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a b s t r a c t

In this work we introduce symmetry-preserving, physics-informed neural networks (S-PINNs) moti-
vated by symmetries that are ubiquitous to solutions of nonlinear dynamical lattices. Although the use
of PINNs have recently attracted much attention in data-driven discovery of solutions chiefly to partial
differential equations, we demonstrate that they fail at enforcing important physical laws including
symmetries of solutions and conservation laws. Through the correlation of parity symmetries in both
space and time of solutions to differential equations with their group equivariant representation, we
construct group-equivariant NNs which respect spatio-temporal parity symmetry. Moreover, we adapt
the proposed architecture to enforce different types of periodicity (or localization) of solutions to
nonlinear dynamical lattices. We do so by applying S-PINNs to the completely integrable Ablowitz–
Ladik model, and performing numerical experiments with a special focus on waveforms that are related
to rogue structures. These include the Kuznetsov–Ma soliton, and Akhmediev breather as well as the
Peregrine soliton. Our numerical results demonstrate the superiority and robustness of the proposed
architecture over standard PINNs.

© 2022 Elsevier B.V. All rights reserved.
a
m
w
d
w
p
n
n
i

1. Introduction

After their original measurement in the North Sea [1–4], rogue
aves which appear out of nowhere and disappear without a
race [5] have become a topic of extensive study. Indeed, in recent
ears, their study has expanded towards a variety of other fields,
uch as most notably water tank experiments [6–9] and nonlinear
ptical systems [10–13]. Further efforts have been considered in
he realms of plasma physics [14–17] and also Bose–Einstein con-
ensates in atomic physics [18]. These efforts have been captured
n various reviews [19,20], as well as books [21,22] on this rapidly
eveloping subject.
At the same time, in recent years, there have been numer-

us computational developments that can be impactful toward
he analysis and numerical exploration of rogue waves. More
oncretely, with the advance of computing resources and al-
orithmic innovation in machine learning, data-driven solvers
or partial differential equations (PDEs) based on deep neural
etworks (DNNs) have become a burgeoning domain in applied
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nd computational mathematics [23–40]. The core idea of these
ethods is to represent the PDE solution using a neural net-
ork (NN), whose parameters are trained via (stochastic) gra-
ient descent (GD) of some variational loss function associated
ith the PDE under consideration. Among these methods, the
hysics-informed neural networks (PINNs) [31–33,40] have gar-
ered much attention from the scientific computing commu-
ity because of their flexibility and gridless nature. Consider, for
nstance, a PDE of the form{
Nψ = f , in Ω,

Bψ = g, on ∂Ω,
(1)

where ψ is an unknown function on Ω , N is a (potentially
nonlinear) differential operator, and B is an operator associated
with a specific boundary condition. A PINN for Eq. (1) is a feed-
forward NN ansatz ψ(x; θ) that approximates the solution of
Eq. (1), where θ is the collection of all trainable weights. The
optimal θ is obtained by solving via GD the following empirical
least square minimization of the PDE residuals in the strong form

min
θ

1
Nf

Nf∑
i=1

|Nψ(xi; θ)− f (xi)|2 +
1
Ng

Ng∑
i=1

⏐⏐Bψ(y i; θ)− g(y i)
⏐⏐2 ,
(2)
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here (xi)
Nf
i=1 and (y i)

Ng
i=1 are discrete random samples drawn

rom the uniform distributions on Ω and ∂Ω , respectively. For
ertain types of linear PDEs, when the sample size and network
idth approach infinity, convergence analysis of PINNs has been
stablished based on a priori and a posteriori error estimates for
he residual minimization [cf. Eq. (2)] in Sobolev spaces [41,42]
nd Barron-type spaces [43].
Very recently, there has been an ever expanding literature that

ttempts to bridge these two fields. Indeed, PINNs have been
sed in order to identify not only solitonic, but also breather, as
ell as (different-order) rogue wave solutions of the nonlinear
chrödinger (NLS) equation. The NLS is undoubtedly the most
rototypical nonlinear model [44,45] that features these types
f coherent waveforms and, at the same time, operates as an
nvelope wave description of a wide range of water-wave, as well
s optical, atomic and plasma-wave systems. Hence, it is rather
aturally the tool of choice to exemplify such numerical methods,
specially because its integrable structure facilitates the analyti-
al availability of such solutions. Indeed, the attempt to use PINNs
n integrable systems has been expanding [46], including the con-
ideration of explicit conservation laws in the loss functions, as
as done, e.g., recently in [47]. Further studies have simply con-
idered different (but rather similar) dispersive PDEs, including
he defocusing NLS [48], a higher-order NLS [49], the derivative
LS equation [50,51], or the Chen–Lee–Liu equation [52], among
thers.
Our aim in the present work is to present a modified formu-

ation of the PINN approach in comparison to the above works.
ost of the above efforts utilize a loss function based on matching

he equation of motion and the identification of special solu-
ions (often known via integrability). Only one of these works
ncorporates explicitly (to our knowledge) in this dispersive set-
ing the presence of conservation laws [47] and even in that
ase, nonconservative solutions are only penalized in the loss
unction, and conservation laws are thus not exactly enforced.
oreover, these conservation laws need to be known in advance
ased on PDE analysis or other similar methods. Our aim here
s to incorporate generic symmetries of the PDE, such as par-
ty or time-reversal symmetry, but in a way built-into the NN
onsiderations, i.e., through the construction of NN layers with
uaranteed spatio-temporal parity symmetry towards represent-
ng the solution. On the one hand, the notions of parity and
ime-reversal (the so-called PT -symmetry) has been a topic of
ide relevance in its own right in a wide range of systems,
ummarized, e.g., in [53,54]. On the other hand, more generally,
ur motivation is to incorporate symmetries that may be of broad
elevance to Hamiltonian systems and, indeed, beyond (as these
ymmetries are neither sufficient, nor necessary for the system to
e Hamiltonian). We note that time-reversal symmetry has also
een leveraged in the prior work [55] to build ODE networks for
imulating time-reversal complex dynamics, but such symmetry
s again not exactly enforced in this work as the discrepancy
etween forward and backward dynamics is only penalized in a
oss function. In a sense, our effort to construct PINNs incorpo-
ating group equivariance, the hereafter referred to as S-PINNs
with S standing for symmetry) draws parallels to the attempts
o formulate symplectic neural networks, such as the SympNets
f [56] (see also earlier related attempts cited therein). We believe
hat such an attempt will be of broad relevance to PDE systems
earing symmetries and we hope that it will be more widely used
ccordingly in the future elsewhere.
Our tool of choice, partly to distinguish ourselves from earlier

tudies, and partly to focus on the important and wide literature
f nonlinear dynamical lattices [57], is a spatially discrete (inte-
rable) system that also bears such rogue wave solutions: the so-
alled Ablowitz–Ladik lattice [45]. The relevant rogue waveforms
2

have been identified, e.g., in the work of [58], and have been
used, e.g., for a systematic study of the stability of time-periodic
(so-called Kuznetsov–Ma) and rogue (Peregrine) waveforms in
the recent work of [59]. The spatio-temporal localization of the
relevant rogue-wave patterns renders them an especially appeal-
ing (and challenging) testbed for the consideration of S-PINNs, in
comparison to standard single-soliton structures. Moreover, the
increasing interest in rogue waves within experiments in water
waves, nonlinear optics and elsewhere also adds to their recent
and widespread appeal [19,20].

The structure of our presentation of the model and of the
application of S-PINNs on it will proceed as follows. In Section 2,
we offer the background of the model and of the fundamental
nonlinear wave solutions of interest. We complement this with
some basic notions associated with PINNs and the equivariant
NNs of interest herein. Then, in Section 3, we formulate theo-
retically the S-PINNs proposed, explaining how to construct the
respective layers and how to represent the solutions of interest.
Then, in Section 4, we present a series of numerical examples,
illustrating the performance of the method and its superiority
over conventional PINNs. Finally, in Section 5, we summarize
our findings and present some conclusions, as well as some
suggestions for future work.

2. Background

2.1. The model and its theoretical setup

We start by discussing the model and its solutions that we
will subsequently employ for our numerical experiments. In par-
ticular, the model that we consider in this work is the (discrete)
completely integrable Ablowitz–Ladik (AL) model [60,61] given
by

iΨ̇n + (Ψn+1 − 2Ψn + Ψn+1)+ (Ψn+1 + Ψn−1) |Ψn|
2
= 0, (3)

where Ψn := Ψn(t) : Z × R → C corresponds to the complex
avefunction of the nth lattice site (n ∈ Z) at time t ∈ R, i =
−1, and the overdot stands for time differentiation. While this

model has not been (as of yet) realized in a physical experiment,
it is well-known to serve as the comparison tool of choice for
comparing/contrasting with the behavior of the standard non-
integrable discrete NLS (so-called DNLS) model involving a local
cubic nonlinearity |Ψn|

2Ψn [62] instead of the nonlinear term
(Ψn+1 + Ψn−1) |Ψn|

2 in Eq. (3). Indeed, it has been utilized for de-
veloping perturbative calculations for the solitonic solutions [63],
their stability features [64] and recently even for rogue (and
related) waveforms [59]. We will focus on bi-periodic solutions
of Eq. (3), that is, solutions bearing two frequencies, 2q2 and ω
(or r̃) to be explained in what follows. The first frequency , 2q2,
corresponds to the overall background phase , e2iq

2t , of the plane
wave on top of which the solutions of Eq. (3) will be evolving.

e thus introduce the separation of variables ansatz:

n = ψne2iq
2t , (4)

where ψn = ψn(t) : Z × R → C is the soliton on top of the
ackground e2iq

2t . Upon inserting Eq. (4) into Eq. (3), we have

ψ̇n + (ψn+1 − 2ψn + ψn+1)+ (ψn+1 + ψn−1) |ψn|
2
− 2q2ψn = 0,

(5)

here q fixes the background amplitude of the solution, as indi-
ated above. Hereafter, we set q ≡ 1/

√
2 for convenience.

The complete integrability of the AL model [cf. Eq. (5) or,
quivalently, Eq. (3)] is tantamount to the existence of an infinite
umber of conserved quantities and the presence of an underly-
ng Lax pair formulation [60,61]. The solutions of interest have
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Table 1
Notations introduced for the AL model in Section 2.1.
Notation Description Reference

Ψn = Ψn(t) Complex wavefunction of the nth lattice site at time t Eq. (3)
2q2 Frequency of the background phase of the plane wave Eq. (4)
ψn = ψn(t) Soliton solution on top of the background Eq. (5)
ω Temporal frequency of the KM soliton Eq. (6)
θ,G, r Parameters determined by ω in the KM soliton Eq. (6)
r̃ Spatial frequency of the Akhmediev breather Eq. (7)
ω̃, θ̃ , G̃ Parameters determined by r̃ in the Akhmediev breather Eq. (7)

been independently derived via direct techniques [58], and via
the Inverse Scattering Transform (IST) [65]. We will primarily
focus on three solutions that differ in terms of their localization.
On the one hand, the discrete temporally periodic Kuznetsov–Ma
soliton is given by

ψ(n, t) := ψn(t) =
1
√
2

cos(ωt + iθ )+ G cosh(rn)
cos(ωt)+ G cosh(rn)

, (6)

where ω is the second frequency (related to the period T =

π/ω) in addition to the background 2q2 [cf. Eq. (4)]; the pa-
ameters θ , r , G are determined by ω through θ = − arcsinh (ω),
= arccosh ([2+ cosh (θ )] /3) and G = −ω/

(√
3 sinh (r)

)
. On

the other hand, a spatially periodic, yet discrete and modula-
tionally unstable solution (being reminiscent of the Akhmediev
breather [66] of the Nonlinear Schrödinger (NLS) equation at the
continuum limit [45]) is given by

ψ(n, t) := ψn(t) =
1
√
2

cos(r̃n)+ G̃ cosh(ω̃t + iθ̃ )

cos(r̃n)+ G̃ cosh(ω̃t)
, (7)

where r̃ corresponds to the second (spatial) frequency, and the

arameters ω̃, θ̃ , G̃ depend on r̃ through ω̃=−

√
1−

[
3 cos r̃ − 2

]2,
θ̃ = arccos

[
1− 3

(
1− cos r̃

)]
, and G̃ = ±3 sin r̃/ sin θ̃ .

Finally, alongside the KM and Akhmediev breathers, a doubly
localized solution, that is, a solution which is localized in both
space and time, exists, and it is the discrete analogue of the
so-called Peregrine soliton in the form:

ψ(n, t) := ψn(t) =
1
√
2

[
1−

6(1+ 2it)
1+ 2n2 + 6t2

]
. (8)

t should be noted that the Peregrine soliton of Eq. (8) can be
btained from the KM structure [cf. Eq. (6)] in the limiting case
f T → ∞. We summarize in Table 1 the notations introduced
n this section with the corresponding reference equations.

We conclude this section by highlighting an important prop-
rty of all the above solutions, which itself will be the building
lock for constructing S-PINNs in the following. In particular, the
M, Akhmediev, and Peregrine waves obey the spatio-temporal
arity symmetry

(n,−t) = ψ(n, t), ψ(−n, t) = ψ(n, t). (9)

Indeed, the latter is a property of the AL model which respects
parity and time-reversal. Hereafter, we will seek to adapt NNs so
as to respect these key spatio-temporal symmetries of the model.

2.2. The need for group equivariance and equivariant neural net-
works

As indicated in the introduction, over the past few years, PINNs
have become a prototypical tool of choice for the leveraging of
the substantial advances in the realm of NNs for the study of
physically inspired (chiefly) linear and nonlinear PDE problems.
Nevertheless, and despite their name, PINNs are known to fail at
enforcing important physical laws such as symmetries and con-
servation laws in the data-driven solutions [42]. This is especially
the case when the numbers of the collocation points N and N
f g (

3

used for training in Eq. (2) are relatively small, which is inevitable
hen solving high-dimensional PDEs. For example, Fig. 1 displays
he exact and PINN predicted KM solution [cf. Eq. (6)] of the AL
odel trained with Nf = 1, 000 collocation points; in particular,

he bottom two panels present the spatial distribution of the
mplitude |ψn(t = −0.67)| and its temporal evolution |ψ0(t)|. It
s evident that when Nf is small, PINN fails to learn a solution
beying time-periodicity and spatio-temporal parity symmetry
pecified by Eq. (9). It is thus important to incorporate such phys-
cal symmetry into the network models such that data-driven
DE solvers can become more generalizable, especially in the
mall-data regime.
Group equivariance is a symmetry property for a mapping
: X → Y to commute with the group actions on the domain
and codomain Y . More specifically, let G be a group, and TX

g
nd TY

g , respectively, be group actions on X and Y . A function
: X → Y is said to be G-equivariant if

(TX
g x) = TY

g (f (x)), ∀ g ∈ G, x ∈ X . (10)

n the context of the AL model [cf. Eq. (5)], the spatio-temporal
arity symmetry of the solutions specified by Eq. (9) can be
quivalently described as ψ(·, ·) : Z × R → C ∼= R2 being
quivariant to the group G = Z2 × Z2, where Z2 = {0, 1} is the
yclic group of order 2. More specifically, we have X = Z × R,
= R2,

X
g (n, t)T =

(
(−1)g1n, (−1)g2 t

)T
, TY

g (u, v)T =
(
u, (−1)g2v

)T
,

(11)

or all g = (g1, g2) ∈ G, (n, t)T ∈ Z × R, (u, v)T ∈ R2, and the
olution ψ : X → Y is G-equivariant:

◦ TX
g = TY

g ◦ ψ, ∀ g ∈ G. (12)

Group-equivariant NNs are a special class of DNN architec-
ures that are guaranteed to represent only maps satisfying the
roup equivariance specified by Eq. (10). Inspired originally by
omputer vision applications to incorporate into DNN models
he discrete translation and rotation symmetries through group
onvolutions [67], the method has been generalized in [68–70]
nd applied to 2D rotations SO(2) [71–78], 3D rotations SO(3)
79–85], rescaling [86–90], and permutation [91–95]. In the next
ection, we explain how to construct symmetry-preserving
hysics-informed neural networks (S-PINNs) for the AL model
hat are guaranteed to respect simultaneously the spatio-temporal
arity symmetry and space/time-periodicity using group-
quivariant NNs.

. Symmetry-preserving physics-informed neural networks
S-PINNs)

.1. Spatio-temporal parity symmetry

We first explain how to construct an L-layer NN Φ(n, t; θ),
here θ is the collection of trainable parameters, with guaranteed
patio-temporal parity symmetry of Eq. (9) to represent the so-
ution ψ(n, t) := ψn(t) of the AL model [cf. Eq. (5)]. We consider
he input and output vector spaces F0 = R × R ⊃ Z × R and
L = R2 ∼= C, and the G = Z2 × Z2-actions TF0

g and TFL
g defined

n F0 and FL, respectively, corresponding to the spatio-temporal
arity symmetry [cf. Eq. (9)–(11)]

F0
g (n, t)T =

(
(−1)g1n, (−1)g2 t

)T
, TFL

g (u, v)T =
(
u, (−1)g2v

)T
.

(13)

ext, we need to specify a sequence of hidden feature spaces
L−1 L
Fl)l=1 and (nonlinear) mappings (Φl : Fl−1 → Fl)l=1 between
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c
onsecutive layers such that their composition Φ = ΦL◦· · ·◦Φ1 :

F0 → FL is G-equivariant:

TF0
g ◦ΦL ◦ · · · ◦Φ1 = ΦL ◦ · · · ◦Φ1 ◦ TFL

g , ∀g ∈ G. (14)

Since the composition of equivariant maps is still equivariant,
it suffices for Eq. (14) to hold if we equip the feature spaces
(Fl)L−1

l=1 with group actions (TFl
g )L−1

l=1 and require each Φl between
consecutive layers to be equivariant:

TFl
g ◦Φl = Φl ◦ TFl−1

g , ∀g ∈ G, ∀1 ≤ l ≤ L. (15)

In this paper, we consider the hidden feature spaces Fl =

(RDl )G =
{
f : G → RDl

}
for all l ∈ {1, . . . , L − 1}, and equip Fl

with the group action TFl
g defined as

TFl
g f (g̃) = f (g̃ − g), ∀f ∈ Fl, ∀g, g̃ ∈ G, ∀1 ≤ l ≤ L− 1. (16)

Remark 1. We note that TFl
g in Eq. (16) corresponds to the

regular representation of G on the vector space Fl = (RDl )G [96].
In principle, one could also consider (combinations of) irreducible
representations of G on the feature spaces, but empirical study
suggests such model typically yields inferior performance due to
its less expressive nature [70,71,97].

3.1.1. Equivariant linear maps
With the group actions TFl

g on Fl defined as in Eqs. (13) and
(16), we first identify the necessary and sufficient condition for
a linear map Φ̃l ∈ Hom(Fl−1,Fl) to obey the G-equivariance of
Eq. (15).

Theorem 1. Let Φ̃l ∈ Hom(Fl−1,Fl) be a linear map between Fl−1
and Fl, 1 ≤ l ≤ L. Then Φ̃l is equivariant under T

Fl
g of Eqs. (13) and

(16), i.e., Eq. (15) holds for all l, if and only if

• When l = 1: there exists a matrixW(1)
= [W(1)

1 ,W
(1)
2 ] ∈ RD1×2

such that, ∀g = (g1, g2) ∈ G,[
Φ̃1(n, t)

]
(g) =

[
(−1)g1W(1)

1 , (−1)g2W(1)
2

] [n
t

]
. (17)

• When 1 < l < L: there exists a matrix-valued function W(l)
:

G → RDl×Dl−1 such that, ∀g ∈ G, ∀f ∈ Fl−1,[
Φ̃lf

]
(g) =

∑
g ′∈G

W(l)(g − g ′)f (g ′). (18)

We note that Eq. (18) is the group convolution proposed in [67].
• When l = L: there exists a matrix W(L)

= [W(L)
1 ,W

(L)
2 ] ∈

RDL−1×2 such that, ∀f ∈ FL−1,

Φ̃Lf =
[
W(L)T

1

∑
g∈G

f (g),W(L)T
2

∑
g∈G

(−1)g2 f (g)
]T
. (19)

Theorem 1 can be viewed as a special case of the result in [68]
where the feature space Fl is a degenerate fiber bundle with base
space B ∼= {0} and the canonical fiber Fl. We provide an easier
proof in the Appendix A for completeness of the paper. We note
that parameter sharing within the group G is the main reason of
achieving equivariant Φ̃l ∈ Hom(Fl−1,Fl); indeed, for 1 < l < L,
the dimension of the space of trainable weights [cf. Eq. (18)] is

dim({W(l)
: G → RDl×Dl−1}) = |G| · (DlDl−1) = 4DlDl−1, (20)

whereas the dimension of all linear maps Hom((Fl−1,Fl)) is

dim [Hom((Fl−1,Fl))] = dim(Fl−1) · dim(Fl) (21)

= dim[(RDl )G] · dim[(RDl−1 )G] (22)

= |G|Dl · |G|Dl−1 (23)

= 16DlDl−1 (24)
4

3.1.2. Equivariant affine maps and nonlinearity
In practice, affine maps Φl ∈ Aff(Fl−1,Fl) instead of linear

maps Φ̃l ∈ Hom(Fl−1,F) are typically used in a DNN model. This
amounts to adding the biases b(l) ∈ RDl to Φ̃l defined in Eqs. (17),
(18), (19):⎧⎪⎨⎪⎩
[
Φ1(n, t)

]
(g) =

[
Φ̃1(n, t)

]
(g)+ b(1),[

Φlf
]
(g) =

[
Φ̃lf

]
(g)+ b(l), 1 < l < L

ΦL = Φ̃L.

(25)

Note that in order to maintain equivariance (15), the biases b(l) ∈
RDl , 1 ≤ l < L cannot depend on the group element g ∈ G, and
there is no b(L) ∈ R2 in the last layer.

Finally, we need to specify the equivariant nonlinearity σ :

Fl → Fl, 1 < l < L. Note that the group actions given by Eq. (16)
on the hidden layers can be viewed as permutations on G, and
hence pointwise nonlinearity is equivariant as it commutes with
permutation. More specifically, ∀f ∈ Fl, 1 < l < L,[
σf

]
(g) :=

(
σ [f1(g)], . . . , σ [fDl (g)]

)T
, (26)

where σ : R → R can be any smooth nonlinear function, which
we choose as σ = tanh throughout this work. The L-layer NN
Φ(n, t; θ) with guaranteed spatio-temporal parity symmetry is
thus defined as

Φ(·; θ) := ΦL ◦ σ ◦ΦL−1 · · · ◦ σ ◦Φ1, (27)

where Φl and σ are defined in Eqs. (25) and (26), and

θ = {W(1), b(1),W(l)(g), b(l),W(L)
| g ∈ G, 1 < l < L} (28)

is the collection of all trainable parameters. We note that the
symmetry-enforcing NN architecture of Eqs. (27) and (28) can
be implemented as standard feed-forward NNs after lexicograph-
ically ordering the group G and subsequently identifying the
hidden feature space Fl = (RDl )G with R4Dl , and we defer the
technical implementation details to Appendix B.

3.2. Space/time-periodicity

Apart from the spatio-temporal parity symmetry, breather
solutions for the AL model, such as those given by Eqs. (6) and
(7), are also known to be periodic in time and space, respectively.
We detail next how to modify the architecture explained in
Section 3.1 such that the solution is guaranteed to respect simul-
taneously the space/time-periodicity and spatio-temporal parity
symmetry. Without loss of generality, we assume the solution is
time-periodic with angular frequency ω, e.g., the KM soliton of
Eq. (6), as building a space-periodic solution on the other hand,
is similar after reversing the role of space and time.

To ensure time-periodicity, we transform, in the first layer,
the input (n, t)T ∈ F0 = R2 to (n, cosωt, sinωt)T ∈ R3. This
corresponds to changing the first hidden feature space from F1 =

(RD1 )G to F̃1 = R3 and setting the first layer (nonlinear) operation
Φ1 : R2

→ F̃1 as Φ1(n, t) = (n, cosωt, sinωt)T . One can readily
check that Φ1 : F0 → F̃1 is equivariant after equipping F̃1 with
the G-action

T F̃1
g (x, c, s)T =

(
(−1)g1x, c, (−1)g2s

)
, ∀g = (g1, g2) ∈ G. (29)

Therefore, we only need to further modify the second layer op-
eration Φ2 : F̃1 → F2 such that it is equivariant under Eqs. (16)
and (29). Similar to Theorem 1, we have

Theorem 2. Let Φ̃2 ∈ Hom(F̃1,F2) be a linear map between F̃1
and F2. Then Φ̃2 is equivariant under Eqs. (16) and (29) if and only
if there exists a matrix W(2)

=
[
W(2)

1 ,W
(2)
2 ,W

(2)
3

]
∈ RD2×3 such that,

for all g = (g1, g2) ∈ G,[
Φ̃2(n, c, s)

]
(g) =

[
(−1)g1W(2)

1 ,W
(2)
2 , (−1)g2W(2)

3

]
·

[n
c

]
. (30)
s
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We omit the proof of Theorem 2 as it is nearly identical to
the first case of Theorem 1. Similar to Eq. (25), a (trainable G-
independent) bias vector b(2) ∈ RD2 can be added to Φ̃2 such that[
Φ2(n, c, s)

]
(g) =

[
Φ̃2(n, c, s)

]
(g) + b(2) becomes an equivariant

affine map between F̃1 and F2.
Before ending this section, we would like to note that the

symmetry-preserving methodologies developed herein on the
discrete Ablowitz–Ladik model can be easily extended to con-
tinuous Hamiltonian nonlinear systems such as the Nonlinear
Schrodinger (NLS) equation [44,45]. Indeed, the PT -symmetry
(defined on R×R for NLS instead of Z×R for the AL system) and
the space/time-periodicity of the solutions of NLS can be modeled
similarly using equivariant NNs based on Theorems 1 and 2. Our
onsiderations can naturally be extended beyond discreteness,
nd possibly beyond the Hamiltonian limit, provided suitable
ymmetries (such as parity) may exist.

. Numerical results

We demonstrate, in this section, the superior performance
f the S-PINNs over standard PINNs after enforcing the physical
ymmetries detailed in Section 3.

.1. Data-driven breather solutions of the AL model

We first consider the initial–boundary value problem (IBVP)
or ψn(t) on the truncated domain ΩT = Ω × [−T , T ], where
= {−N, . . . ,N} is a finite 1D lattice, N = 50, and T = 5:⎧⎨⎩

Nψ(n, t) = 0, (n, t) ∈ ΩT ,

ψn(0) = ψ∗

n (0), n ∈ Ω,

ψ−N (t) = ψ∗

−N (t), ψN (t) = ψ∗

N (t), t ∈ [−T , T ],
(31)

here

ψ = iψ̇n + (ψn+1 − 2ψn + ψn+1)+ (ψn+1 + ψn−1)|ψn|
2, (32)

nd ψ∗
n (t) is a (known) analytic solution of the AL model, such as

hose of Eqs. (6), (7), and (8). It is important to clarify once again
ere for the reader that we use the overbar to denote complex
onjugation, while the asterisk notation is used to denote an an-
lytically available waveform. We use the architecture explained
n Section 3.1 for S-PINN, and modify the first and second layer
appings according to Section 3.2 if the solution is further known

o be periodic in space or time. The L-layer PINN and S-PINN, both
enoted as Φ(n, t; θ) with two output neurons corresponding to
he real and imaginary parts of the solution ψ of Eq. (31), are
earned by minimizing the following mean squared error (MSE)

SE(θ) = MSE0 +MSEb +MSEf , (33)

ith MSE0,MSEb,MSEf defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MSE0 =
1

2N + 1

N∑
n=−N

|Φ(n, 0; θ)− ψ∗

n (0)|
2
,

MSEb =
1
Nt

Nt∑
j=1

⏐⏐Φ(−N, tj; θ)− ψ∗

−N (tj)
⏐⏐2

+
⏐⏐Φ(N, tj; θ)− ψ∗

N (tj)
⏐⏐2 ,

MSEf =
1

(2N − 1)Nt

Nt∑
j=1

N−1∑
n=1−N

|NΦ(n, tj; θ)|2,

(34)

here {tj}Nj=1 are randomly sampled from a uniform distribution
on [−T , T ], NΦ(n, t; θ) is defined in Eq. (32) by replacing ψn(t)
ith Φ(n, t; θ), and the time derivative is obtained via automatic
ifferentiation [98]. The models are trained with 30K iterations
5

Table 2
Comparison of numerical accuracy in obtaining data-driven solutions of the AL
model, measured in relative L2 error against the analytic solutions of Eqs. (6), (7),
and (8). The mean and standard deviation of the error after three independent
random trials are displayed. The number Nt measures the number of collocation
points used for training the models [cf. Eq. (34)].

Error in learning the KM soliton solution of Eq. (6)

Models Nt = 10 Nt = 20 Nt = 30 Nt = 40

PINN (1.57± 0.15)e-1 (7.32± 3.17)e-2 (6.39± 2.53)e-2 (3.87± 0.90)e-2
S-PINN (4.26± 1.67)e-2 (2.30± 0.79)e-3 (3.36± 2.11)e-4 (2.03± 1.35)e-4

Error in learning the Akhmediev breather solution of Eq. (7)

Models Nt = 10 Nt = 20 Nt = 30 Nt = 40

PINN (7.62± 1.42)e-1 (6.13± 1.97)e-1 (4.25± 1.46)e-1 (2.99± 1.51)e-1
S-PINN (8.02± 1.25)e-2 (9.25± 1.41)e-3 (2.51± 2.14)e-3 (1.06± 0.37)e-3

Error in learning the Peregrine soliton solution of Eq. (8)

Models Nt = 10 Nt = 15 Nt = 20 Nt = 25

PINN (3.65± 2.15)e-1 (5.59± 3.50)e-1 (1.69± 1.04)e-1 (5.89± 4.76)e-2
S-PINN (3.81± 2.80)e-2 (1.57± 1.01)e-2 (7.32± 5.56)e-3 (1.09± 0.25)e-3

Table 3
The effect of the network width D and depth L on the performance of the models.
The mean and standard deviation of the relative error after three independent
random trials are displayed.

Error in learning the KM solution of Eq. (6)

L D = 40 (PINN) D = 80 (PINN) D = 40 (S-PINN) D = 80 (S-PINN)

4 (7.22± 3.44)e-2 (7.38± 5.03)e-2 (3.08± 0.92)e-3 (1.15± 0, 15)e-3
6 (2.77± 0.02)e-2 (8.81± 1.83)e-2 (3.21± 0.56)e-4 (4.09± 1.40)e-4
8 (4.65± 1.71)e-2 (8.01± 2.69)e-2 (4.31± 4.01)e-4 (6.69± 3.07)e-3

Error in learning the Akhmediev breather solution of Eq. (7)

L D = 40 (PINN) D = 80 (PINN) D = 40 (S-PINN) D = 80 (S-PINN)

4 (3.30± 2.04)e-2 (1.71± 0.90)e-2 (2.84± 0.93)e-3 (2.05± 0.10)e-3
6 (4.15± 1.07)e-3 (1.33± 1.14)e-2 (8.65± 1.40)e-4 (7.08± 3.75)e-4
8 (4.86± 1.48)e-3 (6.44± 5.71)e-2 (7.44± 3.97)e-4 (1.74± 0.77)e-3

Error in learning the Peregrine soliton solution of Eq. (8)

L D = 40 (PINN) D = 80 (PINN) D = 40 (S-PINN) D = 80 (S-PINN)

4 (7.34± 0.38)e-3 (6.92± 1.52)e-3 (3.15± 0.74)e-3 (2.80± 1.06)e-3
6 (1.27± 0.13)e-3 (1.56± 0.20)e-3 (7.61± 0.87)e-4 (1.32± 0.54)e-3
8 (1.03± 0.19)e-3 (1.06± 0.15)e-3 (4.57± 2.07)e-4 (5.16± 3.21)e-4

of ADAM [99], and 15K iterations of L-BFGS [100] to ensure
convergence. We set the network depth L = 6, and the width
(Dl)1<l<L of the hidden layers is set to D = 100.

Table 2 displays the relative discrete L2 error of the data-
driven solutions (against the known analytic solutions of
Eqs. (6), (7), and (8)) on a grid of size 101 × 3001 sampling
the computation domain ΩT . We report the mean and standard
deviation of the error after three independent random trials;
during each trial, the S-PINN and the regular PINN use the same
set of collocation points for training. It is evident that, after
enforcing physical symmetry, S-PINN is able to learn solutions
with typically around one order of magnitude more accuracy
compared to those of the regular PINN, especially when the
number of collocation points (measured by Nt , the number of
random time steps used in calculating the MSE [cf. Eq. (34)]) is
small during training. Since S-PINN uses the same loss function,
Eq. (34), as the regular PINN, the error reduction in Table 2
results only from the fact that physical structures of the solution
have been correctly enforced by S-PINN. Indeed, Figs. 1, 2, and 3
rovide a visual illustration of the learned solutions, and one can
eadily verify that physical symmetries of the solutions are indeed
nforced by S-PINNs, but not regular PINNs.
We also provide a systematic study on the effect of the net-

ork width D and depth L on the performance of the models.
he number of training collocation points is fixed to be small
hroughout the experiments by setting Nt = 30 for the KM and
khmediev states, and Nt = 20 for the Peregrine soliton. Table 3
isplays the mean and standard deviation of the relative error
fter three independent trials. It can be seen that S-PINNs con-
istently outperform regular PINNs by typically around an order
f magnitude in different settings; nevertheless it is interesting
o observe that in Table 3, this advantage is lower in the case
f the Peregrine soliton; the reason is that spatial or temporal
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Fig. 1. Numerical results for the KM soliton obtained by using PINN and S-
PINN with training collocation points sampled from the entire computation
domain ΩT . The top three panels depict the spatio-temporal evolution of the
amplitude |ψ(n, t)| for the exact KM soliton solution (top panel), and data-
driven solutions obtained by PINN (middle left panel) and S-PINN (middle right
panel). The bottom two panels present the spatial distribution of the amplitude
|ψn(t = −0.67)| (at t = −0.67, i.e., at a time before the solution attains its
aximum amplitude at t = 0), and its temporal evolution |ψ0(t)| at n = 0.
he solid blue lines in these panels highlight the exact solution whereas the
ashed green and red lines correspond to the data-driven solutions obtained
y PINN and S-PINN, respectively. It is evident that the regular PINN fails to
earn a solution obeying time-periodicity and spatio-temporal parity symmetry
pecified by Eq. (9), whereas S-PINN successfully captures both symmetries (and
ence is producing significantly more accurate solutions) after enforcing them
xplicitly in the network architecture.
6

Fig. 2. Same as Fig. 1 but for the Akhmediev breather (i.e., the spatially periodic
solution to the AL model) with training collocation points sampled from the
entire computation domain ΩT . Similarly to Fig. 1, the top three panels depict
the spatio-temporal evolution of the amplitude |ψ(n, t)| for the exact Akhmediev
breather (top panel), and data-driven solutions obtained by PINN (middle left
panel) and S-PINN (middle right panel). The bottom two panels present the
spatial distribution of the amplitude |ψn(t = 0.33)| (i.e., at t = 0.33 after the
ne the solution attains its maximum amplitude at t = 0), and its temporal
volution |ψ25(t)| (i.e., at the n = 25th site). The coloring and styles of the lines
n these panels are the same as the ones used in Fig. 1 (see also the legends in
these panels). Again, the superiority of the use of S-PINN over (regular) PINN in
capturing the correct profiles is clearly evident.
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Fig. 3. Same as Fig. 1 but for the doubly localized, Peregrine soliton with training
collocation points sampled from the entire computation domain ΩT . The format
f the panels is the same as the one of Figs. 1 and 2. Note that the second to
ast panel depicts the spatial distribution of the amplitude |ψn(t = 0.67)| (i.e., at
= 0.67 after the solution attains its maximum amplitude at t = 0) whereas the
ast panel, the temporal evolution of |ψ0(t)| at n = 0. The use of S-PINN captures
gain the correct profiles as is evident in the bottom two panels therein.

eriodicity is no longer available as an additional constraint for
-PINN to enforce in the case of the Peregrine soliton. Deeper
etworks typically learn solutions with higher precision, but the
mprovement in accuracy plateaus when L and D are sufficiently
arge. In fact, both PINN and S-PINN tend to slightly overfit,
7

Table 4
Accuracy of the data-driven solutions of the AL model extrapolated beyond the
convex hull of the training samples, measured in relative L2 error against the
analytic solutions of Eqs. (6), (7), and (8). The mean and standard deviation of
the error after three independent random trials are displayed. The number Nt
measures the number of collocation points used for training the models.

Error in learning the KM solution of Eq. (6)

Models Nt = 10 Nt = 20 Nt = 30 Nt = 40

PINN (1.88± 0.04)e-0 (1.96± 0.11)e-0 (1.80± 0.03)e-0 (1.74± 0.03)e-0
S-PINN (3.12± 0.13)e-2 (1.60± 1.01)e-2 (9.96± 6.73)e-3 (6.16± 2.34)e-3

Error in learning the Akhmediev breather solution of Eq. (7) (extrapolation)

Models Nt = 10 Nt = 20 Nt = 30 Nt = 40

PINN (6.32± 0.73)e-1 (5.76± 0.67)e-1 (6.30± 0.92)e-1 (5.33± 0.97)e-1
S-PINN (1.68± 0.72)e-1 (3.25± 1.22)e-3 (4.18± 0.86)e-3 (2.37± 1.09)e-3

Error in learning the Peregrine soliton solution of Eq. (8)

Models Nt = 10 Nt = 15 Nt = 20 Nt = 25

PINN (1.62± 0.11)e-0 (1.86± 0.16)e-0 (1.77± 0.19)e-0 (1.67± 0.06)e-0
S-PINN (3.37± 3.12)e-2 (1.03± 0.21)e-2 (7.15± 2.37)e-3 (6.43± 4.78)e-3

Table 5
Accuracy of PINN and S-PINN in learning a particular solution of the AL model
with non-decaying far-field oscillations [59]. The upper and, respectively, lower
half of the table display the relative L2 error of the learned solutions when
training collocation points are sampled from the entire domain ΩT and partial
domain Ω̃T .

Relative error in learning the numerical solution Fig. 7

Models Nt = 10 Nt = 15 Nt = 20 Nt = 25

PINN (4.39± 0.05)e-1 (4.19± 0.22)e-1 (4.17± 0.17)e-1 (4.00± 2.69)e-1
S-PINN (4.20± 0.34)e-3 (1.26± 0.12)e-3 (2.79± 0.58)e-2 (5.57± 0.56)e-2

Relative error in learning the numerical solution Fig. 7 (extrapolation)

Models Nt = 10 Nt = 15 Nt = 20 Nt = 25

PINN (2.03± 0.39)e-0 (2.20± 0.11)e-0 (3.08± 0.69)e-0 (2.14± 0.22)e-0
S-PINN (2.99± 1.09)e-3 (1.03± 0.29)e-3 (1.78± 0.56)e-3 (1.18± 0.26)e-3

i.e., learning a solution with larger test error, in the small-data
regime when the width and depth reach D = 80 and L = 8.

4.2. Solution extrapolation

We next examine the accuracy of the learned solutions be-
yond the domain from which the training collocation points are
sampled. More specifically, we modify the MSE given by Eq. (34)
for training by including in the sum only collocation points from
the first quadrant Ω̃T = {0, . . . ,N} × [0, T ] of the computation
domain ΩT , and then we calculate the error of the learned solu-
tion on the entire domain ΩT , extrapolating beyond the convex
hull of the training samples. Table 4 displays the relative L2
error of the solutions after three independent trials. The accu-
racy of the extrapolated solutions obtained by the regular PINN
stays low as the number of training samples increases, while in
comparison S-PINN achieves multiple orders of magnitude more
accurate solutions. Figs. 4, 5, and 6 provide a visual illustration
on the difference between the solutions learned by regular PINNs
and S-PINNs: even though regular PINNs can produce reason-
able solutions on the sampling domain Ω̃T , the solutions outside
Ω̃T become non-meaningful. S-PINNs, on the other hand, can
achieve accurate solutions far beyond the sampling domain after
enforcing physical symmetries in the learning process.

4.3. KM breathers with an oscillatory background: S-PINN vs PINN

Alongside the KM soliton solution of Eq. (6), recently in [59], a
time-periodic solution that features small, yet non-decaying far-
field oscillations was obtained (through numerical continuation
and fixed-point methods) for the AL model. We will use this
(numerically exact) solution to demonstrate a case in which both
PINN and S-PINN present difficulty in learning solutions with such
background oscillatory patterns. To that end, Figs. 7 and 8 sum-
marize our results for both PINN and S-PINN. Moreover, Table 5
shows the error of the solutions learned with comparing models
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Fig. 4. Same as Fig. 1 but the training collocation points are sampled only from
the first quadrant Ω̃T of the computation domain [cf. Section 4.2], and the
extrapolated solutions are shown on the entire domain ΩT . The format of the
panels is the same as those of Fig. 1. Although PINN fails in this case, the use of
S-PINN demonstrates its robust performance in capturing the correct behavior
of the KM soliton.

when the training collocation points are sampled from either the
entire domain ΩT or the partial domain Ω̃T , i.e., extrapolated so-
lutions. It can be seen that S-PINN still (significantly) outperforms
PINN upon enforcing the physical symmetries discussed above.
8

Fig. 5. Same as Fig. 2 but the training collocation points are sampled only from
the first quadrant Ω̃T of the computation domain [cf. Section 4.2]. Again, the
format of the panels is the same as the one of Fig. 2. It is clearly evident that
the use of S-PINN correctly constructs the Akhmediev breather in this case too.

However, the performance of S-PINN starts to deteriorate as Nt
exceeds 15. This can also be observed in Figs. 7 and 8, where
the S-PINN has difficulty in capturing the background oscillatory
patterns. A closer look at the learning curves in Fig. 9 reveals
that the reason is that the training loss decays much more slowly
as the number of training samples increases. In fact, the loss
is still slowly decaying when we terminate the optimizers. One
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Fig. 6. Same as Fig. 3 but the training collocation points are sampled from only
the first quadrant Ω̃T of the computation domain [cf. Section 4.2]. The format
of the panels is the same as in Fig. 3. This case demonstrates once again the
superiority of S-PINN over (regular) PINN in capturing the Peregrine soliton in
such a sampling scenario.

remedy for this issue may be to build 2N + 1 networks (one
for each discrete spatial location) with only time dependence,
but enforcing physical symmetries on such models needs to be
formulated differently. This is a topic that is worthwhile of further
study, but since the corresponding architecture is fundamentally
different, this will be deferred to future work.
9

Fig. 7. Numerical results on the full space for the KM breather (sitting atop
of an oscillatory background) to the AL model which itself was first reported
in [59] (see, Fig. 3(c) therein). The top three panels depict the spatio-temporal
evolution of the amplitude |ψn(t)| for the (numerically) exact KM breather (top
panel), and data-driven solutions obtained by PINN (middle left panel) and S-
PINN (middle right panel) over 3 periods. The bottom two panels present the
spatial distribution of the amplitude |ψn(t = −0.25)| at t = −0.25 and its
temporal evolution at n = 0 |ψ0(t)|. Note how the regular PINN fails in this
case (see the bottom panel) although we also report the disparity between the
(numerically) exact solution and data-driven KM breather using S-PINN close to
the right boundary (see the next to last panel).
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Fig. 8. Same as Fig. 7 but the training collocation points are sampled only from
the first quadrant Ω̃T of the computation domain [cf. Section 4.2]. The format
of all panels is the same as the one of Fig. 7. We note that the disparity that
was shown in the bottom panel of Fig. 7 disappears in this case, thus rendering
S-PINN to be quite robust in constructing data-driven solutions solely based on
numerical data.

5. Conclusions and future work

In the present work we have revisited the topic of PINNs that
has been extensively considered recently in the context of disper-
sive nonlinear media and, particularly, their rogue wave solutions.
10
Fig. 9. (Training) loss history for PINN and S-PINN in learning KM breathers
with an oscillatory background [cf. Section 4.3]. Panel (a): training collocation
points are sampled from the entire domain ΩT . The training loss of S-PINN is still
slowly decreasing as the optimizer terminates, which explains the (nonintuitive)
deteriorating accuracy of S-PINN when the number of training samples Nt
increases [cf. Table 5]. Panel (b): training collocation points are sampled from the
first quadrant Ω̃T of the computation domain. Both models have fast decaying
raining loss, but only S-PINN learns a generalizable solution beyond the convex
ull of the training samples after enforcing physical symmetry [cf. Fig. 8].

We have opted to introduce here two elements of novelty. One of
them is the consideration of a nonlinear dynamical lattice model
in the form of the important integrable paradigm of the Ablowitz–
Ladik system. More important from the methodological point of
view is the incorporation of the underlying model symmetries,
such as parity and time-reversal. In that vein, the formulation
of equivariant neural networks provided a natural avenue for
extending standard PINNs to the herein proposed S-PINNs, where
S stands for symmetry. This extension was systematically shown
to be superior to regular PINNs by typically one or in some
cases more orders of magnitude for different solutions within our
model of choice.

Nevertheless, we could identify (recently obtained numeri-
cally) case examples where both methodologies present limita-
tions. Such nanopteronic solutions constitute natural possibilities
for developing extensions of the present work, although it should
be noted that S-PINNs outperform regular PINNs in this case too.
Of course, we remain astutely aware of the fact that in the under-
lying model considered, in addition to parity and time-reversal
symmetries, there exist additional symmetries, indeed infinitely
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any of them. Hence, the incorporation of corresponding con-
traints, especially ones related to physical symmetries (e.g., U(1)
nvariance associated with mass conservation etc.) may be of par-
icular further interest towards S-PINN extensions. Nevertheless,
ur motivation herein also stemmed from the broad relevance
f these symmetries (parity and time-reversal) in discrete and
ontinuum systems alike.
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Appendix A. Proof of Theorem 1

Proof. The sufficiency of Eqs. (17), (18), and (19) is easy to
verify, and we only prove them also being necessary to achieve
equivariance [cf. Eq. (15)]. To simplify notation, we are dropping
the layer index (l) in W(l).

• When l = 1: any Φ̃1 ∈ Hom(F0,F1) is of the form[
Φ̃1(n, t)

]
(g) = W̃(g)

[
n
t

]
=

[
W̃1(g), W̃2(g)

] [n
t

]
, (A.1)

where W̃(g) = [W̃1(g), W̃2(g)] ∈ RD1×2,∀g = (g1, g2) ∈ G.
We thus have, for any g̃ = (g̃1, g̃2) ∈ G,

TF1
g̃

[
Φ̃1(n, t)

]
(g) =

[
W̃1(g − g̃), W̃2(g − g̃)

] [n
t

]
, (A.2)

[
Φ̃1T

F0
g̃ (n, t)

]
(g) =

[
W̃1(g), W̃2(g)

] [(−1)g̃1n
(−1)g̃2 t

]
. (A.3)

Setting g̃ = g , we see that the necessary condition for
equivariance described by Eq. (15) to hold when l = 1 is

[
W̃1(g), W̃2(g)

]
=

[
(−1)g1W̃1(0), (−1)g2W̃2(0)

]
, (A.4)

i.e., Eq. (17) holds for [W1,W2] = [W̃1(0), W̃2(0)].
• When 1 < l < L: any Φ̃l ∈ Hom(Fl−1,Fl) is of the form[
Φ̃lf

]
(g) =

∑
g ′∈G

W̃(g, g ′)f (g ′), ∀f ∈ Fl−1, (A.5)

where W̃(g, g ′) ∈ RDl×Dl−1 . We thus have, for any g̃ ∈ G,

TFl
g̃

[
Φ̃lf

]
(g) =

[
Φ̃lf

]
(g − g̃) =

∑
g ′∈G

W̃(g − g̃, g ′)f (g ′),

[
Φ̃lT

Fl−1
g̃ f

]
(g) =

∑
W̃(g, g ′)f (g ′

− g̃). (A.6)

g ′∈G

11
Setting g̃ = g , we have W̃(g, g ′) = W̃(g − g ′, 0), which
proves Eq. (18) after setting W(g) = W̃(g, 0).

• When l = L: any Φ̃L ∈ Hom(FL−1,Fl) is of the form

Φ̃Lf =
[∑
g∈G

W̃1(g)T f (g),
∑
g∈G

W̃2(g)T f (g)
]T
, (A.7)

where W̃1(g), W̃2(g) ∈ RDL−1 , ∀g ∈ G. We thus have, for
any g̃ = (g̃1, g̃2) ∈ G,

TFL
g̃

[
Φ̃Lf

]
=

[ ∑
g∈G W̃1(g)T f (g)

(−1)g̃2
∑

g∈G W̃2(g)T f (g)

]
, (A.8)

Φ̃L
[
TFL−1
g̃ f

]
=

[∑
g∈G W̃1(g)T f (g − g̃)∑
g∈G W̃2(g)T f (g − g̃)

]
. (A.9)

In order for Eqs. (A.8) and (A.9) to be equal, we need, ∀g ∈ G,

W̃1(g) = W̃1(0), W̃2(g) = (−1)g2W̃2(0). (A.10)

We thus have Eq. (19) after setting W1 = W̃1(0),W2 =

W̃2(0). □

Appendix B. Implementation

S-PINNs can be implemented as standard feed-forward NNs.
Indeed, we first lexicographically order the group G = Z2 × Z2
into

G =
{
g1, g2, g3, g4

}
= {(0, 0), (0, 1), (1, 0), (1, 1)} . (B.1)

The hidden feature space Fl = (RDl )G can thus be identified with
R4Dl . More specifically, with a slight abuse of notation, a feature
Fl ∋ f (l) : G → RDl can also be viewed as a vector f (l) in R4Dl :

f (l) ≡ [f (l)(0, 0)T , f (l)(0, 1)T , f (l)(1, 0)T , f (l)(1, 1)T ]T . (B.2)

Under such identification, given the input (n, t) ∈ Z×R, its first-
layer feature before nonlinearity f (1) = Φ1(n, t) ∈ F1 ∼= R4D1 is
obtained via the following affine transformation

f (1) = W̃(1)
[
n
t

]
+ b̃(1), (B.3)

where the weight matrix W̃(1)
∈ R4D1×2 and bias vector b̃(1) ∈

R4D1 are assembled from the trainable weights
W(1)

= [W(1)
1 ,W

(1)
2 ] ∈ RD1×2 and bias b(1) ∈ RD1 based on Eqs. (17)

and (25):

W̃(1)
=

⎡⎢⎢⎢⎢⎣
W(1)

1 W(1)
2

W(1)
1 −W(1)

2

−W(1)
1 W(1)

2

−W(1)
1 −W(1)

2

⎤⎥⎥⎥⎥⎦ , b̃(1) =

⎡⎢⎢⎢⎣
b(1)

b(1)

b(1)

b(1)

⎤⎥⎥⎥⎦ ; (B.4)

in particular, the trainable parameters W(1) and b(1) are shared
within the group G during the matrix assembly Eq. (B.4).

Similarly, for intermediate layers 1 < l < L, the affine maps
Φl : R4Dl−1 ∼= Fl−1 → Fl ∼= R4Dl (25) (18) are obtained from

Φlf (l−1)
= W̃(l)f (l−1)

+ b̃(l), (B.5)

where

W̃(l)
=

⎡⎢⎢⎢⎣
W(l)(0, 0) W(l)(0, 1) W(l)(1, 0) W(l)(1, 1)
W(l)(0, 1) W(l)(0, 0) W(l)(1, 1) W(l)(1, 0)
W(l)(1, 0) W(l)(1, 1) W(l)(0, 0) W(l)(0, 1)

(l) (l) (l) (l)

⎤⎥⎥⎥⎦

W (1, 1) W (1, 0) W (0, 1) W (0, 0)
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b̃(l) =

⎡⎢⎢⎢⎣
b(l)

b(l)

b(l)

b(l)

⎤⎥⎥⎥⎦ ∈ R4Dl (B.6)

are assembled from the trainable parameters W(l)
=

{
W(l)(g)

∈ RDl×Dl−1 : g ∈ G
}
and b(l) ∈ RDl .

Finally, the last-layer linear map ΦL : R4DL−1 ∼= FL−1 → FL =

R2 (25) (19) can be viewed as

ΦLf (L−1)
= W̃(L)f (L−1), (B.7)

where

W̃(L)
=

[
W(L)T

1 W(L)T
1 W(L)T

1 W(L)T
1

W(L)T
2 −W(L)T

2 W(L)T
2 −W(L)T

2

]
(B.8)

is derived from the trainable weight matrix W(L)
= [W(L)

1 ,W
(L)
2 ] ∈

RDL−1×2. As mentioned in Section 3.1.2, nonlinearity σ = tanh :

R → R (26) is applied after each affine map (except for the last
one) on every entry of the feature f (l) ∈ R4Dl , 1 < l < L.
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