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n points so that no k lie on a hyperplane. In 1988, Glynn 
gave a formula to count n-arcs in the projective plane in 
terms of simpler combinatorial objects called superfigurations. 
Several authors have used this formula to count n-arcs in the 
projective plane for n ≤ 10. In this paper, we determine a 
formula to count n-arcs in projective 3-space. We then use 
this formula to give exact expressions for the number of n-
arcs in P3(Fq) for n ≤ 7, which are polynomial in q for n ≤ 6
and quasipolynomial in q for n = 7. Lastly, we generalize to 
higher-dimensional projective space.
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1. Introduction

Let k ≤ n. An n-arc in (k − 1)-dimensional projective space is a set of n points so 
that no k lie on a hyperplane. Specializing to k = 3, an n-arc in the projective plane is 
a set of n points so that no 3 lie on a line.
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Arcs in P 2(Fq) are closely related to several objects of interest. First, we can identify 
an n-arc with a k×n generator matrix with entries in Fq whose columns are given by some 
choice of affine representative for each point in the n-arc. Since no k of these points lie on 
a hyperplane, no k×k minor of the generator matrix vanishes. By this association, n-arcs 
are also related to ‘maximum distance separable’ (MDS) codes, which are linear codes 
for which the Singleton bound is achieved. Finally, an n-arc can be identified with an Fq-
point on the open subset of the Grassmannian G(k, n) for which all Plücker coordinates 
are nonzero. See [7,8] for more on these connections. Significantly, any information about 
one of these objects immediately gives new results about the others.

In 1955, Segre [17] highlighted three questions about arcs, including a question about 
determining the largest size of an arc in (k−1)-dimensional projective space. In a projec-
tive plane of order q, the answer is known – if q is odd, the largest size of an arc in q + 1
and if q is even, the largest size is q + 2. When k > 3 and q ≥ k, the MDS Conjecture – 
a famous conjecture in coding theory – states that the largest size of an arc should be 
q +1. Researchers have been making progress on this problem; see [1] for a recent survey 
on large arcs.

In this paper, we will discuss a counting version of Segre’s question. Let Cn,k(q) denote 
the number of ordered n-arcs in Pk−1(Fq). A major question about arcs is the following.

Question 1.1. For fixed n and k, what is Cn,k(q) as a function of q?

Let Mn,k(q) denote the number of [n, k] MDS codes over Fq. Let Un,k(q) denote the 
open stratum of the Grassmannian G(k, n) over Fq for which all Plücker coordinates are 
nonzero. It is known that Mn,k(q) = #Un,k(q), see e.g. [9] for more details. The following 
proposition is an easy generalization of [10, Lemma 2].

Proposition 1.2. Fix positive k, n ∈ Z. Then

Mn,k(q) = #Un,k(q) = (q − 1)n

| PGLk(Fq)|Cn,k(q).

This proposition demonstrates the connection between arcs, MDS codes, and rational 
points on the Grassmannian. Any statement about Cn,k(q) in this paper can be converted 
to a statement about Mn,k(q) or #Uk,n(q) using Proposition 1.2.

1.1. Arcs in the projective plane

When k ≥ 4, there is a unique projective space of order q up to isomorphism, namely 
Pk−1(Fq). However, when k = 3, there can be several non-isomorphic projective planes 
of order q. In this setting, we use the notation Cn(Π) where Π is some projective plane 
of order q. In [5], Glynn produces an algorithm to count the number of n-arcs in any 
projective plane of order q in terms of simpler combinatorial objects. This algorithm has 
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been used to determine exact formulas for Cn,3(Π) when n ≤ 9. Glynn finds that Cn,3(Π)
is polynomial in q when n ≤ 6.

A function f is quasipolynomial if there exists finitely many polynomials g0, . . . , gN−1

so that f = gi whenever q ≡ i (mod N). The function Cn,3(Π) is quasipolynomial 
when n ∈ {7, 8, 9} [5,10,12]. Iampolskaia, Skorobogatov, and Sorokin [10] count [9,3] 
MDS codes and derive their formula for C9,3(P 2(Fq)) as a corollary. Kaplan, Kimport, 
Lawrence, Peilen, and Weinreich [12] extend their work to count 9-arcs in any projective 
plane of order q.

Definition 1.3. [3] A linear space (P, L) is a pair of sets where P denotes a set of points 
and L denotes a set of lines that satisfies the following properties:

1. Every line in L is a subset of P.
2. Any two distinct points belong to exactly one line in L.
3. Every line in L contains at least 2 points.

Definition 1.4. Two linear spaces f = (P1, L1) and g = (P2, L2) are isomorphic if there 
exists a bijection P1 → P2 that preserves lines.

Since every two points determine a line, we call a line containing at least three points 
a full line. A planar space (P, L) is uniquely determined by P and the set of full lines. 
Thus we can refer to a linear space by its set of points and full lines only. From now on, 
we only consider full lines and we will drop the word “full.”

Definition 1.5. [12] A superfiguration in the projective plane is a linear space so that 
every line contains at least 3 points and every point lies on at least 3 lines.

We give an alternate definition of superfigurations which will be useful later on. Let 
the index of a point be the number of (full) lines through that point. A superfiguration
in the projective plane is a linear space so that the index of every point is at least 3.

These superfigurations, which are highly symmetric and contain many lines, are impor-
tant objects in classical projective geometry. The Fano plane is the unique superfiguration 
on 7 points, and the Möbius-Kantor configuration is the unique superfiguration on 8 
points. The Hesse superfiguration is one of ten superfigurations on 9 points. It contains 
9 points and 12 lines and can be realized by the 9 inflection points of a complex smooth 
cubic curve.

Let Π be a projective plane of order q. A strong realization in Π of a superfiguration 
s is an embedding of the points P into Π so that no extra collinearities are formed. 
Let As(Π) denote the number of strong realizations of s in Π. We now state Glynn’s 
Theorem for the number of n-arcs in the projective plane.
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Theorem 1.6. [5] There exist polynomials p(q) and ps(q) such that for any projective 
plane Π of order q,

Cn(Π) = p(q) +
∑

s

ps(q)As(Π)

where the summation is taken over all superfigurations s on at most n points.

Remark 1.7. Consider counting ordered n-arcs in Pk−1(Fq) by counting k × n generator 
matrices with the property that no k × k minor vanishes. By the Inclusion-Exclusion 
Principle, we could determine the number of such matrices by counting k × n matrices 
for which at least one maximal minor vanishes. Fix an ordering on the 

(
n
k

)
maximal 

minors. For each (i1, . . . , i(n
k)) ∈ {0, 1}(n

k), we must determine the number of k × n

matrices with entries in Fq for which minor Mij
vanishes if ij = 0 and does not vanish if 

ij = 1. There are 2(n
k) − 1 such patterns of minors to consider. Theorem 1.6 is important 

because it reduces the number of objects to consider significantly. While an exact formula 
for the number of superfigurations on at most n points is not known, there are far fewer 
than 2(n

3) − 1 of them. For example when n = 7, there are 235 − 1 patterns of minors to 
consider, yet only one superfiguration s on 7 points up to isomorphism. There are 168 
superfigurations in the isomorphism class of s. Table 1 gives the number of linear spaces 
and superfigurations up to isomorphism for 7 ≤ n ≤ 12.

Table 1
Number of linear spaces and superfigurations on n points up to isomorphism [4,12].

n 7 8 9 10 11 12
Linear spaces 24 69 384 5,250 232,929 28,872,973
Superfigurations 1 1 10 151 16,234 > 179, 000

The summation in Theorem 1.6 is over all superfigurations on at most n points. 
However, since As(Π) = At(Π) whenever s is isomorphic to t, we can modify this theorem 
to sum over all isomorphism classes of superfigurations on at most n points instead.

In forthcoming joint work, we modify Glynn’s formula to make computations simpler 
and we use this modified algorithm to show that the number of 10-arcs in P 2(Fq) is a 
nonquasipolynomial function in q. While no explicit 10-arc formula is given, we show 
that the formula depends on the Fourier coefficients of certain modular forms which 
have models that are elliptic curves or singular K3 surfaces. We then conjecture that the 
number of n-arcs will continue to be nonquasipolynomial for larger n, as the number of 
n-arcs in the projective plane should follow Mnëv’s Universality Theorem [14]. However, 
we cannot prove this conjecture without explicitly determining all pieces that appear 
in Theorem 1.6, which becomes computationally infeasible when n > 10. The common 
obstruction to proving these types of theorems is that we cannot guarantee ‘bad’ pieces 
do not cancel out. For examples of this obstruction occurring in other problems, see 
[16,20].
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1.2. Arcs in projective 3-space

Based on the difficulty of computation for 10-arcs, it seems infeasible to count the 
number of 11-arcs in P 2(Fq). Further, combining the results from [5,10,12] and the 
forthcoming work on C10,3(q) gives the transitions from polynomial to quasipolynomial 
to nonquasipolynomial. Instead, we take a new direction in the study of n-arcs. In this 
paper, we generalize Glynn’s formula by producing an algorithm to count the number of 
n-arcs in P 3(Fq). We also outline how to adapt these ideas to count n-arcs in Pk−1(Fq)
where k > 4. We begin by setting up the terminology that we will need later on.

In 2-dimensional space, the basic geometric objects are points and lines. In 3-
dimensional space, we must consider points, lines, and planes.

Definition 1.8. A planar space is a triple of sets (P, L, H) where P is the set of points, 
L is the set of lines, and H is the set of planes such that

1. L, H ⊆ 2P

2. (P, L) is a linear space
3. Any three distinct non-collinear points lie on a unique plane.

We use the notation H to represent planes since planes in 3-dimensional projective 
space are the same as hyperplanes. Planar spaces are very general spaces. For example, 
for all k ≥ 4, the (k − 1)-dimensional projective and affine spaces are planar spaces.

Two planar spaces (P1, L1, H1) and (P2, L2, H2) are isomorphic if there exists a bi-
jection P1 → P2 that preserves lines and planes.

Remark 1.9. The number of planar spaces on n points is equal to the number of non-
isomorphic simple matroids on a set of n points with rank at most 4. Adding columns 
from Table 4 in [13] leads to Table 2.

Table 2
Number of planar spaces on n points up to isomorphism [13].

n 2 3 4 5 6 7 8 9 10
Planar spaces 1 2 4 8 21 73 686 186,365 4,884,579,115

Definition 1.10. For a planar space f = (P, L, H), a strong realization of f in P 3(Fq) is 
an injective mapping σ : P → P 3(Fq) such that each subset Q of P

1. is contained in a line of f if and only if σ(Q) is contained in a line of P 3(Fq) and
2. is contained in a plane of f if and only if σ(Q) is contained in a plane of P 3(Fq).

For any planar space f , let Af (4, q) be the number of strong realizations of f .
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We use the notation Af (4, q) to avoid confusion with the notation for the number 
of strong realizations in the projective plane given in [12]. The use of the numeral 4 
indicates that we are considering embeddings of points into P 3(Fq).

A full line of f is a line containing at least 3 points and a full plane of f is a plane 
containing at least 4 points.

Remark 1.11. From now on, we use the terms line and plane to mean full line and full 
plane respectively. Abusing notation, in our examples we will only write down the full 
lines in L and full planes in H. For example, we can define a planar space on four 
points with lines given by the set {{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}} and planes given by 
{{1, 2, 3, 4}}. However, we would simply write L = {{1, 2, 3}} and H = {{1, 2, 3, 4}} as 
a planar space is uniquely determined by its full lines and full planes.

A point has index (i, j) if it lies on exactly i (full) planes and j (full) lines.

Definition 1.12. A hyperfiguration is a planar space on n points such that for every point 
P , the index (i, j) of P satisfies at least one of the following:

1. i ≥ 4
2. j ≥ 3
3. (i, j) = (3, 0).

This definition is a bit surprising as it does not appear to be the direct generalization 
of a superfiguration. In fact, omitting conditions (2) and (3) gives the most direct gener-
alization of a superfiguration, namely that every plane contains at least four points and 
every point lies on at least four planes. Taking conditions (1) and (2) together allows 
for subplanes of a planar space to contain isomorphic copies of superfigurations. Thus 
condition (2) makes sense to include as superfigurations were special objects in projective 
planes, so they should often be considered special objects in projective 3-space. We call 
index (3, 0) a surprising index since it is not obvious why we must allow this case in the 
definition of hyperfiguration. This will be made clear in Section 2.

Skorobogatov [18] studies similar formulas for the number of representations of a 
matroid over Fq. His formula is in terms of a summation over matroids that are special
and co-special; see [18] for these definitions. He also gives a necessary criterion for a 
matroid to be special. It is likely that Definition 1.12 exactly classifies the matroids of 
rank at most 4 that are both special and co-special.

1.3. Main results

Theorem 1.6 gives the count for n-arcs in the projective plane in terms of realizations 
of superfigurations, which informally are combinatorial objects that contain many lines. 
In this paper, we generalize Theorem 1.6 to 3-dimensional projective space. We do so by 
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showing that Cn,4(q) can be expressed in terms of a linear combination of the number 
of strong realizations for hyperfigurations, which are combinatorial objects that contain 
either many lines or many planes.

Theorem 1.13. There exist polynomials p(q) and ph(q) in Z[q] such that

Cn,4(q) = p(q) +
∑

h

ph(q)Ah(4, q)

where the summation runs over all isomorphism classes h of hyperfigurations on at most 
n points. Moreover, there is an algorithm that produces p(q) and ph(q) for each isomor-
phism class h.

We emphasize here that Theorem 1.13 significantly reduces the number of objects to 
consider when compared to Inclusion-Exclusion. The data in Table 2 demonstrates that 
the number of planar spaces on n points is significantly smaller than 2(n

4) − 1. We give 
the number of hyperfigurations up to isomorphism for small n in Table 3.

Table 3
Number of hyperfigurations on n points up to isomorphism.

n 6 7 8
Hyperfigurations 1 6 235

It is also interesting to note that it is not obvious why the summation in Theorem 1.13
is over hyperfigurations, as these are not a direct generalization of superfigurations. 
In Section 2 we explain the subtleties that make hyperfigurations the right object to 
choose. Throughout this paper, we abuse notation and refer to an isomorphism class of 
a hyperfiguration as a hyperfiguration.

We then implement the algorithm given in the proof of Theorem 1.13 in Sage [19] to 
express Cn,4(q) for 4 ≤ n ≤ 7.

Theorem 1.14. Let a(q) =
{

1 2 | q

0 2 � q
. Then

C4,4(q) = (q2 + q + 1)(q2 + 1)(q + 1)2q6

C5,4(q) = (q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)3q6

C6,4(q) = (q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)3(q − 2)(q − 3)(q − 4)q6

C7,4(q) = (q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)3q6
(

q6 − 28q5
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+ 323q4 − 1952q3 + 6462q2 − 11004q + 7470 − 30a(q)
)

.

When n = 4, 5, and 6, Cn,4(q) can also be determined by counting methods. We 
will describe these in Section 3. By using the duality between [n, k] MDS codes and 
[n, n − k] MDS codes, one can determine the number of 7-arcs in P 3(Fq) from Glynn’s 
[5] formula for 7-arcs in P 2(Fq). Our algorithm gives another way of producing Cn,4(q)
when 4 ≤ n ≤ 7. Importantly, this algorithm still works for n ≥ 8, meaning that it is 
now more feasible to compute the number of n-arcs in P 3(Fq) for larger n.

1.4. Outline

In Section 2, we prove Theorem 1.13 and give an algorithm for counting n-arcs in 
P 3(Fq). In Section 3, we use the algorithm from Section 2 to determine Cn,4(q) for 
4 ≤ n ≤ 7. In Section 4, we discuss an approach to generalizing hyperfigurations in 
higher-dimensional projective space. We then prove that a formula to compute Cn,k(q)
in terms of these realizations of these generalized hyperfigurations exists for all k ≥ 4.

2. Generalizing Glynn’s theorem for n-arcs in P3(Fq)

We can define a partial order on planar spaces on n points as follows. Let P =
{0, 1, 2, . . . , n − 1}. Suppose f = (P, L1, H1) and g = (P, L2, H2) are two planar spaces 
on n points. Then g ≥ f if each line in L1 is contained in some line of L2 and each plane 
in H1 is contained in some plane of H2.

Example 2.1. Let f be the planar space on five points with L1 = {{0, 1, 2}} and H1 =
{{0, 1, 2, 3}, {0, 1, 2, 4}}. Let g be the planar space on five points with L2 = {{0, 1, 2, 3}}
and H2 = {{0, 1, 2, 3, 4}}. Then g ≥ f .

If we take h to be the planar space on five points with L3 = ∅ and H3 = {{0, 1, 2, 3, 4}}, 
then g ≥ h, but h is not comparable to f .

Definition 2.2. For a planar space f = (P, L, H), a weak realization of f in P 3(Fq) is an 
injective mapping τ : P → P 3(Fq) such that for every subset Q ⊆ P

1. if Q is contained in a line in L, then τ(Q) is contained in a line in P 3(Fq) and
2. if Q is contained in a plane in H, then τ(Q) is contained in a plane of P 3(Fq).

For any planar space f , let Bf (4, q) be the number of weak realizations of f .

In other words, a weak realization of f is an injective mapping P → P 3(Fq) so that 
all lines in L and all planes in H are preserved, but extra collinearities or coplanarities 
may be imposed. From these definitions, we see that
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Bf (4, q) =
∑
g≥f

Ag(4, q).

We are ready to state the main lemma, which is a generalization of [12, Lemma 2.10]. 
The idea is that we can rewrite the number of weak realizations of a planar space f on 
n points in terms of a Z[q]-linear combination of the number of strong realizations of a 
planar space on n − 1 points.

Lemma 2.3. Suppose that a planar space f on n ≥ 4 points has a point of index (i, j)
where i < 4 and j < 3 and (i, j) 	= (3, 0). Then we have

Bf (4, q) =
∑
g≥f ′

μ(f, g)Ag(4, q)

where f ′ is the planar space obtained from removing the point of index (i, j) from f and 
μ(f, g) is a polynomial in q.

Proof. Let f be a planar space and let m be a point of index (i, j) for which i < 4 and 
j < 3 and (i, j) 	= (3, 0). Reorder the points in f so that m is the last point. Let f ′

be the planar space obtained from removing the point m of index (i, j) from f . We can 
form any weak realization of f in P 3(Fq) by taking a strong realization of g ≥ f ′ and 
adding back the point m. Observe that adding a point to g will give a weak realization 
of f since extra collinearities or coplanarities may be formed. For each g, μ(f, g) is the 
number of ways to add a point to a strong realization of g to get a weak realization of 
f . In order to prove this lemma, we must show that μ(f, g) is a polynomial in Z[q] for 
every g ≥ f ′. In order to do this, we work by cases depending on the index.

For each g, let Pg be a set of n − 1 ordered points in P 3(Fq) that form a strong 
realization of g. In this proof, we now work in P 3(Fq) rather than considering planar 
spaces abstractly. Thus the points, lines, and planes in g must satisfy all properties of 
finite projective 3-space over Fq. For example, two distinct planes must intersect at a 
line. See [15, page 126] for the axioms of P 3(Fq).

Index (0,0) Suppose we remove point m from f to get f ′. Let g ≥ f ′. We must add a 
point to g to obtain a weak realization of f . Since point m is not contained in any lines 
or planes of f , we can simply choose any remaining point to get a weak realization of f . 
Therefore

μ(f, g) = (q3 + q2 + q + 1) − (n − 1).

Index (0,1) Let L′ be the line in f ′ corresponding to the line in f that contained m. 
Extend this line L′ to the line Lg in g. Adding any point of Lg not already in Pg gives 
a weak realization of f . Thus
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μ(f, g) = (q + 1) − #(Pg ∩ Lg).

Index (0,2) It is impossible for f to have a point of index (0, 2) since any two intersecting 
full lines in P 3(Fq) are contained in a full plane.

Index (1,0) Let H be the plane in f containing m and let H ′ be the corresponding subset 
of points in f ′. If H ′ is contained in some line of g, then adding any point not in g gives 
a weak realization of f . Thus

μ(f, g) = (q3 + q2 + q + 1) − (n − 1).

Otherwise, extend H ′ to the plane Hg in g ≥ f ′. We can add any point to Hg that is 
not already in the realization of g. Thus

μ(f, g) = (q2 + q + 1) − #(Pg ∩ Hg).

Index (1,1) The point m is contained in a plane H and a line L in the planar space f . 
The line L must be contained in the plane H. If not, then take a point r 	= m in H that 
does not lie on L. The plane {r} ∪ L is a plane in f containing m that is distinct from 
H. But this implies that m does not have index (1, 1).

Let H ′ and L′ be the subsets of points in f ′ corresponding to H and L after removing 
point m. By the above argument, L′ ⊂ H ′. Extend L′ to the line Lg in g. We claim that

μ(f, g) = (q + 1) − #(Pg ∩ Lg).

If H ′ is contained in a line L in g, then it is enough to add the point m to the line 
Lg. Otherwise, extend H ′ to the plane Hg. Since L′ ⊂ H, then Lg ⊂ Hg. Adding a point 
to Lg also adds a point to the plane Hg.

Index (1,2) Let H ′ be the subset of points in f ′ corresponding to the plane H in f

containing m. Let L′
1 and L′

2 be the lines in f ′ corresponding to the lines L1 and L2
in f containing m. Since L1 ∩ L2 	= ∅ and both lines intersect H, then L1 and L2 are 
contained in H. Thus L′

1, L′
2 ⊆ H ′. Extend L′

1 and L′
2 to the lines L1,g and L2,g of g. If 

L1,g and L2,g are the same line, then proceed as in case (1, 1).
Otherwise, they must be distinct lines. Suppose that H ′ is contained in a line Lg of 

g. Then L1,g and L2,g are contained in Lg, so L1,g and L2,g are not distinct lines.
Lastly, suppose H ′ extends to a plane Hg of g. Since L′

1 and L′
2 are contained in H ′, 

then L1,g, L2,g ⊆ Hg. Thus we simply add the intersection point r of L1,g and L2,g giving

μ(f, g) =
{

0 r ∈ Pg

1 r /∈ Pg.

Index (2,0) Let H ′
1 and H ′

2 be the subsets of points in f ′ corresponding to the planes 
containing m in f . If H ′

1 and H ′
2 are both contained in lines of g, then adding any point 



K. Isham / Finite Fields and Their Applications 80 (2022) 102006 11
gives a weak realization of f , so

μ(f, g) = (q3 + q2 + q + 1) − (n − 1).

Now suppose (without loss of generality) that H ′
1 is contained in a line L1,g, but H ′

2
is not contained in any line of g. Extend H ′

2 to the plane H2,g. Adding any point r to 
H2,g forms the plane L1,g ∪ {r}. Therefore

μ(f, g) = (q2 + q + 1) − #(Pg ∩ H2,g).

We have taken care of all cases for which at least one of H ′
1 and H ′

2 is contained in a 
line of g. Suppose that neither H ′

1 nor H ′
2 are contained in a line of g. Extend H ′

1 and 
H ′

2 to the planes H1,g and H2,g respectively. If the points in H1,g and H2,g are contained 
in a single plane Hg, then proceed as in case (1, 0).

Otherwise, recall that two planes intersect at a line, call it Lg. We have

μ(f, g) = (q + 1) − #(Lg ∩ Pg).

Index (2,1) Let H ′
1 and H ′

2 be the subsets of points in f ′ corresponding to the planes 
containing m in f . Let L′ be the subset of points in f ′ corresponding to the line containing 
m. Extend L′ to Lg in g. Observe that a point can have index (2,1) if and only if 
L = H1 ∩ H2. Thus L′ = H ′

1 ∩ H ′
2. If H ′

1 and H ′
2 are contained in the same line or plane 

in g, we proceed as in case (1,1).
We claim that in all other cases,

μ(f, g) = (q + 1) − #(Pg ∩ Lg).

Observe that H ′
1 and H ′

2 cannot be contained in different lines L1,g and L2,g respec-
tively since L′ is contained in both H ′

1 and H ′
2 and we are assuming H ′

1 and H ′
2 are 

distinct.
Now suppose without loss of generality that H ′

1 is contained in a line of g, but H ′
2 is 

not. Extend H ′
2 to the plane H2,g in g. In order to add a point to both planes, we can 

simply add a point to H2,g. This point must also lie on the line Lg. Since Lg ⊂ H2,g, 
then it suffices to add a point to Lg.

Now suppose that H ′
1 and H ′

2 extend to the distinct planes H1,g and H2,g respectively. 
Since L′ = H ′

1 ∩ H ′
2, then Lg = H1,g ∩ H2,g. Thus adding a point to Lg adds a point to 

H1,g and H2,g as well.

Index (2,2) This case is impossible. Suppose the point m lies on two planes H1 =
{a1, . . . , as, m} and H2 = {b1, . . . , bt, m} and two lines L1 and L2. Clearly one of these 
lines, say L1, must be H1 ∩ H2. Since L2 	= L1, then the line L2 is contained in exactly 
one of H1 or H2. Suppose without loss of generality that L2 ⊂ H1. Take some point 
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bi ∈ H2 not on L2. Then L2 ∪ {bi} forms a plane containing the point m that is distinct 
from H1 and H2. Thus the point m does not have index (2,2).

Index (3,1) Let H ′
1, H ′

2, and H ′
3 be the subsets of points in f ′ corresponding to the planes 

in f containing m. Let L′
1 be the line in f ′ corresponding to the line in f containing 

m. Extend L′
1 to Lg. Observe that the point m has index (3,1) if and only if L′

1 =
H ′

1 ∩ H ′
2 ∩ H ′

3.
If all three of H ′

1, H ′
2, and H ′

3 extend to the same line or plane in g, we proceed as in 
case (1,1).

If two of H ′
1, H ′

2, and H ′
3 extend to the same line or plane, but the third does not, we 

proceed as in case (2,1).
Otherwise, all three extend to distinct lines or planes in g.
We claim that in all cases

μ(f, g) = (q + 1) − #(Pg ∩ Lg).

Observe that in order for H ′
1, H ′

2, and H ′
3 to extend to distinct objects, at most one 

of H ′
j can extend to a line since L′

1 ⊂ H ′
i for i = 1, 2, 3.

Suppose that H ′
1 extends to the line L1,g and that H ′

2, H ′
3 extend to the planes 

H2,g, H3,g respectively. We must add a point to L = H2,g ∩ H3,g and to Lg. Since 
L′

1 is contained in H ′
2 and H ′

3, then Lg must be contained in both H2,g and H3,g. Thus 
Lg = L, so we must add a point to Lg.

Lastly, suppose that H ′
1, H ′

2, and H ′
3 all extend to distinct planes H1,g, H2,g, and H3,g

respectively. It suffices to add a point to Lg ⊂ Hi,g for i = 1, 2, 3.

Index (3,2) Let H ′
1, H ′

2, and H ′
3 be the subsets of points in f ′ corresponding to the planes 

containing m in f . Let L′
1 and L′

2 be the lines in f ′ corresponding to the lines L1 and 
L2 containing m in f . Observe that L1 and L2 are coplanar in f , so L′

1 and L′
2 must 

be coplanar in f ′. In particular, L′
1 and L′

2 are contained in H ′
i for some i ∈ {1, 2, 3}. 

Further, L1 and L2 must be intersection lines between pairs of planes corresponding to 
H ′

1, H ′
2, and H ′

3. Extend L′
1 and L′

2 to the lines L1,g and L2,g in g.
If L′

1 and L′
2 are contained in the same line in g, let i be the number of distinct lines 

or planes that extend H ′
1, H ′

2, and H ′
3. We proceed as in case (i, 1).

We claim that in all remaining cases, it suffices to add the intersection point r of L1,g

and L2,g, so

μ(f, g) =
{

0 r ∈ Pg

1 r /∈ Pg.

Suppose first that H ′
1, H ′

2, and H ′
3 extend to lines in g. This case is impossible since 

L1,g and L2,g must be contained in (and so equal to) one of these lines, but we are 
assuming L1,g 	= L2,g.
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Next, suppose that H ′
1 and H ′

2 extend to lines LH
1,g and LH

2,g in g, but H ′
3 extends to 

the plane Hg in g. Recall that L′
1 and L′

2 lie in H ′
i for some i ∈ {1, 2, 3}. Since L1,g 	= L2,g, 

then L′
1, L′

2 ⊆ H ′
3, so L1,g and L2,g are contained in Hg. Adding the intersection point r

to g creates a weak realization of f .
Suppose that H ′

1 extends to a line L in g, but H ′
2 and H ′

3 extend to planes H2,g and 
H3,g respectively. If H2,g = H3,g, then L1,g and L2,g must lie in this plane. Thus it suffices 
to add their intersection point. Otherwise, suppose the planes H2,g and H3,g intersect at 
a line L. By the observation at the beginning of this case, L = L1,g or L = L2,g.

Lastly, suppose that H ′
1, H ′

2, and H ′
3 extend to planes H1,g, H2,g, and H3,g in g re-

spectively. If all three planes are the same, since L1,g and L2,g must lie on this plane, 
we can add their intersection point r to get a weak realization of f . Suppose these three 
planes intersect at a line L. Then L = L1,g = L2,g. Since we are assuming L1,g 	= L2,g, 
this is impossible.

Otherwise, the three planes intersect at a point. By construction, this point must be 
the intersection point r of L1,g and L2,g. �
Remark 2.4. It may seem like this lemma does not take into account that lines can be 
skew in P 3(Fq). However, if we have skew lines L1 = {0, 1, 2} and L2 = {3, 4, 5}, then by 
the properties of planar spaces, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}, {0, 3, 4, 5}, {1, 3, 4, 5},

{2, 3, 4, 5} are all planes in f . Therefore the points included in these two lines all have 
index (i, j) with i ≥ 4 and so we do not attempt to remove any of the points on these 
skew lines. Thus, within the lemma, we can assume all lines must intersect.

Remark 2.5. We can now discuss Definition 1.12. Observe that if a plane in f contains 
an isomorphic copy of a superfiguration, then f should likely be considered a special 
object in projective 3-space.

Suppose f has a point of index (3, 0) and suppose we were to remove it to obtain f ′. Let 
H ′

1, H ′
2, and H ′

3 be the subsets of points corresponding to the planes in f containing the 
point of index (3, 0). Suppose all three subsets extend to distinct planes H1,g, H2,g, H3,g

in g ≥ f ′. Notice that there is ambiguity in how we should add a point to g. That is, 
we do not know whether H1,g, H2,g, and H3,g should intersect at a line or at a single 
point. Certainly if |H1,g ∩H2,g ∩H3,g| > 1, we know these three planes intersect at a line; 
however, if |H1,g ∩ H2,g ∩ H3,g| ≤ 1, we cannot tell what the intersection type of these 
planes should be. Since there is ambiguity, we must omit the case (3,0) from Lemma 2.3. 
Thus (3, 0) is included in the definition of hyperfiguration as a surprising index.

We can now prove Theorem 1.13.

Proof of Theorem 1.13. First note that counting n-arcs in P 3(Fq) is the same as counting 
sets of n points such that no 4 lie on a plane. Instead, we will determine Cn,4(q) by 
counting all sets of n points such that at least one set of 4 points forms a plane. Thus 
Cn,4(q) is a linear combination of Af (4, q) for all planar spaces f on at most n points. 
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We will show that we can simplify this formula by only considering hyperfigurations h
on at most n points.

We work inductively on the number of points m ≤ n. We first find Af (4, q) and 
Bf (4, q) for the unique planar space on 1 point. Observe that

Af (4, q) = Bf (4, q) = (q3 + q2 + q + 1) + 0 · Bf ′(4, q)

for the unique planar space f ′ on 0 points.
Assume that for all f on m points, we can express Af (4, q) as a Z[q]-linear combination 

of Ah(4, q) for all hyperfigurations h on at most m points. Fix f on m + 1 points. If f is 
not a hyperfiguration, then

Af (4, q) = Bf (4, q) −
∑
g>f

Ag(4, q).

Use Lemma 2.3 to write

Bf (4, q) =
∑
g≥f ′

μ(f, g)Ag(4, q).

By induction, we can express each Ag(4, q) as a Z[q]-linear combination of Ah(4, q) for 
hyperfigurations h on at most m points. If f is a hyperfiguration, we can simply write 
Af (4, q).

Continuing for all f on m + 1 points, we see that we can express all Af (4, q) as a 
Z[q]-linear combination of Ah(4, q) for hyperfigurations on at most m + 1 points. By 
induction, we can continue until m = n.

To conclude, observe that if f and g are isomorphic planar spaces, then Af (4, q) =
Ag(4, q) and Bf (4, q) = Bg(4, q). �

Observe that this proof gives an algorithm for counting arcs in P 3(Fq).

3. Formulas for Cn,4(q)

In this section, we will prove Theorem 1.14. It is interesting to note that Kaipa [11]
gives the first three main terms for Cn,k(q). There is a typo in Kaipa’s result that we 
correct below.

Theorem 3.1. [11, Corollary 1.2] Fix positive integers n and k so that n > k. Let δ =
k(n − k), N =

(
n
k

)
, and

b2(k, n) = N2 − 5N + 4 − Nδ(δ − n − 3) − (n − 1)(N − n) − n2 − 3n + 2
.
2 2(δ + n + 1) 2
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For each fixed n, the number of PGLk(Fq)-equivalence classes of n-arcs in Pk−1(Fq) is 
asymptotically equal to

qδ−n+1 − (N − n)qδ−n + b2(k, n)qδ−n−1 + O(qδ−n−2).

We verify the first three main terms in Cn,4(q) when 5 ≤ n ≤ 7 by multiplying the 
formula in Theorem 3.1 by | PGL4(Fq)|.

3.1. Verifying formulas for n ≤ 6

The number of n-arcs in P 3(Fq) for n ≤ 5 are simple to count by hand. When n = 4, 
we choose any three non-collinear points, then select a point not on the plane formed by 
these three points. A 5-arc is a set of five points in general position. Thus the number 
of 5-arcs is equal to | PGL4(Fq)|. There are no hyperfigurations on n ≤ 5 points, so our 
algorithm gives formulas that exactly match these counts.

We can also count 6-arcs combinatorially. Observe that any 6-arc determines a unique 
twisted cubic in P 3(Fq). The group PGL4(Fq) acts on the set of twisted cubics. Moreover, 
under this action, all twisted cubics are projectively equivalent. Thus we can count the 
number of twisted cubics via the Orbit-Stabilizer Theorem. When q ≥ 5, the stabilizer 
of a given twisted cubic is PGL2(Fq). See [2] for more details. Thus when q ≥ 5, the 
number of twisted cubics is

| PGL4(Fq)|
| PGL2(Fq)| .

Let

P (q + 1, 6) =
5∏

i=0
(q + 1 − i)

be the number of ways of choosing six ordered points on the twisted cubic. Since we get 
a different ordered arc for each choice of six points on the twisted cubic, multiplying the 
previous formula by P (q + 1, 6) and simplifying gives

C6,4(q) = (q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)3(q − 2)(q − 3)(q − 4)q6. (1)

Note that when q < 5, the number of 6-arcs in P 3(Fq) is equal to 0. Thus (1) holds for 
all prime powers q > 0.

Next we verify that our algorithm gives the correct formula for C6,4(q).

Proposition 3.2. We have

C6,4(q) = q18 − 9q17 + 25q16 − 16q15 − 58q14 − 32q13 − 10q12 + 82q11

+ 73q10 + 41q9 − 15q8 − 66q7 − 16q6 + 40A6(4, q)
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where A6(4, q) is the number of strong realizations of the hyperfiguration on 6 points.

When n = 6, there is exactly one hyperfiguration, which has full planes {0, 1, 2, 3}, 
{0, 1, 2, 4}, {0, 1, 2, 5}, {0, 3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} and full lines given by the sets 
{0, 1, 2} and {3, 4, 5}. These lines are necessarily skew. We simply count the number of 
strong realizations as follows. First select three points on a line. Then pick any point not 
on that line. These four points lie on a plane, so choose the fifth point to be any point 
not on this plane. Finally, pick a third point on the line formed by the fourth and fifth 
points. This gives

A6(4, q) = (q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)2q6.

Plugging this into the formula for 6-arcs in Theorem 1.14 verifies our formula matches 
the one obtained by counting twisted cubics.

3.2. Counting 7-arcs

When n = 7, we find six distinct non-isomorphic hyperfigurations. They are

h1 : H =
{

{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 6}, {2, 3, 4, 5}
}

,

L =
{}

h2 : H =
{

{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 2, 4, 6}, {0, 3, 5, 6}, {1, 2, 5, 6}, {1, 3, 4, 6}, {2, 3, 4, 5}
}

,

L =
{}

h3 : H =
{

{0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 5}, {0, 1, 2, 6}, {0, 3, 4, 5}, {1, 3, 4, 6}, {2, 3, 5, 6}
}

,

L =
{

{0, 1, 2}
}

h4 : H =
{

{0, 1, 2, 3, 4}, {0, 1, 2, 5}, {0, 1, 2, 6}, {0, 3, 4, 5}, {0, 3, 4, 6}, {1, 3, 5, 6},

{2, 4, 5, 6}
}

,

L =
{

{0, 1, 2}, {0, 3, 4}
}

h5 : H =
{

{0, 1, 2, 3, 4}, {0, 1, 2, 3, 5}, {0, 1, 2, 3, 6}, {0, 4, 5, 6}, {1, 4, 5, 6}, {2, 4, 5, 6},

{3, 4, 5, 6}
}

,

L =
{

{0, 1, 2, 3}, {4, 5, 6}
}

h6 : H =
{

{0, 1, 2, 3, 4, 5, 6}
}

,

L =
{

{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}
}
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The hyperfiguration h6 can be thought of as a projection down to the Fano plane. 
That is, the hyperfiguration has one plane, namely {0, 1, 2, 3, 4, 5, 6}, and seven lines in 
this plane that form a Fano plane.

Definition 3.3. [6] We say that (P, B) is a (nk) configuration in (k − 1)-dimensional 
projective space if every point lies on k blocks (hyperplanes) and every block contains k
points.

This is a non-standard definition of a (nk) configuration as defined by Glynn [6]. 
Glynn uses this definition to define the complement of a configuration.

Definition 3.4. [6] Let (P, B) denote an (nk) configuration in (k − 1)-dimensional pro-
jective space where P represents a set of points and B represents a set of blocks 
(hyperplanes). Let B = {b1, . . . , bn}. Define a new (nn−k) configuration (P, B′) in 
(n − k − 1)-dimensional projective space where for each b′

i ∈ B, we say p ∈ b′
i if and only 

if p /∈ bi. This is called the complement of (P, B).

Remark 3.5. The hyperfiguration h2 is the complement of the Fano plane. There is a 
one-to-one correspondence between the strong realizations of the Fano plane in P 2(Fq)
and the strong realizations of h2 in P 3(Fq) modulo the collineation group of P 2(Fq) and 
P 3(Fq) respectively.

Theorem 3.6. The number of 7-arcs is given by

C7,4(q) = q21 − 28q20 + 322q19 − 1925q18 + 5571q17

+ 839q16 − 18320q15 − 2695q14 + 7455q13 + 19111q12

+ 17074q11 − 9540q10 − 13027q9 − 19922q8 + 924q7

+ 14160q6 +
(
595q3 − 8260q2 + 20160q − 8820

)
· A6(4, q)

+ 210Ah1(4, q) + 180Ah2(4, q) − 2520Ah3(4, q) + 3780Ah5(4, q).

In order to understand the behavior of C7,4(q) as a function of q, we must understand 
the number of strong realizations of each hyperfiguration. Recall that we can assign a 
k ×n generator matrix to each n-arc in Pk−1(Fq) by assigning an affine representative of 
each point to each column. This generator matrix has the property that no k × k minor 
vanishes. Similarly, we can set up a 4 × n generator matrix for each strong realization of 
a planar space in P 3(Fq). In this case, any four points lie on a plane if and only if the 
4 × 4 minor formed by these four points is equal to 0 in Fq. More generally, any � ≥ 4
points lie on a plane if and only if all 4 ×4 minors formed by the 4-subsets of these points 
are equal to 0 in Fq. Similarly, any � points lie on a line if and only if the 4 × � matrix 
whose columns are these � points does not have full rank. In other words, three points lie 
on a line if and only if all 3 × 3 minors of the corresponding 4 × 3 matrix simultaneously 
vanish.
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A strong realization of a planar space f then is a solution to the simultaneous vanishing 
of all minors corresponding to lines and planes in f so that no additional lines and planes 
are formed.

Observe that all hyperfigurations hi on at most seven points contain a plane with 
exactly four points. Without loss of generality, we can set this plane equal to the plane 
{x = 0}.

Given five general points in f , there exists a unique element in PGL4(Fq) that sends 
these five points to the points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1], 
and [1 : 1 : 1 : 1] in P 3(Fq). Observe that the points [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], and 
[0 : 0 : 0 : 1] determine the plane {x = 0}.

These observations together lead to the following proposition.

Proposition 3.7. Suppose that h is a hyperfiguration on 7 points so that its first five points 
are in general position and {1, 2, 3, 5} is a plane in h containing 4 points. Let

Mh =

⎛
⎜⎝

1 0 0 0 1 0 1
0 1 0 0 1 y1 y2
0 0 1 0 1 z1 z2
0 0 0 1 1 w1 w2

⎞
⎟⎠ .

Let Vh be the variety defined by all polynomials formed by the vanishing of all 4 × 4
minors corresponding to planes in h and 3 × 3 minors corresponding to lines in h. Let 
Wh be the open subset of Vh for which all other 4 × 4 minors do not vanish and all 4 × 3
submatrices not corresponding to lines in h have full rank. Then

Ah(4, q) = | PGL4(Fq)|
(q − 1) · #Wh(Fq).

Proposition 3.7 provides a method for computing Ah(4, q) for the hyperfigurations on 
7 points provided that the hyperfiguration contains five points in general position. Of 
course, a strong realization of hyperfiguration hi may not have the points {0, 1, 2, 3, 4}
in general position or may not contain the 4-point plane {1, 2, 3, 5}. Thus the columns 
of a generator matrix for hi will be a permutation of the columns of Mh up to rescaling 
each column and possibly also permuting the indices of the variables.

Proposition 3.8. Let

a(q) =
{

1 q ≡ 0 (mod 2)
0 q ≡ 1 (mod 2)

.

The number of strong realizations for each hyperfiguration is given by

Ah1(4, q) = (1 − a(q)) · | PGL4(Fq)|
Ah2(4, q) = a(q) · | PGL4(Fq)|
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Ah3(3, q) = (q − 2) · | PGL4(Fq)|

Ah4(4, q) = | PGL4(Fq)|

Ah5(4, q) = (q2 + q + 1)(q2 + 1)(q + 1)2(q − 1)2(q − 2)q6

Ah6(4, q) = a(q) · q · (q − 1) · (q − 2) · | PGL3(Fq)|.

Proof. We consider each hyperfiguration hi separately.

Hyperfiguration h1: The points 0, 3, 4, 5, and 6 are in general position. Since the plane 
{2, 3, 4, 5} contains exactly four points, we can fix this plane to be x = 0. This gives the 
following generator matrix

Mh1 =

⎛
⎜⎝

1 1 0 0 0 0 1
0 y1 y2 1 0 0 1
0 z1 z2 0 1 0 1
0 w1 w2 0 0 1 1

⎞
⎟⎠ ,

which is a permutation of the matrix Mh from Proposition 3.7. By computing the de-
terminants corresponding to the planes in h1, we obtain a variety Vh1 defined by the 
polynomials

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−w1 + 1
y2z1 − y1z2 − y2 + z2

y1

y2 − w2

−z2w1 + z1w2.

Substituting shows that we can understand the number of Fq-points on Vh1 by under-
standing the solutions to

2z1w2 − w2 = 0.

We then compute Wh1 , the open subset of Vh1 which disallows additional collinearities 
or coplanarities in the realization of h1. We find that Wh1 is defined by the vanishing of 
the polynomials defining Vh1 together with the following inequalities

{
z1 	= 0, 1
w2 	= 0.

(2)

If the characteristic of Fq is even, then w2 = 0, which is impossible by (2). If the 
characteristic of Fq is odd, we have two cases: either w2 = 0 or z1 = 2−1. Since w2 	= 0
by (2), then we must have z1 = 2−1.
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Hyperfiguration h2: As remarked above, this hyperfiguration is the complement of the 
Fano plane in P 2(Fq). Further, there is a one-to-one correspondence between strong real-
izations of the Fano plane and h2 modulo their collineation groups. We derive Ah2(4, q)
from the number of strong realizations of the Fano plane in P 2(Fq).

Hyperfiguration h3: As before we set up a generator matrix

Mh3 =

⎛
⎜⎝

0 0 0 1 0 1 1
y1 1 0 y2 0 0 1
z1 0 1 z2 0 0 1
w1 0 0 w2 1 0 1

⎞
⎟⎠

and consider the vanishing of all minors corresponding to planes and lines in h3. We 
arrive at the following set of equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1 = 0
z2 = 1
y2 = w2

y1 = y2z1.

We have the inequalities

{
w2 	= 0, 1
z1 	= 0.

Thus any choice of z1 	= 0 and w2 	= 0, 1 gives a strong realization of h3.

Hyperfiguration h4: The points 0, 1, 4, 5 and 6 are in general position. We set up the 
matrix

Mh4 =

⎛
⎜⎝

1 1 0 1 0 0 0
0 1 y1 y2 1 0 0
0 1 z1 z2 0 1 0
0 1 w1 w2 0 0 1

⎞
⎟⎠ .

Computing the determinants that correspond to the planes and lines in h4 gives the 
equations

⎧⎪⎪⎨
⎪⎪⎩

y1 = z1 = w1

w2 = z2 = 0
y2 = 1.

Further, the inequalities reduce to
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w1 	= 0.

Once we choose a value for w1, every other variable is determined.

Hyperfiguration h5: We can compute Ah5(4, q) by counting. This is computed similarly 
to that of the hyperfiguration on 6 points.

Hyperfiguration h6: It is well-known that the number of strong realizations of the Fano 
plane in P 2(Fq) is | PGL3(Fq)| · a(q). We can fix the embedding of the Fano plane into 
P 2(Fq) given by

(0 0 0 1 1 1 1
1 0 1 0 1 0 1
0 1 1 0 0 1 1

)
.

In order to determine the number of strong realizations of h6 in P 3(Fq), we add an 
additional coordinate to each of the points in P 2(Fq) as follows

⎛
⎜⎝

x1 x2 x3 x4 x5 x6 x7
0 0 0 1 1 1 1
1 0 1 0 1 0 1
0 1 1 0 0 1 1

⎞
⎟⎠ .

Clearly there are no realizations when q is odd, so we assume q is even. Since all points 
must lie in a single plane, all 4 × 4 minors must vanish. Solving this system when q is 
even gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = x6 + x7

x2 = x5 + x7

x3 = x5 + x6

x4 = x5 + x6 + x7.

Further, we get the following inequalities:
⎧⎪⎪⎨
⎪⎪⎩

x5 	= x6 + x7

x5 	= x7

x6 	= x7.

We can choose x7 ∈ Fq. We then select x6 	= x7, and x5 	= x6 + x7 or x7. There are 
q(q − 1)(q − 2) such choices. Once these values are chosen, the variables xi for 1 ≤ i ≤ 4
are fixed. �

Theorem 1.14 follows from Theorem 3.6 and Proposition 3.8. Notice that C7,4(q) is a 
quasipolynomial in q.
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3.3. Using this strategy to count Cn,4(q) for larger n

Table 2 shows that the number of planar spaces likely grows exponentially in n. 
Further, the number of hyperfigurations on n points grows quickly.

Therefore it seems that this strategy for counting n-arcs will quickly become infeasible. 
In future work, we intend to study 8-arcs in P 3(Fq). While it is likely time-consuming 
to compute C8,4(q) exactly, we will determine whether or not this counting function is a 
quasipolynomial in q.

4. Generalizing to higher-dimensional projective space

In order to generalize the ideas in this paper to produce a simpler expression for 
Cn,k(q), we must understand what objects generalize planar spaces and hyperfigurations. 
There is a natural generalization of planar space.

Definition 4.1. For k ≥ 3, a k-planar space is a tuple (P, H1, H2, . . . , Hk−2) where Hi ⊂
2P for each 1 ≤ i ≤ k − 2 and every (i + 1) distinct points that do not lie in a subset 
H ⊂ Hj for 1 ≤ j < i form a unique subspace in Hi. Observe that this is a (k − 1)-
dimensional space.

Recall that the proof of Theorem 1.13 follows from induction by using Lemma 2.3
to express realizations of non-hyperfigurations on n points in terms of realizations of 
hyperfigurations on at most n − 1 points. The definition for hyperfiguration was derived 
by simply considering all planar spaces for which Lemma 2.3 did not apply. Our general-
ization of a hyperfiguration will be defined similarly: we will determine for which indices 
in f it is possible to prove that μ(f, g) is a polynomial in q.

Definition 4.2. The index of a point m of a k-planar space is given by (i1, i2, . . . , ik−2)
where ij is the number of (k − 1 − j)-dimensional objects incident with point m.

Definition 4.3. A k-hyperfiguration is a k-planar space for which the index of every point 
satisfies ij > k − j for some 1 ≤ j ≤ k − 2 or the index is in a finite set of surprising 
indices.

It is natural to wonder how many surprising indices there are for each k > 4. If the 
number of surprising indices grows too quickly, it is possible that most k-planar spaces 
are k-hyperfigurations. We demonstrate upper and lower bounds on the size of the set 
of surprising indices.

Proposition 4.4. Let f be a k-planar space and let m be a point with index (i1, i2, . . . , ik−2)
such that 0 < ik−2 ≤ 2. Then for any g ≥ f ′, μ(f, g) is a polynomial in q.
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Proof. Recall that ik−2 denotes the number of lines incident with the point m. Fix some 
g ≥ f ′ and let Pg be a strong realization of g.

If ik−2 = 1, let L be the line in f containing m and let L′ be the corresponding line 
in f ′. For every set H ′ in f ′ corresponding to the a-dimensional object in f containing 
m, we must have L′ ⊂ H ′. Extend L′ to Lg in g. For every extension Hg of H ′ in g, we 
must have Lg ⊂ Hg. Thus adding any point to Lg gives a weak realization of f , so

μ(f, g) = q + 1 − #(Pg ∩ Lg).

If ik−2 = 2, then the point m lies on the intersection of two lines L1 and L2 in f . The 
corresponding lines L1,g and L2,g must intersect in g. It suffices to add their intersection 
point r to g to obtain a weak realization of f . Thus

μ(f, g) =
{

0 r ∈ Pg

1 r /∈ Pg

. �

Proposition 4.5. Let k > 3 and let Sk be the number of surprising indices in Pk−1(Fq). 
Then

Sk ≥ (k − 1)Sk−1.

Proof. Pick any surprising index (i1, . . . , ik−1) in (k − 2)-dimensional space. Then for 
any i0 ≥ 1, we claim (i0, i1, . . . , ik−1) is a surprising index in (k − 1)-dimensional space. 
Let f be a k-planar space which has a point of index (i0, i1, . . . , ik) such that i0 ≥ 1. It 
is possible that a-dimensional objects for 0 ≤ a ≤ k − 3 lie in a single hyperplane of f . 
In this case, it is impossible to determine μ(f, g) since we reduce to studying objects in 
a (k − 1)-planar space. �
Corollary 4.6. Let Sk be the number of surprising indices in Pk−1(Fq). Then

(k − 1)!
6 ≤ Sk ≤ k!

6 .

There are a total of k!
2 potential indices for a point in a k-planar space (some of these 

indices will be impossible). Applying Corollary 4.6, we find that the ratio of surprising 
indices to potential indices is between 1

3k and 1
3 . More work needs to be done to determine 

whether the ratio of surprising indices to potential indices will go to 0 or a non-zero 
constant.

Example 4.7. Corollary 4.6 gives 1 ≤ S4 ≤ 4. When found that there is exactly one 
surprising index when k = 4. Thus the ratio of surprising indices to potential indices is 
1 . Recall that in Lemma 2.3, the cases (0,2) and (2,2) were impossible.
12
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Remark 4.8. The number of surprising indices grows very quickly. Thus the defini-
tion of k-hyperfiguration given in this section likely needs refinement. Observe that in 
Lemma 2.3, we omit an index I if there exists a planar space f with index I and a 
planar space g ≥ f ′ such that μ(f, g) cannot be explicitly given as a polynomial in q. 
However, it is possible that for some planar spaces f with index I and every g ≥ f ′, 
we can conclude that μ(f, g) is a polynomial in q. A refinement of Lemma 2.3 could be 
made that checks more than just the index of the point to be removed. The number of 
surprising indices would remain the same, but the number of k-hyperfigurations would 
likely decrease.

Definition 4.9. A strong realization of a k-hyperfiguration h is an injective mapping 
σ : P → Pk−1(Fq) such that for all subsets Q ⊆ P and all 1 ≤ a ≤ k − 2, Q is contained 
in an a-dimensional subset of h if and only if σ(Q) is contained in an a-dimensional 
subset of Pk−1(Fq).

Theorem 4.10. There exist polynomials p(q) and ph(q) for which

Cn,k(q) = p(q) +
∑

h

ph(q)Ah(k, q)

where the summation is over all isomorphism classes of k-hyperfigurations on at most n
points.

Proof. By definition of a k-hyperfiguration, we can show that if f is not a k-
hyperfiguration, then

Bf (k, q) =
∑
g≥f ′

μ(f, g)Ag(k, q)

for some polynomials μ(f, g). The proof is an inductive argument similar to that in the 
proof of Theorem 1.13. �

Of course, this is only an existence theorem – for each k, one would need to understand 
how to compute μ(f, g) for every planar space f and every g ≥ f ′. This becomes infeasible 
as k grows as there are k!

2 potential indices to consider.
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