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1. Introduction

Let £ < n. An n-arc in (k — 1)-dimensional projective space is a set of n points so

that no k lie on a hyperplane. Specializing to k = 3, an n-arc in the projective plane is

a set of n points so that no 3 lie on a line.
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Arcs in ]P’Q(IFq) are closely related to several objects of interest. First, we can identify
an n-arc with a kxn generator matrix with entries in IF, whose columns are given by some
choice of affine representative for each point in the n-arc. Since no k of these points lie on
a hyperplane, no k x k minor of the generator matrix vanishes. By this association, n-arcs
are also related to ‘maximum distance separable’ (MDS) codes, which are linear codes
for which the Singleton bound is achieved. Finally, an n-arc can be identified with an IF-
point on the open subset of the Grassmannian G(k,n) for which all Pliicker coordinates
are nonzero. See [7,8] for more on these connections. Significantly, any information about
one of these objects immediately gives new results about the others.

In 1955, Segre [17] highlighted three questions about arcs, including a question about
determining the largest size of an arc in (k— 1)-dimensional projective space. In a projec-
tive plane of order ¢, the answer is known — if ¢ is odd, the largest size of an arc in ¢+ 1
and if ¢ is even, the largest size is ¢ + 2. When k£ > 3 and ¢ > k, the MDS Conjecture —
a famous conjecture in coding theory — states that the largest size of an arc should be
g+ 1. Researchers have been making progress on this problem; see [1] for a recent survey
on large arcs.

In this paper, we will discuss a counting version of Segre’s question. Let C,, 1(¢) denote
the number of ordered n-arcs in ]P’kfl(IFq). A major question about arcs is the following.

Question 1.1. For fixed n and k, what is C), x(q) as a function of ¢?

Let M, 1(q) denote the number of [n, k] MDS codes over F,. Let U, (q) denote the
open stratum of the Grassmannian G(k,n) over F, for which all Pliicker coordinates are
nonzero. It is known that M, 1(q) = #U., x(q), see e.g. [9] for more details. The following
proposition is an easy generalization of [10, Lemma 2].

Proposition 1.2. Fiz positive k,n € Z. Then

Mo(6) = #U,40) = Tt o)

This proposition demonstrates the connection between arcs, MDS codes, and rational
points on the Grassmannian. Any statement about C), x(¢) in this paper can be converted
to a statement about M, x(q) or #Uy »(q) using Proposition 1.2.

1.1. Arcs in the projective plane

When k > 4, there is a unique projective space of order ¢ up to isomorphism, namely
P*~1(F,). However, when k = 3, there can be several non-isomorphic projective planes
of order g. In this setting, we use the notation C,,(IT) where II is some projective plane
of order ¢. In [5], Glynn produces an algorithm to count the number of n-arcs in any
projective plane of order ¢ in terms of simpler combinatorial objects. This algorithm has
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been used to determine exact formulas for C), 3(II) when n < 9. Glynn finds that C,, 3(II)
is polynomial in ¢ when n < 6.

A function f is quasipolynomial if there exists finitely many polynomials gg, ..., gn—1
so that f = g¢; whenever ¢ = i (mod N). The function C,, 3(II) is quasipolynomial
when n € {7,8,9} [5,10,12]. Tampolskaia, Skorobogatov, and Sorokin [10] count [9,3]
MDS codes and derive their formula for Cy 5(P%(F,)) as a corollary. Kaplan, Kimport,
Lawrence, Peilen, and Weinreich [12] extend their work to count 9-arcs in any projective
plane of order q.

Definition 1.3. [3] A linear space (P, L) is a pair of sets where P denotes a set of points
and L denotes a set of lines that satisfies the following properties:

1. Every line in £ is a subset of P.
2. Any two distinct points belong to exactly one line in L.
3. Every line in £ contains at least 2 points.

Definition 1.4. Two linear spaces f = (P1,£1) and g = (P2, L2) are isomorphic if there
exists a bijection P; — Ps that preserves lines.

Since every two points determine a line, we call a line containing at least three points
a full line. A planar space (P, L) is uniquely determined by P and the set of full lines.
Thus we can refer to a linear space by its set of points and full lines only. From now on,
we only consider full lines and we will drop the word “full.”

Definition 1.5. [12] A superfiguration in the projective plane is a linear space so that
every line contains at least 3 points and every point lies on at least 3 lines.

We give an alternate definition of superfigurations which will be useful later on. Let
the index of a point be the number of (full) lines through that point. A superfiguration
in the projective plane is a linear space so that the index of every point is at least 3.

These superfigurations, which are highly symmetric and contain many lines, are impor-
tant objects in classical projective geometry. The Fano plane is the unique superfiguration
on 7 points, and the Mobius-Kantor configuration is the unique superfiguration on 8
points. The Hesse superfiguration is one of ten superfigurations on 9 points. It contains
9 points and 12 lines and can be realized by the 9 inflection points of a complex smooth
cubic curve.

Let IT be a projective plane of order q. A strong realization in II of a superfiguration
s is an embedding of the points P into II so that no extra collinearities are formed.
Let A(II) denote the number of strong realizations of s in II. We now state Glynn’s
Theorem for the number of n-arcs in the projective plane.
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Theorem 1.6. [5] There exist polynomials p(q) and ps(q) such that for any projective
plane I of order q,

Cu(T) = plg) + > ps(g) As(TD)

where the summation is taken over all superfigurations s on at most n points.

Remark 1.7. Consider counting ordered n-arcs in IP’k_l(Fq) by counting k X n generator
matrices with the property that no k¥ X k minor vanishes. By the Inclusion-Exclusion
Principle, we could determine the number of such matrices by counting k X n matrices
for which at least one maximal minor vanishes. Fix an ordering on the (Z) maximal

minors. For each (iy,... ,i%n ) € {0, 1}(2), we must determine the number of k x n
k

matrices with entries in [y for which minor M;; vanishes if i; = 0 and does not vanish if

i; = 1. There are 2(%) —1 such patterns of minors to consider. Theorem 1.6 is important
because it reduces the number of objects to consider significantly. While an exact formula
for the number of superfigurations on at most n points is not known, there are far fewer
than 2() —1 of them. For example when n = 7, there are 23° — 1 patterns of minors to
consider, yet only one superfiguration s on 7 points up to isomorphism. There are 168
superfigurations in the isomorphism class of s. Table 1 gives the number of linear spaces
and superfigurations up to isomorphism for 7 < n < 12.

Table 1

Number of linear spaces and superfigurations on n points up to isomorphism [4,12].

n 7 8 9 10 11 12

Linear spaces 24 69 384 5,250 232,929 28,872,973
Superfigurations 1 1 10 151 16,234 > 179,000

The summation in Theorem 1.6 is over all superfigurations on at most n points.
However, since As(T1) = A4(IT) whenever s is isomorphic to ¢, we can modify this theorem
to sum over all isomorphism classes of superfigurations on at most n points instead.

In forthcoming joint work, we modify Glynn’s formula to make computations simpler
and we use this modified algorithm to show that the number of 10-arcs in P%(F,) is a
nonquasipolynomial function in ¢. While no explicit 10-arc formula is given, we show
that the formula depends on the Fourier coefficients of certain modular forms which
have models that are elliptic curves or singular K3 surfaces. We then conjecture that the
number of n-arcs will continue to be nonquasipolynomial for larger n, as the number of
n-arcs in the projective plane should follow Mnév’s Universality Theorem [14]. However,
we cannot prove this conjecture without explicitly determining all pieces that appear
in Theorem 1.6, which becomes computationally infeasible when n > 10. The common
obstruction to proving these types of theorems is that we cannot guarantee ‘bad’ pieces
do not cancel out. For examples of this obstruction occurring in other problems, see
[16,20].
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1.2. Arcs in projective 3-space

Based on the difficulty of computation for 10-arcs, it seems infeasible to count the
number of 1l-arcs in P?(F,). Further, combining the results from [5,10,12] and the
forthcoming work on Cig 3(q) gives the transitions from polynomial to quasipolynomial
to nonquasipolynomial. Instead, we take a new direction in the study of n-arcs. In this
paper, we generalize Glynn’s formula by producing an algorithm to count the number of
n-arcs in P3(F,). We also outline how to adapt these ideas to count n-arcs in P*~1(F,)
where k > 4. We begin by setting up the terminology that we will need later on.

In 2-dimensional space, the basic geometric objects are points and lines. In 3-
dimensional space, we must consider points, lines, and planes.

Definition 1.8. A planar space is a triple of sets (P, L, H) where P is the set of points,
L is the set of lines, and H is the set of planes such that

1. L,H C2P
2. (P, L) is a linear space
3. Any three distinct non-collinear points lie on a unique plane.

We use the notation H to represent planes since planes in 3-dimensional projective
space are the same as hyperplanes. Planar spaces are very general spaces. For example,
for all k£ > 4, the (k — 1)-dimensional projective and affine spaces are planar spaces.

Two planar spaces (Py, L1, H1) and (Pa, Lo, Hs) are isomorphic if there exists a bi-
jection P; — P, that preserves lines and planes.

Remark 1.9. The number of planar spaces on n points is equal to the number of non-
isomorphic simple matroids on a set of n points with rank at most 4. Adding columns
from Table 4 in [13] leads to Table 2.

Table 2

Number of planar spaces on n points up to isomorphism [13].

n 2 3 4 5 6 7 8 9 10

Planar spaces 1 2 4 8 21 73 686 186,365 4,884,579,115

Definition 1.10. For a planar space f = (P, L, H), a strong realization of f in P3(F,) is
an injective mapping o : P — P3(F,) such that each subset Q of P

1. is contained in a line of f if and only if 0(Q) is contained in a line of P3(F,) and
2. is contained in a plane of f if and only if 0(Q) is contained in a plane of P3(F,).

For any planar space f, let Af(4,¢) be the number of strong realizations of f.
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We use the notation Af(4,q) to avoid confusion with the notation for the number
of strong realizations in the projective plane given in [12]. The use of the numeral 4
indicates that we are considering embeddings of points into P3(F,).

A full line of f is a line containing at least 3 points and a full plane of f is a plane
containing at least 4 points.

Remark 1.11. From now on, we use the terms line and plane to mean full line and full
plane respectively. Abusing notation, in our examples we will only write down the full
lines in £ and full planes in H. For example, we can define a planar space on four
points with lines given by the set {{1,2,3},{1,4},{2,4},{3,4}} and planes given by
{{1,2,3,4}}. However, we would simply write £ = {{1,2,3}} and H = {{1,2,3,4}} as
a planar space is uniquely determined by its full lines and full planes.

A point has index (i,7) if it lies on exactly ¢ (full) planes and j (full) lines.

Definition 1.12. A hyperfiguration is a planar space on n points such that for every point
P, the index (4, 7) of P satisfies at least one of the following:

This definition is a bit surprising as it does not appear to be the direct generalization
of a superfiguration. In fact, omitting conditions (2) and (3) gives the most direct gener-
alization of a superfiguration, namely that every plane contains at least four points and
every point lies on at least four planes. Taking conditions (1) and (2) together allows
for subplanes of a planar space to contain isomorphic copies of superfigurations. Thus
condition (2) makes sense to include as superfigurations were special objects in projective
planes, so they should often be considered special objects in projective 3-space. We call
index (3,0) a surprising indez since it is not obvious why we must allow this case in the
definition of hyperfiguration. This will be made clear in Section 2.

Skorobogatov [18] studies similar formulas for the number of representations of a
matroid over F,. His formula is in terms of a summation over matroids that are special
and co-special; see [18] for these definitions. He also gives a necessary criterion for a
matroid to be special. It is likely that Definition 1.12 exactly classifies the matroids of
rank at most 4 that are both special and co-special.

1.3. Main results
Theorem 1.6 gives the count for n-arcs in the projective plane in terms of realizations

of superfigurations, which informally are combinatorial objects that contain many lines.
In this paper, we generalize Theorem 1.6 to 3-dimensional projective space. We do so by
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showing that C), 4(¢) can be expressed in terms of a linear combination of the number
of strong realizations for hyperfigurations, which are combinatorial objects that contain
either many lines or many planes.

Theorem 1.13. There exist polynomials p(q) and pr(q) in Z[q] such that

Chn.alg) =p(q) + Y _ pa(0)An(4, q)
h

where the summation runs over all isomorphism classes h of hyperfigurations on at most
n points. Moreover, there is an algorithm that produces p(q) and py(q) for each isomor-
phism class h.

We emphasize here that Theorem 1.13 significantly reduces the number of objects to
consider when compared to Inclusion-Exclusion. The data in Table 2 demonstrates that
the number of planar spaces on n points is significantly smaller than 2<74L) — 1. We give
the number of hyperfigurations up to isomorphism for small n in Table 3.

Table 3

Number of hyperfigurations on n points up to isomorphism.
n 6 7 8
Hyperfigurations 1 6 235

It is also interesting to note that it is not obvious why the summation in Theorem 1.13
is over hyperfigurations, as these are not a direct generalization of superfigurations.
In Section 2 we explain the subtleties that make hyperfigurations the right object to
choose. Throughout this paper, we abuse notation and refer to an isomorphism class of
a hyperfiguration as a hyperfiguration.

We then implement the algorithm given in the proof of Theorem 1.13 in Sage [19] to
express Cp4(g) for 4 <n <7.

1
Theorem 1.14. Let a(q) = {
Cia(q) = (@ +q+D)(¢+1D(g+1)*¢°

Cs4(q) = (> +q+1)(* + 1)(g +1)*(¢ — 1)°¢°

Coa(q) = (@ +a+ (@ +1)(a+1)*(¢—1)*(q—2)(q - 3)(g — 4)¢°

Cra(g) = (@ +q+ D@ +1)(g+1)* (g — 1)°¢° <q6 —98¢°
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+323¢* — 1952¢> 4 6462¢® — 11004q + 7470 — 30a(q)).

When n = 4,5, and 6, Cp, 4(q) can also be determined by counting methods. We
will describe these in Section 3. By using the duality between [n,k] MDS codes and
[n,n — k] MDS codes, one can determine the number of 7-arcs in P3(F,) from Glynn’s
[5] formula for 7-arcs in P?(F,). Our algorithm gives another way of producing C,, 4(q)
when 4 < n < 7. Importantly, this algorithm still works for n > 8, meaning that it is
now more feasible to compute the number of n-arcs in P3(F,) for larger n.

1.4. Outline

In Section 2, we prove Theorem 1.13 and give an algorithm for counting n-arcs in
P3(F,). In Section 3, we use the algorithm from Section 2 to determine C, 4(g) for
4 < n < 7. In Section 4, we discuss an approach to generalizing hyperfigurations in
higher-dimensional projective space. We then prove that a formula to compute C, x(q)
in terms of these realizations of these generalized hyperfigurations exists for all k£ > 4.

2. Generalizing Glynn’s theorem for n-arcs in P3(F,)

We can define a partial order on planar spaces on n points as follows. Let P =
{0,1,2,...,n—1}. Suppose f = (P,L1,H1) and g = (P, Lo, Hz) are two planar spaces
on n points. Then g > f if each line in £; is contained in some line of L5 and each plane
in H; is contained in some plane of Hs.

Example 2.1. Let f be the planar space on five points with £, = {{0,1,2}} and H; =
{{0,1,2,3},{0,1,2,4}}. Let g be the planar space on five points with £, = {{0,1,2,3}}
and Ho = {{0,1,2,3,4}}. Then g > f.

If we take h to be the planar space on five points with £3 = ) and H3 = {{0,1,2,3,4}},
then g > h, but h is not comparable to f.

Definition 2.2. For a planar space f = (P, L, 1), a weak realization of f in P3(F,) is an
injective mapping 7 : P — P3(FF,) such that for every subset Q C P

1. if Q is contained in a line in £, then 7(Q) is contained in a line in P3(F,) and
2. if @ is contained in a plane in H, then 7(Q) is contained in a plane of P3(FF,).

For any planar space f, let B¢(4,¢) be the number of weak realizations of f.
In other words, a weak realization of f is an injective mapping P — P3(F,) so that

all lines in £ and all planes in H are preserved, but extra collinearities or coplanarities
may be imposed. From these definitions, we see that
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Bf(4,(]) = ZA9(47(])'

9> f

We are ready to state the main lemma, which is a generalization of [12, Lemma 2.10].
The idea is that we can rewrite the number of weak realizations of a planar space f on
n points in terms of a Z[g]-linear combination of the number of strong realizations of a
planar space on n — 1 points.

Lemma 2.3. Suppose that a planar space f on n > 4 points has a point of index (i,7)
where i < 4 and j < 3 and (i,j) # (3,0). Then we have

g=f

where [’ is the planar space obtained from removing the point of index (i,j) from f and
u(f,g) is a polynomial in q.

Proof. Let f be a planar space and let m be a point of index (¢, 7) for which ¢ < 4 and
j < 3 and (i,5) # (3,0). Reorder the points in f so that m is the last point. Let f
be the planar space obtained from removing the point m of index (i, 7) from f. We can
form any weak realization of f in P3(FF,) by taking a strong realization of g > f’ and
adding back the point m. Observe that adding a point to g will give a weak realization
of f since extra collinearities or coplanarities may be formed. For each g, u(f,g) is the
number of ways to add a point to a strong realization of g to get a weak realization of
f. In order to prove this lemma, we must show that u(f,g) is a polynomial in Z][g] for
every g > f’. In order to do this, we work by cases depending on the index.

For each g, let P, be a set of n — 1 ordered points in P?(F,) that form a strong
realization of g. In this proof, we now work in P3(F,) rather than considering planar
spaces abstractly. Thus the points, lines, and planes in g must satisfy all properties of
finite projective 3-space over F,. For example, two distinct planes must intersect at a
line. See [15, page 126] for the axioms of P3(F,).

Index (0,0) Suppose we remove point m from f to get f’. Let g > f’. We must add a
point to g to obtain a weak realization of f. Since point m is not contained in any lines
or planes of f, we can simply choose any remaining point to get a weak realization of f.
Therefore

w(f.9) =+ +q+1)—(n—1).

Index (0,1) Let L’ be the line in f’ corresponding to the line in f that contained m.
Extend this line L’ to the line Ly in g. Adding any point of L, not already in P, gives
a weak realization of f. Thus
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p(fy9) = (@ +1) — #(Py N Ly).

Index (0,2) It is impossible for f to have a point of index (0, 2) since any two intersecting
full lines in P3(F,) are contained in a full plane.

Index (1,0) Let H be the plane in f containing m and let H’ be the corresponding subset
of points in f’. If H' is contained in some line of g, then adding any point not in g gives
a weak realization of f. Thus

w(f.9) =+ +q+1)—(n—1).

Otherwise, extend H’ to the plane Hy in g > f’. We can add any point to Hy that is
not already in the realization of g. Thus

u(f,g9) = (q2+Q+1)_#(PgﬁHg)-

Index (1,1) The point m is contained in a plane H and a line L in the planar space f.
The line L must be contained in the plane H. If not, then take a point r £ m in H that
does not lie on L. The plane {r} U L is a plane in f containing m that is distinct from
H. But this implies that m does not have index (1, 1).

Let H' and L’ be the subsets of points in f’ corresponding to H and L after removing
point m. By the above argument, L' C H'. Extend L’ to the line L, in g. We claim that

u(f,g) = (@ +1) —#(Py N Ly).

If H' is contained in a line L in g, then it is enough to add the point m to the line
Lg. Otherwise, extend H' to the plane Hy. Since L' C H, then L, C H,. Adding a point
to Ly also adds a point to the plane H,.

Index (1,2) Let H' be the subset of points in f’ corresponding to the plane H in f
containing m. Let L] and L/ be the lines in f’ corresponding to the lines L; and Lo
in f containing m. Since L; N Ly # () and both lines intersect H, then L; and Ly are
contained in H. Thus L}, L, C H'. Extend L} and L) to the lines L, 4, and Lo 4 of g. If
L4 and Ly 4 are the same line, then proceed as in case (1,1).

Otherwise, they must be distinct lines. Suppose that H’ is contained in a line L, of
g. Then Ly 4 and Ly 4 are contained in Ly, so Ly 4 and Ly 4 are not distinct lines.

Lastly, suppose H' extends to a plane H, of g. Since L} and L), are contained in H’,
then Ly 4, Lo ¢ € Hy. Thus we simply add the intersection point r of Ly 4 and Lo 4 giving

0 rekh,

u(ﬁg):{l e P,

Index (2,0) Let H; and HJ be the subsets of points in f’ corresponding to the planes
containing m in f. If H{ and H} are both contained in lines of g, then adding any point
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gives a weak realization of f, so
p(f,9) =+ +q+1)—(n—1).

Now suppose (without loss of generality) that Hj is contained in a line L; 4, but H)
is not contained in any line of g. Extend Hj to the plane Hs ;. Adding any point 7 to
H, 4 forms the plane L; 4 U {r}. Therefore

w(f.9) = (®+q+1) — #(Py N Hyy).

We have taken care of all cases for which at least one of H{ and Hj is contained in a
line of g. Suppose that neither Hj nor H) are contained in a line of g. Extend Hj and
H} to the planes Hy 4 and Hj 4 respectively. If the points in H; 4 and Hs 4 are contained
in a single plane H,, then proceed as in case (1,0).

Otherwise, recall that two planes intersect at a line, call it L,. We have

p(f,9) = (qg+1) —#(Ly N Py).

Index (2,1) Let H; and HJ} be the subsets of points in f’ corresponding to the planes
containing m in f. Let L’ be the subset of points in f’ corresponding to the line containing
m. Extend L' to Ly in g. Observe that a point can have index (2,1) if and only if
L= H,NH,. Thus L' = H; N H). If H; and H) are contained in the same line or plane
in g, we proceed as in case (1,1).

We claim that in all other cases,

u(f,g) = (g+1) —#(Py N Ly).

Observe that H] and H) cannot be contained in different lines L 4 and Lo 4 respec-
tively since L’ is contained in both H; and H} and we are assuming H; and H) are
distinct.

Now suppose without loss of generality that Hj is contained in a line of g, but H} is
not. Extend Hj to the plane Hy 4 in g. In order to add a point to both planes, we can
simply add a point to Hj 4. This point must also lie on the line L,. Since L, C Ha g4,
then it suffices to add a point to L.

Now suppose that H| and H; extend to the distinct planes H; 4 and Hs 4 respectively.
Since L' = H{ N Hj, then Ly, = Hy 4 N Hy 4. Thus adding a point to L, adds a point to
H, 4 and H 4 as well.

Index (2,2) This case is impossible. Suppose the point m lies on two planes H; =
{a1,...,as,m} and Hy = {b1,...,b;,m} and two lines Ly and Ls. Clearly one of these
lines, say Lj, must be Hy N Hy. Since Lo # Ly, then the line Ly is contained in exactly
one of Hy or Hs. Suppose without loss of generality that Ly C H;. Take some point



12 K. Isham / Finite Fields and Their Applications 80 (2022) 102006

b; € Hy not on Lo. Then Ly U {b;} forms a plane containing the point m that is distinct
from H; and Hs. Thus the point m does not have index (2,2).

Index (3,1) Let H{, H}, and H) be the subsets of points in f’ corresponding to the planes
in f containing m. Let L} be the line in f’ corresponding to the line in f containing
m. Extend L] to Lg. Observe that the point m has index (3,1) if and only if L] =
H{NH,N HS.

If all three of Hf, Hj, and H extend to the same line or plane in g, we proceed as in
case (1,1).

If two of Hy, H}, and HY extend to the same line or plane, but the third does not, we
proceed as in case (2,1).

Otherwise, all three extend to distinct lines or planes in g.

We claim that in all cases

wu(frg9) =(g+1) *#(Pgn[’g)-

Observe that in order for Hf, HS, and H} to extend to distinct objects, at most one
of H} can extend to a line since Lj C H; for i = 1,2,3.

Suppose that Hj extends to the line L, , and that Hj, Hi extend to the planes
Hj 4, H3 4 respectively. We must add a point to L = Hy, N Hs, and to L,. Since
L} is contained in Hj and Hj, then L, must be contained in both Hy , and Hs 4. Thus
Ly = L, so we must add a point to L,.

Lastly, suppose that H{, Hj, and Hj all extend to distinct planes H; 4, Ha 4, and Hs g,
respectively. It suffices to add a point to L, C H; 4 for i = 1,2, 3.

Index (3,2) Let Hi, H}, and H) be the subsets of points in f corresponding to the planes
containing m in f. Let L} and Lf be the lines in f’ corresponding to the lines L; and
Lo containing m in f. Observe that Ly and Lo are coplanar in f, so L} and L} must
be coplanar in f’. In particular, L} and L} are contained in H for some i € {1,2,3}.
Further, L; and Lo must be intersection lines between pairs of planes corresponding to
Hi{,H), and Hj. Extend L} and L) to the lines L; ;, and Lg 4 in g.

If L} and L5 are contained in the same line in g, let ¢ be the number of distinct lines
or planes that extend Hi, H}, and Hj. We proceed as in case (i,1).

We claim that in all remaining cases, it suffices to add the intersection point 7 of L g
and Lg 4, SO

0 reP,
p(f,9) = !
1 ré¢P,
Suppose first that Hy, H), and Hj extend to lines in g. This case is impossible since
L4 and Ly 4 must be contained in (and so equal to) one of these lines, but we are
assuming Ly 4 # Lo 4.
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Next, suppose that Hj and H) extend to lines Lfg and Lé{g in g, but Hj extends to
the plane H, in g. Recall that L} and L) lie in H] for some ¢ € {1,2,3}. Since Ly 4 # Lo g,
then L}, L C Hj, so Ly 4 and Lo 4 are contained in Hy. Adding the intersection point r
to g creates a weak realization of f.

Suppose that H{ extends to a line L in g, but Hj and Hj extend to planes Hs , and
Hs g respectively. If Hy y = Hs 4, then Ly 4 and L 4 must lie in this plane. Thus it suffices
to add their intersection point. Otherwise, suppose the planes Hy , and Hj 4 intersect at
a line L. By the observation at the beginning of this case, L = L 4 or L = Lo 4.

Lastly, suppose that H7, Hy, and Hj extend to planes Hi 4, Hy 4, and H3 4 in g re-
spectively. If all three planes are the same, since L; 4 and Ly, must lie on this plane,
we can add their intersection point r to get a weak realization of f. Suppose these three
planes intersect at a line L. Then L = Ly 4 = Ly 4. Since we are assuming Ly 4 # Lo g,
this is impossible.

Otherwise, the three planes intersect at a point. By construction, this point must be
the intersection point r of L1 4, and Lo 4. O

Remark 2.4. It may seem like this lemma does not take into account that lines can be
skew in P3(FF,). However, if we have skew lines L; = {0,1,2} and Lo = {3,4, 5}, then by
the properties of planar spaces, {0,1,2,3},{0,1,2,4}, {0,1,2,5},{0,3,4,5},{1, 3,4, 5},
{2,3,4,5} are all planes in f. Therefore the points included in these two lines all have
index (i,7) with ¢ > 4 and so we do not attempt to remove any of the points on these
skew lines. Thus, within the lemma, we can assume all lines must intersect.

Remark 2.5. We can now discuss Definition 1.12. Observe that if a plane in f contains
an isomorphic copy of a superfiguration, then f should likely be considered a special
object in projective 3-space.

Suppose f has a point of index (3, 0) and suppose we were to remove it to obtain f’. Let
Hi{, H), and H} be the subsets of points corresponding to the planes in f containing the
90 3.9
in g > f’. Notice that there is ambiguity in how we should add a point to g. That is,

point of index (3, 0). Suppose all three subsets extend to distinct planes Hy 4, Ho

we do not know whether H; 4, Hy 4, and Hs 4 should intersect at a line or at a single
point. Certainly if |Hy gNHa ,NH3 4] > 1, we know these three planes intersect at a line;
however, if |Hy g N Ha g N H3 4| < 1, we cannot tell what the intersection type of these
planes should be. Since there is ambiguity, we must omit the case (3,0) from Lemma 2.3.
Thus (3,0) is included in the definition of hyperfiguration as a surprising index.

We can now prove Theorem 1.13.

Proof of Theorem 1.13. First note that counting n-arcs in P3(F,) is the same as counting
sets of n points such that no 4 lie on a plane. Instead, we will determine C), 4(q) by
counting all sets of n points such that at least one set of 4 points forms a plane. Thus
Cy.4(q) is a linear combination of A(4,¢) for all planar spaces f on at most n points.
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We will show that we can simplify this formula by only considering hyperfigurations h
on at most n points.

We work inductively on the number of points m < n. We first find A;(4,¢) and
By (4, q) for the unique planar space on 1 point. Observe that

Af(4,9) =Bs(4,9) = (@ +*+q+1)+0- By (4,q)

for the unique planar space f’ on 0 points.

Assume that for all f on m points, we can express A (4, ¢) as a Z[gl-linear combination
of Aj,(4,q) for all hyperfigurations h on at most m points. Fix f on m + 1 points. If f is
not a hyperfiguration, then

Af(4a Q) = Bf(47q) - ZA9(4aQ)'

g>f

Use Lemma 2.3 to write

Bp(4,q) = > u(f.9)Aq(4,9).

g=f"

By induction, we can express each A,4(4,q) as a Z[g]-linear combination of A (4, ¢q) for
hyperfigurations h on at most m points. If f is a hyperfiguration, we can simply write

Ar(4,q).

Continuing for all f on m + 1 points, we see that we can express all Af(4,q) as a
Z[g]-linear combination of Ap(4,q) for hyperfigurations on at most m + 1 points. By
induction, we can continue until m = n.

To conclude, observe that if f and g are isomorphic planar spaces, then Af(4,¢q) =
Ag(47Q) and Bf(47Q) :BQ(4aQ) o

Observe that this proof gives an algorithm for counting arcs in P3(F,).
3. Formulas for C,, 4(q)

In this section, we will prove Theorem 1.14. It is interesting to note that Kaipa [11]
gives the first three main terms for C), x(¢q). There is a typo in Kaipa’s result that we
correct below.

Theorem 3.1. [11, Corollary 1.2] Fix positive integers n and k so that n > k. Let § =
k(n—k), N=(}), and

N2—5N+4 N6(6—n-3)
2 206 +n+1)

n®>—3n+2

bz(k,n) = 5

—(n=1)(N—-n)-—
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For each fized n, the number of PGLy(F,)-equivalence classes of n-arcs in ]P’k_l(IFq) is
asymptotically equal to

qé—n+1 _ (N _ n)q(i—n + bg(k’,’n)qé_n_l + O(qé—n—Q)'

We verify the first three main terms in C), 4(¢) when 5 < n < 7 by multiplying the
formula in Theorem 3.1 by | PGL4(F,)|.

3.1. Verifying formulas for n < 6

The number of n-arcs in P3(FF,) for n < 5 are simple to count by hand. When n = 4,
we choose any three non-collinear points, then select a point not on the plane formed by
these three points. A 5-arc is a set of five points in general position. Thus the number
of 5-arcs is equal to | PGL4(F,)|. There are no hyperfigurations on n < 5 points, so our
algorithm gives formulas that exactly match these counts.

We can also count 6-arcs combinatorially. Observe that any 6-arc determines a unique
twisted cubic in P3(FF,). The group PGL4(F,) acts on the set of twisted cubics. Moreover,
under this action, all twisted cubics are projectively equivalent. Thus we can count the
number of twisted cubics via the Orbit-Stabilizer Theorem. When ¢ > 5, the stabilizer
of a given twisted cubic is PGLy(F,). See [2] for more details. Thus when ¢ > 5, the
number of twisted cubics is

| PGLy(Fg)|
|PGLa(Fy)|
Let

5

P(q+1,6):H(q+1—i)

be the number of ways of choosing six ordered points on the twisted cubic. Since we get
a different ordered arc for each choice of six points on the twisted cubic, multiplying the
previous formula by P(¢+ 1,6) and simplifying gives

Coala) = (@® +a+1)(¢* + 1)(a+1)*(¢ — 1)*(¢ = 2)(q - 3)(q — 4)¢°. (1)

Note that when ¢ < 5, the number of 6-arcs in P3(FF,) is equal to 0. Thus (1) holds for
all prime powers ¢ > 0.
Next we verify that our algorithm gives the correct formula for Cg 4(q).

Proposition 3.2. We have

06,4((]) — q18 _ 9q17 + 25(]16 _ 16q15 _ 58q14 _ 32q13 _ 10q12 + 82q11
+ 73¢"° +41¢° — 15¢® — 66¢" — 1645 + 40A44(4, q)
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where Ag(4,q) is the number of strong realizations of the hyperfiguration on 6 points.

When n = 6, there is exactly one hyperfiguration, which has full planes {0, 1,2, 3},
{0,1,2,4},{0,1,2,5},{0,3,4,5},{1,3,4,5},{2,3,4,5} and full lines given by the sets
{0,1,2} and {3,4,5}. These lines are necessarily skew. We simply count the number of
strong realizations as follows. First select three points on a line. Then pick any point not
on that line. These four points lie on a plane, so choose the fifth point to be any point
not on this plane. Finally, pick a third point on the line formed by the fourth and fifth
points. This gives

Ag(4,q) = (@ + g+ 1)(* + (g +1)*(¢ — 1)°¢°.

Plugging this into the formula for 6-arcs in Theorem 1.14 verifies our formula matches

the one obtained by counting twisted cubics.
3.2. Counting 7-arcs
When n = 7, we find six distinct non-isomorphic hyperfigurations. They are

hy: H ={{0,1,2,3},{0,1,4,5},{0,2,4,6},{1,2,5,6},{1,3,4,6},{2,3,4,5} },
£={}
hy " = {{0,1,2,3},{0,1,4,5},{0,2,4,6},{0,3,5,6},{1,2,5,6},{1,3,4,6},{2,3,4,5} },
£={}
hs : H ={{0,1,2,3},{0,1,2,4},{0,1,2,5},{0,1,2,6},{0,3,4,5},{1,3,4,6},{2,3,5,6} },
£={{0,1,2}}
hy 1 = {{0,1,2,3,4},{0,1,2,5},{0,1,2,6},{0,3,4,5},{0, 3,4,6},{1,3,5,6},
{234,576}},
£ ={{0,1,2},{0,3,4}}
h’5 : H = {{07 15 27 3? 4}? {07 17 2? 37 5}7 {0? 17 27 3? 6}’ {07 47 55 6}7 {174? 576}7 {274’ 57 6}7
{3a475a6}}7
£={{0,1,2,3},{4,5,6}}

he : H ={{0,1,2,3,4,5,6}},
£ ={{0,1,2},{0,3,4},{0,5,6},{1,3,5}, {1,4,6},{2,3,6}, {2, 4,5} }
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The hyperfiguration hg can be thought of as a projection down to the Fano plane.
That is, the hyperfiguration has one plane, namely {0,1,2,3,4,5,6}, and seven lines in
this plane that form a Fano plane.

Definition 3.3. [6] We say that (P, B) is a (ny) configuration in (k — 1)-dimensional
projective space if every point lies on k blocks (hyperplanes) and every block contains k
points.

This is a non-standard definition of a (nj) configuration as defined by Glynn [6].
Glynn uses this definition to define the complement of a configuration.

Definition 3.4. [6] Let (P, B) denote an (ng) configuration in (k — 1)-dimensional pro-
jective space where P represents a set of points and B represents a set of blocks
(hyperplanes). Let B = {b1,...,b,}. Define a new (n,_j) configuration (P, B’) in
(n — k — 1)-dimensional projective space where for each b, € B, we say p € b} if and only
if p ¢ b;. This is called the complement of (P, B).

Remark 3.5. The hyperfiguration ho is the complement of the Fano plane. There is a
one-to-one correspondence between the strong realizations of the Fano plane in P?(F,)
and the strong realizations of hy in P?(F,) modulo the collineation group of P?(F,) and
P3(F,) respectively.

Theorem 3.6. The number of 7-arcs is given by

Cr.4(q) = ¢** — 28¢%° + 322¢"° — 1925¢"® 4 5571¢"7
+ 839¢'0 — 18320¢"° — 2695¢"* + 7455¢'3 + 1911142
+17074¢ — 9540¢'° — 13027¢° — 19922¢% + 92447
+141604¢° + (595¢° — 8260¢° + 20160q — 8820) - A4(4, q)
+ 2104, (4, q) + 18045, (4, q) — 25204, (4, q) + 37804, (4, q).

In order to understand the behavior of C7 4(¢) as a function of ¢, we must understand
the number of strong realizations of each hyperfiguration. Recall that we can assign a
k x n generator matrix to each n-arc in P*~1(F,) by assigning an affine representative of
each point to each column. This generator matrix has the property that no k£ x k minor
vanishes. Similarly, we can set up a 4 X n generator matrix for each strong realization of
a planar space in P3(Fq). In this case, any four points lie on a plane if and only if the
4 x 4 minor formed by these four points is equal to 0 in F,. More generally, any ¢ > 4
points lie on a plane if and only if all 4 x 4 minors formed by the 4-subsets of these points
are equal to 0 in [F,. Similarly, any £ points lie on a line if and only if the 4 x £ matrix
whose columns are these ¢ points does not have full rank. In other words, three points lie
on a line if and only if all 3 x 3 minors of the corresponding 4 x 3 matrix simultaneously
vanish.
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A strong realization of a planar space f then is a solution to the simultaneous vanishing
of all minors corresponding to lines and planes in f so that no additional lines and planes
are formed.

Observe that all hyperfigurations h; on at most seven points contain a plane with
exactly four points. Without loss of generality, we can set this plane equal to the plane
{z =0}.

Given five general points in f, there exists a unique element in PGL4(F,) that sends
these five points to the points [1 : 0:0:0},[0:1:0:0],0:0:1:0],[0:0:0: 1],
and [1:1:1:1]in P3(F,). Observe that the points [0 : 1 :0:0],[0:0:1: 0], and
[0:0:0:1] determine the plane {z = 0}.

These observations together lead to the following proposition.

Proposition 3.7. Suppose that h is a hyperfiguration on 7 points so that its first five points
are in general position and {1,2,3,5} is a plane in h containing 4 points. Let

10001 0 1
{01 0 0 1 w1 w
Mi=10 0101 2z 2

00011w1w2

Let Vy, be the variety defined by all polynomials formed by the vanishing of all 4 x 4
minors corresponding to planes in h and 3 X 3 minors corresponding to lines in h. Let
Wh, be the open subset of Vy, for which all other 4 x 4 minors do not vanish and all 4 x 3
submatrices not corresponding to lines in h have full rank. Then

| PGL4 ()|
Ap(4,q) = BCE #FWn(F,).

Proposition 3.7 provides a method for computing Ay (4, ¢) for the hyperfigurations on
7 points provided that the hyperfiguration contains five points in general position. Of
course, a strong realization of hyperfiguration h; may not have the points {0, 1,2, 3,4}
in general position or may not contain the 4-point plane {1,2,3,5}. Thus the columns
of a generator matrix for h; will be a permutation of the columns of M}, up to rescaling
each column and possibly also permuting the indices of the variables.

Proposition 3.8. Let

The number of strong realizations for each hyperfiguration is given by

A, (4,9) = (1 = alq)) - |PGL4(F,)|
An,y(4,q) = a(q) - | PGL4(F,)]
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Apy(3,9) = (¢ — 2) - | PGL4(F,)|

Ap,(4,9) = | PGL4(F,)|

Ap(4,9) = (@ + g+ D(@ + D¢+ 1)*(g - 1)*(¢ — 2)¢°
Apg(4,9) = alg) - q-(g—1) - (¢ — 2) - |[PGL3(F,)|-

Proof. We consider each hyperfiguration h; separately.

Hyperfiguration h;: The points 0, 3, 4, 5, and 6 are in general position. Since the plane
{2,3,4,5} contains exactly four points, we can fix this plane to be 2 = 0. This gives the
following generator matrix

1 1 0 00 01
[0 » oy 1 0 0 1

Mh1*0z1220101’
0 wy we 0 0 1 1

which is a permutation of the matrix M} from Proposition 3.7. By computing the de-
terminants corresponding to the planes in h;, we obtain a variety Vj,, defined by the
polynomials

—wi + 1
Y221 — Y122 — Y2 + 22
U1

Y2 — W2

—2oW1 + zZ1Wwa.

Substituting shows that we can understand the number of F,-points on V3, by under-
standing the solutions to

225111)2 — Wy = 0.

We then compute W}, , the open subset of V3, which disallows additional collinearities
or coplanarities in the realization of h;. We find that W}, is defined by the vanishing of
the polynomials defining V},, together with the following inequalities

Z1 7£ 0, 1
{ W2 # 0. (2)

If the characteristic of F, is even, then ws = 0, which is impossible by (2). If the
characteristic of IF, is odd, we have two cases: either wy = 0 or z; = 27!, Since wq # 0
by (2), then we must have z; = 271
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Hyperfiguration ho: As remarked above, this hyperfiguration is the complement of the
Fano plane in ]P’Q(]Fq). Further, there is a one-to-one correspondence between strong real-
izations of the Fano plane and he modulo their collineation groups. We derive Ay, (4, q)
from the number of strong realizations of the Fano plane in P?(F,).

Hyperfiguration h3: As before we set up a generator matrix

000 1 01 1
w10 w001
Mis=1% 01 2 00 1
w100w2101

and consider the vanishing of all minors corresponding to planes and lines in hz. We
arrive at the following set of equations

w1 = 0

zZ9 = 1

Y2 = w2

Y1 = Y221
We have the inequalities

wo 7£ O, 1

Z1 # 0.

Thus any choice of z; # 0 and wy # 0,1 gives a strong realization of hg.

Hyperfiguration h,: The points 0, 1, 4, 5 and 6 are in general position. We set up the

matrix
11 0 1 000
(01 y oy 1 0 0
Mii=10 1 % 2 01 0
0 1 w1 W2 0 0 1

Computing the determinants that correspond to the planes and lines in hy gives the
equations

Yy =21 = w1
’LUQZZQZO

y2 = 1.

Further, the inequalities reduce to
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w1 # 0.
Once we choose a value for wy, every other variable is determined.

Hyperfiguration h5: We can compute Ay, (4, q) by counting. This is computed similarly
to that of the hyperfiguration on 6 points.

Hyperfiguration hg: It is well-known that the number of strong realizations of the Fano
plane in P?(F,) is | PGL3(FF,)| - a(q). We can fix the embedding of the Fano plane into

P%(F,) given by
0 001 111
101 010 1].
0110011

In order to determine the number of strong realizations of hg in P3(F,), we add an
additional coordinate to each of the points in P?(F,) as follows

X1 T2 X3 T4 X5 g 7
o 0 0 1 1 1 1
1 0o 1 0 1 0 1
0 1 1 0 0 1 1

Clearly there are no realizations when ¢ is odd, so we assume q is even. Since all points
must lie in a single plane, all 4 X 4 minors must vanish. Solving this system when ¢ is
even gives

T1 =T + T7
To = T5 + X7
T3 = T5 + Tg

T4 =T + Tg + 7.

Further, we get the following inequalities:

T5  F T+ a7
T5s #zr
T F# x7.
We can choose z7 € F,. We then select z¢ # =7, and x5 # x¢ + x7 or x7. There are

q(q¢ — 1)(g — 2) such choices. Once these values are chosen, the variables x; for 1 <4 <4
are fixed. O

Theorem 1.14 follows from Theorem 3.6 and Proposition 3.8. Notice that C7 4(q) is a
quasipolynomial in q.
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3.3. Using this strategy to count Cy, 4(q) for larger n

Table 2 shows that the number of planar spaces likely grows exponentially in n.
Further, the number of hyperfigurations on n points grows quickly.

Therefore it seems that this strategy for counting n-arcs will quickly become infeasible.
In future work, we intend to study 8-arcs in P3(F,). While it is likely time-consuming
to compute Cs 4(q) exactly, we will determine whether or not this counting function is a
quasipolynomial in q.

4. Generalizing to higher-dimensional projective space

In order to generalize the ideas in this paper to produce a simpler expression for
Ch,k(q), we must understand what objects generalize planar spaces and hyperfigurations.
There is a natural generalization of planar space.

Definition 4.1. For k£ > 3, a k-planar space is a tuple (P, H1,Ho, ..., Hr—_2) where H; C
2P for each 1 < i < k—2 and every (i + 1) distinct points that do not lie in a subset
H C H; for 1 < j < i form a unique subspace in H;. Observe that this is a (k — 1)-
dimensional space.

Recall that the proof of Theorem 1.13 follows from induction by using Lemma 2.3
to express realizations of non-hyperfigurations on n points in terms of realizations of
hyperfigurations on at most n — 1 points. The definition for hyperfiguration was derived
by simply considering all planar spaces for which Lemma 2.3 did not apply. Our general-
ization of a hyperfiguration will be defined similarly: we will determine for which indices
in f it is possible to prove that u(f, g) is a polynomial in q.

Definition 4.2. The index of a point m of a k-planar space is given by (i1,42,...,ix—2)
where 4; is the number of (k — 1 — j)-dimensional objects incident with point m.

Definition 4.3. A k-hyperfiguration is a k-planar space for which the index of every point
satisfies i; > k — j for some 1 < j < k — 2 or the index is in a finite set of surprising
indices.

It is natural to wonder how many surprising indices there are for each k > 4. If the
number of surprising indices grows too quickly, it is possible that most k-planar spaces
are k-hyperfigurations. We demonstrate upper and lower bounds on the size of the set
of surprising indices.

Proposition 4.4. Let f be a k-planar space and let m be a point with index (i1,ia, ..., ik—2)
such that 0 < ix_o < 2. Then for any g > f', p(f,g) is a polynomial in q.
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Proof. Recall that i;_o denotes the number of lines incident with the point m. Fix some
g > f’ and let P, be a strong realization of g.

If ix_o = 1, let L be the line in f containing m and let L’ be the corresponding line
in f’. For every set H' in f’ corresponding to the a-dimensional object in f containing
m, we must have L' C H'. Extend L' to L, in g. For every extension H, of H' in g, we
must have L, C H,. Thus adding any point to L, gives a weak realization of f, so

u(f,9) :CI‘f'l_#(Pgng)'

If ix_o = 2, then the point m lies on the intersection of two lines L; and Ly in f. The
corresponding lines Lq 4 and Lo, must intersect in g. It suffices to add their intersection
point r to g to obtain a weak realization of f. Thus

0 rekh,
1% f?g = .
(£:9) {1 r¢ P,
Proposition 4.5. Let k > 3 and let Sy be the number of surprising indices in Pk_l(]Fq).
Then

Sk > (k —1)Sk_1.

Proof. Pick any surprising index (i1,...,4xk—1) in (kK — 2)-dimensional space. Then for
any ig > 1, we claim (ig,%1,...,%k—1) is a surprising index in (k — 1)-dimensional space.
Let f be a k-planar space which has a point of index (ig,41,. .., i) such that ig > 1. It
is possible that a-dimensional objects for 0 < a < k — 3 lie in a single hyperplane of f.
In this case, it is impossible to determine u(f, g) since we reduce to studying objects in
a (k — 1)-planar space. O

Corollary 4.6. Let Sy be the number of surprising indices in Pk_l(Fq), Then

(k—1)! k!
— L <5< —.
6 ~ "%

There are a total of % potential indices for a point in a k-planar space (some of these
indices will be impossible). Applying Corollary 4.6, we find that the ratio of surprising
indices to potential indices is between % and % More work needs to be done to determine
whether the ratio of surprising indices to potential indices will go to 0 or a non-zero

constant.

Example 4.7. Corollary 4.6 gives 1 < Sy < 4. When found that there is exactly one
surprising index when k = 4. Thus the ratio of surprising indices to potential indices is
%. Recall that in Lemma 2.3, the cases (0,2) and (2,2) were impossible.
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Remark 4.8. The number of surprising indices grows very quickly. Thus the defini-
tion of k-hyperfiguration given in this section likely needs refinement. Observe that in
Lemma 2.3, we omit an index I if there exists a planar space f with index I and a
planar space g > f’ such that u(f,g) cannot be explicitly given as a polynomial in gq.
However, it is possible that for some planar spaces f with index I and every g > f/,
we can conclude that u(f,g) is a polynomial in ¢. A refinement of Lemma 2.3 could be
made that checks more than just the index of the point to be removed. The number of
surprising indices would remain the same, but the number of k-hyperfigurations would
likely decrease.

Definition 4.9. A strong realization of a k-hyperfiguration h is an injective mapping
og:P — Pkil(]Fq) such that for all subsets Q C P and all 1 <a <k —2, Q is contained
in an a-dimensional subset of h if and only if ¢(Q) is contained in an a-dimensional
subset of PK=1(F,).

Theorem 4.10. There exist polynomials p(q) and py(q) for which

Cri(q) =p(@) +>_ pn(@)An(k, q)
h

where the summation is over all isomorphism classes of k-hyperfigurations on at most n
points.

Proof. By definition of a k-hyperfiguration, we can show that if f is not a k-
hyperfiguration, then

By(k,q) = > ulf.9)Aq(k,q)

9> f’

for some polynomials u(f,g). The proof is an inductive argument similar to that in the
proof of Theorem 1.13. O

Of course, this is only an existence theorem — for each k, one would need to understand
how to compute p(f, g) for every planar space f and every g > f’. This becomes infeasible
as k grows as there are % potential indices to consider.
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