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There is a wider class of zeta functions for groups or rings, which are defined in [7]. For
an extensive survey about these zeta functions, see [6]. Let Hp denote the product over
all primes. The subring zeta function has an Euler product

(7 (s) = H an’p(s)
p
with local factors
(G p(8) =Y Falp*)p™°.

Let Z, denote the p-adic integers. Note that C£n7p(s) = CZ} (s) where the p~¢* coefficient
in the latter zeta function is the number of Z,-subalgebras of index p® in Z.

When n < 4, there are explicit closed formulas for an (s), which we summarize in the
following theorem.

Theorem 1.1. We have

(z2(s) = C(s)
R CBs—1)((s)®
(zs(s) = C(2s)°

1 —s
Cg4 (s) = H (1—p=#)2(1 — p2—15)(1 — p3-69) <1 +4p

+2p7% 4+ (4p—3)p~ % + (5p — 1)p~** + (p* — 5p)p~**

+ (3p2 _ 4p)p765 _ 2p277s _ 4p2788 _ p298> .

The case n = 2 follows from the fact that fo(k) = 1 for all positive integers k. The
case n = 3 is originally due to Datskovsky and Wright [5] and n = 4 is due to Nakagawa
[10]. Liu [9] gives combinatorial proofs of these formulas.

In this paper, we are motivated by three broad questions. These questions have been
actively studied by several other authors and we summarize some known results below.

Question 1.2. For each fized n and e, what is f,(p®) as a function of p?

For each fixed n < 4 and e > 0, comparing the p~¢® coefficients of the expression
in Theorem 1.1 shows that f,(p®) is a polynomial in p. Liu [9] gives explicit formulas
for f,(p®) for fixed e < 5 and n > 0, which are all polynomial in p. His formula for
e = 5 has a small error that Atanasov, Kaplan, Krakoff, and Menzel [1] correct. Further,
the authors extend Liu’s work by giving explicit polynomial formulas for f,(p®) when
e € {6,7,8} and n > 0. These are the only exact formulas that are known; it is not even
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known if f,(p°) will always be polynomial in p. In this paper, we discuss known and new
results about lower bounds for f,(p®).

Question 1.3. What is the asymptotic growth of the number of subrings in Z" of index
at most B?

For each fixed n, let

N, (B)=#{S CZ" : Sis asubring and [Z" : S] < B} = Z fn(E).
k<B

This function counts the number of subrings of index at most B in Z". In [8], Kaplan,
Marcinek, and Takloo-Bighash give the asymptotic growth of N, (B) when n < 5. The
cases n < 4 follow from Theorem 1.1 after applying a Tauberian theorem (see e.g.
the appendix of [4]). It is important to note that these authors were able to prove an
asymptotic formula when n = 5 even though no closed formula for Cg“s(s) is known.
There is not even a conjecture about the asymptotic growth of N,(B) for n > 6. To
make progress toward an answer to Question 1.3 when n > 6, Kaplan, Marcinek, and
Takloo-Bighash give upper and lower bounds for the asymptotic behavior of N, (B).

Theorem 1.4. [8, Theorem 6]

1. Let n < 5. There exists a constant C,, so that
N, (B) ~ C,B(log B)(3)-1

as B — .
2. Letn > 5. For any € > 0,

B(log BY3)~1 <« N,(B) <. B¥~i+e
as B — .

The authors obtain the lower bound in Theorem 1.4(2) by computing the rightmost
pole of the simpler Euler product [[ (1 + fn(p)p~*) and then applying a Tauberian the-
orem. In this paper, we show that the results of Brakenhoff [2] lead to a new asymptotic
lower bound for N, (B) that improves upon Theorem 1.4(2).

Observe that Theorem 1.4 implies that (%, (s) diverges for all s € C such that R(s) <
1. Thus the strategy Kaplan, Marcinek, and Takloo-Bighash employ also gives a partial
answer to the question: what is the abscissa of convergence of {gn(s)? Recall that the
abscissa of convergence of a Dirichlet series D(s) is the unique o € R U {£o00} so that
D(s) diverges for all s with R(s) < o and converges for all s with R(s) > 0. We will
show that results of Brakenhoff [2] improve upon the lower bound for the abscissa of
convergence of (X, (s).
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Table 1
Values of a(n) for small n.
n 6 7 8 9 10 20 50 100

Question 1.5. What is the abscissa of convergence of C%n p(s) ?

If (. (s) converges, so do each of the local factors. Therefore the abscissa of conver-
gence for (!, (s) gives an upper bound for the abscissa of convergence for Cgm (s) for
each prime p. However, not much is known about lower bounds. We will provide a lower
bound for the abscissa of convergence of Cg'n’ »(8).

1.1. Main results

In this paper, we give partial results to the three broad questions asked in Section 1.
First, we provide a new lower bound for the asymptotic growth of N, (B) that improves
upon [8] for all n > 7 (see Table 1). The main elements in the proof of this theorem
come from interpreting results of Brakenhoff [2].

Theorem 1.6. Fiz n > 1 and let

a(n) = max (d("_l_d)+ ! >

S 0<d<n—1\ (n—1+d) n-1+d

Then B*™ < N,(B) as B — oc.

Next, we study two different techniques for bounding the number of subrings in Z" of
index p°. The first technique is an extension of Brakenhoff’s [2] results and holds more
generally for the function that counts subrings of the ring of integers Ok in a fixed
number field K of degree n. We find a lower bound by showing that a special set of
subgroups of Ok are subrings and then bounding the number of such subgroups. This is
detailed in Section 2. The second technique is based off Liu’s [9] work; we bound subrings
by counting the number of n x n matrices with certain properties, see Sections 3 and 4.

We summarize our main results, which give partial answers to Questions 1.2 and 1.5.
First, we provide new lower bounds for f,(p®) that hold for all e > n — 1. We use the
first technique to obtain Theorem 1.8. The other two theorems follow from the second
technique.

Remark 1.7. Unless otherwise stated, maxa<;<p means the maximum over all integers
x in the range [A4, BJ.

Theorem 1.8. Fiz integers n > 1 and e > n — 1. For each t, set k = e — t(n — 1),

c=[¢]—-(n—-1)andb=[%] —(n—1). Set
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h(e,n) = max (k(n—1) = (k+t—ct) = b*(ct — k)) .

ooy 1<t 751
Then f,.(p°) > pem).

Theorem 1.9. Suppose that e > n — 1. Let

e
bln,€) = max | {n—l—s—dJ d(n—1-d).

Then fn(p°) > pblne),

The lower bounds from Theorem 1.9 and the work in Section 5 lead to a lower bound
for the abscissa of convergence of (%, ().

Theorem 1.10. Fiz n > 1. Let

cr(n) = ogdgav)f—l n—14+d °

Then C%l’p(s) diverges for all s such that
R(s) < er(n).
1.2. Outline of the paper

In the rest of this paper, we discuss lower bounds for various functions related to
subrings in Z" including f,,(p¢), N, (B), and the abscissa of convergence of Cgmp(s). In
Section 2, we summarize results from Brakenhoff [2] and then show how these results
lead to better asymptotic lower bounds for N, (B). Brakenhoff gives a lower bound for
fn(p®), when e € [(n — 1),2(n — 1)]. We extend his method to obtain a lower bound for
frn(p®) for all e > n — 1. In Section 3, we introduce Liu’s method of counting subrings
in Z™ by counting matrices in Hermite normal form with certain conditions. We then
provide an algorithmic method for counting such matrices. In Section 4, we prove new
lower bounds for f,,(p®) using the method discussed in Section 3. In Section 5, we prove
a lower bound for the abscissa of convergence of C%H ,(8). In Section 6, we connect the
results in this paper to the problem of counting orders in a number field. Finally, in
Section 7 we discuss further questions.

2. Extending results of Brakenhoff
In his 2009 PhD thesis [2], Brakenhoff studies similar questions to those asked in

Section 1. Let Nf, be the set of number fields of degree n. For K € Nf,, let Ok be the
ring of integers of K. Brakenhoff considers the function
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f(n,m) = max #{R C Ok : R is a subring of index m}.
ENf,

An order in Ok is a finite index subring of Ok that contains the multiplicative identity.
Since we assume that all subrings contain the multiplicative identity, the function f(n, m)
is also counting orders.

Lemma 2.1. [2, Lemma 5.10] Every additive subgroup G C Of that satisfies Z+m?Of C
G CZ +mQOg for some integer m is a subring.

Using Lemma 2.1, Brakenhof! finds a lower bound for f(n,p®) when e € [n—1,2(n—1)].
First we recall a definition.

Definition 2.2. Let ¢ be a prime power. The g-binomial coefficient is given by

IR

Proposition 2.3. /2, Page 42] Fiz integers n > 0 and d € [0,n — 1]. Then

f(n,p"_1+d) Z |:7’l; 1:|p

Remark 2.4. It is important to note that [";1] pisa polynomial in p of degree d(n—1—d).

Remark 2.5. Note that Lemma 2.1 is still true for each fixed number field K. Further, it
is still true if we replace Ok with Z". Therefore the bound in Proposition 2.3 is also a
lower bound for f,,(p"~1*9) when d is an integer in [0,n — 1].

In Section 2.2, we extend Proposition 2.3 by providing a lower bound for f,(p¢) when

e > n — 1. This extended lower bound holds for all K € Nf,,. In Section 4, we provide a
different technique for bounding f,,(p®).

2.1. Asymptotic lower bounds using Brakenhoff’s results
We now show that Proposition 2.3 leads to new a lower bound for the asymptotic
growth of subrings in Z™. The main theorem in this section (Theorem 1.6) does not

appear in [2].

Lemma 2.6. Fix n > 0 and e > 0. Suppose there exists a constant ¢, > 0 and positive
integer a so that f,(p°) > c,p®. Then (F.(s) diverges for all s such that R(s) < L.

The following corollary was not stated in Brakenhoff’s thesis.
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Corollary 2.7. Fixn > 1. Then (gn(s) diverges for all s such that

dln—1-4d) 1
< .
o) = dmax ( n—1+d +n—1+d)

Proof. By Remarks 2.4 and 2.5, for each fixed n > 0 and for each integer d € [0,n — 1],
Falp 1) = 1),
Applying Lemma 2.6 gives the result. O

Proof of Theorem 1.6. This follows from Corollary 2.7 and standard Tauberian theo-
rem. O

Theorem 1.6 is an improvement upon Theorem 1.4 for all n > 7.
2.2. Extending Brakenhoff’s lower bound for f,(p®)

We begin by sketching the proof of Proposition 2.3, which relies on Lemma 2.1.
Take m = p in Lemma 2.1 and consider the following set

{GCOk : Z+p*Ox CGCZ+pOk and dimp, (G/(Z +p2(9K)) =d},

which is a subset of the set of subrings in O of index p"~'*+4. Note that there is a small
typo on page 42 of [2]; he writes dimp, (G/(Z + pOr)) = d. Brakenhoff proves that the
cardinality of this set is exactly [”gl]p by showing the set is in bijection with the set of
[Fp-vector spaces in ]F;}fl of dimension d.

We now generalize this lower bound by relating subgroups satisfying the condition
in Lemma 2.1 to subgroups in (Z/mZ)""". Let K be a number field of degree n and

consider the set
{GCOk : Z+m?Ox CGCZ+mOk}.

By Lemma 2.1, every finite index subgroup in this set is a subring of Og. Since Ok is
a free Z-module of rank n, Ok is additively isomorphic to Z™. Let {1,v1,...,v,-1} be
a basis for Ok. There is a bijection between sublattices of Z"~! and subgroups of Ok
that contain Z.

Proposition 2.8. Let K be a degree n number field and let {1,v1,...,v,—1} be a basis
for Ok. For any m > 1, Z + m?Og C G C Z +mQOxk if and only if G contains the
sublattice of Z"~' spanned by m>vy,...,m>v,_1 and G is contained in the sublattice of

7" spanned by mu1, ..., Mu,_1.



370 K. Isham / Journal of Number Theory 234 (2022) 363-390

Proof. Observe that Z +m?QOf is the subgroup corresponding to the sublattice of Z"~!
spanned by m2vi,...,m?v,_1. Therefore Z + m?Og C G if and only if G contains all
basis elements of Z +m2Qx. The second condition follows from the fact that Z + mOx
corresponds to the sublattice spanned by muvy,...,mv,_1. O

Theorem 2.9. Let K be a degree n number field. Fixz some k € N. The number of sub-
groups G of index m"~‘k such that Z +m?Ox C G C Z +mOx is equal to the number
of subgroups of order k in (Z/mZ)"fl,

Proof. By the Lattice Isomorphism Theorem for groups, there is a bijection between
subgroups G C Z"~! such that m2?Z"! ¢ G C mZ" ! and subgroups G’ C
mZ" /m2Z"t = (Z/mZ)""". Fix some G C Z"~! satisfying the conditions. Then

[Z”_l :G) = [Z”_l : mZ”_l][mZ"_l :G) = m"_l[mZ”_1 : G

Set k = [mZ™ ' : G]. Let G’ be the subgroup of (Z/mZ)" " corresponding to G. Then
k=[mzZ"':G]=[(Z/mZ)""" : G']. Finally, observe that the number of subgroups of
index k in (Z/mZ)" " is equal to the number of subgroups of order k in (Z/mZ)"~". O

In order to find a lower bound for f,(p°), it now suffices to count the number of
subgroups in (Z/ mZ)nil. Specifically, we will set m = p' for some ¢ > 0.

Definition 2.10. Let A = (\q,..., A.) be a partition. A finite abelian p-group has type A
ifG2Z/pMZ x - x Z/p* 7.

Let )\ denote the conjugate partition of A. We use the notation v C X if v; < \; for
alle=1,... 7.

Theorem 2.11. [11, Page 1] Let v C X be partitions. Let V' be the conjugate partition of
v and N be the conjugate partition of . The number of subgroups of type v in a finite
abelian p-group of type A is equal to

Using this theorem, we can give an exact formula for the number of subgroups of type
v in a finite abelian p-group of type A = (¢,t,...,?).

Corollary 2.12. The number of subgroups of type v in (Z/ptZ)"_1 is equal to

/
Ilﬁhﬂw4%%{mfi>_%ﬂ}.
-y

V. — VUV
i>1 3 Tl dp
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Proof. Set A = (¢,...,t) with the ¢ repeated n—1 times. Observe that \' = (n—1,...,n—
1) where the term n — 1 is repeated ¢ times. Then apply Theorem 2.11. O

Proposition 2.13. The expression in Corollary 2.12 is a polynomial in p of degree

Proof. The degree of [Z]p is equal to k(n — k). Therefore the degree of each term in the
product is

Vigr(n =1 =vp) + (n =1 =iy = (0 = V)0 = vj)-

Simplifying and then adding all terms together gives the result. O

Theorem 2.14. Fizn > 1 and let A = (t,...,t) be the type of the group G = (Z/ptZ)nil.
Let k € [0,t(n —1)]. Set b = L%J and ¢ = [%W Then the number of subgroups of G of

order p* is a polynomial in p with degree
k(n—1) — c2(k+t—ct) — b*(ct — k).

Proof. By Proposition 2.13, for each v C A\ = (¢,¢,...,t), the degree of the polynomial
that counts the number of subgroups of type v is

t
ZV n—l—y)
j=1

The number of subgroups of type v C X is equal to the number of subgroups of type
v/ C ). Therefore we seek to maximize the degree of the polynomials counting subgroups
of order p¥ in (Z/])tZ)rk1 by considering the subgroups of type v’ C X = (n—1,...,n—1)
where the n — 1 is repeated ¢ times subject to the constraint Zt 1/- = k. Observe that
the degree is as large as possible when Z i1 (V] v4)? is minimized subJect to the constraint
that ZJ 1v; = k. Over R, this function is mlmmlzed when v} = ; forall j =1,...¢.
However, each v} must be an integer. Thus take i of the v} = L%J and the rest equal to

[%7] subject to the constraint i|%| 4 (¢t — i)[%] = k. Then

é(y;)Q =i EJQ + (t—1) ET

Solving the constraint for ¢ gives i = t[%] — k. The result follows. O



372 K. Isham / Journal of Number Theory 234 (2022) 363-390

Theorem 2.14 gives the degree of the polynomial that counts the number of subgroups
of order p* in (Z/ptZ)"_1 for each k € [0,t(n — 1)]. Applying Theorem 2.9 and Theo-
rem 2.14 gives a lower bound for the number of subrings of index p*(»~D+k in 7" for
each k € [0,¢(n — 1)]. We can now state a lower bound for subrings of index p® based
on these results. Moreover, our result holds for the function that counts subrings in Og
of index p®; however for consistency throughout this paper, we state the result for the
function f,(p®), which counts subrings in Z"™ of index p°.

Corollary 2.15. Fiz integers n > 1 and e > n— 1. Fiz an integer t so that t(n —1) < e <

2t(n —1). Letk=e—t(n—1). Setb=[¢] —(n—1) and c= [§] — (n—1). Then

fn(pe) > pk(n—1)—c2(k+t—ct)—b2(ct—k).
Remark 2.16. The bound in Corollary 2.15 is as large as possible when ¢ | e. Observe that

the exponent of the bound reduces in this case. We find that if ¢(n — 1) < e < 2t(n — 1)
and t | e, then

fn(pe) Z p(eft(nfl))(Q(nfl)f%).
Finally, we prove Theorem 1.8.

Proof of Theorem 1.8. This theorem follows from Corollary 2.15, taking a maximum
over all t so that t(n — 1) <e<2t(n—1). O

3. A method for counting subring matrices

We now introduce a combinatorial method for counting subrings due to Liu [9]. In
Section 4, we will use this method to find a different bound for subrings of prime power
index in Z". In this section, we begin by describing Liu’s method for counting subrings
and we then describe a simpler algorithm for counting subrings based on row reduction.

Definition 3.1. A n x n matrix with entries in Z is in Hermite normal form if A = (ai;);
is upper triangular and 0 < a;; < a4 forall 1 <7 < j < n.

Definition 3.2. An n X n matrix A in Hermite normal form is a subring matriz of index
k if

1. det(A) = k.
2. The identity (1,1,...,1)T is in the column span of A.
3. Forall 1 <i < j<mn,ifv = (v1,v2,...,0,)7 and v; = (w1, wa,...,w,)T are

columns of A, then v; 0 v; = (viwy, vaws, . .., vwy,)T is in the column span of A.
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A subring matrix A is irreducible if det(A) = p°, every element in the first n — 1
columns is divisible by p, and the last column is (1,1,...,1)?. A subring in Z" of index
p° is irreducible if for every (v1,...,v,) € Z™, v1 =va = -+ = v, (mod p).

Liu justifies the terminology “irreducible subring” by showing that any subring S of
index p€ in Z"™ can be written uniquely as a direct sum of irreducible subrings S; in Z™,
see [9, Theorem 3.4].

In [9], Liu shows that there is a bijection between subrings in Z" of index k and
subring matrices with determinant k. He also shows that there is a bijection between

irreducible subrings of Z™ of index p°® and irreducible subring matrices with determinant
€

pe.
Let g, (k) be the number of irreducible subrings of index k in Z™. Observe that g, (k)
is denoted gn+1(k) in [9)].

Proposition 3.3. [9, Proposition 4.4] There is a recurrence relation
e n n— 1
£ =303 (47 1) s s,
—t £ j—1
1=0 j=1
By the above recurrence relation, to understand f,,(p®), it suffices to understand g;(p)

for each prime p, j < n and ¢ < e. In particular, we study the number of irreducible
subring matrices of index p®. These matrices have the following form

P paiz paiz - Pain-1) 1

P pazs - pagp—1) 1

P o pagp—1) 1

A= . .
pe;ﬁl 1

1

where 0 < a4 <plforeachl<i<j<n-—1L.
Definition 3.4. We say that the matrix A as written above has diagonal (p°*,... ,p—1,1).

Let C,, . denote the number of compositions of e into n — 1 parts. The diagonals
corresponding to irreducible subring matrices with determinant p® are in bijection with
the compositions in C), .. If a matrix has diagonal (p°!,...,p* !, 1), abusing notation
we also say the matrix has diagonal a = (e1,...,en—1) € Cpe. Let go(p) be the number
of irreducible matrices with diagonal o € C,, .. Then

gn(p°) = Z 9o (p)-

a€Cy e
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The authors of [9] and [1] prove that f,(p°) is polynomial in p when e < 8 and n > 0
by providing exact formulas for the number of irreducible subrings with each possible
diagonal and then using the recurrence relation from Proposition 3.3.

Let Col(A) denote the Z-column span of the matrix A. For each a € C,, ¢, the authors
of [9] and [1] determine formulas for g, (p) by considering all closure conditions v; o v; €
Col(A) explicitly in order to find conditions on the variables a;;. In general, finding all
the closure conditions for a given diagonal can be complicated.

Example 3.5. [1, Page 19] Let a = (3,2,1,1). The corresponding matrix is

p® paix pais pas 1
p?  pass pass 1

p 0 1

P 1

1

with a1; € [0,p?) for j = 2,3,4 and ag; € [0,p) for j = 3,4. Atanasov et al. illus-
trate their method for finding the closure conditions. For example, consider vy o0 vy =
(p?a2,,p*,0,0,0)T. They note that ve o vy must be a linear combination of the first two

T

columns, so it suffices to understand how to write (p?a3,,p?)? as a linear combination

of (p3,0)T and (pai2,p?)T. We must take p? times this second column, so we obtain

()0 ()

for some \ € Z. In order for Equation (1) to hold, p® | p?a12 and thus p | aj2. Thus the
closure condition corresponding to ve 0 v is @12 = 0 (mod p). Atanasov et al. compute
the closure conditions for other pairs of columns using similar methods and noting that
the equations are simpler when they replace ajs with pa),. The final conditions are

We show that by using the method of row reduction, we can find these conditions in
an algorithmic way. This method has two advantages. First, it simplifies proofs about
counting the number of irreducible subrings with a given diagonal. Second, since it is
algorithmic, it is easily implementable in a computer algebra system.

Recall that the closure conditions are of the form v; o v; € Col(A) for each 1 < ¢ <
j < n. These conditions are satisfied if and only if AZ; ; = v; ov; has a solution &; ; € Z"
for every 1 < i < j < n. By basic linear algebra, a solution #; ; exists if and only if
the last column in the reduced echelon form of the matrix [A v; o v;] has integer entries.
We illustrate the row reducing steps below. Note that we omit the column (1,1,...,1)T
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corresponding to the identity in Z" since it is clear that v; o (1,1,...,1)T is in the Z-
column span of A for all 1 < i < n and if i,j # n, then the n* entry in v; o v; is 0.
Suppose we have a matrix

€1

p pai2 paiz - PAi(n—1) (a1
P pags -+ Pag(n—1) T2

A= Pt pagp-1) T3

penf 1 Ty_1

where the last column contains the first n — 1 entries of the vector v; o v; =

(1,22, Tn_1,2,)T for some pair (i,5) so that 1 < i < j < n — 1. We begin by
dividing each row ¢ by p® in order to make every diagonal entry equal to 1, obtaining
the matrix
1 Paz  pas | PUm-y @
pel pel pel pel
1 bazs Po2(n-1) T3
pe2 pe2 pe2
... PA(n-n T3
A — 1 pe3 pe3
Tn_1
1 g

Observe that since the matrix is upper triangular, it is not necessary to make any
more divisions. From here, we row reduce and we note that finding conditions on a;; so
that v; ov; is in the Z-span of the first n — 1 columns is equivalent to finding conditions
on a;; so that the entries in the last column are in Z. Thus, for each fixed v; ov;, we are
counting the number of solutions to expressions of the form

(e) ¢~
hg;) _ fij (Tam) c7z 2)
p

where fl-(;) is a multivariate polynomial with coefficients in Z, 1 < ¢ <n —1, and r is
an integer depending on ¢, 7, and c. Note that for this fixed v; o vj, Tig1 = Zigo =+ =
Zn—1 = 0. This allows us to use the row reduction process on the smaller i x (i 4+ 1)
matrix formed by taking the first ¢ columns of A, augmenting v; o v;, and then removing

the rows i + 1,...,n — 1. We will make use of this simplification in Section 4.
Let p” be the largest denominator that occurs in all expressions hg;) in Equation (2).

Then the rational functions hE? are in Z if and only if the numerators fi(jc) =0 mod p".

Thus counting the simultaneous system hg;) € Z is essentially the same as counting

points to a simultaneous vanishing of the polynomials fi(jc) modulo p". Note that these
problems are not exactly the same as the variables a;; live in the range [0,p%~!) and we
may have e; — 1 > r. However, since all expressions have denominator at worst p”, then
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the congruence conditions for the variables only matter modulo p”. For any e; —1 > r, we
can simply multiply the point count for the variety by p®~'~". Thus up to polynomial
factors, it is sufficient to understand the varieties defined over Z/p"Z defined by the
polynomials fi(;).

Remark 3.6. In general, counting points on varieties over a ring is a difficult problem.
It is easier to consider varieties over IF,, however these denominators that occur are
often larger than p. Sometimes it is possible to reduce the denominators to all be p by
using clever substitution. In these cases, we can say more about the point counts of the
varieties.

We summarize the method described in this section as follows.

Algorithm 3.7. Input a diagonal (eq,...,e,—1) with integerse; >0 forall1 <i<mn-—1.

1. Create the matriz

Pt paiz paiz -0 Pai(p—1) 1

P pags - pagp-1) 1

pe Pagm-1) 1

A= ) .
pe'r;—l 1

1

in the variables a;; for 1 < i < j <n-—1. Ife; =0 or 1, set a;; = 0 for all
1<j<n-—1

2. For each v;ov; with 1 <i < j<n-—1, row reduce [Av; ov;] to A" over Q. Add the
entries of the rightmost column of A’ to a list.

3. Return the list formed in Step 2. All elements in this list are of the form % for
some r > 0.

4. A new lower bound for f,(p®) via irreducible subring matrices

We now provide a lower bound for the number of subrings in Z™ of index p°® using
techniques from Section 3. That is, we find a lower bound for f,(p¢) by bounding the
number of érreducible subrings of index p® in Z". These results will lead to a new lower
bound for the abscissa of convergence of (gnm(s), which will be discussed in Section 5.

4.1. Bounding the number of irreducible subring matrices
Fix an integer d € [0,n—1] and let k, ¢ be positive integers so that £ > [g} Let Cy a1

denote the set of compositions of kd + ¢(n — 1 — d) into n — 1 parts that contain exactly
d terms equal to £ and n — 1 — d terms equal to £. In other words, each a € C), 4.¢ is
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a permutation of the composition (k, k,...,k, ¢, ¢, ..., ¢) with k appearing d times and ¢
appearing n — 1 — d times.

Proposition 4.1. Let n > 1. Fiz an integer d € [0,n — 1] and let k, ¢ be positive integers
so that ¢ > [%1 For a fivzed a € Cp g4, let Ay be a matriz in Hermite normal form
with diagonal o that satisfies the following conditions for each pair 1 <i < j <mn—1:

1. if ay; = p* and aj; = p*, then a;; =0 (mod pf§1)
2. otherwise, a;; = 0.

Then A, is an irreducible subring matriz.

Proof. Let A, be as described in the statement of the proposition. We must show that
viowv; € Col(A,) for all 1 < i < j < n. Let r1,...,74 be the columns containing p*.
There are three cases to consider.

First, suppose that i = r,, for some integer m € [1,d]. Then v; = (0,---,0,pF,
0,---,0)T. Fix some integer j € [1,n]. Suppose the i‘" entry of v; is equal to z. Then
v; ovj = zv; € Col(A,). Notice that we made no assumption about the entries of v;.

Second, suppose the it" entry of v; is p’ and let j > i such that j ¢ {ry,...,rq}.
The only possible nonzero entries in v; o v; are in the rows {ii,...,iq}. Therefore v; o
v; € Col(Aq) if and only if v; o v; is a linear combination of v, ..., v,,. By applying
the technique established in Section 3, we need to understand whether the following
augmented matrix has integer solutions

p o - 0 pQ[%Wamianj
pk 0 p2[§W QreiQryj

k
p p2|—2-|a‘7‘d’ia"r"dj

Observe that v; o v; € Col(A,) if and only if

k k k
U= (p2(2“a7'1iar1j y p2r2]arziar2j y T, pZ(ﬂamia'r‘dj)T S CO](AZX)

By applying the row reduction technique, we see that v € Col(A’) if and only if

k|, 2[k
P p ’72—‘a7‘mia7‘mj

for each integer m € [1,d]. This condition holds for all m € [1,d].

Finally, suppose that v; has a p’ in the i** entry and consider v; o v;. Then v; o v; €
Col(A,) if and only if v; o v; is a linear combination of v; and v, ..., v,,. Consider the
matrix
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PPo 0 plila,; pPlEle?
k k
pk e O p|—2-|a7_27; p2r2]a$2i
Al = . : .
E k
P plla,, p?lelal
pf p2€

After applying the row reduction method, v; o v; € Col(A,,) if and only if
o | (p”%]a?mi _péﬂéwarmi)

for all integers m € [1,d]. This holds for all possible choices of a,, ; since £ > (%1 O

Example 4.2. Let o = (2,1, 2, 1,2). The matrix A, corresponding to Proposition 4.1 has
the form

p* paiz 0 pay 0 1
p 0 0 0 1

p* pays 0 1

P 0 1

p* 1

1

There are exactly p? irreducible subring matrices of this form since A, is a subring
matrix for any choice of a2, a14,asq € [0,p).

Example 4.3. Let a = (3,5,3,3,5). Setting k& = 5, we have [%] = 3. The matrix A,
corresponding to Proposition 4.1 has the form

P00 0 0 1
p® plass plass 0 1
p3 0 0 1

p? 0 1

P o1

1

When ¢ = 2, a;5 € [0, p?). There are exactly p* such irreducible subrings matrices.

We now discuss a method for computing the number of subring matrices that have
the form given in Proposition 4.1.

Definition 4.4. A north-east lattice path P is a path in Z? starting at the origin and
ending at (u,v) so that every step in the path is either a step one unit to the north or
one unit to the east.

The area of a path is the area enclosed by the path, the x- and y-axes, and the line
x = u. Denote the area by Area(P).
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Fix a € Cp qr¢ and let A, be a matrix as in Proposition 4.1. Let P, denote the
lattice path from (0,0) to (n — 1 —d,d) so that the i*" step in the path is a northerly
step if the i*" entry of «v is k and is an easterly step if the i*" entry of « is .

Theorem 4.5. Let o € Cy, q ¢ and let A, be as in Proposition 4.1. Then the number of

such matrices A, is equal to p(k*rg])'Are“(Pa).

Proof. Observe that a non-diagonal element a;; € A, is nonzero if and only if ¢ < j and
a; = k,a; = £. In this case any choice of a;; € [O,pk’_r%]) leads to an irreducible subring
matrix. By the definition of P,, we see that

Area(P,) =#{i<j : a; =k and a; = {}.

Therefore the number of irreducible subring matrices A, satisfying the conditions in
Proposition 4.1 is

(pw—r%D)Am(P") 4

Corollary 4.6. For each o € Cy, g 1,0, we have go(p) > p(k*%D'ATE“(Pa).

Example 4.7. Let o = (2,1,2,1,2). The north-east lattice path P, goes from (0,0) to
(2,3), following the steps: north, east, north, east, north. This path is depicted below.

The area of this path is equal to 3 and k — [g] = 1, verifying our claim in Example 4.2
that there are exactly p® irreducible subring matrices that have diagonal o and satisfy
the properties listed in Proposition 4.1.

Remark 4.8. For each a € C), g1¢ let A, be a matrix satisfying Proposition 4.1. Let
P, be the corresponding north-east lattice path. Set v = (k, k,...,k, {,...,€) € Cp aks-
Observe that Area(P,) > Area(P,) for all @ € Cy, 4 ,¢. Therefore the degree of the main
term in our bound is always equal (k — [4])Area(P, ).

Corollary 4.9. Set v = (k,... ,k,{,...,£). Then g,(p) > p(k*[g])d("*kd).

Proof. The north-east lattice path P, is a rectangle with vertices (0, 0), (n—1—d,0), (n—
d—1,d), and (0,d). This rectangle has area d(n — 1 — d). The result follows from Theo-
rem 4.5. O
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To conclude this section, we show that the method of counting subrings recovers the
bound for f,,(p"~'*%) when d € [0, — 1] given in Proposition 2.3, thus giving a different
proof of this proposition.

Lemma 4.10. /3, Page 116] Let P be the set of north-east lattice paths from (0,0) to (u,v)
and let q be a prime power. Then

real u+U
> (P)={ }
v q

pPeP

Corollary 4.11. Fiz integers n > 1 and d € [0,n — 1]. Then g,(p"~1T%) > ["gl]p.
Proof. Recall that g,(p°) = >, cc. . ga(p). We can bound gn(p"~1+9) from below by
counting the number of irreducible S’ubrings with diagonal o € C}, g,2.1. The set C), 4,21
is in bijection with the set of north-east lattice paths from (0, 0) to (d,n—1—d). Fix some
a € Cyq,2,1- By Theorem 4.5, for the corresponding lattice path Py, go(p) > phrea(Pa)
By Lemma 4.10,

g = Y ga(p)z{ngl]p. 0

aecn,d,2,1

Since f,(p®) > gn(p°) for all e > 0, f,(p"~1*+4) > [”gl]p. Thus this method of
bounding subrings in Z" gives exactly the same bound as Proposition 2.3.

4.2. Optimizing the bound for g,(p®)

In this section, we optimize the exponent (k—[£])d(n—1—d). Fixing n, Corollary 4.9

implies that

Fa(0%) 2 gu(p) = ptE T2V

for each 0 < d <n—1and k,l € Z>; sothatZZ%andegkd—i—ﬁ(n—l—d). It is

important that k,¢ > 1;if e < n—1, then g, (p°) = 0. In order to obtain the best possible

bound for f,(p°) in terms of n and e, we optimize the exponent (k — [£])d(n — 1 — d)

over Z.

Proof of Theorem 1.9. The term k — [£] is maximized when k = 2j for some j € N.
Recall that we are subject to the constraint kd + ¢(n — 1 — d) > e for some ¢ > [£].
Therefore j < Lmj Set j = Lmj so that it is as large as possible.

Then (k — [£))d(n —1—d) > Ld-ﬁ-(fb—l)J -d(n — 1 — d). Taking a maximum over all
0<d<n-—1gives the result. O
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The above proposition gives the best possible bound for (k— [£7)d(n — 1 — d) subject
to the constraints that £ > [g] and kd 4+ ¢(n — 1 — d) > e. We now give a weakening of
Theorem 1.9, which will be helpful later. The benefit of the following proposition is that

the maximum is taken over real numbers rather than integers.

Proposition 4.12. Suppose that e > n — 1. Let

c(n,e) = Jax, (e (%_+Cl (n—1)+ g——i-i) —((C=C*(n—1*+(C-1)(n— 1)))

where the mazimum is taken over R. Then f,(p®) > p(™e).

Proof. For any fixed integer d € [0,n—1],d = |C(n—1)] for some real number C € [0, 1].
Starting from the bound given in Theorem 1.9, for any C € [0, 1],

(k[%])d(nld)

e

>{ [Cn—D]+ (-1
) 1) (Cn—1)—1)(1—C)n—-1)

JwCMDLOzl»LCMDD

Y

n—lj—i—(n—l

1) (C(n—1) - 1)1 —C)(n—1)

Y

(e
<c+1 )(n—1)
(=D

) (C=CH)(n=1)*+(C~1)(n-1))

C+1 Y(n—1)
:e(%( 1)+g—_:) —(C-=C*(n—1*+(C—-1)(n-1)).

Taking a maximum over all real numbers C € [0, 1] gives the result. O
4.8. Comparison of Theorems 1.8 and 1.9

Consider the bounds from Theorems 1.8 and 1.9. We compared these lower bounds
for various values of n and e in Sage and found that they grow at very similar rates. The
bound from Theorem 1.8 seems to be slightly better than the bound from Theorem 1.9
for each fixed n and for sufficiently large e. Let h(n,e) be the bound from Theorem 1.8
and let b(n, e) be the bound from Theorem 1.9. We provide Table 2 summarizing some
of this data.

Next, we show that there are subrings that are counted using one of the two techniques,
but not the other.
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Table 2
Values of the bounds from Theorems 1.8 and 1.9.
n e log,, h(n,e) log, b(n,e)
6 10 0 6
6 20 16 12
6 30 24 24
6 300 256 252
6 1000 856 852
10 10 8 8
10 20 16 20
10 30 36 40
10 300 460 460
10 1000 1538 1520

Example 4.13. Let n = 3 and e = 7. Consider the following matrix.
P> p?

A=10 p*

0 0

— =

This is an irreducible subring matrix with diagonal o = (3,4). The matrix A satisfies
Proposition 4.1. Therefore our technique from Section 4 counts the matrix A in the lower
bound for f3(p7).

Let G be the subgroup generated by the columns of A. Then G does not satisfy the
condition Z + p*Z3 C G C Z + p*Z? since (0,p*,0)T is not in the Z-column span of
A. Therefore our technique from Section 2.2 does not count the subgroup corresponding
to A.

Example 4.14. Let n = 4. Let G be the subgroup generated by (1,1,1,1), (p,0,0,0),
(p%,p%,0,0), and (0,0, p?, 0). Then Z + p*Z* C G C Z + p*Z*.
The subgroup G corresponds to the matrix

pd op? 0 1

o p» 0 1
A= 0 0 p* 1
0 0 0 1

Our technique from Section 2.2 includes G in the lower bound for f4(p®). However, our
technique from Section 4 does not since A violates the conditions in the statement of
Proposition 4.1.

It is not too difficult to give conditions on when the columns of a subring matrix
satisfying Proposition 4.1 will generate a subgroup G satisfying Lemma 2.1. We state
this below in Proposition 4.15. However, it is much more difficult to determine when
a subgroup G satisfying Lemma 2.1 corresponds to a subring matrix Mg satisfying
Proposition 4.1. The main obstacle here is that the closure conditions to determine
whether Mg is a subring matrix are complicated.
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Proposition 4.15. Let A be a subring matriz satisfying Proposition /.1 with columns
V1, Vo1, (1,...,1)T. Let G be the subgroup generated by vl ,... vI | and (1,...,1).
Then there exists an r such that Z + p*"Z™ C G C Z + p"Z"™ if and only if

2|k
Lor k53 24k,
Proof. Let wy = (1,0,...,0), wo = (0,1,...,0),...,w,—1 = (0,...,0,1,0), and w,, =
(1,...,1) be a basis for Z™. By Proposition 2.8, it suffices to understand conditions on
r,k, and ¢ so that p?"w; is contained in the lattice spanned by G and v; is contained in

the lattice L spanned by {p"wq,...,p w1} forall 1 <i<n—1.
Observe that v; is in L if and only if

ccon[])-[1]

By applying the row reduction method, p*"w; is in the lattice spanned by G if and
only if the following three conditions hold:

1. £k <2r
2. 0 <2r
3. k<2r— (45

We can simplify the four conditions to the following:

Finally, we demonstrate an upper bound for each of our lower bounds, which can be
derived as corollaries of Theorems 1.8 and 1.9 respectively.

Corollary 4.16. Let h(n,e) be the exponent of the lower bound from Theorem 1.8. Then
h(n,e) < (3 —2v2)(n — 1)e.

Proof. By Remark 2.16, for each fixed t € [ﬁ, —47], we have
h(n,e) < (e —t(n — 1))(2(n — 1) — %).

Taking a maximum over all ¢ in this range over R gives the result. O

Corollary 4.17. Let b(n,e) be the exponent of the lower bound from Theorem 1.9. Then
b(n,e) < (3—2v2)(n—1)e.
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Proof. Removing the floor function and optimizing over R gives the result. 0O

It is interesting to note that our two different methods lead to lower bounds that are
very close asymptotically.

5. Divergence of local factors

In this section, we use the lower bounds for f,,(p®) from Section 4 to find lower bounds
for the abscissa of convergence of C%n’ p(s). It is less clear how to use the bound from
Theorem 1.8 to derive a result about the divergence of an, p(s) since the exponent is
quadratic in e. While some results are known about the divergence of (%, (s), not much
is known about the divergence of the local factors. We fill this gap and also provide a
partial answer to Question 1.5.

For each lower bound p? of f,(p®) given in Section 4, we can determine the poles
of the series 2627171}93])_“. Since f,(p®) > p® whenever e > n — 1, then an7p(s) >
ZeZn—l pBp~es. Therefore (g'n) p(s) diverges whenever the simpler series diverges.

First, let

e

b =|——|-dn—-1-d
) = |ty 1= 0
as in Theorem 1.9. In order to simplify the geometric series, we set

ed(n —1—d)

F(d,e,n) = n—1+d

—d(n—1-4d)
and note that b(n,e) > F(d, e, n)

Lemma 5.1. Fiz n > 1. Then Y.~ , p¥" @™ p=es diverges for all s such that R(s) <
d(n—1—d) B
Tn—itd
Proof. Consider
e,n), —es (n— Un-l-d) \*©
ZPF(dH)p — 1d)z (pn1+d )

e>n—1 e>n—1

d(n—1—d)

This series diverges for all s such that £(s) < —ird - O
Lemma 5.2. Let n > 1 and
C—-C? C-1 5 5
G(C,e,n)=ce (C——i-l(n 1)+ C——i-l> —((C-=C*H(n-1+(C-1)(n—1)).

Then ZeanlpG(C’e’”)p_es diverges for all s such that R(s) < (Ccfff (n—1)+ g)
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Proof. Consider

Z pG(C,e,n)p—es :p—((c-cz)(n—1)2+(0—1)(n_1)) pe(cgff (n—1)+2—;}) —es

e>n—1 e>n—1

_ p-(€=C)n=1)*+(C=1)(n-1)) <p(ccff (n—1>+‘é+}—s)> ’
1

. : c-c? Cc—
The series diverges for all s such that R(s) < “z754-(n — 1) + C—Jr% O
Consider the bound G(C,e,n) used in Lemma 5.2. In order to maximize G(C, e, n)
as a function in n, consider maxp<c<i 00—7_512 = 3 — 2/2. The maximum occurs when
C = /2 — 1. Plugging in this value of C, we obtain the following corollary.

Corollary 5.3. Let n > 1 and let G(C,e,n) be as in Lemma 5.2. Setting C = /2 — 1, we
find that ZeZn_lpG(lfﬁ’")p*es diverges for all s such that R(s) < (3 —2v2)(n —1) +
1—+2.

Lemma 5.1 and Corollary 5.3 combined give the proof of Theorems 1.10. Recall that

S g = > pPpe

e>0 e>n—1

for each choice of bound B as above. Therefore the previous lemmas give regions where
the local factors of ¢/, (s) diverge. Observe that f,(p®) > pF(den) for all integers d €
[0,n—1] and f,,(p¢) > p¥(©¢m) for all real numbers C' € [0, 1], so we can take a maximum
over all d in Lemma 5.1 or over all C' in Lemma 5.2 to find the largest possible regions
of divergence for these geometric series.

It is possible that there are poles further to the right of the ones found above in
the given geometric series. Consider the bound in Lemma 5.1. When s > cz(n), (£, (s)
diverges if

d(n—1—d y— 1
Lol Bet) (1),

Z —d(n—1—-d) P
p (n ) dn—1-d) __
) 1 — p n-1td

diverges for all 0 < d < n — 1. It is a simple computation to show that this series
converges on s > ¢7(n). Similar computations show that we cannot find a larger region
of divergence for the local factors by using Lemma 5.2 and Corollary 5.3 either. Thus
Theorem 1.10 gives the best possible lower bound for the abscissa of convergence of
(7~ ,(5) given our lower bounds for f,,(p°).

Proof of Theorem 1.10. Set

e

b(n, e) = {m

Jd(n—l—d)
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and

ed(n—1—d)

F(d,e,n) = e

—d(n—1-4d).

By Theorem 1.9, f,,(p¢) > p?(™€) > pF(den) for each e > n — 1. Therefore
(i p(8) =D fulp)p™ = Y prlbempes,
e>0 e>n—1
d(n—1—d)

n—1-+d
and thus (%, ,(8) diverges on the same region. Taking a maximum over all integers

By Lemma 5.1, the simpler geometric series diverges for all s such that f(s) <
d € [0,n — 1] and applying a Tauberian theorem gives the result. O

The following proposition is strictly worse than Theorem 1.10 — it comes from choosing
a specific value of C € [0, 1] — but is easier to use directly.

Proposition 5.4. Fiz n > 1. Then (5, ,(8) diverges for all s such that
R(s) < (B3-2v2)(n—1)+1— V2.

Proof. The proof is similar to that of Theorem 1.10, replacing Lemma 5.1 with Corol-
lary 5.3. O

6. Orders in a number field

We now study a related zeta function and use results from previous sections to find
new lower bounds for the number of orders in a number field. Let K be a number field
of degree n with ring of integers Ok . Let

Fr(k) = #{O C Ok : O is a order of O and |disc(O)| = k}.
Recall that there is a relation between disc(O) and disc(Ok) given by
disc(0) = disc(Ok)[Ok : O).

Consider the order zeta function

oo

ni(s)= Y. |dise(O)|7* =D Fre(k)k™".

O order of O k=1

This zeta function is closely related to the zeta function

ik(s)= > [0x:0*
O order of Ok
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by the relation ng (s) = |disc(Ok )|~ ik (25).
Notice that 7k (s) also has an Euler product [], 7k p(s) indexed over the rational
primes where

ik p(s) = Z Ok ®z Zp : O]".
O order of Ok

If p splits completely, then Ok @z Z; = Z;. Therefore for all primes p that split
completely,

MK p(s) = CZ} (s) = C%",p(s)-

Let Nk (B) = > x<p Fr(X). The following theorem is due to Kaplan, Marcinek, and
Takloo-Bighash [8]; see their paper for details on ro, which is a constant that depends
on the Galois group of the normal closure of K/Q.

Theorem 6.1. /8, Theorem 2]

1. Let n < 5. Then there exists a constant Cx > 0 so that
N (B) ~ CxB?(log B)™>

as B — oo.
2. Let n > 5. Then for every e > 0,

B2(log B)>~! « Ng(B) <. Bi~12t¢
as B — .

We can use Theorem 1.6 along with a Tauberian theorem to obtain an improvement
on the lower bound in Theorem 6.1(2).

Theorem 6.2. Fizn > 1 and let

0<d<n—1

(n) = max d(nflfd)_k 1
an) = n—1+d n—14+d/’

Then B2%") <« Ny (B) as B — co.

As a consequence of Theorem 1.10 and Proposition 5.4, we can also bound the abscissa
of convergence of 7, ,(s).

Theorem 6.3. Let n > 1 be an integer and let K be a degree n number field. Then

er(n)

1. The zeta function Nk, p(s) diverges for all s such that R(s) < =5
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2. The zeta function M, p(s) diverges for all s such that

B-2v2)(n-1+1-v2

R(s) < 5

7. Further questions

In this process of bounding f,(p¢) by counting irreducible subrings, we made a few
assumptions. First, we only considered compositions a € C, 4.1.¢. Second, we set several
entries in the matrix with diagonal « equal to 0 and the rest equal to pl—g-laij for some
a;; €10, p’“’(%W ). Lastly, we bounded f,,(p°®) by ¢, (p°®). These simplifications lead to the
following questions.

Question 7.1. Let d € [0,n — 1] be an integer and let k,¢ be positive integers so that
{> [g] Let o € Cp gk e

1. Does the main term of ¢, (p°) always come from go(p) for some o € Cp g x.0?
2. Is pk=T5DArealPe) qlyqys the main term of 9a(D)?
3. Do fn(p®) and g,(p°) always have the same main terms?

The answer to Question 7.1(1) is no. For example, Atanasov et al. [1] show that
g5(p”) is a polynomial of degree 4, with the main term coming from the compositions
(3,2,1,1) and (2,3,1,1). It is unclear how often pairs n and e are counterexamples to
Question 7.1(1). It is also unknown how far off the main term of g, (p®) can be from the
main term of max, g,(p) where the maximum is taken over all o of the form above.

It may be the case that a composition of the form o« € C), 4,1 ¢ leads to the main
term of g,(p°®), but our lower bound for the number of irreducible subring matrices
with diagonal corresponding to o does not give the main term. While the answer to
Question 7.1(2) is not understood for most pairs n and e, we give a partial answer. First,
we state some necessary propositions.

Proposition 7.2. [9, Proposition 4.3] Fixn > 1. Then

Corollary 3.7 in [1] gives an exact formula for g, (p"*!). To save space, we rewrite
their corollary in terms of the degree of g, (p"*1).

Corollary 7.3. [1, Corollary 3.7] Let n > 4. The function g,(p"*) is a polynomial in p
of degree 2n — 6.

Example 7.4. Let a € C), g,2,1. Observe that e=n —1+4d.
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When d = 0, e = n — 1. Proposition 7.2 shows that g,,(p"~!) = 1, which matches the
bound from Theorem 1.9. We see that g, (p"~ ') = [”al]p.

When d = 1, e = n. The second part of Proposition 7.2 shows that the main term of

_ p"p’_ll—l _ [n;l]p, 0

gn(p™) is p"~2. This agrees with Theorem 1.9. Further, g, (p™)
our method counts all possible irreducible subrings of index p™.

When d = 2, e = n + 1. By Corollary 7.3, the main term of g, (p"*!) is p*>*~6, which
n—l]

matches the main term in Theorem 1.9. In this case, our lower bound g, (p"*+1) > [ 2 1y

is strictly smaller than the actual formula for g,(p"*!), but the main term is the same.

gn(p™*) - [ng 1L = (Z)p"”-

Lastly, we provide a partial answer to Part 3 of Question 7.1. We do not understand

In fact,

the relationship between the main term of f,(p°) and the main term of g, (p°®) for each
fixed n and e > n — 1. In fact, there are classes of examples for which the main term for
fn(p®) is greater than the main term of g, (p°).

Example 7.5. Let e = n — 1. By Proposition 7.2, g,(p"~!) = 1 for all n > 2. However,

the term f1(p°)gn_1(p"~ ') appears in the recurrence relation stated in Proposition 3.3.

n—l) n—3.

Proposition 7.2 implies that g,_1(p is a polynomial in p with main term p
Therefore f,,(p"~1) > p"~3 whereas g,(p" ') = 1.

In some cases we are likely not capturing the highest order term of f,,(p®) by using the
bound f,(p¢) > g.(p°®). However, this is currently the best known approach for counting
subrings via subring matrices.

In this paper, we give two new lower bounds for f,(p¢). Data suggests that the lower
bound for f,(p®) that comes from counting irreducible subring matrices is slightly worse
than the lower bound that comes from counting subgroups. Both of these lower bounds
are at most p(3_2ﬁ)e("_l). In order to improve upon the lower bounds given in this
paper using these techniques, it seems necessary to answer Questions 7.1(2) and 7.1(3)
or to find other related sets of subgroups that are also subrings. Improvements of the
lower bounds for f, (p¢) would likely lead to better lower bounds for the asymptotic
growth of subrings in Z™ or orders in a fixed number field.
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