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BOUNDARY QUOTIENT C*-ALGEBRAS OF SEMIGROUPS

EVGENIOS T.A. KAKARIADIS, ELIAS G. KATSOULIS, MARCELO LACA, AND XIN LI

ABSTRACT. We study two classes of operator algebras associated with a unital subsemigroup
P of a discrete group G: one related to universal structures, and one related to co-universal
structures. First we provide connections between universal C*-algebras that arise variously
from isometric representations of P that reflect the space J of constructible right ideals, from
associated Fell bundles, and from induced partial actions. This includes connections of appro-
priate quotients with the strong covariance relations in the sense of Sehnem. We then pass to
the reduced representation C3(P) and we consider the boundary quotient OC3 (P) related to
the minimal boundary space. We show that OC3(P) is co-universal in two different classes:
(a) with respect to the equivariant constructible isometric representations of P; and (b) with
respect to the equivariant C*-covers of the reduced nonselfadjoint semigroup algebra A(P). If
P is an Ore semigroup, or if G acts topologically freely on the minimal boundary space, then
OC; (P) coincides with the usual C*-envelope Cg,, (A(P)) in the sense of Arveson. This covers
total orders, finite type and right-angled Artin monoids, the Thompson monoid, multiplicative
semigroups of nonzero algebraic integers, and the ax + b-semigroups over integral domains that
are not a field. In particular, we show that P is an Ore semigroup if and only if there exists a
canonical *-isomorphism from 9C3(P), or from CZ,,(A(P)), onto C3(G). If any of the above
holds, then A(P) is shown to be hyperrigid.

1. INTRODUCTION

The use of C*-constructs has been central in the study of geometric and topological objects
such as semigroups, graphs, dynamical systems etc. It goes as far back as the work of Murray
and von Neumann in the 1930’s and 1940’s, and has been a continuous source of inspiration
for further developments. On one hand one obtains a universal object that covers appropriate
representations of the object by Hilbertian operators. On the other hand one can ask for the
minimal quotient that still carries a faithful copy of the original data, through a boundary space.
Similar questions appear in the nonselfadjoint context through the seminal work of Arveson [1]
and the notion of the Silov boundary. In a recent work of the authors with Dor-On [12] it has
been shown that C*-boundaries and Arveson’s Silov boundary interconnect in a rather solid way
in the case of product systems. In this work we continue to investigate boundary quotients in
both the C*- and the nonselfadjoint context. This is part of a bigger programme that aims to
elucidate the relations between boundary operator algebras.

Here we examine several operator algebras associated with a unital subsemigroup P of a
group G, always assuming that P generates G. This type of operator algebras have been under
thorough investigation by many authors and connections have been established with C*-algebras
of more general constructs. The principal examples come from abelian semigroups, starting with
N in the seminal work of Coburn [4], and more general totally ordered groups by Douglas [14]
and Murphy [29]. Nica [30] introduced quasi-lattice ordered semigroups and established the
study of their semigroup C*-algebras as universal models of the left regular representation on
?2(P). Further motivating examples come from geometric group theory [5, 6, 23] or have a
number-theoretic origin [7, 8, 9]. We refer the reader to [10] and the references therein.

A major motivation for working with semigroups is that their operator algebras lie in the
intersection of several categories of current interest, such as partial dynamical systems, product
systems and Fell bundles. The different realizations bring in existing results from each category
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for studying their structure. Conversely, semigroup algebras can act as a medium for cross-
pollination of techniques between their wider supercategories, as well as a testing ground for
new structural theorems. As examples we mention the realization: by partial crossed products
for computing the K-theory [8], for computing the KMS-states [7], or for deducing simplicity
[27]; and as product systems for nuclearity results [20, 25].

The representations of P that we consider are more than just by isometries as the universal
isometric C*-algebra C;,_(P) may not be carrying much structure; for example C%,_ (N?) fails to
be even nuclear. The point of inspiration is the left regular representation C3(F) and in this
paper we consider isometric representations of P that reflect various aspects of the structure of
the constructible right ideals as they are manifested in C}(P). The study is carried mainly in
five directions: (i) universal/maximal constructs; (ii) reduced representations; (iii) boundary
quotients; (iv) co-universal C*-algebras; and (v) Silov boundaries. An important aspect in
(i)—(iv) has been the existence of a coaction by the group G that induces a topological grading.
In the past, connections with (v) had been established for abelian lattices where the coaction is
well understood as an action of the compact dual [11, 13]. Three natural questions that arise
in this context:

Qn. 1. What is the connection between universal semigroup constructions?
Qn. 2. What is the connection between the induced semigroup boundary quotients?
Qn. 3. Is there a co-universal semigroup C*-algebra and what is its form?

Here we answer these questions guided by two beacons (see Figure 1 for a summary). First
we establish links between different classes of representations of P and the universal C*-algebra
C%(P) of the constructible representations. Secondly we identify the boundary quotient C*-
algebra 0C}(P) as the co-universal object in both the C*-algebraic and the nonselfajoint alge-
braic approaches. Below we provide a detailed discussion of these results.

1.1. On universal C*-algebras. Our starting point is the universal C*-algebra C%(P) with
respect to contructible semigroup representations in the sense of [25]. This is an equivariant
quotient of the universal isometric C*-algebra C}, (P), that takes into account the space J of
the constructible right ideals in P, and thus sits closer to the structure of C}(P). A second
important variant is the boundary quotient C% (P) of C}, (P), given by the strongly covariant
representations of P as induced by Sehnem’s work on product systems [35]. This universal C*-
algebra models the isometric representations that lift automatically to faithful representations
on the fixed point algebra. In Proposition 3.6 we show that strongly covariant representations
are constructible, providing the vertical arrow in the following commutative diagram:

Cr

180

(P) —— C{(P) ———=CX(P) .

S

C(P)

Universal /maximal constructs are easier to work with, as they enjoy exactness with respect
to induced ideals. We use this type of arguments for identifying C%(P) and CZ.(P) with C*-
algebras associated with Fell bundles and partial actions. On one hand we consider the induced
Fell bundles P; inside C%(P), and P inside C%,(P). On the other hand we use the fixed point
algebra Dg(P) of C%(P) and the minimal G-invariant subspace dQ2p of its spectrum to realize
them as partial crossed products (see Theorem 3.10 and Theorem 3.14). Namely we have

Ci(P) ~ C*(Ps) ~ Ds(P) x G and C..(P)~ C*(Ps) =~ C(00p) x G.

S
In passing, we show that C%(P) ~ C*(Zy) for the inverse semigroup
Zy = {V, Vo -V Vy, | Piv@i € Pin € Zy }
of V-words in C(P) (see Theorem 3.2), which improves a previous result of Li [26] by removing

the Toeplitz condition from P. By using a result of Norling [31] we deduce that 7 is independent
if and only if D(P) ~ D) (P) canonically (see Corollary 3.3). These results address (Qn. 1). In
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general C}(P;) differs from C}(P). The algrebraic relations that define the Fell bundle induced
in C}(P) are completely described by Laca and Sehnem in their recent work [22]. Even though
we do not rely here on [22], it has motivated us in the final stages of this research to free the
setup from the independence condition on J and work at the general level of the constructible
representations of C¥(P).

1.2. On reduced C*-algebras. In [27] it has been established that C3(P) coincides with the
partial crossed product of a partial action of G on the diagonal algebra Dy (P). It coincides with
the reduced C*-algebra of Py if and only if 7 is independent. We have three further reduced
boundary quotients arising from:

(a) the partial crossed product picture, i.e., C(0Qp) X, G;
(b) the strong covariance Fell bundle, i.e., C§(Psc); and
(c) the strong covariance relations in the left regular representation, i.e., gs.(C3}(P)

)-
Items (a) and (b) are automatically *-isomorphic due to the realization of C} (P) as C(9Qp) X,
Under exactness we can pass the results from the universal C*-algebras between items (a) and
(c) down to the reduced case. Indeed exactness induces a normal co-action on gs.(C3(P)) from
C3(P), and thus we can use the fixed-point-algebra property of gs.(C3(P)) inherited from CZ (P)
(see Theorem 3.10). This settles (Qn. 2) and provides the upper-left part of Figure 1.

1.3. On co-universality. We next turn our attention to (Qn. 3). By [10, Lemma 5.7.10]
00 p embeds as the smallest, closed, G-invariant, nonempty subset of the spectrum of Dy(P).
Consequently in Theorem 4.2 we deduce that the quotient map

C:(P) — 0Cy\(P)

factors through any non-trivial equivariant representation of C%(P), i.e., 0C}(P) is co-universal
for the non-trivial equivariant constructible representations of P.

On the other hand we connect 0C}(P) to a Silov boundary. The natural candidate for a
nonselfadjoint algebra is the closed algebra A(P) generated by the image of P inside C3}(P).
The normal coaction & on C%(P) descends to A(P) giving rise to the cosystem (A(P),G,§), and
in Theorem 4.4 we establish that

OC3(P) ~ Cgy (A(P), G, 0).

We further explore conditions under which C%, (A(P), G, 6) is C%,, (A(P)). This is automatic
for abelian semigroups, however it is unknown if in general C} , (A(P)) admits automatically
a coaction of G. By using the simplicity criteria of [27] we find that this is the case when P
is an Ore semigroup or when G acts topologically freely on 0Q2p. In particular, if P is an Ore
semigroup then the C*-envelope is the usual C3(G). Surprisingly this is also a defining property
for a semigroup P C G to be Ore. We thus derive the right-lower part of Figure 1.

These diagrams expand on the theory of Ore semigroups in amenable groups. In this case the

scheme collapses into two distinct classes of *-isomorphic C*-algebras: (a) the Fock type ones
C*(Ps) =~ D4(P) %, G ~ C5(P) ~ D\(P) x, G;

and (b) their boundary quotients

Cle(P) = ¢se(CR(P)) = OCK(P) := C(99p) x, G == C, (A(P), G, 0) == Cfpy (A(P)) = CX(G),
which have the co-universal property with respect to C%(P).
Structure of sections. In Section 2 we provide the preliminaries on boundary quotients and
the C*-envelope. In Section 3 we gather the constructions that arise from C¥*(P) and connect
with Fell bundles and partial crossed products. In passing we also provide the identifications for

the corresponding full C*-algebras. In Section 4 we study the boundary quotient 0C3(P) and
we establish its co-universal properties.
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DS(P) G —— DS(P)é X G
~[Thm 3.14] ~[Thm 3.14]
C(Zv) —— C(Iv)

~[Thm 3.2] ~[Thm 3.10]
C*(Py) ———— C5(Ps)

~[Thm 3.10] Thm 3.10]

iff J:independent, ~l

Ci*soj(P) @@ Cy(P)~ Dx(P) %+ G
[Prop 3.6]

C;C(P) 4>QSC(C:(P)) —

if G:exact
~[Thm 3.14]
C(GQP) G if G:exact, ~[Thm 3.10] ~[Thm 4.4]
~[Thm 3.10]
~[Thm 3.14] _ [Thm 4.2] :
C*(Psc) —— CX(Pse) — Cénv (A(P), G, 0) — dc[Cx(P)]

~[Thm 4.6]
if G ~ 0Qp:top. free | ~[Thm 4.5] _ iff P:Ore | ~[Rem 4.7]
- iff P:Ore -

iff P:Ore

e C3(P): The reduced C*-algebra of P.

e A(P): The reduced semigroup algebra of P in Cj(P).

e Ci,,(P): the universal C*-algebra with respect to isometric representations of P.

e C;(P): the universal semigroup algebra of (P, J) in the sense of [25].

e C}.(P): the strong covariant algebra of the trivial product system on P in the sense of [35].

¢ ¢sc(C3(P)): The quotient of the reduced C*-algebra by strong covariant relations.

e (@ is the universal partial crossed product; x,G is the reduced partial crossed product.

e 0¢[C5(P)]: the co-universal C*-algebra with respect to G-equivariant representations of Cj(P).

o Ci(A(P),G, ) is the C*-envelope of the cosystem (A(P),G,3); Cin (A(P)) is C*-envelope of A(P).
e Ty : the inverse semigroup induced by the left regular representation of P.

e Fell bundles: P, induced in Cj(P); Ps induced in CI (P).

e Spaces: Ds(P) := [C5(P)]e; Da(P) := [CX(P)]e; p = (DA(P))"; 0Qp is the minimal G-subspace in Qp.

Figure 1: Diagram with main results.
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2. PRELIMINARIES

2.1. The Silov boundary. The reader may refer to [33] for the general theory of nonselfadjoint
operator algebras and dilations of their representations, which we will avoid repeating here in
full length.

Let A be an operator algebra, which in this paper means a closed subalgebra of B(H) for a
Hilbert space H. We say that (C,¢) is a C*-cover of A if 1: A — C is a completely isometric
representation with C' = C*(¢(\A)). The C*-envelope Cf,,(A) of A is a C*-cover (Cf, (A),¢) with
the following co-universal property: if (C’,/') is a C*-cover of A then there exists a (necessarily
unique) x-epimorphism ®: C' — Cf  (A) such that ®(/(a)) = ¢(a) for all a € A. Arveson
defined the C*-envelope in [1] and computed it for a variety of operator algebras, predicting its
existence in general. Ten years later Hamana [19] confirmed Arveson’s prediction by proving the
existence of injective envelopes for the unital case. The C*-envelope is the C*-algebra generated
in the injective envelope of A once this is endowed with the Choi-Effros C*-structure.

Dritschel and McCullough [15] provided an alternative proof based on maximal dilations for
the unital case. A dilation of a representation ¢: A — B(H) is a representation ¢': A — B(H')
such that H C H' and ¢(a) = Py¢'(a)|g for all a € A. A completely contractive map ¢: A —
B(H) is called maximal if every dilation ¢': A — B(H') is trivial, i.e., Pg¢’(a) = ¢(a) = ¢'(a)|u
for all @ € A. Tt follows that the C*-envelope is the C*-algebra generated by a maximal
completely isometric representation. It does not hold in general that if 7: C} (A) — B(H) is
a k-representation then it is the unique contractive completely positive (ccp) extension of 7|4.
The algebra A is called hyperrigid if this is the case for any representation 7 of C%  (A).

The basic examples of C*-envelopes arise in the context of uniform algebras: the C*-envelope
of a uniform algebra is formed by the continuous functions on its Silov boundary. The un-
conditional existence of the C*-envelope provides a non-commutative analogue of this result.
Consider A C C*(A). An ideal Z < C*(A) is called a boundary ideal if the quotient map
qr: C*(A) — C*(A)/T restricts to a completely isometric map on A. The Silov ideal T, is
by definition the boundary ideal that contains all boundary ideals of A. The existence of the
C*-envelope implies the existence of the Silov ideal; in particular it follows that Cl(A) is

canonically isomorphic to C*(A)/Z.

2.2. Coactions on operator algebras. We denote the minimal tensor product by ®. We
will need some elements about coactions on C*algebras as well as some results from [12] about
coactions on operator algebras.

For a discrete group G we write u, for the unitary generator associated with g € G in the
full group C*-algebra C*(G). We write )\, for the generators of the left regular representation
C3(G). Recall that C*(G) admits a faithful *-homomorphism

A: C*(G) = C(G) @ C*(G); ug — ug ® uyg.
On the other hand C}(G) admits a faithful *-homomorphism
Ax: GH(G) = C3(G) @ CHG)s Ay = Ay © Ay,
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Definition 2.1. [12, Definition 3.1] Let A be an operator algebra. A coaction of G on A is a
completely isometric representation d: A — A ® C*(G) such that the linear span of the induced
subspaces

Ag:={ae€ Al|d(a) =a®@ugy}
is norm-dense in A, in which case § satisfies the coaction identity

If, in addition, the map (id ® \)é is injective then the coaction ¢ is called normal.

If A is an operator algebra and §: A - A ® C*(G) is a coaction on A, then we will refer
to the triple (A, G,d) as a cosystem. A map ¢: A — A’ between two cosystems (A, G, d) and
(A", G,d") is said to be G-equivariant, or simply equivariant, if 6'¢ = (¢ ® id)d.

If (A,G,9) is a cosystem then A, - As C A, for all r, s € G, since ¢ is a homomorphism.
Remark 2.2. [12] A coaction ¢ of G on A is automatically non-degenerate, in the sense that
I(A)[I ® C*(G)] = Ax C*(G).

In particular suppose that §: C*(A) — C*(A) ® C*(G) is a *-homomorphism satisfying the
coaction identity

(0 ®id)d(c) = (id ® A)d(c) for all ¢ € C*(A),
and (A, G,0|4) is a cosystem. Then 4 is automatically non-degenerate on C*(A), i.e.,
I(C*(A)) [C*(A) ® C*(G)] = C*(A) ® C*(G).

In particular the definition of the coaction here extends that of a full coaction on a C*-algebra
by Quigg [34].

Remark 2.3. [12] Suppose that A admits a “reduced” coaction in the sense that there is a
faithful map dy: A — A ® C3(G) that satisfies the coaction identity

(5)\ & ide(G))é)\(a) = (idC*(A) ® A)\)6)\(a) for all a € A,

and for which the linear span of the induced subspaces Ay := {a € A | dr(a) = a ® Ay} is
norm-dense in A. Due to Fell’s absorption principle, ) promotes to a normal coaction § of G

on A such that Jy = (id ® \)é.

Definition 2.4. [12, Definition 3.6] Let (A, G,d) be a cosystem. A triple (C,¢,d¢) is called a
C*-cover for (A, G,0) if (C,¢) is a C*-cover of A and d¢: C — C ® C*(G) is a coaction on C
such that the diagram

A ‘ C
ls Lac
®id
A® C*(G) C ® C*"G)

comimutes.

Definition 2.5. [12, Definition 3.7] Let (A, G, ) be a cosystem. The C*-envelope of (A, G, )
is a C*-cover (C% (A, G,0),t,0eny) such that: for every C*-cover (C',//,d") of (A,G,d) there
exists a #-epimorphism ®: C" — C} (A, G,0) that fixes A and intertwines the coactions, i.e.,

env
the diagram

/(A) z C'® C*(G)
lq> lmd
L(A) b 0 (A, GL8) ® CF(G)

is commutative on A, and thus is commutative on C’.
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The existence of the C*-envelope of a cosystem was proved in [12] by a direct computation
that uses the C*-envelope of the ambient operator algebra. In order to state the result explicitly
we need to make some preliminary remarks and establish the notation. Suppose (A, G,J) is a
cosystem, let i: A — CJ,(A) be the C*-envelope of A, and recall that the spatial tensor product
of completely isometric maps is completely isometric. Then the representation of A obtained

via the composition

0 i®id

A
is completely isometric, and the C*-algebra
C* (3 i)5(A)) = C*(i(ay) ® 1y | g € G)

becomes a C*-cover of A. This C*-cover is special because it admits a coaction id ® A, so that
the triple

Conv(A) ® C*(G)

A® CHG)

(C*(i(ag) ®ug | g € G), (i ®id)é,id ® A)
becomes a C*-cover for (A, G, d). The following theorem summarizes fundamental results about
existence and representations of C*-envelopes for cosystems.

Theorem 2.6. [12, Theorem 3.8 and Corollary 3.10] Let (A, G, ) be a cosystem and leti: A —
C . (A) be the inclusion map. Then

(Conv(A, G, 6), 1, 0eny) = (C*(i(ag) ®ug | g € G), (i ®1d)d,id ® A).
If in addition & is normal on A then Oeny is normal on C%, (A, G,0).

env

Moreover if ®: C{ (A, G,6) — B is a x-homomorphism that is completely isometric on A

env

then it is faithful on the fixed point algebra of C% (A, G,9).

env

Let us close this section with some remarks on topological gradings from [17, 18]. Recall
that a topological grading {By}scq of a C*-algebra B consists of linearly independent subspaces
that span a dense subspace of B and are compatible with the group G, ie., By = By-1 and
By - By, C Bgp. By [17, Theorem 3.3] the linear independence condition can be substituted by
the existence of a conditional expectation on B.. The maximal C*-algebra C*(B) of B is defined
as universal with respect to the representations of B. The reduced C*-algebra C%(B) of B is
defined by the left regular representation of B on ¢2(B). If ® is a representation of B then the
range of ® has a natural topological grading ®(B) = {®(B,)}scc. By [18, Proposition 21.3]
there are equivariant *-homomorphisms making the following diagram

Chnax(B) C1(B)

| |

(®(B)) — C*(®) — C5(®(B))

C*

max

commutative. A topological grading defines a Fell bundle and once a representation of a Fell
bundle is established the two notions are the same. In a loose sense a Fell bundle B over a
discrete group G is a collection of Banach spaces {B,}4eq, often called the fibers of B, that obey
to canonical algebraic properties and the C*-norm properties; see [18, Definition 16.1]. So we
will alternate between these two notions. Spectral subspaces of coactions on C*-algebras are an
important source of topological gradings.

Definition 2.7. Let B = {C,}4ec be a topological grading for a C*-algebra C' over a group G.
We say that an ideal Z < C' is induced if T = (Z N C.).

If §: C - C ® C*(G) is a coaction on a C*-algebra and Z < C is an induced ideal then
0 induces a faithful coaction C/Z, see for example [3, Proposition A.1]. Normal actions also
descend through induced ideals when G is exact, see for example [3, Proposition A.5].

Definition 2.8. Let § be a coaction of G on a C*-algebra C' and let Z <t C' be an ideal of C.
We say that the quotient map is G-equivariant, or that the quotient C'/Z is G-equivariant if 0
descends to a coaction of G on C/Z.
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3. SEMIGROUP ALGEBRAS

In this section we present the concrete and the universal C*-algebras that are related to
semigroups, partial crossed products and product systems. We provide the identification of
several universal and reduced C*-algebras that arise in this context.

3.1. The reduced semigroup algebra. Let P be a unital semigroup in a discrete group G.
We write
CA(P):=C"(Vp [pe P) and A(P):=alg{V, |pe€ P}
for the C*-algebra and the operator algebra, respectively, generated by the left-creation operators
Vi £2(P) — £2(P); 65 + Sps.
Let U: (2(P) ® £2(G) — (?(P) ® ¢*(G) be the unitary operator determined by
U(0s ®0g) = 5 ® g for all s € P, g € G,

and let Ay be the canonical unitary corresponding to g € G in the left regular representation of
G. A routine calculation shows that

(Vo@X)U =U(V,®1I) for all p € P.
Thus the *-homomorphism J obtained by composition

ady

Cx(P) C(Vy&l|pePp) C(Vy @A [ p e P)

is faithful and satisfies the coaction identity. We also note that
[CX(P)]g = {a € CX(P) | dr(a) = a ® Ag}
Dspan{V; Vg, - Vi Vo, [ p1 a1 pytan = g5 € Zoyspiy i € P},
and thus by construction these fibers are norm-dense in C3(G). The reverse inclusion, and hence

equality, follows by applying id ® E,, where Ej is the g-th Fourier coefficient map on C}(G). In
particular by restricting to A(P) we get that

[A(P)l,=C-V,forallpe P and [A(P)],;=(0) for all g ¢ P.

Let 6: C3(P) — C%(P) ® C*(G) be the normal coaction induced by &,. The induced faithful
conditional expectation E) is implemented by compressing (id ® A)é to the (e, e)-entry and thus

ViV Vi Vo, ifprlar o tan =,

E V* V e V* V =
AV Vay on Von) {O otherwise.

In [25] it has been established that
Ex(VoVar Vi Va) = D Qs(Vy Vo V3, V) Qs

seP
where ), is the projection on C - ds. In other words, E) is the faithful conditional expectation
on C3(P) given by compressing to the diagonal. We will write Dy (P) for the fixed point algebra
[C%(P)]e of 6 on C5(P).
We will require some additional facts from [25]. For a set X C P and p € P we write
(3.1) pX ={pr|zeX} and p 'X:={yeP|pyec X}

Note here that by definition p~'P = P. We write J for the smallest family of right ideals of
P containing P and () that is closed under left multiplication and taking pre-images under left
multiplication (as in the sense above), i.e.,

J={p'q...p, P | n € Zy;pi,qi € P1<i <n}uU{f}.

The elements in J are called constructible right ideals of P. It is important to notice that a
constructible right ideal pflql ...y gy P does not depend on the product pflql .o Dy lgn as an
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element of G because the second operation in (3.1) involves the pre-image of multiplication in
P and not in G. It follows from [25, Lemma 3.3] that

-1 - - ~1 —1 _
41 D1 G PP @ - - P 1 X = (g7 P gt pmP) N X

for every finite collection p;,q; € P and every subset X of P. Thus the set of constructible
ideals is actually automatically closed under finite intersections. We will write x,y,z etc. for
the elements of 7. For a set X C P we will write E[x) for the projection on the subspace ?(X)

of £2(P).

Proposition 3.1. [25, Lemma 3.1] Let P be a unital semigroup in a group G. For elements
D1:q1s- - >Pnsqn € P we have that

1= VoVar - Vo Vau Vo, Von - Voy Vo € CA(P).

[pr'q1..on g P
prI1QI - ,pT—qun =eqg in G then

* * —
VoVar - Vo, Vo, = E[qﬁlpn---qflplP]'

Moreover, we have that
E[X]E[x/} = E[xﬁx’] for all x, x'eJ.
Consequently, we have that
Dy\(P) :=[Cy(P)]. = span{E[x} |x e J}
for the fized point algebra of C}(P).
Notice that if a finite set F' C J of constructible right ideals is closed under intersection then
Bp :=span{E}y | x € F'}

is a finite-dimensional, hence closed, *-subalgebra of the diagonal Dy (P). By saturating every
finite subset under intersection, we see that Dy (P) is the inductive limit of the B over the set of
N-closed, finite subsets of J directed by inclusion. Following [25] we say that J is independent
when the following holds:

for all x,%x1,...,x, € J with U:‘L:1 x; = X there is an ig such that x = x,.
It then follows that J is independent if and only if {E}y}xer is a basis for Br [10, Corollary
5.6.29].

3.2. Universal semigroup C*-algebras. The isometric semigroup C*-algebra Ci, (P) is the
universal C*-algebra generated by isometries {v, | p € P} satisfying v,b, = v,,. Universality
implies that there exists a coaction of G on Cf, (P) determined by v, — v, ® u, and having
fixed point algebra

[Cikso(P)]e = Span{nzanI T D;nUQn | pflﬂh o ‘pr:1Qn =e}.
The full semigroup C*-algebra Cf,(P) of P is the universal C*-algebra generated by isome-
tries {V, | p € P} and projections {Ex | x € J} satisfying the relations:
I qu = Vqu and Vpng; = gpx;
Il. &p =1, &y = 0; and & - &y = Exny.
Introduced in [25], Cf;(P) offers a model of C}(P) where the projections £ corresponding to
the constructible ideals are regenerated in the obvious way, i.e.,

Ex =V Vo Vo Vo, Vo Vi, -+ VgV for x= pflql .. .pglan.

The full semigroup C*-algebra admits a coaction of G whose fixed point algebra contains the
commutative C*-algebra

Dfuu(P) = C*(EX | X € j)
In [25] it is shown that the canonical *-epimorphism Cf ,(P) — C}(P) is faithful on Dg,(P) if
and only if J is independent.
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The constructible semigroup C*-algebra C%(P) of P introduced in [25, Definition 3.2] is the
universal C*-algebra generated by isometries {v, | p € P} and projections {ex | x € J}
satisfying the relations:

L vpg = vpvg;
IT. ey = 0;
UG if p1,qu, .- P Gn satisfy py g1+, g = e then
U;1Uq1 e v;nvqn =ex for x= q,:lpn .. qflplP.
It follows by [25, Lemma 3.3] that the family {v,,ex | p € P,x € J} satisfies also the relations

*
ep =1, Upex U, = Epx, and ex - ey = exny.

Therefore C}(P) is a quotient of Cf j(P). Universality implies that there exists a coaction of G
on C%(P) that induces a conditional expectation
E: C}(P) — span{uy, vg, -+~ v, Vg, | PY @1 Py = €}
Hence the projections ex have dense linear span [C%(P)].. We will write
Dy(P) :=C*(ex | x € J) = [CL(P)]e.

In particular the fixed point algebra [C%(P)]. is the inductive limit of the (finite dimensional
and thus closed) C*-subalgebras

Br := span{ex | x € F'} for finite N-closed F' C J.

If J is independent then the canonical *-epimorphism C}(P) — C%(P) is faithful on D,(P), by
[25, Corollary 2.27]. We will prove the converse of that, by using a result of Norling [31].

Towards this end we need to make a connection with inverse semigroups. Recall that if S
is an inverse semigroup then the reduced C*-algebra C3(S) is the C*-algebra generated by the
operators A(s): £2(S\ {0}) — £2(S\ {0}), determined by

A(s)o Osp if s*s > xa™,
S =
“ 0 otherwise.

There is also a universal C*-algebra C*(S) generated by a universal representation {us : s € S}
of § by partial isometries. The fastest way to obtain an inverse semigroup from our P is to use
its left regular representation V' and define

v = A{Vy Vo - Vp Vg, I n € Zyspiqi € P1 < i <n}.
Then Zy is an inverse semigroup (of partial isometries on ¢?(P)), so we have two C*-algebras
C'(Zy)=C*"(w(V) |V e€Zy) and C(Zy)=C*(NV) |V € Iy).

It was shown in [26] that under the assumption that P satisfies the Toeplitz condition from [27,
Definition 5.8.1], there is a canonical isomorphism C¥*(P) = C*(Zy ). We remove this assumption
next.

Theorem 3.2. Let P be a unital subsemigroup in a group G and let Iy be the induced inverse
semigroup in C3(P). Then there exists a canonical x-isomorphism
C5(P) = C*(Zv); vp = u(Vp)

that restricts to an isomorphism of Ds(P) to the C*-subalgebra C*(E) of C*(Zy) generated by
the semilattice of idempotents in Iy .
Proof. Since the universal representation u of Zy is multiplicative and unital, the composition

pEPH‘/},EI\/Hu(V},) GC*(Iv)
is clearly an isometric representation of P in C*(Zy). Recall now that if pflql cep g, = eq
and x = q;lpn . ql_lplP, then the relation

Pn ' An>?
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holds in C3(P). Thus Ejy € Iy and the composition map
xeJ— E[x] €Ty — u(E[x]) S C*(Iv)
satisfies
w(Bpyg) = w(Vy Vay -+ Vp Vo) = u(Ve ) u(Vay) - - u(Vp, ) u(Vy,)-

Thus the families {u(V}) | p € P} and {u(Ey)) | x € J} satisfy the relations defining C3(P), and
by the universal property there is a *-homomorphism C}(P) — C*(Zy) mapping v, to u(V}).
For the other direction we want to show that the assignment

(3.2) ViV - Vi Vo € Ty o5 0 ug, -5, v, € C1(P)

is a well-defined representation of Zy by partial isometries. To this end let us set
Vim ViV Vi Ve, and W= VAVe Vi Vi,

and suppose that V' = W. Hence we also have that VV* = WW* = WV* = VI¥*, and so

qglpn . qflplP = s,;lrm . sflrlP = X.
For V # 0 we have that x # (), and in particular we get that

VW? 6 = VV*6; = Ejx6; = 0, for all t € x.
For any such ¢t € x we deduce that

Gn'Pn- 4y P18 T sy it = 8,

which yields ¢, 'p, - - q; 1p137;17°m e sflm = eq. Consequently we obtain another description
for x by using the left regular representation. That is, the relation

By =VV* =VW* = E

an ' pneay 1Syt rmesy ' P
yields
X = qglpn - qflpls,;lrm - sflrlP.
Likewise we obtain similar expressions for x corresponding to the equations Epj = WV* =
WWH*. Let us set
V= Uy Vg, U, Vg, and  w = g vy e Uy Vs,
Then by the properties of C%(P) and the descriptions for x obtained above we get

ex = v0* = ww* = wv* = vw*.

This shows that v and w are partial isometries. By considering the dual equalities
VYV =W*W =V*W =WV,

we have the symmetrical

Since this implies
v=v(") =v(ww)=(vw)w = (VW )w = w,

the map given in (3.2) is well defined and determines a *-epimorphism C*(Zy ) — C%(P). Choos-
ing p1 = e and g; = p shows that this epimorphism is indeed the inverse of the x-homomorphism
C:(P) — C*(Zy) constructed above, and the proof of the isomorphism C}(P) ~ C*(Zy) is com-
plete.

Finally, notice that by Proposition 3.1, the semilattice E of idempotents in Zy  coincides with
the set of characteristic functions of constructible right ideals viewed as operators on £2(P).
Therefore C*(E) C C*(Zy) is the image of Ds(P) C C%(P) in the isomorphism. [
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Corollary 3.3. (cf. [31, Theorem 3.22] and [25, Corollary 2.27]) Let P be a unital subsemigroup
i a group G and consider the commuting diagram

CFuII(P)
|
C3(P) - Ci(P)

of canonical *-epimorphisms. Then the following are equivalent:
(i) J is independent.
(11) )\fuu‘Dfull(P) : Dqu(P) — D)\(P) 18 fazthful
(iil) Aslp,py: Ds(P) — Dx(P) is faithful.

Proof. The equivalence of items (i) and (ii) is precisely [25, Corollary 2.27]. Since the diagram
restricts to a commuting diagram of diagonal algebras, it is clear that (ii) implies (iii). In order to
prove that (iii) implies (i), assume now that (iii) holds and observe that since Dy(P) ~ C*(E) by
Theorem 3.2, the canonical *-epimorphism C*(E) — D, (P) is faithful. Then [31, Proposition
3.5 and Corollary 3.6] imply that (i) holds, see also the proof of [31, Theorem 3.22]. N

3.3. Sehnem’s strong covariance relations. Working at the generality of product systems,
Sehnem [35] has provided a quotient of the Toeplitz C*-algebra with the following properties: (a)
it admits an injective copy of the coefficient algebra; and (b) every equivariant x-representation
of the quotient that is injective on the coeflicient algebra is automatically faithful on the fixed
point algebra. Let us review her construction for a unital semigroup P in a group G. This
corresponds to the product system X over P such that every fiber X, is C. For a finite set
F C G set
Kp:=()gP.
geFr
For r € P and g € F' define

L (0) if K{r,g} ?é @ and r ¢ K{T,g}, L
TRy T {(C otherwise, and Lo gvp) = g@ LKy

I

T

Let the spaces
Xp = (6, € P(P) | L-1ipyp) # (0))  and X =P Xyr € 4(P) @ £7(G).
geG

For every p € P define the operator
Vip: Xf — X5 XF 36 0pr € Xpp.

It is well-defined as Irfl(rVF) = I(pr)*l(perF) for all r € P, and Irfl(rVF) = I(871T)71(8717’V871F)
for all r € sP. It follows that Vg, is an isometry and thus we obtain a *-representation

Pp: CLy(P) — B(X}1);0p = Vi

iso
For the projections
Qo r: Xi — Xy
we get that
VipQgF = QpgrVrp and Vi, Qgr = Qp-14 Vi,
Therefore Q. is reducing for ®p([CL (P)].). For f € [CL (P)]. define

1S0

1fll7 = 1Qe.rPr(f)Qe.rll = [|Pr(f)Qe.rll = |Qe.rPr(f)Il-

When we specialize the definition of strongly covariant representations from [35] to the case of
semigroup algebras, which are obtained from product systems with one-dimensional fibers, we
get the following.
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Definition 3.4. (cf. [35, Definition 3.2]) Let P be a unital subsemigroup of a group G. An
isometric representation of P is called strongly covariant if it vanishes on the ideal Z, <[C5, (P)]e
given by

L :=Af € [Ciso(P)]e [ lim || f]lp = 0},

where the limit is taken with respect to the partial order induced by inclusion on finite sets F’
of G. We write Z, for the ideal of strong covariance relations generated by Z.. We denote by
C?.(P) the universal C*-algebra with respect to the strong covariant representations of X.

Since C%,(P) is a quotient of CI (P) by an induced ideal, it inherits a faithful coaction
Ci(P) — Ci(P) ® C*(G). Moreover since CZ.(P) is a unital *-representation of Ci _(P), we
get that C3,(P) # {0}. An important point of Sehnem’s theory is that the image v, € C!.(P) of
each p € P is an isometry, and thus non-zero. The next observation follows from [35, Theorem
3.10].

Theorem 3.5. Let P be a unital semigroup in a group G. Then a unital x-representation of
C:.(P) that admits a coaction of G is automatically faithful on [Ci.(P)]e.

Proof. The conclusion follows by the property (C3) of C%.(P) by [35, Theorem 3.10]. We note
here that the coefficient algebra of the product system in this setting is C, and that trivially it
embedded in C%,(P). ]

We see that every @ is actually a restriction (and thus a sub-representation) of the “reduced”
coaction of C3(G) on C}(P). Since Q. r is reducing for ®([C,, (P)].) we obtain the maps

1S0

b= @ q>F|XF
fin FCG

(33)  [CLo(P)le —2 [C1(P)]e —> [C3(P)]. [ B(Xp)
fin FCG

qud

. QCGB(XF) /co(B(XF) | fin F C Q).

Thus by definition it follows that Zo, = (ker(gqa®Ap) N [CL, (P)]e). Therefore every e-graded

180
relation in C%(P) passes to the strong covariance algebra. In particular we have the following

proposition.

Proposition 3.6. Let P be a unital subsemigroup in a group G. Then the canonical *-
epimorphism C% (P) — C%.(P) factors through C%(P).

1S0

Proof. For convenience let us set Ci (P) := C*(v, | p € P). It is clear that the family
{v, | p € P} is an isometric representation of P. We have to show that there is a family of
projections

{ex [ x € T} C C(P)
which, along with the family of isometries {0, | p € P}, satisfies the e-graded axioms of C}(P).
Recall that the projections in C%(P) can be recreated from the isometries, i.e.,

Ex = Vp Vgy " ** Uy Vg, Up Up,, =" Vg Upy  fOr X = PLiqL- Dy g P.
We are going to use this as a model. Fix p1,q1,...,Pm,¢m € P and set
fi=10p,0g, -+ 0, 0,05 0p, - 05 0,
Clearly f is selfadjoint. Using the diagram (3.3) preceding the statement we see that
Ao(f) = By for x= pl_lql .y g P.

As projections in C*-algebras are defined by *-algebraic relations, by strong covariance we then
derive that the element

° . ° . ok . .* . .* .
f = t)p10m T Dpnnananpn T UQIDpl
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is a projection in CZ,(P). Indeed we have that § — {2 € Z, since
Gaa®PA(f = 1) = 4qa®(Bpxg) — 4qa®(Efy) = 0,

and so f = 2.
Next let 71, 81,...,7n, Sy such that

X = pl_lql .. .pfnlqu = 7“1_131 e r;lsnP

and set
gi=0, 05 --- 0y O 0L 0y -0 D
As before we see that A\p(g) = Ejy = Ap(f) and so g = f. Therefore there is a well-defined map
Jox= pflql D P by = O Dy e 0% DG 0% 0, 0 0,
Then the family {v,,¢x | p € P,x € J} satisfies the axioms (I) and (II) of C}(P). The third
axiom IIlg is e-graded and it is satisfied in C}(P), thus it follows (with a similar argument to

the one above) that this family satisfies axiom Il as well. Hence the proof is completed by
the universal property of C%(P). ]

Next we wish to introduce a reduced version of the strong covariance algebra.

Definition 3.7. Let P be a unital subsemigroup in a group G and let A\p: Cf (P) — C}(P)

1SO
be the canonical *-epimorphism. We define the reduced quotient strong covariance algebra

¢sc(C5 (P)) be the quotient of C}(P) by the ideal Ap(Zs).
We therefore can update the previous diagrams to obtain

o= P CI)F‘XF
fin FCG

[CX(P)]e [ B(Xr)
fin FCG

“JSC \Lqu

[Ce(P)]e — [asc(CX(P))]e — . I;ICGB(XF) /co(B(XF) | fin F CG).

A

[CE (P))e —2— [CE(P)].

1S0

Since gs.(C}(P)) is a quotient of C}(P) by an induced ideal it inherits the coaction of G. Hence
gsc 18 an equivariant unital x-representation of C* (P), and we derive the following corollary of
Theorem 3.5.

Corollary 3.8. Let P be a unital subsemigroup in a group G. Then [gs.(C}(P))]e ~ [Ci.(P)]e-
Moreover any unital x-representation of qs.(C}(P)) that admits a coaction of G is faithful on

(45 (C3(P))]e-

3.4. Fell bundles. If P embeds in a group G, then there are canonical coactions of G on the
universal C*-algebras C%(P) and C.(P), which give gradings and thus Fell bundles.

Definition 3.9. Let P be a unital semigroup in a group G and consider the C*-algebras C%(P)

and C! (P). We define the Fell bundles Ps and Py over G by
Psg:=[C5(P)ly and Pyg:=[Ci(P)]y forallged.

s
Here we show the connections with the other algebras.
Theorem 3.10. Let P be a unital semigroup in a group G. Then
C*(Ps) = Ci(P) =~ C*(Zy), CX(Ps) ~CX(Zv), and C*(Ps) = CL(P),
by canonical x-homomorphisms that fix P. Moreover we have that J is independent if and only

if C3(Ps) ~ Cy(P).
If G is exact (but J is not necessarily independent) then

CA(Psc) =~ gsc(CX(P))

by a canonical x-homomorphism that fixes P.
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Proof. We have already seen in Theorem 3.2 that C%(P) ~ C*(Zy ). To prove the isomorphism
to the full C*-algebra of the bundle, recall that C}(P) is a quotient of Cf, (P) by an induced ideal
(as the extra relations in C¥(P) are e-graded). Hence the representations of P, are automatically
representations of C*(P) and conversely. A similar argument applies for P to prove C*(Py.) =~
CL(P)

The proof of Theorem 3.2 asserts that a representation of Zy, implements a representation
of C%(P) and thus of P. Since the reduced representation of Zy has a faithful conditional
expectation we derive by [17] that C3(Zy) ~ C}(Ps).

For the second part we have that Py, ~ [C(P)] = D4(P). Therefore by Corollary 3.3 we
have that J is independent if and only if P, . ~ Dy(P), equivalently if and only if C}(P) is an
injective representation of Ps. The latter is equivalent to C3(Ps) ~ C3(P) by [17], as C}(P)
has a faithful conditional expectation.

Suppose now that G is exact. By Corollary 3.8 gs.(C}(P)) is an isometric representation of
Psc. Since G is exact, the normal coaction of G on C3}(P) is inherited by gs(C5(P)). Thus by
[17] we have that gs(C}(P)) =~ C}(Psc)- n

3.5. The partial crossed product realization. A alternative description of C3(P) as a re-
duced partial crossed product has been given in [27, Proposition 3.10]. Let us recall some
notation and facts about partial product systems from [18, 28].

Suppose that a group G with identity e acts on a topological space X by a partial action 6
in the sense that:

(i) there is a collection {€4}4ec of open subsets of X such that . = X;
ii) there is a collection {0,},cc of homeomorphisms 6,: 2,-1 — €, such that 6, = idx;
9Jg g 3% g
(iii) for all g1,92 € G we have that 692(9(9192)71 N Qg;1) = le—l N Qg,, and Oy, 4,(x) =

0g, © 04y () for all z € Qg g,)-1 N Qg;l.

Then the reduced crossed product algebra Cy(X) x, G is defined in the following way. On
2(G) ® (?(X) let the twisted representation of Cy(£2,) given by

p(f)on @& = dn @ Myu(f)E,
where
fOn(2)§(z) if x € Q1
0 if v ¢ Q1.

Furthermore, let E; be the projection on u(Co(2,-1))(£3(G) ® £2(X)) so that

(Mn(£)E)(x) = {

op ®0, ifxe Q(gh)—l N -1,
0 otherwise,

Eg(6h ® 51) = {

and for g € G define
g = (Ag ® Ipp(x)) - Ey-
Then the reduced crossed product of the partial action is defined by
Co(X) % G :=span{u(fy)ug | [ € Co(yg), 9 € G},
and it follows that it is a C*-algebra. It is known that the unitary operator
U: 2(G) @ (X)) @ P(G) = 12(G) @ 12(X) @ £2(G); 6, @ 61 @ Spy = 0 @ 0z @ S
induces a “reduced” coaction )

ady

~

Co(X) Ay G

(Co(X) X G) ® 1

(Co(X) %, G) ® CL(G),

and thus a normal coaction ¢ of G on Cy(X) %, G.
Recall that there is also the universal partial crossed product, denoted by Cy(X) x G, which is
the universal C*-algebra subject to £'-bounded representations of the algebra of monomials f40g
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where f, € Cy(£2y), the d 4 are invertible of norm one for g € G, and the covariant multiplication
is given by

(f10g1) - (f20g,) := egl(egfl(fl)fZ)éng for all f; € Co(Qy,),9i € G.

A closed set Y C X is called invariant under 0, or G-invariant, if
0y(Y NQy-1) CY forall g € G.

In this case one can define a partial action on Q'g =Y NQ, by the restrictions 9; = 69]% . If the

9; are also homeomorphisms then we can define the reduced partial crossed product Cy(Y) %, G,
and there is a canonical x-homomorphism

Co(X) xr G = Co(Y) xy G u(fg)teg = p(fglay, )tg,

in the sense that it sends generators to their restriction on Y. This *-homomorphism is faithful
if and only if X =Y.
Conversely, quotients of Cy(X) X, G produce G-invariant closed sets of X. Towards this end
let a x-homomorphism
O: Cop(X) %, G — B(H),
and let us write 67 for the *-endomorphism induced by 6 ,-1. For convenience let us identify
Co(Qy) with p(Co(24)). We will show that there exists a *-homomorphism

Uy ®(Co(Qg-1)) — @(Co(£2y)) such that I o ®|CO(Qg71) =do 9;.
Then it will follow that ®(Cp(X)) is G-invariant, and by duality defines a closed G-invariant
subspace Y of X. By Arveson’s Extension Theorem there exists a unital completely positive
map
¢: B(*(G) ® £*(X)) — B(H) such that Bley(xyxa = P
We directly define 0 : ®(Co(€2,-1)) — B(H) by
D)) i= (i) B(f)B(1ty)" for all f € Co(€y-1).
It is clear that ¥ is a contractive completely positive map implemented by the contraction
(i)
Proposition 3.11. With the aforementioned notation, we have that
19; 9} (I)|CO(Qg71) =do 9;
Therefore 95 is a x-isomorphism onto ®(Co(25-1)).

Proof. By construction we have that Cy(X) X, G is in the multiplicative domain of ¢ and
therefore ¢(tiyz) = ¢(iy)@(x) for all ¥ € Co(X) %, G. In particular for every f € Cp(Qy-1) =~
p(Co(Q2y-1)) with f > 0 we have that

R B
Vg (@(f)) = d(ig)R(f)P(ig)™ = p(ug) P(f2)P(f2)(tg)
1 L C ek ¥
= ®(ig f2)P(f2) = (g flig) = P(0,(f)),
1
where we used that ®(f2) lies in the multiplicative domain of ¢ for the third equality. This
completes the proof since the maps involved above are linear and continuous. ]

Next we pass to the connection of partial crossed product with our context. Let P be a unital
subsemigroup in a group G that it generates, and let the isometries p — V), be the left regular
representation on ¢?(P). On Z}; := Zy \ {0} we define the homomorphism

o I = Gy Vi Vg - Vi Vo = pian - oy e
Then Dy (P) = span{o'(e)}, and define

D, ==5pan{V*V |V € I[}},o(V) = g}.
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From [27, Section 3.3] every D,-1 is an ideal of the abelian C*-algebra Dy(P). By identifying
(%(P) with a subspace of £2(G) we may view C}(P) C B(f*(G)) and we get that
V =X\ V*V for all V € o7 (g).
Therefore there is an induced *-homomorphism implemented by A,, namely
0y: Dg—1 = Dg; VIV s \gVIV AL = VV™

By construction Dy(P) and D,-1 are abelian and we denote their spectra by Qp and Q, -1,
respectively. Then the actions 6, induced by 9;_1 form a partial action of G on Qp, i.e.,

05(x) = x 0041 for all x € Dy—1 =~ Cp(2,-1).

Proposition 3.12. [27, Proposition 3.10] Let P be a unital semigroup in a group G. Then
there is a canonical x-isomorphism

CX(P) = DA(P) xp G; V= u(VpVy )ity = .

In [27] it was shown that there is a smallest non-empty closed G-invariant subspace 0Q2p of
Qp. The subspace 9Q2p can be identified by using the semilattice of idempotents in P.

Definition 3.13. Let P be a unital semigroup in a group G. Let 0€2p be the smallest non-empty
closed G-invariant subspace of Qp. The C*-algebra

ICy(P) :=C(0Qp) %, G
is called the boundary quotient of C3(P).
The canonical *-epimorphisms
Ci(P) = C5(P) — OC}(P)
restricted to the diagonals produce the injections
00p — Qp — Spec(Ds(P)).

Thus 0€2p is a minimal G-invariant subspace of Spec(D4(P)). It is not immediate but by [10,
Lemma 5.7.10] it follows that 0Qp is the smallest G-invariant subspace of Spec(D;(P)), as well.
The partial crossed product picture connects with the previous C*-algebras in the following way.

Theorem 3.14. Let P be a unital semigroup in a group G. Then
Ci(P)~Ds(P)xG and CL(P)~C(0p)xG,

S

and therefore
C(Psc) >~ C(002p) x, G = 0C(P),

by canonical x-homomorphisms that fix P.

Proof. The first part follows directly as in the reduced case [27, Proposition 3.10], where now
the *-isomorphism is implemented by the universal properties. Since C! (P) is a quotient of
C%(P) by an induced ideal we then get that

Ci(P)~C(Y)x G for C(Y):=[CiL(P)le-

It is clear that C(0Qp) x G inherits a coaction of G from Dg(P) x G due to exactness of the
universal construction [18]. By definition there exists a unital G-equivariant *-epimorphism

Ci(P)~C(Y)xG— C(002p) xG.
Then Theorem 3.5 yields that the map is *-isomorphic on the fixed point algebra and thus
C(Y) = [CL(P)). = [C(00p) x G, = C(0Qp).
Therefore we get the required Y ~ 9Qp, and thus
C"(Pee) = CLL(P) = C(00p) x G.
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Recall here that C% (P) ~ C*(Ps) from Theorem 3.10. Since Py is the Fell bundle of a partial
crossed product [18, Proposition 16.28], we then get that its reduced C*-algebra passes down
to the reduced partial crossed product giving

Ci(Psc) = C(9Qp) %, G,
and the proof is complete. [ |

Remark 3.15. In [22] Laca and Sehnem identify the exact relations that define the Fell bundle
of the canonical coaction of G on C}(P). These come from xrepresentations ® of C}(P) that
satisfy the additional axiom that [],cp(®(ex) — ®(ey)) = 0 whenever F' C J is finite and
X = Uyery. The quotient of C}(P) determined by this set of extra relations in the context
of [22] is called the universal Toeplitz algebra of P, and is denoted by T,(P). The quotient
map Ci(P) — C:.(P) from Proposition 3.6 can also be seen by combining [22, Proposition
3.22] with the isomorphism of items (1) and (2) in [22, Theorem 6.13]. The isomorphism
Ci(P) ~ C(092p) x G from Theorem 3.14 also appears in [22, Theorem 6.13] as the partial
crossed product realization of the covariance algebra of the product system with one-dimensional
fibers over P, which is viewed there as the natural full boundary quotient of 7, (P).

4. NONCOMMUTATIVE BOUNDARIES AND CO-BOUNDARIES

We will show that OC}(P) carries two types of co-universality. The first one is in the C*-
context with respect to the representations of C*(P), while the second one is in the nonselfadjoint
context, with respect to contractive representations of the tensor algebra A(P) that are com-
patible with the canonical coaction of G. We introduce some terminology to make this precise.

Definition 4.1. Let P be a unital semigroup in a group . An isometric semigroup represen-
tation T of P will be called constructible if it induces a representation of C¥(P).

We denote by 0g[C%(P)] the C*-algebra generated by a G-equivariant constructible iso-
metric representation of P with the following co-universal property: for every G-equivariant
constructible isometric representation T: P — B(H) there exists a canonical s-epimorphism

CH(T) — dc[C3(P)).
We now prove the first co-universal property of C%(P).

Theorem 4.2. Let P be a unital semigroup in a group G. Then
IC\(P) ~ 0c[C(P)].

Proof. Let T be an non-trivial G-equivariant representation of C¥(P) ~ D4(P) x G. Let
T = {C*(T)g}gec be the associated Fell bundle on C*(T"). Since T is non-trivial, the isometry
T}, is non-zero for every p € P, so the Fell bundle 7 is non-zero and thus C}(7) is non-zero. By
[18, Proposition 21.3] there is a canonical #-epimorphism

Dy(P) xp G = CX(Ps) = CA(T).
By Proposition 3.11 we have that [C*(T")]. = C(Y") for some G-invariant closed subspace of the
spectrum of Dg(P). Therefore, due to the existence of the faithful conditional expectation on
Ci(T) we can write
CNT)~C(Y) %, G.
By [10, Lemma 5.7.10] we have the inclusion 092 — Y. We deduce that
CT) - C(T) = C(Y) x, G — C(09) %, G,

and the proof is complete. ]

The next aim is to show that 9C%(P) is the C*-envelope of the cosystem (A(P),G,0). First

we show that it is a boundary quotient of A(P), and hence the terminology makes sense both
in the selfadjoint and the nonselfadjoint context.
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Proposition 4.3. Let P be a unital semigroup in a group G and Y be a closed G-invariant
subspace of Qp. Then the canonical embedding

A(P) = C(Qp) ¥, G = C(Y) %, G
is unital completely isometric. Thus C(Y) x, G becomes a (normal) C*-cover for (A(P),G,$).
Proof. Let us denote by ¢: A(P) — C(Y) %, G the canonical completely contractive embedding,
where C(Y) x,. G acts on £2(G) ® £*(Y). By construction

(Vp)=(N\p®1)-E,forallpe P,
where E, is the projection on
Ey((G)@ (V) =D T C8 @ C(Qppy-1 N Q1 NY).
hedG

Notice that for » € P we have that I = V*V,. € D,-1 and so ,-1 = Qp. Hence

Quny-1 N1 NY =Y forall h € P.
Thus, if Qp: (*(G) — ¢%(P) is the canonical projection we see that

E, (QpreI)=(Qp®I) E,=(Qp®I)
for all p € P. Therefore
(V) Qe =(pe D) @pel) =V,ol=Qpol) (yel) @pel),
and consequently
va) (Qp®I)=a®] for all a € A(P).
Let n € N and [a;5] € M,, ® A(P). Then we have that

sl = [lfe(ai)]ll = lle(aiz)] - (In © Qp @ D|| = |[[ai; @ || = [[[a]ll,
giving that the map id,, ®¢ is isometric. As this holds for any n € N it follows that ¢ is completely
isometric.
Finally recall that C'(Y') %, G admits a normal coaction ¢’ of G. By definition we have that
(t®id)d(Vy) =ty @ up = (N @ 1) - Ep) @ up = 8'1(Vp)
for all p € P, and the proof is complete. [ |

We can now prove the second co-universal result for 0C3(P).

Theorem 4.4. Let P be a unital semigroup in a group G. Then
OC(P) =~ Ciy (A(P), G 9).

Proof. By Theorem 2.6, normality of the coaction on A(P) implements a normal coaction on
Ciw(A(P),G,0). Since any G-equivariant quotient of C(P) implements a partial action by

env

Proposition 3.11, faithfulness of the conditional expectation on C,, (A(P),G,d) yields

Cr(A(P),G,0) ~C(Y)x, G for C(Y):=[Ct (AP),G,6)e.

On the other hand by Proposition 4.3 we have that C}(P) is a C*-cover for (A(P),G,§), and
so there exists a canonical *-epimorphism

O: JCL(P) = C(90p) %, G — C:

env

(A(P), G,9)

that intertwines the conditional expectations. Hence ® restricts to a surjection from C(9€2p)
onto C(Y'). Minimality of 0Qp yields 9Qp =Y, and thus ® is faithful.

Recall that the action of G on a partial system ({4} gcq, {04}4ec) is called topologically free
if for every e # g € G the set {w € Q -1 | 0y(w) # w} is dense in ;1. Next we see that under
a topological freeness assumption we have that the Silov boundary of the cosystem is the usual

Silov boundary of A(P).
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Theorem 4.5. Let P be a unital semigroup in a group G. If the partial action of G on OQp is
topologically free then
OCN(P) ~ Cop (A(P)).

Proof. Clearly any C*-cover of the cosystem is a C*-cover for the algebra. Thus by Theorem
4.4 and the definition of C},(A(P)) we have a canonical *-epimorphism

OCK(P) =~ Cuy (A(P), G, 0) — Cluy (A(P))-

By [27, Corollary 3.22] we get that OC3(P) is a simple C*-algebra and thus the *-epimorphism
is faithful. |

Let us now consider the Ore semigroup case. Recall that P is a left-Ore semigroup if it is
cancellative and left-reversible, in the sense that it satisfies pP N gP # 0 for all p,q € P. A
semigroup P is left-Ore if and only if it embeds in a group G in such a way that G = PP~L.
Equivalently, the set PP~! of formal right quotients forms a group. See [16, 32]. Modulo an
easy translation from right to left reversibility, Laca [21, Theorem 1.2] shows that a left-Ore
semigroup has the following (universal) extension property for semigroup homomorphisms into
groups: every semigroup homomorphism P — G into a group G has a unique extension to a group
homomorphism G = PP~! — G. See also [11, Theorem 2.2.4] for an alternative proof that uses
a construction of G by direct limits. When P is an Ore semigroup then 9€)p is a singleton,
hence 9CK(P) ~ {pt} x, G = C}(G); see the comments following [10, Definition 5.7.9]. We will
see that if P is left-Ore and G = PP~ is its enveloping semigroup, then C%,,(A(P)) = C3(G).
In fact, we will prove that this is a characteristic property of Ore semigroups.

Theorem 4.6. Let P be a unital semigroup in a group G that it generates. The following are
equivalent:
(i) P is an Ore semigroup (in which case necessarily G = PP~!).
(i) The map V, — Ay extends to a completely isometric map A(P) — C}(G).
(i) C¥ (AP ), G,68) ~ C5(G) by a canonical x-homomorphism that fizes P.
(iv) Ciw(A(P)) ~ Ci(G) by a canonical x-homomorphism that fizes P.

If any of the above holds then A(P) is hyperrigid.

Proof. We will show [(i) & (ii) = (iii) = (iv) = (ii)], and that item (ii) implies hyperrigidity
of A(P).
[(i) = (ii)]: If P is an Ore semigroup then by construction dQp = {pt} is a singleton; see
the comments following [10, Definition 5.7.9]. Thus {pt} x, G = C}(G) and the canonical
embedding
A(P) = CHG)s V= Ay

is completely isometric by Proposition 4.3.
[(ii) = (i)]: Suppose there is a completely isometric map ®: A(P) — C3(G) with ®(V,) = A,
for all p € P. Then C%(G) is a C*-cover for A(P). Since contractive dilations of unitaries are
trivial we get that C}(G) is the C*-envelope. For the same reason A(P) is hyperrigid.

Thus ® extends uniquely to a *-epimorphism C3(P) — C}(G) which we denote by the same
symbol. Let p,q € P. Since

VLV VaVy) = MpAp A, = 1,
we have that V,V 'V, V* # 0. It follows that pP NgP # (), and thus P satisfies the Ore property.
[(ii) = (iii)]: Assuming item (ii) we have that C(G) is a C*-cover of the cosystem (A(P),G,?),
and thus there is a canonical *-epimorphism
{pt} x, G = C3(G) = CLy (A(P), G, 0)

that fixes A(P) and intertwines the faithful conditional expectations. As the fixed point algebra
of C5(G) is trivially C and the *-epimorphism is non-zero, we have that the *-epimorphism is

faithful.
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[(iii) = (iv)]: Assuming item (iii) we have that C}(G) is a C*-cover for A(P) by unitaries, and
thus (as above) we deduce that it is its C*-envelope.
[(iv) = (ii)]: Assuming item (iv) we have trivially that the map

A(P) < Ct

env

(A(P)) = CX(G); Vp = Ap
is completely isometric, and the proof is complete. ]

Remark 4.7. We can combine Theorem 4.2 with Theorem 4.6 to deduce that any item of
Theorem 4.6 is equivalent to having an equivariant *-isomorphism C}(G) ~ 0g[C%(P)].

Remark 4.8. It is interesting to note that Theorem 4.5 and Theorem 4.6(iv) give the same
conclusion 0C3(P) ~ Cf  (A(P)) in opposite situations; the former applies to semigroups with
a boundary spectrum that is large enough to support a topologically free partial action of G,
while the latter applies when the boundary spectrum is a singleton so the boundary action is as

far from topologically free as possible. Combined, they cover the following classes of examples:

(i) abelian submonoids of groups, in particular, multiplicative semigroups of nonzero al-
gebraic integers (obviously Ore);

(ii) total orders in groups (obviously Ore);

) Artin monoids in Artin groups of finite type (Ore by [2]);

(iv) quasi-lattice orders with trivial core (where the action is topologically free by [6, Propo-
sition 5.5]), in particular, the subclass consisting of Artin monoids in right-angled Artin
groups having no direct Z factor, [6, Corollary 5.7];

(v) the Thompson monoid F* in the Thompson group F' (Ore, in fact, lattice ordered);

(vi) the az + b-semigroup R x R* over an integral domain that is not a field (where the
action is topologically free by combining [24, Corollary 8] with [10, page 243], or by
[22, Corollary 8.4 and Proposition 6.18]).

In fact only simplicity of the boundary quotient OC3(P) is required in the proof of Theorem
4.5 to deduce that it coincides C}  (A(P)). A characterization of simplicity for general ring

env

C*-algebras has been identified in [24, Corollary 8§].
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