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Testing Multispecies Coalescent Simulators
using Summary Statistics

Elizabeth S. Allman, Hector Banos, and John A. Rhodes

Abstract—As genomic-scale datasets motivate research on species tree inference, simulators of the multispecies coalescent (MSC)
process have become essential for the testing and evaluation of new inference methods. However, the simulators themselves must be
tested to ensure that they give valid samples. This work develops methods for checking whether a collection of gene trees is in accord
with the MSC model on a given species tree. When applied to well-known simulators, we find that several give flawed samples. The
tests presented are capable of validating both topological and metric properties of gene tree samples, and are implemented in a freely
available R package MSCsimtester so that developers and users may easily apply them.

Index Terms—multispecies coalescent model, incomplete lineage sorting, MSC simulators

1 INTRODUCTION

IMULATION software plays an important role in the de-
S velopment of phylogenetic methods, providing our only
means of 1) verifying that inference software performs prop-
erly on large scale data, and 2) comparing the performance
of different inference methods. Although simulation studies
are often performed under conditions in which model fit is
much better than is likely for empirical data, these studies
are nonetheless essential to methodological progress.

With increasing attention to the analysis of large mul-
tilocus datasets for which incomplete lineage sorting (ILS)
may have led to discordant gene trees, simulators of the
multispecies coalescent (MSC) model of ILS have become one
component of the simulation pipeline. Although there are
many causes of gene trees discordance other than ILS, the
MSC model is sometimes viewed as the null model — to be
considered before further complications such as hybridiza-
tion, lateral gene transfer, gene duplication and loss, and/or
population structure are invoked [1]. Inference of a species
tree under the MSC can now be performed in a variety of
ways [2]-[7], and methods continue to be developed and
refined.

In outline, a large-scale simulation study of species tree
inference methods might begin with choices of one or more
fixed species trees, with branch lengths in generations,
and population sizes for each branch. The number of taxa
on the trees may range from small (say eight) to quite
large (thousands, e.g. [6]), with anywhere from hundreds
to thousands of gene trees being simulated. Sequences are
then simulated on each gene tree, forming the simulated
data to be analyzed. While sequence simulation software
has been well vetted over the many years of development
of gene tree inference methods, the same is not true of
simulators producing gene trees under the MSC, and it is
this component of the pipeline on which we focus.

Unfortunately, testing an MSC simulator for correctness

e E. Allman and ]. Rhodes are with the University of Alaska Fairbanks,
USA. Email: e.allman@alaska.edu, j.rhodes@alaska.edu
e H. Barios is with Dalhousie University, CA. Email: hbanos@dal.edu

Manuscript received XXX; revised YYY.

is not simple, as the theoretical distribution of gene trees
the model produces is quite complex. For instance, un-
der the MSC on any species tree, each possible gene tree
topology has positive probability, with the full probability
density having a quite complicated dependence on the
species tree topology, edge lengths, and population sizes.
Straightforward comparison of a sample of gene trees to the
theoretical distribution is simply not a practical approach.
This has led some of the most careful developers to validate
their software by comparing its output to that of other
simulators, rather than to theoretical predictions [8]. For
other MSC software, we have been unable to find any
information on testing. Due to the difficulty of forming a
coherent understanding of a large sample of gene trees, even
knowledgeable users may not be able to spot simulation
flaws, and are left to trust that the software does what is
claimed.

Here we introduce several testing tools, based on theo-
retical distributions of summary statistics that capture either
metric or topological information on the species tree param-
eter. Our first test is based on the distribution of pairwise
distances on gene trees as developed in [9], and the second
on counts of rooted triples on gene trees generated under
the MSC [10]. Implemented in a freely available R package,
MSCsimtester, these tests can be applied to gene tree
samples from any simulator to study whether its output is in
accord with the MSC. Although examining such summary
statistics cannot give an ironclad guarantee of correctness,
we believe they are likely to uncover most problems.

We applied our MSCsimtester tools to output from five
well-known MSC simulators on a species tree: SimPhy [8],
Phybase [11], Hybrid-Lambda [12], Mesquite [13], and
DendroPy [14]. See Section 4 for the criterion employed in
making our choices. Our goal in this short note is not to
check the accuracy of all existing MSC simulators, but to
introduce novel methodology for testing them and future
ones.

Our tests discovered (initially) that only two of the five
simulators, SimPhy and DendroPy, behave as expected un-
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der the MSC. In fact, Phybase also generates valid samples
under the MSC, but its documentation was not sufficiently
explicit on specifying its input, and our initial interpretation
of the manual was incorrect. Our tools enabled us to catch
and diagnose this user error, and the manual has since been
updated after correspondence with the developer. A fourth
simulator, Hybrid-Lambda [12] passes our topological tests
but samples metric gene trees incorrectly. After this was
uncovered in a preliminary version of this work, it has
been documented on the Hybrid-Lambda website. The
last, Mesquite [13], produces samples with neither gene
tree topologies nor metric properties in accord with the MSC
model. To the best of our knowledge, this has not been
publicized. 5 While we notified the authors of these sim-
ulators of the problems in advance of this publication, the
larger community should be aware of the need to interpret
results of previous simulation work with them cautiously.
We strongly suggest that users of other simulators, and
developers of new ones, test them with the MSCsimtester
tools, which are available at the Comprehensive R Archive
Network (CRAN).

2 BACKGROUND AND TESTING METHODS

We give an informal description of the MSC model, to
motivate and introduce the summary statistics upon which
we focus.

Suppose first that 3 taxa are related by the species tree
with topology ((a,b),c). Acknowledging that species are
composed of populations, we depict this by a tree whose
edges are ‘pipes’ as in Figure 1. The length of each pipe
is elapsed time measured in generations, and the width of
the pipe represents population size, which may vary over
time and edge. When individual genes are sampled from
the leaves of the species tree, they trace backwards in time
within the species tree until they coalesce at a common an-
cestral individual. Coalescence is a random process, which
informally can be described as individual genes lineages
choosing their ‘parent’ uniformly at random from those
existing in the previous generation, a panmictic viewpoint.
Thus the only population detail of importance under the
MSC is size. Importantly, there is a greater chance of coales-
cence when populations are small, but no requirement that
lineages coalesce within any specified finite time.

Simplifying assumptions on population sizes are often
made by modelers and programmers, such as that all pop-
ulations at all times and on all edges throughout the tree
are a constant N. More realistic is to at least allow different
population sizes IV, for each edge (pipe) e of the species tree.
While it would be highly desirable to be able to simulate
gene trees under the MSC using arbitrary population size
functions N,(t) varying with time, current simulators do
not make this easy on a large tree. Nonetheless, our testing
framework could accommodate that generality.

When gene trees are produced under the MSC they have
two characteristics that can be viewed somewhat separately.
One is the metric information, which is reflected in the
distribution of pairwise distances between two fixed taxa
across the gene trees. The second is topology, which is re-
flected in the distribution of rooted triple trees on three fixed
taxa displayed on gene trees. In testing the performance of

I

Fig. 1. (Left) A metric species tree ((a:lq, bily):Ly, cil:) drawn in black,
with population sizes depicted by the widths of edges. Time is mea-
sured in generations before the present, and the vertices v and r are
labeled, showing where the populations a and b merge, and further
in the past where the populations ab and ¢ merge. The vertex v is
the most recent common ancestor of species a and b, M RCA(a,b),
and r = M RCA(ab, c). With one lineage A, B, C sampled from each
species, A € a,B € b,C € C, a (blue) metric gene tree depicting
ancestral lineages forms within the species tree. (Right) The same
metric gene tree depicted more simply.

a simulator, it is essential that both metric and topological
properties of a sample be examined.

2.1 The distribution of pairwise distances on gene
trees

Consider now the species tree ((a:,, b:ly):4,, c:l.) shown in
Figure 1, with root 7 and v the most recent common ancestor
of a and b. For simplicity, fix constant population sizes IV,
on the edge above v, and N, above the root r. Tracking
the lineages of two genes A and B sampled from a and
b backwards in time, they cannot coalesce until they reach
the population above v. On the edge (population) above
v coalescence occurs by a Poisson process at a constant
rate 1/N,. Thus the time T to coalescence above v is
exponentially distributed for those times more recent than
the root of the tree, T € (0,¢,]. At the root r of the tree
there is an instantaneous change in the coalescence rate, to
the value 1/N,, and the coalescent process begins afresh.
For the purpose of illustration, assuming that NV, > N,,
then coalescence above the root r occurs at a faster rate than
below. Piecing together the 3 regions analyzed here (below
v, between v and r, above r), the density for the pairwise
distance between A and B on gene trees is a piecewise
exponential, such as that shown in Figure 2 for N,, = 2000
and N,. = 1000.

Note that the discontinuities in the density in Figure 2
occur due to 1) the impossibility of coalescence below v, and
2) the discontinuity in population size at r. For larger trees,
with more edges leading from the MRCA of a pair of taxa to
the root, discontinuities in the density arise whenever there
is a discontinuity in the population size. More generally,
note that if the population sizes vary along edges with time,
then the distribution need not be piecewise exponential, but
is computable from the population size functions N (t).
Finally, there is no reason to require that the species tree
be ultrametric, as edge lengths are in generations, and
generation time may vary on different branches. The precise
form of the pairwise distance density, and its derivation, is
given in Section 3, following work in [9].
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Fig. 2. The plot of the probability density function of d(A, B) on gene
trees for the species tree shown in Figure 1, with all edge lengths equal
to 1000 generations, and population size parameters N, = 2000 on the
internal edge and N, = 1000 for the population ancestral to the root.

2.2 The distribution of rooted triple topologies on gene
trees

To test topological features of a sample of gene trees sim-
ulated under the MSC, we use the frequencies of rooted
triples. For the species tree of Figure 1, again suppose the
population sizes N, and N, are constant. Then the proba-
bility that lineages from a and b fail to coalesce in the edge
of length ¢, between v and r is e~*, where z = ¢, /N,. The
quantity = here is the length of the edge in coalescent units,
a unit convenient for addressing the confounding effects
of population size and time. If the lineages fail to coalesce
before the root, then lineages from a, b, ¢ will all be present
above r, and all three rooted gene topologies ((4, B),C),
((A,C), B), and ((B, (), A) are equally likely to form. This
leads to the rooted triple probabilities

B(((A,B),C) =1 - 2,

3
B(((4,0),B) = 3¢, 0
1

P(((B.C).A) = 5o

which were derived by [10]. More general formulae, accom-
modating larger trees and changing population sizes are
derived in Section 3.

2.3 Metric and topological tests

To assess the accuracy of any MSC simulator, one first
produces a large sample of gene trees from a fixed metric
species tree with population size parameters. For testing
using pairwise gene tree distance densities, after choosing
some pair of taxa, a histogram of the pairwise distances
between these taxa across the gene trees can be compared to
the theoretical density. This comparison can be done visu-
ally, as major deviations from the theoretical predictions will
be obvious. Additionally, one can perform a statistical test,
such as that of Anderson and Darling [15], to compare the
empirical distribution from the simulation to the theoretical
one, giving a p-value to quantify the fit. Empirical cdfs for

the Anderson-Darling test results can then be compared
to the expected uniform cdf for the p-value distribution,
U(0,1).

For verifying topological accuracy, one begins by tabu-
lating the frequencies of the three rooted triple topologies
displayed on the simulated gene trees for any (all) choice(s)
of three taxa. The simulation can then be tested in two
ways: First, one judges the fit of empirical frequencies to the
expected ones using Pearson’s chi-squared test to obtain a p-
value. Second, one finds the maximum likelihood estimator
of the internal branch length x from the tabulated frequen-
cies, and compares this to the true value computed using
Equations (1) or their analog for larger trees. The first test is
a more formal test and has the advantage of being sensitive
to imbalances between the counts for the two topologies
incongruent with the species tree.

Both the metric and topological tests we propose require
choosing a subset of two or three taxa. While one can apply
the tests for all pairs and triples, we caution that in perform-
ing all such tests on the same data well known statistical
issues arise in interpreting results of the multiple compar-
isons. Although methods such as the Holm-Bonferroni [16]
could be applied to give conservative versions of such a
family of tests, we do not believe such a rigorous approach
is necessary given the goal of testing a simulator. Indeed, as
our analyses of particular simulators have shown, choosing
a pair of taxa connected by a many-edges path in the species
tree, or a rooted triple of taxa whose internal edge and/or
path from the most recent common ancestor to the root
is composed of many edges in the species tree, quickly
indicates problematic behavior.

3 DERIVATIONS OF SUMMARY DISTRIBUTIONS

Here we derive formulas for the distributions of pairwise
distances and rooted triples displayed on gene trees under
the MSC, for a metric species tree with population sizes
specified for each edge.

Let (S, {l.},{N.}) be a metric species tree with popu-
lation size functions, where each edge e has length /. and
population size N, : [0,¢.) — R>?. Here N.(t) denotes
the population size for a haploid organism ¢ generations
above the child node of e. There is also an ‘above the root’
population size function N, : [0, c0). (For diploid taxa, the
population sizes should be doubled). For technical reasons,
we assume 1/N,(t) is integrable on finite intervals.

3.1 Pairwise distance distribution

Let v be the most recent common ancestor of taxa a and b
(that is, the node on S where A and B lineages enter the
same population for the first time), and let P, be the path
in S from a to v, P, be the path in S from b to v, and P, be
the path in S from v to the root 7. Then P, = (eq, e, ..., €x),
where v is incident to e; and r is incident to ej. Finally,
let go = > ep, la and go = > cp, {» be the number
of generations from a and b, respectively, to v. Then the
distance d(A, B) is a random variable

Y:ga+gb+2X7
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where X is the random variable giving the time to coales-
cence of two lineages at v. Let ¢(z) be the probability density
function for X.

To compute ¢(x), let N* : [0,00) — R>? be the piecewise
‘union’ of the N, for e € P, and N,,, which with mg = 0,
m; = 1 4l for 1 < j <k, myy; = oo, and Ny the
population function ancestral to the root is given by

N*(z) = Ne,(z —mi_1)

for x € [m;—1,m;), 1 < i < k 4+ 1. Since the coalescent
process for two lineages in the same population of size
N*(z) occurs with instantaneous rate 1/N*(z), the prob-
ability density function is [9]

clz) = N*#(a;) exp (— /0JC N*l(r)dT)

_ TT7H exp (5" wmdr)
j=1

Nei(x—mi_l) ’

for x € [m;_1, m;), where

£; 1
= oxp [ - d
n exp /O Nei (7') T

is the probability that 2 lineages entering edge e; fail to
coalesce on it.

Since X = w, setting gq, = go + g» this shows the
probability density function for Y is

0 for y < gas,
Y—YGab—2mi_1 1
ﬁ exp (— fo 2 N @ d’T)
nj —ab—2m,;_
et QNei(%)

for 49 +2m;—1 <y < Gap + 2my,
1<i<k,

Y—Gab—2my
|
€xXp (* Jo 7 NT(T)dT)

2Ner ( yfga,b;?mk )

k
117
j=1

for gap + 2my < .

In the special case that a population size function N, (t) is
constant, this shows that the corresponding piece of f is a
shifted, scaled, and possibly truncated exponential density.

3.2 Rooted triple frequencies

Suppose the rooted triple ((a,b), c) is displayed on S, and
let P = (e1,e2,...€;) denote the path from the most
recent common ancestor of a,b on S to the most recent
common ancestor of a, b, c. With the notation of the previous
subsection, the probability that A and B lineages fail to
coalesce within P is []%_; n;. Note that the gene triplets
((A,C),B) and ((B,CS,A)) can only form if the A, B
lineages do not coalesce on P. Moreover, if A, B have not
coalesced on P then by the exchangeability of lineages in

1000

1000 3000

1000 2000

Fig. 3. 4-taxon metric species tree, with constant population sizes on
each internal edge, for which data was simulated using the parameter
values shown.

the same populations under the MSC, the probability that
any particular pair of A, B, C' coalesce first is 1/3. Thus

P(((4,0),B) =P (B,C), A) = < [] ny
j=1

Since the probabilities of the three possible topologies sum
to 1,

P(((4,8),0) =1~ [[n

In the special case of constant population sizes 7; =
exp(—Y£e, /Ne,). More generally, the length of e; in coalescent
units is foei ﬁdr, and H;Zl n; = exp(—x) where z is the
length of P in coalescent units.

4 SIMULATIONS AND RESULTS

Using both metric and topological tests we investi-
gated five popular simulators: SimPhy [8], Phybase [11],
Hybrid-Lambda [12], Mesquite [13], amd DendroPy [14].
These simulators were chosen since they 1) allow input
of a species tree, either in Newick notation or graphically,
with edge lengths in generations, and 2) allow a population
size N, to be assigned independently to each edge e in the
species tree. We consider these minimal requirements for
a simulator appropriate for large scale simulations studies
involving the MSC. All these software packages have many
functionalities beyond MSC simulation, but our focus is
restricted to the accuracy of MSC samples.

We also investigated the performance of the well-
established and highly flexible ms [17] using a small species
tree. However, for simulating from the MSC on a tree, ms
requires careful conversion of a Newick-formatted tree for
input, which violates our first criterion. This conversion,
when performed manually, is prone to error, and therefore
highly undesirable for many-taxon simulations. Although
PhyloNet [18] provides a tool for inputting a species tree
and then calling ms to generate a gene tree sample, its
functionality is restricted to a constant population size on
the entire species tree, violating our second criterion. On
a manually produced small tree with varying population
sizes, however, no aberrations were found in the gene tree
samples ms produced (results not shown), as we expected.

We performed tests with a number of species trees,
using a variety of choices of constant population sizes per
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Fig. 4. Pairwise distance distributions for d(A, B) from 100,000 simulated gene trees for the species tree and population sizes shown in Figure 3.
Cumulative distribution functions are shown in the Supplement, Figure F2.

edge. Constant population sizes were used since none of
the simulators implement time-varying population sizes.
Here we show only representative examples of this work,
using the species tree and populations depicted in Figure 3.
Additional test results, on trees with up to 6 taxa, are shown
in the supplementary materials, in Figures F2-F23 and Ta-
bles T1-T4. Samples of 100,000 gene trees were simulated
with Mesquite, Phybase, Simphy, DendroPy, and of size
99,999 (its maximum) for Hybrid-Lambda.

For assessing the accuracy of metric features of the sam-
ple, the values of d(A, B) on the gene trees were extracted,
and a histogram was produced. These are shown in Figure
4, with the theoretical distribution superimposed on them.
There is a good match for SymPhy and DendroPy, as was
seen in all our simulations with these packages. When our
initial Phybase simulation did not match expectations, we
learned that species tree edge lengths should be supplied as
ut, where t is in generations and p is a mutation rate, while
population sizes should be specified as § = 4Ny where Ny
is diploid population size. Taking t = 1 and 6 = 2N with N
the haploid population size, Phybase’s sample matched ex-
pectations well. Both the Hybrid-Lambda and Mesquite
simulations show pronounced deviations from the theoret-
ical distribution. However, when the input tree is specified
with branch lengths in coalescent units, Hybrid-Lambda
correctly gives a sample of gene trees whose pairwise dis-
tances in coalescent units match the theory well (results
not shown); the poor fit occurs only when species tree is
entered in numbers of generations and the branch-specific
population sizes are entered separately.

To quantify deviation of the sampled d(A, B) density
from the expected distribution, we apply the Anderson-
Darling test. As is well known, even the small numerical
errors arising from computer round-off in a simulation or
its analysis may prevent the extremely close fit to theory
that a large sample should exhibit. As a result, with very

large samples such tests can produce misleadingly small p-
values, leading to excessive rejection. To address this, we
divided each of our samples into 100 subsamples of size
1000, computing a p-value for each. A good fit is then
shown by a roughly uniform distribution of p-values for
the subsamples, and an empirical cdf that matches that
of a uniform distribution U (0, 1). Figure 5 shows these p-
value distributions and empirical cdf’s for the samples from
SimPhy and Mesquite, formally confirming the conclu-
sions already described. Similar results are presented for
pairs of taxa other than A, B, and for other species trees,
in the Supplementary materials.

Topological features of samples were analyzed by tab-
ulating counts of all rooted triple topologies across the
sampled gene trees and then performing a chi-squared test,
and by computing the MLE of the internal edge length
on the species tree triple. Results are shown in Table 1.
For the programs Hybrid-Lambda, Phybase, SimPhy, and
DendroPy no p-values were extreme enough to suggest
poor fit. However, the p-values for Mesquite strongly
suggest poor model fit, with values extremely close to 0.
Internal edge length estimates were also poorest for the
Mesquite sample. Note that although Hybrid-Lambda
had poor performance on our metric tests with units in
generations, this procedure confirms it gave a good topo-
logical sample. This is consistent with the observation that a
Hybrid-Lambda sample is accurate when species tree edge
lengths are given in coalescent units. Indeed, assuming the
Hybrid-Lambda algorithm is based on coalescent units, its
errors may occur in conversion into numbers of generations.

5 DISCUSSION

These results indicate that inadequate attention has been
given previously to ensuring MSC simulators perform cor-
rectly. As novel methods are developed that can scale to ge-
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Fig. 5. Distributions and cdfs of p-values from Anderson-Darling tests comparing empirical and theoretical d( A, B) densities for SimPhy (Top) and
Mesquite (Bottom) on the species tree of Figure 3. The p-values were computed for 100 independent subsamples of size 1000 from the pairwise
distance data underlying Figure 4. The pronounced divergence of the histogram from the expected density for Mesquite indicates poor fit. More
rigorously, the deviation of Mesquite’s empirical cdf from the blue cdf for a uniform distribution of p-values shows that Mesquite’s sample is flawed.

nomic data or incorporate multilocus datasets of thousands
of gene trees, it is imperative that such methodologies be
tested on simulated datasets, both small and large, before
practitioners can reliably trust analyses. The tests based on
metric and topological summary statistics implemented in
the R package MSCsimtester are a practical tool to un-
cover errors in simulators, and in user input to simulators.
We recommend these tests be routinely used by developers
of such simulators and, until software has been fully vetted,
by anyone performing multispecies coalescent simulations.
Moreover, it is important that those currently conducting
simulation studies, or interpreting the results of previous
work (e.g., Mesquite simulations appear in [19], [20]), are
aware of the problems these tests illuminate. The current
version of Hybrid-Lambda is reliable only when metric
species trees (and by extension networks) are specified in
coalescent units, such as was done in [21], but caution is
still warranted. A preliminary version of this paper showed
that at least one earlier version of Mesquite produced
erroneous samples, and we cannot verify that any early
version performed correctly. New simulations in this work
show problems remain in the current Mesquite version 3.7,
and it should not be used for simulating under the MSC.

Note that our statistical methods consider distances
for only one pair of taxa, or the rooted triple counts for
only one choice of three taxa, at a time. When applied

to many pairwise distances or rooted triple counts, even
when conditioned on the species tree, these are not typically
independent tests when applied to the same gene tree
simulation. Although it would be desirable to test the full
joint distribution as a step toward stronger testing, devising
methods to do so is difficult. We believe the approach given
here is adequate for revealing most simulator errors.

Finally, as the inference of species networks arising from
hybridization or horizontal gene transfer receives more at-
tention, simulators of the network multispecies coalescent
(NMSC) model, such as Hybrid-Lambda, are likely to
become more available. Enhancements of MSC simulators
on a tree (e.g., permitting population sizes to vary with time
on branch lengths) are also desirable. Developing testing
methods for such software, that can be applied for general
species networks and trees, will present new challenges.
Understanding the distributions of summary statistics in
such a setting is a considerably more complex task than that
considered here.

6 SUPPLEMENTARY MATERIAL

Results of additional simulations are available in the sup-
plementary material.
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TABLE 1
Rooted triple topology counts from 100,000 gene trees sampled from the MSC on the species tree of Figure 3, and the p-values from the
chi-squared tests. In the last column, the internal edge length of the species tree rooted triple in coalescent units with its Maximum Likelihood
estimate from the simulated datasets. Small p-values and poor internal edge length estimates indicate poor model fit. Table entries are rounded.

((A,B),C) ((A,0),B) ((B,C),A) p-value Int edge
Expected 59564 20217 20217 - 0.500
Mesquite 56166 17424 26410 0 0.419
Hybrid-Lambda 59703 20227 20069 0.492 0.503
Phybase 59649 20122 20229 0.749 0.502
SimPhy 59800 20074 20126 0.306 0.506
DendroPy 59496 20049 20455 0.118 0.498
((A,B),D) ((A,D),B) ((B,D),A) p-value Int. edge
Expected 71027 14487 14487 - 0.833
Mesquite 70229 14807 14964 1.26e-07 0.806
Hybrid-Lambda 71116 14462 14421 0.798 0.836
Phybase 71272 14335 14393 0.219 0.842
SimPhy 71061 14324 14615 0.225 0.835
DendroPy 71006 14584 14410 0.587 0.833
((A,C),D) ((A,D),C) ((C,D),A) p-value Int. edge
Expected 52231 23884 23884 - 0.333
Mesquite 50256 24699. 25045 3.16e-35 0.293
Hybrid-Lambda 51997 24110 23892 0.203 0.328
Phybase 52367 23813 23820 0.691 0.336
SimPhy 52193 23832 23975. 0.784 0.333
DendroPy 52190 24028 23782 0.512 0.332
((B,C),D) ((B,D),C) ((C,D),B) p-value Int. edge
Expected 52231 23884 23884 - 0.333
Mesquite 54905 22466 22629 4.57e-63 0.391
Hybrid-Lambda 51844 24131 24024 0.044 0.325
Phybase 52336 23826 23838 0.801 0.336
SimPhy 52116 24035 23849 0.534 0.331
DendroPy 52383 23921 23696 0.371 0.337
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