FK(X). The following theorem is due to Kaplan, Marcinek, and 
Takloo-Bighash [8]; see their paper for details on r2, which is a constant that depends 
on the Galois group of the normal closure of K/Q.

Theorem 6.1. [8, Theorem 2]

1. Let n ≤ 5. Then there exists a constant CK > 0 so that

NK(B) ∼ CKB
1
2 (log B)r2−1

as B → ∞.
2. Let n > 5. Then for every ε > 0,

B
1
2 (log B)r2−1 	 NK(B) 	ε B

n
4 − 7

12 +ε

as B → ∞.

We can use Theorem 1.6 along with a Tauberian theorem to obtain an improvement 
on the lower bound in Theorem 6.1(2).

Theorem 6.2. Fix n > 1 and let

a(n) = max
0≤d≤n−1

(
d(n − 1 − d)

n − 1 + d
+ 1

n − 1 + d

)
.

Then B
1
2 a(n) 	 NK(B) as B → ∞.

As a consequence of Theorem 1.10 and Proposition 5.4, we can also bound the abscissa 
of convergence of η̃K, p(s).

Theorem 6.3. Let n > 1 be an integer and let K be a degree n number field. Then

1. The zeta function η̃K, p(s) diverges for all s such that 
(s) ≤ c7(n) .
2
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2. The zeta function η̃K, p(s) diverges for all s such that


(s) ≤ (3 − 2
√

2)(n − 1) + 1 −
√

2
2 .

7. Further questions

In this process of bounding fn(pe) by counting irreducible subrings, we made a few 
assumptions. First, we only considered compositions α ∈ Cn,d,k,�. Second, we set several 
entries in the matrix with diagonal α equal to 0 and the rest equal to p� k

2 �aij for some 
aij ∈ [0, pk−� k

2 �). Lastly, we bounded fn(pe) by gn(pe). These simplifications lead to the 
following questions.

Question 7.1. Let d ∈ [0, n − 1] be an integer and let k, 	 be positive integers so that 
	 ≥ � k

2 
. Let α ∈ Cn,d,k,�.

1. Does the main term of gn(pe) always come from gα(p) for some α ∈ Cn,d,k,�?
2. Is p(k−� k

2 �)Area(Pα) always the main term of gα(p)?
3. Do fn(pe) and gn(pe) always have the same main terms?

The answer to Question 7.1(1) is no. For example, Atanasov et al. [1] show that 
g5(p7) is a polynomial of degree 4, with the main term coming from the compositions 
(3, 2, 1, 1) and (2, 3, 1, 1). It is unclear how often pairs n and e are counterexamples to 
Question 7.1(1). It is also unknown how far off the main term of gn(pe) can be from the 
main term of maxα gα(p) where the maximum is taken over all α of the form above.

It may be the case that a composition of the form α ∈ Cn,d,k,� leads to the main 
term of gn(pe), but our lower bound for the number of irreducible subring matrices 
with diagonal corresponding to α does not give the main term. While the answer to 
Question 7.1(2) is not understood for most pairs n and e, we give a partial answer. First, 
we state some necessary propositions.

Proposition 7.2. [9, Proposition 4.3] Fix n > 1. Then

1. gn(pn−1) = 1
2. gn(pn) = pn−1−1

p−1 .

Corollary 3.7 in [1] gives an exact formula for gn(pn+1). To save space, we rewrite 
their corollary in terms of the degree of gn(pn+1).

Corollary 7.3. [1, Corollary 3.7] Let n ≥ 4. The function gn(pn+1) is a polynomial in p
of degree 2n − 6.

Example 7.4. Let α ∈ Cn,d,2,1. Observe that e = n − 1 + d.
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When d = 0, e = n − 1. Proposition 7.2 shows that gn(pn−1) = 1, which matches the 
bound from Theorem 1.9. We see that gn(pn−1) =

[
n−1

0
]

p
.

When d = 1, e = n. The second part of Proposition 7.2 shows that the main term of 
gn(pn) is pn−2. This agrees with Theorem 1.9. Further, gn(pn) = pn−1−1

p−1 =
[

n−1
1

]
p
, so 

our method counts all possible irreducible subrings of index pn.
When d = 2, e = n + 1. By Corollary 7.3, the main term of gn(pn+1) is p2n−6, which 

matches the main term in Theorem 1.9. In this case, our lower bound gn(pn+1) ≥
[

n−1
2

]
p

is strictly smaller than the actual formula for gn(pn+1), but the main term is the same. 
In fact,

gn(pn+1) −
[
n − 1

2

]
p

=
(

n

2

)
pn−2.

Lastly, we provide a partial answer to Part 3 of Question 7.1. We do not understand 
the relationship between the main term of fn(pe) and the main term of gn(pe) for each 
fixed n and e ≥ n − 1. In fact, there are classes of examples for which the main term for 
fn(pe) is greater than the main term of gn(pe).

Example 7.5. Let e = n − 1. By Proposition 7.2, gn(pn−1) = 1 for all n ≥ 2. However, 
the term f1(p0)gn−1(pn−1) appears in the recurrence relation stated in Proposition 3.3. 
Proposition 7.2 implies that gn−1(pn−1) is a polynomial in p with main term pn−3. 
Therefore fn(pn−1) ≥ pn−3 whereas gn(pn−1) = 1.

In some cases we are likely not capturing the highest order term of fn(pe) by using the 
bound fn(pe) ≥ gn(pe). However, this is currently the best known approach for counting 
subrings via subring matrices.

In this paper, we give two new lower bounds for fn(pe). Data suggests that the lower 
bound for fn(pe) that comes from counting irreducible subring matrices is slightly worse 
than the lower bound that comes from counting subgroups. Both of these lower bounds 
are at most p(3−2

√
2)e(n−1). In order to improve upon the lower bounds given in this 

paper using these techniques, it seems necessary to answer Questions 7.1(2) and 7.1(3)
or to find other related sets of subgroups that are also subrings. Improvements of the 
lower bounds for fn(pe) would likely lead to better lower bounds for the asymptotic 
growth of subrings in Zn or orders in a fixed number field.
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