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Abstract

Inference of network-like evolutionary relationships between species from genomic

data must address the interwoven signals from both gene flow and incomplete lineage

sorting. The heavy computational demands of standard approaches to this problem

severely limit the size of datasets that may be analyzed, in both the number of species

and the number of genetic loci. Here we provide a theoretical pointer to more efficient

methods, by showing that logDet distances computed from genomic-scale sequences

retain sufficient information to recover network relationships in the level-1 ultrametric

case. This result is obtained under the Network Multispecies Coalescent model com-

bined with a mixture of General Time-Reversible sequence evolution models across

individual gene trees. It applies to both unlinked site data, such as for SNPs, and

to sequence data in which many contiguous sites may have evolved on a common

tree, such as concatenated gene sequences. Thus under standard stochastic mod-

els statistically justifiable inference of network relationships from sequences can be

accomplished without consideration of individual genes or gene trees.
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1 Introduction

As genomic-scale sequencing has become increasingly common, attention in phylo-

genetics has shifted from inferring trees of evolutionary relationships for individual

genetic loci from a set of species to inferring relationships between the species them-

selves. A substantial complication is that population genetic processes within species,

as modeled by the Multispecies Coalescent (MSC) model can lead to individual gene

trees having quite different topological structures than the tree relating the species

overall. If the evolutionary history of the species also involved hybridization or other

forms of horizontal gene flow, so that a species network is a more suitable depiction

of relationships, the relationships of gene trees to the network, as modeled by the

Network Multispecies Coalescent (NMSC) model, is even more complex.

Inference of species networks, through a combined NMSC and sequence substitu-

tion model, can be performed in a Bayesian framework (Zhang et al. 2017; Wen and

Nakhleh 2018) but computational demands severely limit both the number of taxa and

the number of genetic loci considered. Other methods take a faster two-stage approach,

first inferring gene trees which are treated as “data” for a second inference of a species

network. Approaches include maximum pseudolikelihood using either rooted triples

(PhyloNet) or quartets (SNaQ) displayed on the gene trees (Yu and Nakhleh 2015;

Solís-Lemus and Ané 2016), or the faster, distance-based analysis built on gene quar-

tets of NANUQ (Allman et al. 2019a). Still, the first stage of these approaches, the

inference of individual gene trees, can be a major computational burden. Avoiding such

gene tree inference, and passing more directly from sequences to an inferred network,

could substantially reduce total computational time in data analysis pipelines.

The goal of this paper is to show that most topological features of a level-1 species

network can be identified from logDet intertaxon distances computed from aligned

genomic-scale sequences. In particular this can be done without partitioning the

sequences by genes, under a combined model of the NMSC and a mixture of general

time-reversible (GTR) substitution processes on gene trees. While the main result,

that the logDet distances retain enough information to recover most of the species

network, despite having lost information on individual genes, is a theoretical one, it

points the way toward faster algorithms for practical inference. In particular, since the

computation of logDet distances requires little effort, it suggests that a distance-based

approach similar to NANUQ’s, but avoiding individual gene tree inference, may offer

substantially faster analyses than current methods.

The model of sequence evolution underlying our result accounts not only for base

substitutions along each gene tree, but also for variation in gene trees due to their

formation under a coalescent process combined with hybridization or similar gene

transfer. Our model extends to networks the mixture of coalescent mixtures model on

species trees of Allman et al. (2019b), which itself extended the coalescent mixture

introduced by Chifman and Kubatko (2015). More specifically, for a fixed species net-

work, gene trees are formed under the Network Multispecies Coalescent model (Meng

and Kubatko 2009; Yu et al. 2011; Zhu et al. 2016) for each site independently. GTR
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substitution parameters for base evolution on each site’s tree are then independently

chosen from some distribution, leading to a site pattern distribution. These site distri-

butions are finally combined to give a site pattern distribution for genomic sequences.

(As discussed in Sect. 6, this distribution also applies to a more realistic model in

which multisite genes with a single substitution process have lengths chosen indepen-

dently from some distribution.) While this pattern frequency distribution thus reflects

the substitution processes on all the gene trees, information about pattern frequencies

arising on any individual gene tree is hidden.

The logDet distance was first introduced in the context of a single class general

Markov model of sequence evolution on a single gene tree (Steel 1994; Lockhart et al.

1994), and has been used both to obtain both gene tree identifiability results and for

inference of individual gene trees. Considering genomic sequences, Liu and Edwards

(2009), and independently Dasarathy et al. (2015), showed that for a Jukes-Cantor

substitution model and an ultrametric species tree, the Jukes-Cantor distances obtained

under the coalescent mixture model still allowed for consistent inference of topological

species trees. By passing to the logDet distance, Allman et al. (2019b) extended this

result to the more realistic mixture of coalescent mixtures model, showing that the

logDet distance allowed for consistent inference of a topological species tree, assuming

it is ultrametric in generations. This study builds on all these works on gene and species

tree models, but considers level-1 species networks on which all extant species are

equidistant from the root.

Passing from species trees to networks is a substantial step, however, and our

approach is strongly motivated by the approach taken by Baños (2019) in studying

identifiability of features of unrooted level-1 topological species networks from gene

tree quartet concordance factors (probabilities of the different quartet topologies dis-

played on gene trees). In the ultrametric setting of this work, we show that logDet

distances computed from genomic sequences suffice to determine 4-cycles on undi-

rected rooted triple networks, and then that this 4-cycle information for different rooted

triples can be combined to determine all cycles of size 4 or more, and even all hybrid

nodes in those cycles of size 5 or more. We do not obtain information on 2- or 3- cycles,

so our results closely parallel those of Baños (2019), despite the rather different source

of information.

There are a number of other theoretical works in the literature on determining phy-

logenetic networks from limited information. For instance, Jansson and Sung (2006)

investigate determining a level-1 network from the rooted triple trees it displays, Huber

et al. (2017, 2018) discuss how knowledge of trinets (induced 3-taxon directed rooted

networks) and quarnets (induced 4-taxon undirected unrooted networks) determine

larger networks, and van Iersel et al. (2020) explore determination of networks from

distances. However, the question of how, or whether, these results can be applied to

biological data is not addressed, and the setting of these works is not directly applicable

to obtaining our results.

Other works (Gross and Long 2018; Gross et al. 2020; Hollering and Sullivant

2021) use algebraic approaches to show that certain types of level-1 networks can be

identified from joint pattern frequency arrays under group-based models of sequence

evolution such as the Jukes-Cantor and Kimura models. In addition to their restriction

on sequence evolution models, these works do not incorporate a coalescent process.
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That is, all sequence sites are assumed to have evolved on one of the finitely-many

trees displayed on the network. Since the absence of a coalescent process is a limiting

case of our coalescent-based model, our results allowing for mixtures of more general

sequence evolution models extend those results in the ultrametric case. Algebraic

study of a network model combined with the general Markov model, again with no

coalescent process, was also conducted by Casanellas and Fernández-Sánchez (2020).

This paper proceeds as follows. Section 2 defines the networks and models under

consideration, as well as the logDet distance. For most of the paper we restrict to a

model of unlinked sites, only later passing to a model allowing concatenated genes

whose sites evolve on the same gene tree. Section 3 uses combinatorial arguments to

show how information on undirected rooted triple networks can be used to determine

features of a larger directed network from which they are induced. Expected frequen-

cies of site patterns for sequences produced by the mixture of coalescent mixtures

model are studied in Sect. 4, and shown to be expressible as convex combinations

of pattern frequencies from simpler networks. In Sect. 5 we show that the ordering

by magnitude of logDet distances for triples of taxa tells us about the induced rooted

triple species network, and by combining this with the result of Sect. 3 we obtain our

main identifiability result, Theorem 1. Section 6 discusses two variations on our main

result that are implied by it. The first is to a model with genes of linked sites that

evolve on a common tree. The second is to a non-coalescent model, in which all gene

trees must be displayed on the species network. Section 7 further studies the logDet

distances from a rooted triple network, in order to better understand what triples of

distances can arise under the mixture of coalescent mixtures model. We conclude in

Sect. 8 with an outline of how these results can be developed into a practical inference

algorithm.

2 Networks andmodels

2.1 Phylogenetic networks

Although there are many variations on the notion of a phylogenetic network in the

literature, we adopt ones appropriate to the Network Multispecies Coalescent (NMSC)

model. This model, which describes the formation of trees of gene lineages in the pres-

ence of both incomplete lineage sorting and hybridization, will be further developed

in the next subsection. First, we focus on setting forth combinatorial aspects of the

networks.

Definition 1 (Solís-Lemus and Ané 2016; Baños 2019) A topological binary rooted

phylogenetic network N+ on taxon set X is a connected directed acyclic graph with

vertices V = V (N+) and edges E = E(N +), where V is a disjoint union V =

{r} � VL � VH � VT and E is a disjoint union E = EH � ET , with a bijective

leaf-labeling function f : VL → X with the following characteristics:

1. The root r has indegree 0 and outdegree 2.

2. A leaf v ∈ VL has indegree 1 and outdegree 0.

3. A tree node v ∈ VT has indegree 1 and outdegree 2.

123



Identifiability of species network topologies from genomic... Page 5 of 38 35

4. A hybrid node v ∈ VH has indegree 2 and outdegree 1.

5. A hybrid edge e = (v,w) ∈ EH is an edge whose child node w is hybrid.

6. A tree edge e = (v,w) ∈ ET is an edge whose child node w is either a tree node

or a leaf.

When |X | = 3 or 4, we refer to N+ as a rooted triple network or a rooted quartet

network, respectively.

The vertices, and edges, of N+ are partially ordered by the directedness of the

graph. For instance, a node u is below a node v, and v is above u, if there exists a

non-empty directed path in N+ from v to u. The root is thus above all other nodes.

A metric notion of the network above incorporates some of the parameters of the

NMSC model. This introduces edge lengths, measured in generations throughout this

article, as well as probabilities that a gene lineage at a hybrid node follows one or the

other hybrid edge as it traces back in time toward the network root. Since we focus on

binary networks, only hybrid edges are allowed to have length 0, to model possibly

instantaneous jumping of a lineage from one population to another.

Definition 2 A metric binary rooted phylogenetic network (N+, {�e}e∈E , {γe}e∈EH
)

is a topological binary rooted phylogenetic network together with an assignment of

weights or lengths �e to all edges and hybridization parameters γe to all hybrid edges,

subject to the following restrictions:

1. The length �e of a tree edge e ∈ ET is positive.

2. The length �e of a hybrid edge e ∈ EH is non-negative.

3. The hybridization parameters γe and γe′ for a pair of hybrid edges e, e′ ∈ EH with

the same child hybrid node are positive and sum to 1.

A metric network of this sort is said to be ultrametric if every directed path from the

root to a leaf has the same total length. This is equivalent to requiring the ultrametricity

of all trees displayed on the network. An example of a simple ultrametric network is

shown in Fig. 1 (Right).

On directed networks there are several analogs (Steel 2016) of the most recent

common ancestor of a set of taxa on a tree. The following is the most useful in this

work.

Definition 3 (Steel 2016) Let N+ be a (metric or topological) binary rooted phyloge-

netic network on a set of taxa X and let Z ⊆ X . Let D be the set of nodes which lie

on every directed path from the root r of N+ to any z ∈ Z . Then the lowest stable

ancestor of Z on N+, denoted LSA(Z ,N+), is the unique node v ∈ D such that v

is below all u ∈ D with u �= v. The lowest stable ancestor (LSA) of a network on X

is LSA(X).

Phylogenetic networks as defined here have no cycles in the usual sense for a

directed graph. The term cycle will thus be used to refer to a collection of edges

that form a cycle when all edges are undirected. A cycle must contain at least two

hybrid edges sharing a hybrid node, and may contain any non-negative number of tree

edges. The class of networks we focus on is those in which cycles are separated, in

the following sense.
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Fig. 1 (Left) An ultrametric species network N+ with time t in generations before the present, hybrid edges

h and h′ shown in red, and population functions Ne(t) on each edge depicted by widths of “tubes.” The

edge lengths τ are measured on the t-axis between the dashed lines indicating speciation and hybridization

events. The dashed red/blue boundary represents a hybrid node, the top dashed line the root of the network,

and other dashed lines tree nodes. (Right) A schematic of the same species tree, which does not show

population sizes. Hybridization parameters γ and γ ′ are omitted from both drawings

Definition 4 A rooted binary phylogenetic network N+ is said to be level-1 if no two

distinct cycles in N+ share an edge.

Although this is not the standard definition of level-1 (Rosselló and Valiente 2009),

in the setting of binary networks it is equivalent.

Each cycle on a level-1 phylogenetic network contains exactly one hybrid node and

two hybrid edges with that node as a child. Thus there is a one-to-one correspondence

between cycles and the hybrid nodes they contain. A cycle composed of n edges, 2 of

which are hybrid, is called an n-cycle. If the cycle’s hybrid node has k leaf descendants,

it is an nk-cycle.

Passing from a large network to one on a subset of the taxa is similar to the process

for trees.

Definition 5 Suppressing a node with both in- and out-degree 1 in a directed phylo-

genetic network means replacing it and its two incident edges with a single edge from

its parent to its child. For a metric network, the new edge is assigned a length equal

to the sum of lengths of the two replaced. If the outedge was hybrid, the new edge is

also hybrid and retains the hybridization parameter.

Similarly, suppressing a node of degree 2 between two undirected edges means

replacing it and its two incident edges with a single undirected edge.

Definition 6 Let N+ be a (metric or topological) binary rooted phylogenetic network

on X and let Y ⊂ X . The induced rooted network N+
Y on Y is the network obtained

from N+ by retaining nodes and edges in every path from the root r on N+ to any

y ∈ Y , and then suppressing all nodes with in- and out-degree 1. We then say N+

displays N +
Y .

We also need the notion of a rooted undirected network, in which all edges have

been undirected but the root retained. Note that if a rooted network is a tree, knowledge

of the root alone is enough to recover the direction of every edge, so this notion is

not useful in that setting. If cycles are present, knowledge of the root determines only
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Fig. 2 A rooted network N+

whose LSA network N⊕ is the

rooted tree ((a, b), c), but which

has a chain of 2-cycles above

LSA(a, b, c)

the direction of every cut edge (an edge whose deletion results in a graph with two

connected components), and edges directly descended from cut edges. Knowing the

root and all hybrid nodes in an undirected level-1 network does, however, determine

the full directed network.

Several other notions of networks induced from a directed one are needed.

Definition 7 Let N + be a (metric or topological) binary rooted phylogenetic network

on X .

1. (Baños 2019) The LSA network N⊕ induced from N+ is the network on X obtained

by deleting all edges and nodes above LSA(X ,N+), and designating LSA(X ,N+)

as the root node.

2. The undirected LSA network N
 is the rooted network obtained from the LSA

network N⊕ by undirecting all edges.

3. (Baños 2019) The unrooted semidirected network N− is the unrooted network

obtained from the LSA network N⊕ by undirecting all tree edges and suppressing

the root, but retaining directions of hybrid edges.

For a binary level-1 network N+, the only possible structure above the LSA has

the form of a (possibly empty) chain of 2-cycles (Baños 2019), an example of which

is shown in Fig. 2. The LSA network N⊕ is obtained by simply deleting that chain.

Note that the terminology of “nk-cycles” can be applied to LSA networks N⊕,

as hybrid edges retain their direction. On undirected LSA networks N
, however,

“n-cycle” can still be applied, but “nk-cycle” generally cannot.

Definition 8 By suppressing a cycle C in a topological level-1 network we mean

deleting all edges in C , identifying all nodes in C , and if the resulting node is of

degree 2 suppressing it. If the network is rooted and this results in the root becoming

a degree 1-node, then the resulting edge below the root is also deleted, with its child

becoming the root.

Suppressing an n-cycle in a binary level-1 network results in a non-binary network

when n ≥ 4. However if only 2- and 3-cycles are suppressed, the result is binary.
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2.2 Coalescent model on networks

The formation of gene trees within a species network, as ancestral lineages of sampled

loci from extant taxa join together moving backwards in time, is given a mechanis-

tic description by the Network Multispecies Coalescent Model (NMSC) (Meng and

Kubatko 2009; Yu et al. 2011; Zhu et al. 2016).

Parameters of the NMSC for a set of taxa X include a metric rooted binary phyloge-

netic network (N+, {�e}, {γe}) on X , with edge lengths �e in generations. In addition,

for each edge e = (u, v) fix a function Ne : [0, �e) → R
>0 giving the (haploid)

population size along the edge, where Ne(0) is the population size at the child node

v and Ne(t) is the population at time t units above it. Finally, let Nr : [0,∞) → R
>0

be an additional population size function for an infinite length ‘edge’ ancestral to

the root r of the network. The Ne need not be constant nor equal, although those

are common assumptions in other works. As did Allman et al. (2019b), we make the

biologically-plausible technical assumptions that the functions Ne are bounded, and

that all 1/Ne(t) are integrable over finite intervals.

Figure 1 (Left) depicts an example species network that is ultrametric in generations,

with hybrid edges h and h′, and population functions Ne on each edge depicted by

time-varying widths of the network edges. The edge lengths �e are measured on the

t-axis between the horizontal lines indicating speciation and hybridization events.

Figure 1 (Right) gives a schematic of the same species tree, without a depiction of

population functions.

The standard Kingman coalescent models the formation of gene trees, with edge

lengths in generations, within a single population edge e, with pairs of lineages coa-

lescing independently as they trace backward in time, at instantaneous rate 1/Ne(t).

The multispecies coalescent model (MSC) extends this to a tree of populations, by

using the standard coalescent on each edge, as well as an infinite length edge above the

root, allowing multiple gene lineages to enter a population from its descendant ones

at a tree node. The NMSC extends this further, so that lineages reaching hybrid nodes

randomly enter one or the other hybrid edge above them, with the choice determined

independently according to the hybridization parameter probabilities. Thus the NMSC

parameters (N+, {�e}, {γe}) and {Ne} determine a distribution of rooted metric gene

trees. The structure of the NMSC also ensures that the distributions of gene trees

obtained by marginalization to a subset Y of taxa are the same as the distributions

obtained from the NMSC on the displayed network N+
Y .

2.3 Sequence substitutionmodels on gene trees

The k-state general time-reversible model (GTR) for sequence evolution is a

continuous-time Markov process on a metric gene tree. Gene tree edge lengths are in

substitution units, and sequences are composed of k possible states, or bases. Model

parameters are a k × k instantaneous rate matrix Q together with a k-state distribution

π , with non-negative entries summing to 1, satisfying the following:

1. off-diagonals entries of Q are positive,

2. row sums of Q are 0,
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3. trace Q = −1,

4. π Q = 0,

5. diag(π)Q is symmetric.

In the ultrametric framework for our species networks, we introduce an additional

time-dependent but lineage-independent rate scalar μ(t) for Q, where t is measured

in generations from leaves to the root and beyond, and μ(t) has units of substitu-

tions/generation. We assume μ is piecewise-continuous, μ(t) > 0 for all t ≥ 0 so

that the mutations process never stops, and
∫ ∞

0 μ(t)dt = ∞ so that the total amount

of possible mutation is unbounded. Following Allman et al. (2019b), this substitution

model is denoted by GTR+μ.

For any node u on a gene tree, let tu denote the distance, in generations, to that

node from its descendant leaves. The states at a single site in sequences at the taxa at

the leaves on the gene tree are then determined as follows: A state is randomly chosen

at the root of the tree from the distribution π . For each edge e = (u, v) descendant

from a node u the site undergoes random state changes with rates μ(t)Q for times

t ∈ [tv, tu] to obtain states at the child nodes. The full substitution process on the edge

is thus described by the Markov matrix

Me = exp

(∫ tu

tv

μ(t) dt Q

)
.

A similar process is then repeated for those nodes’ children, and so on, until states at

the taxa have been determined.

2.4 Mixture of coalescent mixtures

The model we focus on is the m-class mixture of coalescent mixtures (Allman et al.

2019b) extended from a tree to an ultrametric network. This model has as parameters an

ultrametric species network (N +, {�e}, {γe}), population size functions {Ne}, a finite

collection {(Qi , πi ;μi )}
m
i=1 of GTR+μ parameters for the m classes, and a vector λ

of m positive class size parameters summing to 1.

Sequence data is generated as follows: For each site:

1. a gene tree T is sampled according to the NMSC model on (N+, {�e}, {γe}) with

population sizes {Ne},

2. class i is sampled from the distribution λ to determine parameters (Qi , πi ;μi ),

3. the bases for each x ∈ X are sampled under the GTR+μ process on T with

parameters (Qi , πi ;μi ).

This model is denoted by M = M(θ) where

θ = ((N+, {�e}, {γe}), {Ne}, λ, {(Qi , πi ;μi )}).

Sampling n independent sites from this model produces k-state aligned sequences

of n unlinked sites. As usual in phylogenetics, these are summarized through counts

of site patterns across the sequences in an |X |-dimensional k × k × · · · × k array.
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Marginalizations of this array to 2-dimensions give pairwise k × k site pattern count

matrices that compare only the sequences for two taxa in X .

In the tree context, two extensions of this model were discussed by Allman et al.

(2019b). For the first, the model assumption of one independently drawn gene tree for

each site is modified to a more realistic one for genomic sequences in which all sites

for a genetic locus share a gene tree. If the lengths (in number of sites) of the loci are

independent identically distributed draws from some distribution, then the expected

site pattern distribution for such a model is unchanged from that determined by M.

Only the rate of convergence, as the number of sampled genes grows, of frequencies

of sampled site patterns to the asymptotic distribution will be slowed. This model is

considered in Sect. 6, as its analysis follows easily from that for unlinked sites.

Another extension in the tree setting of Allman et al. (2019b) allowed for relaxing

the ultrametric condition while retaining strong results on identifiability from the

logDet distances. In that extension, the scalar rate function was allowed to be edge

dependent as long as a certain symmetry condition on mixture components resulted

in ultrametricity in substitution units “on average” across gene trees. While a similar

model extension in the network setting seems likely to lead to similar results, it is not

explored here, as the technical complications are greater than in the tree case.

2.5 LogDet distance

The fundamental tool we use to study relationships of taxa under the mixture of coa-

lescent mixtures model M is the logDet distance between a pair of aligned sequences.

It is computed as follows: For taxa a, b ∈ X , let F̂ab be a k × k matrix of empirical

relative site-pattern frequencies, obtained by normalizing the site pattern count matrix

for a and b, so that its entries sum to 1. Thus the i j entry of F̂ab is the proportion

of sites in the sequences exhibiting base i for a and base j for b. With f̂a and f̂b

the vectors of row and column sums of F̂ab, which give the proportions of various

bases in the sequences for a and b, let ĝa and ĝb the products of the entries of f̂a , f̂b,

respectively. Then the empirical logDet distance is

d̂L D(a, b) = −
1

k

(
ln det

(
F̂ab

)
−

1

2
ln(ĝa ĝb)

)
(1)

Under most phylogenetic models, including the mixture of coalescent mixtures

model, individual site patterns in sequences are assumed to be independent and iden-

tically distributed. By the weak law of large numbers, F̂ab computed from a sample

will converge in probability to its expected value Fab as the sequence length goes

to ∞. By the continuous function theorem, e.g. (van der Vaart 1998), the empirical

logDet distance thus converges in probability to the logDet distance computed by the

same formula from the expected Fab, a quantity we refer to as the theoretical logDet

distance and denote by dL D(a, b).
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3 Rooted Networks fromUndirected Rooted Triple Networks

The goal of this section is to establish Proposition 1, a combinatorial result indicating

features of a topological level-1 rooted n-taxon network that can be recovered from its

induced undirected rooted triple networks with 2- and 3-cycles suppressed. This is a

rooted analog of a key result of Baños (2019) relating unrooted semidirected networks

and their induced undirected quartet networks. Later sections of this paper focus on

identifying these rooted triple networks under the model M.

There are several possible routes to Proposition 1. One approach would be to follow

the argument of the quartet analog, with modifications throughout due to the rooted

setting. Another would be to imitate the alternate proof of the quartet result given

by Allman et al. (2019a), based on an extension of the intertaxon quartet distance of

Rhodes (2019), but instead using the rooted triple distance also introduced in that work.

The argument presented here is shorter than these approaches, as it leverages informa-

tion about undirected rooted triple networks to obtain information about undirected

quartet networks, and then applies the theory of Baños (2019).

The following result, extracted from the proof of Theorem 4 of Baños (2019),

will be used. In it, and throughout this work, by a network modulo 2- and 3-cycles

we mean the network obtained by suppressing all 2- and 3-cycles. Similarly, modulo

directions of edges in 4-cycles means that all edges in 4-cycles are undirected. As a

result, which of the edges in a 4-cycle are hybrid, and therefore which node is hybrid,

is not indicated.

Lemma 1 (Baños 2019) Let N+ be a level-1 rooted binary topological phylogenetic

network on X. Let Q be the set of undirected quartet networks obtained from those

displayed on N+ by unrooting, suppressing all cycles of size 2 and 3, and undirect-

ing all edges. Then modulo 2- and 3-cycles and directions of edges in 4-cycles, the

semidirected unrooted network N− is determined by Q.

In order to apply this to rooted triples, we first recall some combinatorial properties

of rooted triple and quartet networks.

Lemma 2 (Baños 2019) Let Q− be a level-1 unrooted semidirected binary quartet

network. Then Q− has no k-cycles for k ≥ 5, and at most one 4-cycle. If Q− has a

4-cycle, then it has neither 3- nor 22-cycles. If there is no 4-cycle, then there are at

most two 3-cycles, with at most one of these a 32-cycle.

Lemma 2 can be used to characterize possible cycles in a rooted triple network,

by attaching an outgroup at the root. More specifically, by attaching an outgroup o

to the root of an n-taxon network on taxa X with o /∈ X we mean identifying the

root r of the network with the node r on an edge (r , o) and undirecting all tree edges.

This gives a (n +1)-taxon unrooted semidirected network. The rooted triple networks

displayed on the original network are then in one-to-one correspondence with induced

semidirected quartet networks containing o on the new network. This construction

yields the following.

Corollary 1 Let N + be a level-1 binary rooted triple network. Then N+ has no k-

cycles for k ≥ 5, and at most one 4-cycle in which case there are no 3- or 22-cycles.
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Fig. 3 All rooted directed topological quartet networks with a single 4- or 5-cycle, and no other cycles, up

to relabeling of taxa. Networks in the top row display exactly one rooted triple with a 4-cycle, those in the

middle row display two, and those in the bottom row display three

If there is no 4-cycle, then there are at most two 3-cycles, with at most one of these a

32-cycle.

Considering a rooted quartet network Q+, and the impact of passing to its associated

unrooted semidirected quartet network Q−, Lemma 2 also immediately yields the

following.

Corollary 2 Let Q+ be a level-1 rooted binary quartet network. Then Q+ has no

k-cycles for k ≥ 6, and has at most a one 5-cycle or 4-cycle, but not both.

We now catalog the rooted quartet networks with 4- or 5-cycles, modulo smaller

cycles.

Lemma 3 Let Q+ be a level-1 binary rooted quartet network with one 4-cycle or one

5-cycle. Then modulo 2- and 3- cycles and up to taxon relabelling, the LSA network

Q⊕ is one of those shown in Fig. 3. Thus Q+ displays either 1, 2, or 3 rooted triples

with a 4-cycle.

Proof Let Q+ be a rooted level-1 network on {a, b, c, d} with a cycle C of size 4 or 5.

By Corollary 2, C is the only cycle of size greater than 3. Figure 3 shows the topologies,

up to taxon relabeling, of all the rooted quartet networks with a 4- or 5-cycle and no

2- or 3-cycles, as determined by enumerating all possible locations for adding hybrid

edges to a rooted 4-taxon tree. The top row of Fig. 3 shows the quartet networks

with exactly one displayed rooted triple, on {a, b, c}, having a 4-cycle. The middle

row shows the networks with exactly two displayed rooted triples, on {a, b, c} and

{a, b, d}, having a 4-cycle. The bottom row shows those with exactly three displayed

rooted triples, on {a, b, c}, {a, b, d}, and {a, c, d}, having a 4-cycle. 
�

Now we proceed to the main result of this section.
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Proposition 1 Let N+ be a level-1 rooted binary topological phylogenetic network on

X. Let S be the set of undirected rooted triple networks obtained from those displayed

on N+ by suppressing all cycles of size 2 and 3 and undirecting all edges. Then

modulo 2- and 3-cycles and directions of edges in 4-cycles, the LSA network N⊕ is

determined by S.

Proof We first build a set of rooted quartet networks from S. Let {a, b, c, d} ∈ X and

let Sabcd ⊆ S be the set of undirected rooted triple networks on any three elements

of {a, b, c, d}, so |Sabcd | = 4. By Corollary 2 and Lemma 3, there are k = 0, 1, 2,

or 3 elements of Sabcd with a 4-cycle. We consider each possibility in turn, showing

that we can determine the undirected rooted quartet network N

abcd modulo 2- and

3-cycles.

If k = 0, all rooted triples in Sabcd are trees and since N+
abcd has no 4- or 5-cycles

by Lemma 3, the undirected LSA network N

abcd modulo 2-and 3-cycles is a tree. By a

well-known result for trees (Semple and Steel 2005), Sabcd determines N

abcd modulo

2- and 3-cycles.

If k = 1, then modulo 2- and 3-cycles and relabelling of taxa, N+
abcd is isomorphic

to one of the networks in the top row of Fig. 3. But for these networks if a, b, c are

the taxa in the rooted triple network with a 4-cycle, then the rooted 4-taxon network

is obtained by attaching d as an outgroup to it. Thus N

abcd is determined modulo 2-

and 3-cycles.

If k = 2, N+
abcd is isomorphic, modulo 2- and 3-cycles and relabeling, to one of the

networks in the middle row of Fig. 3. Note that for all those rooted quartet networks,

the displayed rooted triple networks with 4-cycles are on {a, b, c} and {a, b, d}, and

the 4-taxon network can be obtained from either of these by replacing c or d with a

cherry on {c, d}, thus determining N

abcd modulo 2- and 3-cycles.

If k = 3, N+
abcd is isomorphic, modulo 2-, and 3-cycles and relabeling, to one of

the networks in the bottom row of Fig. 3. In both of these, there is exactly one taxon,

a, that is in all three rooted triple networks with 4-cycles, and there is exactly one

taxon, c, that has graph-theoretic distance 3 from a in exactly one of the two rooted

triples with 4-cycles it appears in. Thus we can determine which taxon is a, and which

is c. For the remaining pair b, d, if there is a taxon that is at distance 4 from a in both

4-cycle rooted triple networks it appears in, then the 4-taxon network is the one shown

on the left, and that taxon is d. Otherwise, the network is the one shown on the right. In

this case there is exactly one rooted triple network on a and c which has its third taxon

at distance 2 from the root, and this determines b. Thus we obtain the rooted 4-taxon

network N⊕
abcd modulo 2- and 3-cycles, and hence N


abcd modulo 2- and 3-cycles.

With all rooted 4-taxon networks N

abcd modulo 2- and 3-cycles determined, we

attach an outgroup o to all, giving the collection of all 5-taxon unrooted networks

including o, modulo 2- and 3-cycles, induced from the unrooted network N ′ formed

by attaching o to the root of N+. But the unrooted 4-taxon networks displayed on

these 5-taxon ones form the collection of all 4-taxon undirected networks (possibly

including o) modulo 2- and 3-cycles displayed on N ′.

Lemma 1 now determines N ′ modulo 2- and 3-cycles, with directions of cut edges

and edges in cycles of size ≥ 5, though not in 4-cycles. Rooting N ′ by the outgroup
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Fig. 4 Examples of level-1 rooted triple networks with 21-, 31-, and 41-cycles. While multiple 21-cycles

may be present along any pendant edge shown here in dashes, there can be at most two 31-cycles, whose

hybrid nodes are located on a dashed pendant edge. At most one 41-cycle can be present. Site-pattern

frequency matrices from the model M on rooted triple networks with these types of cycles are convex

combinations of such matrices for 1, 2, or 4 networks without those cycles, as shown by Lemmas 4 and 5

o we recover the topology of N⊕ modulo 2- and 3-cycles and directions of edges in

4-cycles. 
�

4 Expected pattern frequencies as convex sums

The theoretical logDet distance between taxa depends on the matrix of expected rela-

tive site-pattern frequencies F xy in aligned sequences for taxa x, y, under the mixture

of coalescent mixtures model M(θ). The goal of this section is to show that F xy on

a level-1 ultrametric rooted triple network can be expressed as a convex combination

of frequency matrices for networks with no cycles below the LSA of the taxa. In this

way, we reduce the computation of F xy to its computation on simpler networks. This

is complicated somewhat by the fact that the convex combination may have terms

which are expected pattern frequencies conditioned on a pair of lineages coalescing

below a certain node in a network.

The lemmas that follow often involve modifying a network N+ by removing a

hybrid edge, to obtain a new network N+
i . If one hybrid edge in a cycle is removed,

the hybrid node is then suppressed as the other hybrid edge is joined to the descendant

tree edge and given the induced length and population size. We retain all other edge

lengths and population sizes, as well as hybrid parameters for unaffected cycles. The

parameters for the substitution process describing sequence evolution on gene trees are

also retained. If θ denotes the full set of parameters associated to N+, then θi denotes

the full set of parameters associated to N+
i in this way. Notation such as F xy(θ) or

F xy(θi ) denotes the dependence of F xy on the parameters θ or θi , which include the

network N+ or N+
i .

The most straightforward network simplifications occur when the hybrid node of a

cycle has a single descendant leaf, as depicted by the example 21-, 31- and 41-cycles

in Fig. 4.

Lemma 4 (Removing 21-cycles) Let N+ be a binary level-1 ultrametric rooted triple

network on {a, b, c} and let C be a 21-cycle in N + with hybrid edges h1, h2. Let N+
1

be the network obtained from N+ by removing h2. Then, under the model M for any

x, y ∈ {a, b, c},
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F xy(θ) = F xy(θ1).

Proof Since the hybrid node of C has only one descendant, the combined coalescent

and substitution process on N+ can be expressed as a linear combination of those

processes on N+
1 ,N+

2 , weighted by γ1 = γ (h1), γ2 = γ (h2). That is, for any x, y ∈

{a, b, c},

F xy(θ) = γ1 F xy(θ1) + γ2 F xy(θ2).

But N+
1 and N +

2 only differ by h1 and h2 which have the same length, though possibly

different population sizes. However, since only one lineage can be present in the

population for those edges, those population sizes have no impact in model M, so

F xy(θ2) = F xy(θ1). Since γ1 + γ2 = 1, the claim follows. 
�

If a network N+ has multiple 21-cycles, then applying Lemma 4 repeatedly gives

F xy(θ) = F xy(θ̃) where Ñ + is a rooted network with no 21-cycles obtained from

N+ by deleting one hybrid edge in each of the 21-cycles on N+.

Lemma 5 (Decomposing 31- and 41-cycles) Let N+ be a binary level-1 ultrametric

rooted triple network on {a, b, c} and let C be either a 31- or a 41-cycle on N+. Let

h1, h2 be the hybrid edges of C with γi = γ (hi ). Let N+
i be the network obtained

from N+ by removing h j , j �= i . Then, under the model M for any x, y ∈ {a, b, c},

F xy(θ) = γ1 F xy(θ1) + γ2 F xy(θ2).

Proof Since the hybrid node of C has only one descendant, we can express the com-

bined coalescent and substitution process on N+ as a linear combination of the

processes of the Ni , with coefficients γi , i = 1, 2. 
�

A level-1 rooted triple network may have one 41-cycle, one 31-cycle, or two 31-

cycles. In the last case, Lemma 5 may be applied twice, to express the pattern frequency

matrix under the model as a convex combination of four such matrices for networks

with no 31-cycles.

With Lemma 4 this shows that computation of the matrix of relative site-pattern

frequencies of a level-1 ultrametric rooted triple network N+ reduces to cases where

there are no 21-, 31-, or 41-cycles. The effects of 22- and 32-cycles are more compli-

cated, however, as a coalescent event may or may not occur below the hybrid nodes

of such cycles.

The following definition facilitates studying the impact of such cycles. In it a node

p may be either an existing node or a new node introduced along an edge of a network,

with appropriate division of the original edge length and population function. Although

strictly speaking this second case passes out of the class of binary networks, we allow

this only to simplify reference to intermediate states of the coalescent process.

Definition 9 Let K p(θ) be the random variable giving the number of lineages at node

p ∈ V (N+) under the NMSC. With X p ⊆ X denoting the set of taxa below p, K p(θ)

has sample space
{
1, 2, . . . , |X p|

}
.
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Fig. 5 (Top) A rooted level-1 ultrametric network on {a, b, c}, with the 22-cycle closest to LSA(a, b) shown.

(Bottom) The networks N
+
1 , N

+
2 , and N

+
0 obtained from N+, respectively, as described in Lemma 6.

Note that there may be additional cycles along the dashed lines, with hybrid nodes above node q and taxon

c

When θ is clear from context we write K p = K p(θ). We also use the notation

F
xy
|K p=m(θ) to denote the joint distribution of site patterns conditioned on K p = m

under the model M with parameters θ .

Lemma 6 (Decomposing 22-cycles) Let N+ be a binary level-1 ultrametric rooted

triple network on {a, b, c} without 21- or 31-cycles. Suppose, as depicted in Fig. 5, C

is a 22-cycle on N+, with edges h1, h2 from node q to hybrid node p, hybridization

parameters γi = γ (hi ), leaf descendants a, b of p, and no cycles below p. Denote

by N+
i , i = 1, 2 the network obtained from N+ by removing h j , j �= i and by N +

0

the network obtained from N+ by deleting all edges and nodes below q and attaching

edges (q, a) and (q, b) of appropriate length so that N+
0 is ultrametric. Then, under

the model M for any x, y ∈ {a, b, c},

F xy(θ) = γ 2
1 F xy(θ1) + γ 2

2 F xy(θ2) + P(K p = 2)2γ1γ2 F xy(θ0)

+ P(K p = 1)2γ1γ2 F
xy
|K p=1(θ1).

Proof Since the structure of the model for N+, N +
1 , and N+

2 is identical below p, we

may also use K p to denote K p(θ1) and K p(θ2). Thus

F xy(θ) = P(K p = 2)F
xy
|K p=2(θ) + P(K p = 1)F

xy
|K p=1(θ)

= P(K p = 2)

[
γ 2

1 F
xy
|K p=2(θ1) + γ 2

2 F
xy
|K p=2(θ2) + 2γ1γ2 F xy(θ0)

]

+ P(K p = 1)F
xy

|K p=1(θ). (2)
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Fig. 6 Networks N+ meeting the hypothesis of Lemma 7, with at least one 22- or 32-cycle, and possibly

23-cycles. In both figures the dashed internal edge represents a possible chain of 22-cycles, and the dashed

edge above the LSA a possible chain of 23-cycles. Note that a network with a 32-cycle may also have no

22-cycles (not shown), in which case p would be the 32-cycle’s hybrid node

But since F
xy

|K p=1(θ) = F
xy

|K p=1(θi ) for i = 1, 2 by the argument used for Lemma 4,

and the identity 1 = γ 2
1 + γ 2

2 + 2γ1γ2,

F
xy

|K p=1(θ) = γ 2
1 F

xy

|K p=1(θ1) + γ 2
2 F

xy

|K p=1(θ2) + 2γ1γ2 F
xy

|K p=1(θ1).

Substituting this into equation (2) and using P(K p = 1) + P(K p = 2) = 1 yields

the claim. 
�

Note that while N+
1 and N +

2 of Lemma 6 have the same topology and edge lengths,

the hybrid edges h1, h2 may have different population sizes. Thus F xy(θ1) �= F xy(θ2)

is possible. This is in contrast to the argument on removing 21-cycles in Lemma 4, in

which hybrid edge population sizes did not play a role.

Since a level-1 3-taxon rooted network cannot have a 22-cycle above a 32-cycle,

Lemma 6 can be applied recursively to the N+
i , i ∈ {1, 2} to eliminate all 22-cycles.

Thus the remaining complication to producing an expression for F xy(θ) as a convex

combination of such matrices for networks without 21-, 31-, or 22-cycles is the presence

of terms of the form F
xy
|K p=1(θ

′) where N ′+ has cherry {a, b} and neither 21- nor 31-

cycles. Such terms are handled with the following.

Lemma 7 (Decomposing 22- and 32-cycles conditioned on coalescence) Let N+ be

a binary level-1 ultrametric rooted triple network on {a, b, c} on which {a, b} form a

cherry, with no 21-, 31-, or 41-cycles, and at least one 22- or 32-cycle. (See Fig. 6.) Let

p be the hybrid node parental to the common parent of a, b. Let Ñ+ be the network

obtained from N+ by removing one hybrid edge from each 22-cycle.

If N+ has no 32-cycle, then

F
xy
|K p=1(θ) = F

xy
|K p=1(θ̃).

If N+ has a 32-cycle, with hybrid edges h1, h2 and hybridization parameters γi =

γ (hi ), then let Ñ +
i be the network obtained from Ñ + by removing h j , j �= i . Then

F
xy
|K p=1(θ) = γ1 F

xy
|K p=1(θ̃1) + γ2 F

xy
|K p=1(θ̃2).
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Proof Conditioned on K p = 1, there is only one lineage in any population above

p and below the hybrid node of a 32-cycle, if such a cycle is present, or the LSA

otherwise. Thus, as in the proof of Lemma 4, no 22-cycle will have any effect on the

joint distribution. If there is no 32-cycle on N+ this yields the claim. If there is a

32-cycle, since only one lineage reaches the hybrid node of the 32-cycle, we obtain

the claim as in the proof of Lemma 5. 
�

Lemma 8 (Decomposing 32-cycles) Let N+ be a binary level-1 ultrametric rooted

triple network on {a, b, c} with no cycles below its LSA except a 32-cycle C. Let p

denote the hybrid node of C, and h1, h2 the hybrid edges with hybridization parameters

γi = γ (hi ) and lengths y, z, as depicted at the top of Fig. 7. Let N +
1 , N +

2 , N+
3 , and

N+
4 be the networks derived from N+ shown at the bottom of Fig. 7. Then, under the

model M, for any x, y ∈ {a, b, c}, with K p = K p(θ),

F xy(θ) =γ 2
1 F xy(θ1) + γ 2

2 F xy(θ2) + P(K p = 2)γ1γ2

(
F xy(θ3) + F xy(θ4)

)

+ P(K p = 1)γ1γ2

(
F

xy
|K p=1(θ1) + F

xy
|K p=1(θ2)

)
.

Proof Observe that

F xy(θ) = P(K p = 2)F
xy
|K p=2(θ) + P(K p = 1)F

xy
|K p=1(θ)

= P(K p = 2)

[
γ 2

1 F
xy
|K p=2(θ1) + γ 2

2 F
xy
|K p=2(θ2) + γ1γ2 F xy(θ3) + γ1γ2 F xy(θ4)

]

+ P(K p = 1)F
xy
|K p=1(θ).

(3)

Since F
xy
|K p=1(θ) = γ1 F

xy
|K p=1(θ1) + γ2 F

xy
|K p=1(θ2) and γ1 + γ2 = 1,

F
xy
|K p=1(θ) = γ 2

1 F
xy
|K p=1(θ1) + γ 2

2 F
xy
|K p=1(θ2) + γ1γ2

(
F

xy
|K p=1(θ1) + F

xy
|K p=1(θ2)

)
.

Using this and P(K p = 1) + P(K p = 2) = 1 in equation (3) yields the claim. 
�

5 Theoretical logDet distances

In this section, we show that, under the mixture of coalescent mixtures model M on an

ultrametric level-1 rooted triple network, the theoretical logDet distances between taxa

determine most topological features of the network. The previous section established

that the pattern frequency matrices for the model on such networks can be expressed as

convex combinations of those on simpler networks (possibly subject to conditioning),

whose only cycles are 23-cycles located above LSA(a, b, c), such as depicted in Fig. 2.

The following algebraic lemma is key to drawing conclusions about the determinants

of such linear combinations of matrices.

Lemma 9 ((Allman et al. 2019b), Lemma 3.1) Suppose for each i , Fi and Gi are κ ×κ

symmetric positive definite matrices such that yT Fi y ≥ yT Gi y for every y ∈ R
κ with

the inequality strict for some y and some i. For αi ≥ 0, let
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Fig. 7 (Top) A rooted level-1 ultrametric network with a 32-cycle, and (Bottom) the networks N
+
1 , N

+
2 ,

N
+
3 , and N

+
4 used in Lemma 8. Although only topology and branch lengths are shown, population size

parameters for each edge of N
+
i

are obtained from the corresponding ones of N+

F =

m∑

i=1

αi Fi , G =

m∑

i=1

αi Gi .

Then

det F > det G.

Analyzing the pattern frequency matrix for networks with 23-cycles above

LSA(a, b, c) requires a detailed look at the coalescent process in such a chain of

2-cycles. For a simple case, aspsume lineages x and y enter the single cycle chain

depicted in Fig. 8. Population functions N1, N2 , N3, and N4 are fixed for each edge,

where for convenience, we shift domains from the convention in Sect. 2.2 so that N1

is defined on [0, t0), N2, N3 on [t0, t1), and N4 on [t1,∞).

The probability density c(t) for time to coalescence of the lineages x, y entering at

the bottom node (t = 0) can be calculated piecewise as follows: For t ∈ [0, t0),

c(t) =
1

N1(t)
exp

(
−

∫ t

0

1

N1(τ )
dτ

)
, (4)

as given by Allman et al. (2019b).

For t ∈ [t0, t1),

c(t) = p0

(
γ 2c2(t) + (1 − γ )2c3(t)

)
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Fig. 8 A 2-cycle and adjacent

tree edges in a species network,

depicted (Left) with pipes whose

width represent population sizes,

and (Right) as a schematic

where p0 = 1 −
∫ t0

0 c(t) dt is the probability of no coalescence before t0, and for

i = 2, 3

ci (t) =
1

Ni (t)
exp

(
−

∫ t

t0

1

Ni (τ )
dτ

)
.

Finally, for t ∈ [t1,∞), with p1 = 1−
∫ t1

0 c(t) dt the probability of no coalescence

before t1,

c(t) = p1
1

N4(t)
exp

(
−

∫ t

t1

1

N4(τ )
dτ

)
.

It is straightforward to extend this analysis of c(t) to a chain with an arbitrary

number of 2-cycles. Since we will not need an explicit formula for the distribution of

coalescent times for two lineages entering such a chain of 2-cycles, we omit a complete

derivation, and only state the properties of it that we use.

Formally, a chain of 2-cycles is a species network with leaf a0, internal vertices b1,

a1, b2, a2, . . . , an , with root r = an , tree edges ei = (bi , ai−1), and hybrid edges e′
i =

(ai , bi ), e′′
i = (ai , bi ), together with edge lengths, piecewise-continuous population

size functions on each edge, including above the root, and hybrid parameters γ ′
i , γ

′′
i =

1 − γ ′
i for each pair of hybrid edges e′

i , e′′
i .

Using the technical assumptions given in Sect. 2.2, it is straightforward to deduce

the following.

Lemma 10 Consider a fixed chain of 2-cycles with leaf a0. Let c : [0,∞) → R
≥0

denote the probability density function under the NMSC for the time T of coalescence of

two lineages entering the chain at a0. Then c(t) is piecewise continuous, and c(t) > 0

for all t ∈ [0,∞).

The next three technical lemmas generalize Lemmas 4.1, 4.4, and 4.5 of Allman

et al. (2019b) from a tree to a network setting. These culminate in Proposition 2 below,

which justifies the application of Lemma 9.
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Lemma 11 Let c : [0,∞) → R
≥0 be the probability density function under the NMSC

for the time T of coalescence of two lineages entering a chain of 2-cycles, and for

times t2 > t1 ≥ 0 let ci be the conditional density given T ≥ ti . Then the cumulative

distribution functions for c1 and c2 satisfy

C1(t) ≥ C2(t),

with the inequality strict on some interval.

Proof Since 0 = c2(t) ≤ c1(t) for all t ≤ t2, the inequality is immediate for t ≤ t2.

Since using Lemma 10 we have c1(t) > c2(t) = 0 for t ∈ (t1, t2), the inequality is

strict on a subinterval.

For t ≥ t2, let J =
∫ t2

t1
c1(t) dt and I (t) =

∫ t

t2
c1(s) ds, so

C1(t) − C2(t) = J + I (t) −
I (t)

1 − J

= J −
J

1 − J
I (t).

Differentiating and using Lemma 10 shows C1(t) − C2(t) is decreasing for t > t2.

Since C1(t) − C2(t) → 0 as t → ∞, this implies C1(t) − C2(t) ≥ 0, as claimed. 
�

Lemma 12 Let c1, c2 be probability density functions on [0,∞), with cumulative dis-

tribution functions C1, C2, such that C1(t) ≥ C2(t) for all t , with the inequality strict

on some interval. Let s(t) =
∫ t

0 μ(x) dx for a positive, piecewise-continuous μ on

[0,∞) such that s(∞) = ∞. For λ ≤ 0 let

f (λ, μ, Ci ) =

∫ ∞

0

exp(2λs(t))ci (t) dt .

Then if λ = 0,

f (0, μ, C1) = f (0, μ, C2) = 1.

while for λ < 0

f (λ, μ, C1) > f (λ, μ, C2).

Proof For λ = 0 we find f (0, μ, Ci ) =
∫ ∞

0 ci (t) dt = 1.

If λ < 0, integrating by parts yields

f (λ, μ, Ci ) = exp(2λs(t))Ci (t)

∣∣∣∣
∞

t=0

− 2λ

∫ ∞

0

μ(t) exp(2λs(t))Ci (t)dt

= −2λ

∫ ∞

0

μ(t) exp(2λs(t))Ci (t)dt .
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Thus

f (λ, μ, C1) − f (λ, μ, C2) = −2λ

∫ ∞

0

μ(t) exp(2λs(t))(C1(t) − C2(t))dt .

As the integrand is non-negative, and positive on some interval, the claim for λ < 0

follows. 
�

Lemma 13 Consider a GTR substitution model with rate matrix Q �= 0, a scalar-

valued rate function μ(t) satisfying the assumptions of Sect. 2.3, and a cumulative

distribution function C(t) for the time T to coalescence of 2 lineages in a population.

Let F(x) = F(Q, μ, C, x) be the expected site-pattern frequency array for two

lineages that enter a population at time 0 and undergo substitutions at rate μ(t)Q

conditioned on T ≥ x. For x < x1 let F̃(x, x1) = F̃(Q, μ, C, x, x1) be the expected

site-pattern frequency array for two lineages that enter a population at time 0 and

undergo substitutions at rate μ(t)Q conditioned on x < T < x1.

Then for all 0 �= y ∈ R
k the functions yT F(x)y and yT F̃(x, x1)y are positive-

valued and decreasing in x. Moreover there exists a y for which both are strictly

decreasing, and for which if x0 < x1 ≤ x2

yT F̃(x0, x1)y > yT F(x2)y.

Proof Let cx (t) denote the conditional probability density function for the coalescent

time T given T > x . With s(t) =
∫ t

0 μ(τ) dτ , the Markov matrix describing the

substitution process on a single lineage from time 0 to time t is

M(μ, Q, t) = exp (s(t)Q) .

Thus using time-reversibility of the substitution process, with π the stationary distri-

bution for Q,

F(x) = diag(π)

∫ ∞

0

(M(μ, Q, t))2cx (t) dt .

Here the square of the Markov matrix accounts for substitutions in the two lineages

before coalescence.

Now S−1 QS is diagonal for a matrix S = diag(π)−1/2U with U orthogonal, and

Q’s eigenvalues satisfy 0 = λ1 ≥ λ2 ≥ · · · ≥ λk with at least one λi < 0 (Lemma

2.2 of Allman et al. (2019b)). Thus diagonalizing the Markov matrix yields

U T diag(π)−1/2 F(x)diag(π)−1/2U =

∫ ∞

0


M(μ,Q,t)cx (t) dt

where 
M(μ,Q,t) is diagonal with entries exp(2s(t)λi ). The diagonal entries of this

integral are thus

∫ ∞

0

exp(2s(t)λi )cx (t) dt .
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But Lemmas 11 and 12 show this is positive, decreasing in x , and strictly decreasing

for some i . This establishes the claims about F , by choosing y to be any eigenvector

of Q whose eigenvalue is negative to obtain a strictly decreasing function.

The corresponding claims about F̃ are given by the same argument with the cumu-

lative distribution function C replaced by the conditional distribution function given

the coalescent time T < x1, that is, with

C̃x1(t) =

{
C(t)/C(x1) if t ≤ x1

1 if t > x1

.

Finally, since for every t the function C̃x1(t) is decreasing in x1, then for any y and

x0, a similar diagonalization argument and again using Lemma 12 shows the function

yT F̃(x0, x1)y is decreasing in x1. Thus if x0 < x1 ≤ x2, then

yT F̃(x0, x1)y ≥ lim
x1→∞

yT F̃(x0, x1)y = yT F(x0)y ≥ yT F(x2)y.

Moreover, if y is an eigenvector of Q whose eigenvalue is negative, then strict inequal-

ity holds. 
�

Proposition 2 Let N+ be a binary level-1 ultrametric rooted triple network on {a, b, c}

whose LSA network has topology ((a, b), c), but above LSA({a, b, c},N+) there is

possibly a chain of 2-cycles.Then, under a coalescent mixture model on N+ with fixed

parameters μ(t), {Ne}, Q, π , the relative site-pattern frequency matrices Fab, Fbc,

and Fac are symmetric positive definite, with Fac = Fbc, and satisfy

yT Fab y ≥ yT Fac y

for every y ∈ R
k , with the inequality strict for some y. Moreover, the same statements

hold when the arrays F xy are replaced by F
xy
|K p=1 with p a node placed above the

parent of a, b and below the parent of c.

Proof Let x1 be the length of the pendant edges to a and b, and x2 the length of the

pendant edge to c, so x2 > x1. Then applying Lemma 13 for an appropriately chosen

distribution C(t) of coalescent times so

Fab = F(x1), Fac = Fbc = F(x2),

the result is immediate.

Let x p denote the distance from a or b to p, so x1 < x p < x2. Then conditioning

on K p = 1, in the notation of Lemma 13 we have

Fab
|K p=1 = F̃(x1, x p), Fac

|K p=1 = Fbc
|K p=1 = Fbc = F(x2),

so again Lemma 13 yields the claim. 
�
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We now turn from considering a coalescent mixture model, with a single substitution

model class, to the mixture of coalescent mixtures M.

Lemma 14 Let N + be a level-1 ultrametric rooted triple network on {a, b, c} with no

4-cycle. Suppose {a, b} form a cherry in the tree topology obtained from suppressing

all cycles of N +. Then, under the mixture of coalescent mixtures model M on N+,

Fac(θ) = Fbc(θ).

Proof By Lemmas 4 and 5, we may assume N+ has neither a 21- nor a 31-cycle,

so there are no cycles below the parent of a, b. By the ultrametricity of the network,

a and b are exchangeable under the combined coalescent and substitution model for

each substitution model class, and therefore for the model M. 
�

This result is used to show that logDet distances from rooted triple networks with

only 2- and 31-cycles satisfy the same equality and inequality relationships as those

from trees.

Proposition 3 (No 41-cycles or 32-cycles) Let N + be a level-1 ultrametric rooted

triple network on {a, b, c} with neither a 4-cycle nor a 32-cycle. Let T = ((a, b), c)

be the tree topology obtained after suppressing all cycles in N+. Under the mixture

of coalescent mixtures model M on N+ the theoretical logDet distances satisfy

dL D(a, c) = dL D(b, c) > dL D(a, b).

Proof Under the model M, the frequencies of bases at any taxon are identical, given

by the same convex combination of the base frequency vectors πi for substitution

classes i . Thus the value of ln(gu gv) in the definition of the logDet distance, equation

(1), is identical for every pair of distinct taxa x, y ∈ {a, b, c}. It thus suffices to show

det Fab(θ) ≥ det Fac(θ) = det Fbc(θ).

Lemma 14 gives the equality. By Lemmas 4, 5, and 6, we can express F xy(θ) as a

convex combination of relative site-pattern frequency matrices, possibly conditioned

on K p = 1, of networks of the form of the tree T joined to a (possibly empty) chain

of 2-cycles above T ’s root, such as depicted in Fig. 2. By Proposition 2 each of those

matrices for coalescent mixture models satisfy the hypotheses of Lemma 9. Lemma 9

thus yields the claim for mixtures of coalescent mixtures by considering a convex

combination across both the networks and substitution model classes. 
�

A weaker result, without the inequality, applies to networks with 32-cycles.

Proposition 4 (32-cycle) Let N+ be a level-1 ultrametric rooted triple network on

{a, b, c} with a 32-cycle. Let T = ((a, b), c) be the tree topology obtained after

suppressing all cycles in N+. Then under the mixture of coalescent mixtures model

M on N+, the theoretical logDet distances satisfy

dL D(a, c) = dL D(b, c).

123



Identifiability of species network topologies from genomic... Page 25 of 38 35

Proof From Lemma 14, Fac(θ) = Fbc(θ), so the result follows as in the previous

proof. 
�

Proposition 3, and the arguments leading to it, show that the equality and inequality

relationships of logDet distances between only 3 taxa carry no signal of either 2- or

31-cycles. Proposition 4, however, leaves open the possibility that for a network with

a 32-cycle the smallest distance may not necessarily correspond to the taxa which are

neighbors after 2- and 3- cycles are suppressed. This suggests that the presence of a

32-cycle might be detectable, at least under some circumstances. In Sect. 7 we return

to this issue, providing a more in-depth analysis of triples of logDet distances.

Proposition 5 (41-cycle) Let N+ be a level-1 ultrametric rooted triple network on

{a, b, c} with a 4-cycle, such that contracting all cycles except the 4-cycle and then

deleting one of its hybrid edges gives the trees ((a, b), c) and ((a, c), b). (See Fig. 9).

Then under the mixture of coalescent mixtures model M on N+, the theoretical logDet

distances satisfy

dL D(b, c) > dL D(a, b) and dL D(b, c) > dL D(a, c).

Moreover, if all other parameters are fixed, then for generic values of the hybridization

parameters,

dL D(a, b) �= dL D(a, c).

Proof As in Proposition 3, to establish these inequalities for the logDet distance, it is

enough to show

det Fbc(θ) < det Fab(θ) and det Fbc(θ) < det Fac(θ). (5)

From Lemmas 4 and 5, for x, y ∈ {a, b, c}

F xy(θ) = γ1 F xy(θ1) + γ2 F xy(θ2)

where N+
1 and N +

2 have the structure of the trees ((a, b), c) and ((a, c), b) with

chains of 2-cycles possibly attached above their roots. Proposition 2 implies that for

each GTR substitution model class

yT Fab(θ1)y ≥ yT Fbc(θ1)y = yT Fac(θ1)y and

yT Fac(θ2)y ≥ yT Fab(θ2)y = yT Fbc(θ2)y,

for every y ∈ R
k , with the inequalities strict for some choices of y. From this and

Lemma 9 we obtain the inequalities (5).

To see dL D(a, b) �= dL D(a, c) for generic hybridization parameters, first observe

that these distances extend to analytic functions of the γ on all of C. To show the

inequality for generic γ , it is enough to show there exists one specific choice of γ ∈ C

for which they are not equal. First consider a choice on the boundary of the parameter
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Fig. 9 (Top) Three topologically-distinct rooted triple networks with a 4-cycle displaying the trees ((a, b), c)

and ((a, c), b). (Bottom) The undirected rooted topology shared by them

space, by letting γe = 1, γe′ = 0 for every pair e, e′ of hybrid edges with a common

child so that the model reduces to one on the tree ((a, c), b). In this case Theorem 1

of Allman et al. (2019b) establishes the inequality. Continuity implies that there are

then choices of 0 < γe < 1, where the model does not degenerate to one on a tree, for

which these distances are also not equal. 
�

Assuming generic parameter values, Proposition 5 combined with earlier results

implies that the presence of a 4-cycle is indicated by three distinct logDet distances

computed from expected pattern frequencies. However, the three networks at the top of

Fig. 9 all satisfy the hypothesis of Proposition 5, but using equalities and inequalities

of logDet distances we cannot distinguish them. We can only identify their undirected

version as depicted in the bottom of Fig. 9.

Nonetheless, the combinatorial result of Proposition 1 yields information on larger

cycles and their hybrid nodes by first using logDet distances to determine undirected

rooted triple networks. This gives our main result.

Theorem 1 Let N+ be a binary level-1 ultrametric network on X with a |X | ≥ 3. Let

Ñ denote the topological LSA network N⊕ modulo 2- and 3-cycles and directions

of edges in 4-cycles. Then for generic hybridization parameters under the mixture of

coalescent mixtures model M on N+, Ñ is identifiable from the theoretical logDet

distances for pairs of taxa.

Proof Propositions 3, 4, and 5 imply that for generic parameters the three logDet

distances for any choice of 3 taxa are distinct if, and only if, the induced rooted triple

network has a 4-cycle. Moreover, the unrooted topology of the 4-cycle is determined

by the largest of the three distances. Thus the set S of Proposition 1 is determined,

yielding the result. 
�

An example of a rooted level-1 network and the structure that we have shown to be

identifiable from logDet distances under the model M is given in Fig. 10. On the left

is a level-1 rooted phylogenetic network with cycles of various sizes, and on the right

the partially directed network that could be inferred from it for generic parameters.
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Fig. 10 (Left) A rooted binary level-1 network and (Right) that part of its structure that Theorem 1 identifies

from logDet distances under the model M for generic parameters. Both 2- and 3- cycles are lost, as are the

directions of 4-cycle edges, and hence knowledge of the hybrid nodes in 4-cycles. Directed edges in cycles

of size greater than 4 are identifiable

6 Modifying themodel

In this section we show how our results apply to two variants of the model used

throughout earlier sections. In the first, we no longer require that sites be independent,

allowing instead finite subsets of sites (e.g., modeling individual genes) evolving on

common gene trees. In the second, we consider a limiting case of the model, in which

gene lineages entering a population have an immediate common ancestor, without any

delay from a coalescent process. Other variants, such as one combining the features

of the two considered here, could be treated similarly.

6.1 Variant 1: Amodel for unlinked genes

The first model variation allows for unlinked genetic loci, each composed of linked

sites evolving on a common gene tree. This is a relaxation of the model assumption

in Sect. 2 that sites be unlinked. The original model only properly applies to unlinked

SNP data, while this variant allows for concatenated gene sequences. We require only

that the length of each locus be a random draw from some length distribution with

finite mean, independent of the topology of the gene tree.

To formalize this, let g be a probability mass function supported on N, with mean

m =
∑∞

n=1 g(n)n < ∞. The model description in Sect. 2 is modified so that sequence

data is generated as follows: For each gene,

1. a gene tree T is sampled according to the NMSC model on (N+, {�e}, {γe}) with

population sizes {Ne},

2. class i is sampled from the distribution λ to determine parameters (Qi , πi ;μi ),

and gene length n is sampled according to g, and

3. for n independent sites, the bases for each extant taxon x ∈ X are sampled under

the GTR+μ process on T with parameters (Qi , πi ;μi ).

All sites are then summarized by a site pattern frequency array, so that information as

to which sites evolved on the same gene tree is lost.
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To show that Theorem 1 applies to this model, we need only show that the expected

pattern frequency array for two taxa, F̃ab, under this model, is the same as the expec-

tation, Fab, under the model of Sect. 2. Let F̃ab
|T and Fab

|T denote expected pattern

frequencies conditioned on a particular gene tree T . Then with dT denoting the prob-

ability measure for gene trees under the NMSC with the given parameters,

F̃ab =

∫

T

F̃ab
|T dT

=

∫

T

(
1

m

∞∑

n=1

g(n)nFab
|T

)
dT

=

∫

T

(
1

m

∞∑

n=1

g(n)n

)
Fab

|T dT

=

∫

T

Fab
|T dT

= Fab.

Note that in applications of the theory developed here, empirical frequency arrays

produced from gene sequences are likely to converge more slowly to their expected

values than for those produced from SNP data, due to the linkage of sites. The argument

above suggests that enough genes are needed so that the variation in gene length

averages out over each possible gene tree.

6.2 Variant 2: A non-coalescent model

The second model variation we consider is a non-coalescent model for an ultrametric

level-1 species network, in which gene trees must be displayed on the species network.

One can think of this as simply requiring immediate coalescence of gene lineages

when they enter a common population. Population size parameters are thus no longer

relevant, but all other features of the model of Sect. 2 are retained.

This model is similar to the non-coalescent model considered by Gross et al. (2020),

who used algebraic and combinatorial arguments to obtain an identifiability result

for most features of a level-1 species network topology assuming generic numerical

parameters. However, we impose one more restrictive assumption, namely that the

network be ultrametric. On the other hand, we considerably relax their assumptions

on the sequence substitution model, from a requirement of a single Jukes-Cantor or

Kimura process to the mixture of GTR processes used throughout this paper.

Informally, to produce immediate coalescence of gene lineages in a coalescent

model, one can simply take a limit as the population sizes approach 0. Small population

size produces bottlenecks, which encourage rapid coalescence of lineages. In general,

results obtained under the coalescent model will still apply under a non-coalescent

model, provided the arguments respect taking such a limit.

To sketch how this applies in our arguments, first fix all population sizes Ne on

edges in a species network to have a common value N . Note that population size plays

123



Identifiability of species network topologies from genomic... Page 29 of 38 35

no role in any of our arguments before those of Sect. 5, except through probabilities

such as P(K p = 1) and P(K p = 2) which appear in formulas in Sect. 4 but are not

computed there. Thus all results through Sect. 4 remain valid.

As N → 0+, the density function c(t) of equation (4) for the time to coalescence of

two lineages in a population is easily seen to approach δ0, a point mass at t = 0. Thus

with probability 1 lineages coalesce immediately upon entering a common population.

While this observation can be traced through the remaining lemmas of Sect. 5 (making

some modifications to their presentation), it is simpler to give a direct proof of the

following analog of Proposition 2.

Proposition 6 Let N+ be a binary level-1 ultrametric rooted triple network on {a, b, c}

whose LSA network has topology ((a, b), c), but above LSA({a, b, c},N+) there is

possibly a chain of 2-cycles. Then, under a non-coalescent model on N+ with fixed

parameters μ(t), Q, π , the relative site-pattern frequency matrices Fab, Fbc, and Fac

are symmetric positive definite, with Fac = Fbc, and satisfy

yT Fab y ≥ yT Fac y

for every y ∈ R
k , with the inequality strict for some y.

Proof Let x1 be the length of the pendant edges to a, b and x2 the length of the pendant

edge to c. With s(t) =
∫ t

0 μ(τ) dτ , the Markov matrix describing the substitution

process on a single lineage from time 0 to time t is

M(μ, Q, t) = exp (s(t)Q) .

Thus using time-reversibility of the substitution process

Fab = diag(π)M(μ, Q, x1)
2 = diag(π) exp (2s(x1)Q)

Fac = Fbc = diag(π)M(μ, Q, x2)
2 = diag(π) exp (2s(x2)Q) .

Since Q is a GTR rate matrix, the result follows by diagonalization, as in Lemma 13.


�

The remainder of the arguments of Sect. 5 apply unchanged, to yield an analog of

Theorem 1. Note that while population sizes are no longer model parameters, all other

parameters are unchanged in the limit.

Remark 1 In general, results under the MSC and NMSC models yield results for

simpler non-coalescent models in the limit as population sizes decrease to 0. For

instance, without considering a site substitution process Baños (2019) and Allman

et al. (2019a) show that most features of a level-1 network can be identified from the

frequencies of displayed gene quartet trees under the NMSC. Letting all population

sizes → 0 then gives that most features of a level-1 network can be identified from

the frequencies of its displayed quartet trees.
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7 Normalized triples of logDet distances

In the previous section, we obtained linear equalities and inequalities that the logDet

distances between three taxa must satisfy if they are related by various level-1 rooted

networks. Combined with the combinatorial result of Sect. 3 these are sufficient for

proving the identifiability claim that is the main focus of this work. However, it is

worthwhile to seek a more complete characterization of what distances are achievable

by various network topologies. In particular, with an eye toward practical application,

any tighter characterizations would enable stronger testing for network topology from

the empirical distances.

Here we conduct a partial investigation, characterizing not the triple of theoretical

logDet distances that may be produced on rooted 3-taxon networks, but rather the nor-

malized triple obtained by dividing the distances by their sum. The triple of distances

forms a point in the non-negative octant
(
R≥0

)3
, while the normalized triple gives

a point in the 2-dimensional simplex. Thus plots can be made with the normalized

distances that are analogous to the simplex plots for visualizing gene quartet concor-

dance factors (Baños 2019; Mitchell et al. 2019; Allman et al. 2021). Just as simplex

plots of concordance factors aid in understanding genomic data sets, we anticipate that

the 2-simplex visualization of the normalized logDet distance triples will be similarly

useful.

We begin with the logDet triples from 3-taxon trees.

Proposition 7 Let � = (�ab, �ac, �bc) with 0 < �ab ≤ �ac = �bc be a triple of

positive numbers summing to 1. Then there exists an ultrametric rooted tree with

topology ((a, b), c) and GTR substitution model parameters such that the normalized

theoretical logDet distances of sequences generated under the coalescent mixture

model are �.

Proof Consider the metric species tree ((a:0, b:0):x/2, c:x/2), and constant popula-

tion sizes ε > 0 on all edges. Fix a single substitution model, say the Jukes-Cantor, for

sequence generation. Since small population sizes ε result in rapid coalescence with

arbitrarily high probability, by taking ε sufficiently small one can show the expected

frequency array can be made arbitrarily close to that which would arise if all gene trees

exactly matched the species tree. Thus the theoretical logDet distances can be made

arbitrarily close to dL D(a, b) = 0 and dL D(a, c) = dL D(b, c) = x , which normalizes

to (0, 1/2, 1/2).

The unresolved species tree (a:x/2, b:x/2, c:x/2), regardless of choice of popu-

lation functions on the edges yields, by exchangeability of the taxa, a triple of equal

logDet distances, which normalizes to (1/3, 1/3, 1/3).

While the two trees above have 0-length edges and hence are non-binary, pertur-

bations to binary trees with positive length edges can produce normalized logDet

distances that are arbitrarily close.

Since the normalized logDet distances are continuous functions of parameters, the

parameter space is connected, and the image of the normalized distances lies in a line

segment by Proposition 3, the claim follows. 
�

We turn now to networks with a single cycle.
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Fig. 11 The 4-cycle network,

with times in generations,

constructed in Proposition 8.

Hybridization parameters are γ ,

1 − γ , and hybrid edges have

length 0

Proposition 8 Let � = (�ab, �ac, �bc) with 0 < �ab ≤ �ac < �bc be a triple of positive

numbers summing to 1. Then there exists a binary ultrametric rooted network on taxa

a, b, c with a single 4-cycle and GTR substitution model parameters such that the

normalized theoretical logDet distances of sequences generated under a single-class

coalescent mixture model are �.

Proof The 4-cycle network we construct is shown in Fig. 11, with t0, t1 measured in

generations, and the hybrid edges of length 0. Consider a single constant population

size N > 0 for all populations over the tree and above the root, and a Jukes-Cantor

substitution process with constant rate μ > 0. We will choose values for t0, t1 > 0,

γ ∈ [1/2, 1) so that the normalized distances for the coalescent mixture model with

this single substitution process are given by �.

Recall that if M(t) denotes the Jukes-Cantor Markov matrix for a substitution

process over time t with rate 1, then the common value of all its off-diagonal entries

is

f (t) =
1

4

(
1 − e− 4

3 t
)

.

With D = diag(1/4, 1/4, 1/4, 1/4), the Jukes-Cantor pattern frequency array is

DM(t), and the logDet distance (equal to Jukes-Cantor distance) is

t = f −1( f (t)) = −
3

4
log (1 − 4 f (t)) .

Note that f is an increasing function.

From equation 4.1 of Allman et al. (2019b), for a coalescent mixture Jukes-Cantor

model on an ultrametric tree with uniform population size N and mutation rate μ,

sequences for two taxa x, y whose MRCA is at time t before the present has expected

pattern frequency array

F(t) = DM(2tμ)M̃(μ, N ),

where M̃(μ, N ) is a Markov matrix of Jukes-Cantor form describing the expected

additional substitutions due to the coalescent model delaying lineages merging until

some time above the MRCA. The logDet distance between x, y is then the same as

the Jukes-Cantor distance, which is computed to be

dL D(x, y) = 2tμ + β
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where β = β(μ, N ) > 0 can be explicitly computed from M̃(μ, N ), though we will

not do so here. Since β is continuous and β(μ, N ) → 0 as N → 0 and β(μ, N ) → ∞

as N → ∞, it follows that β takes on all positive values.

Now by Lemma 5 on the 4-cycle network of Fig. 11 the expected pattern frequency

array for a, b is

γ F(t0) + (1 − γ )F(t1) = DMab M̃(μ, N )

where

Mab = γ M(2t0μ) + (1 − γ )M(2t1μ)

has the usual Jukes-Cantor form, with off-diagonal entries

fab = γ f (2t0μ) + (1 − γ ) f (2t1μ).

This shows

dL D(a, b) = f −1( fab) + β.

A similar calculation shows

dL D(a, c) = f −1( fac) + β,

where

fac = γ f (2t1μ) + (1 − γ ) f (2t0μ).

The expected pattern frequencies for b, c sequences is F(t1), so

dL D(b, c) = f −1( fbc) + β

where

fbc = f (2t1μ).

We now determine parameters which produce the normalized triple of distances �.

Fixing values of μ, N determines a fixed value of β > 0. Next, choose some value m

so that

f (m�ab − β) >
1

8
,

which can be done since f : R
>0 → (0, 1/4) is surjective and increasing. Then, with

xi j = f
(
m�i j − β

)
, because �ab ≤ �ac < �bc we have

1

8
< xab ≤ xac < xbc <

1

4
.
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Fig. 12 A 32-network, with

numbered edges, as used in

Proposition 9. The hybridization

parameter on edge e5 is γ , and

on e4 is 1 − γ

Let x0 = xab + xac − xbc, so 0 < x0 < 1
4

. Determine t0 by f (2t0μ) = x0, and

γ ∈ [1/2, 1) by

γ =
xbc − xab

2xbc − xab − xac

, so 1 − γ =
xbc − xac

2xbc − xab − xac

.

Then choose t1 by f (2t1μ) = xbc.

To verify that these parameter choices give the desired normalized triple of dis-

tances, the expected distance between a, b is

dL D(a, b) = f −1(γ f (2t0μ) + (1 − γ ) f (2t1μ)) + β

= f −1(γ x0 + (1 − γ )xbc) + β

= f −1(xab) + β

= m�ab.

Similarly, we see dL D(a, c) = m�ac. Finally we have

dL D(b, c) = f −1( f (2t1μ)) + β = f −1(xbc) + β = m�bc.


�

Note that even if �ac = �bc, the argument of Proposition 8 can be modified slightly

by taking γ = 1 in the analytic continuation of the parameterization. However, that

choice of the hybridization parameter essentially means that in place of a 4-cycle

network parameter we have a tree.

Finally, we consider a network with a 32-cycle. While Proposition 4 shows the

normalized triples of theoretical logDet distances lie on the same line as those for

a tree, we establish they need not be restricted to the same line segment of tree-like

distances. However, we do not completely characterize the extent of the segment they

fill out.

Proposition 9 Let � = (�ab, �ac, �bc) with �ac = �bc be a triple of positive numbers

summing to 1 with 0 < �ab < 1
2

. Then there exists a binary ultrametric rooted network

on taxa {a, b, c} with a single 32-cycle whose leaf-descendants are a, b and GTR

substitution model parameters such that the normalized theoretical LogDet distances

of sequences generated under the coalescent mixture model are �.
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Proof We construct several 32-cycle species networks of the form shown in Fig. 12,

with edge lengths ti = �(ei ). In making choices of numerical parameters, since the

network is ultrametric we view t1, t3, t5, t7 as independent, determining t2, t4, t6. The

population size on edge ei for 3 ≤ i ≤ 8 are constants Ni , with the sizes on terminal

edges irrelevant. The hybridization parameters are 1 − γ and γ on edges e4 and e5

respectively. We also fix a single Jukes-Cantor substitution process with any constant

rate μ > 0.

By Proposition 4, for any choices of the ti , Ni , γ , the theoretical LogDet distances

will satisfy dL D(a, c) = dL D(b, c) so the normalized theoretical LogDet distance

triple lies on a line. Since the parameter space is connected, it is enough to show that

dL D(a, b)

2dL D(a, c) + dL D(a, b)
(6)

is arbitrarily close to 0 for some choice of the parameters, and arbitrarily close to

1/2 for others, to conclude that the rescaled expected distances give all the described

triples.

To make expression (6) near 0, we choose parameters with t1 and N3 sufficiently

small so that with high probability the a, b lineages coalesce quickly. Specifically, let

t3 = 1, and fix any positive values for t5, t7 and Ni for i �= 3. Now for any ε > 0, as

N3 → 0+, the probability of lineages from a, b coalescing on e3 within ε of entering

it approaches 1. Using this, it is straightforward to show that as N3 → 0+ the expected

pattern frequency array for a, b approaches that for the JC model on a 2-taxon tree of

total length 2t1. This then implies that dL D(a, b) → 2μt1 as N3 → 0+. On the other

hand, for all values of N3 > 0 one can show dL D(a, c) > 2μ(t1 + 2). Thus for a

sufficiently small choices of t1 and N3, we can make dL D(a, b)/(2d(a, c) + d(a, b))

as close to 0 as desired.

To produce a value of expression (6) near 1/2 is more subtle. We choose parameters

so that a, b lineages are likely to enter e5, but if they both do they are then unlikely

to coalesce in it, and coalescence of any pair of lineages in e7 is likely to occur

quickly. First set t5 = 0, t7 = 1 and N8 arbitrary. For any t1, t3 and γ , by choosing

N3 = N4 = N5 sufficiently large, the probability that the a, b lineages coalesce on

e3, e4, or e5 can be made arbitrarily small, so that if they coalesce below the root with

(conditional) probability approaching 1 they must do so on e7. This requires that both

the a, b lineages follow e5, which occurs with probability γ 2. If lineages a, c coalesce

below the root, they must do so on e7, requiring the a lineage to follow e5, which

occurs with probability γ . By picking N7 sufficiently small, the probability that two

lineages in edge e7 coalesce near the lower end can be made close to 1. All this shows

that once t1, t3 and γ are chosen, by appropriate choices of the Ni we can ensure the

expected frequency arrays for a, b and a, c are arbitrarily close to

γ 2 F(t1 + t3) + (1 − γ 2)G(t1 + t3 + 1, N8)

and

γ F(t1 + t3) + (1 − γ )G(t1 + t3 + 1, N8),
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respectively, where F(t) is the expected pattern frequency array for two samples at

distance 2t and G(t, N ) is the expected array under the coalescent for 2 lineages which

enter a common population of size N at time t . Further picking sufficiently small values

for t1, t3, the pattern frequency arrays for a, b and a, c can be made arbitrarily close

to

γ 2 1

4
I + (1 − γ 2)G(1, N8)

and

γ
1

4
I + (1 − γ )G(1, N8),

respectively. Thus for any γ the theoretical distance can be made arbitrarily close to

the distance computed from the above arrays. Using the formulas defined in the proof

of Proposition 8, we find these distances are

dL D(a, b) = f −1
(
(1 − γ 2)δ

)

and

dL D(a, c) = f −1 ((1 − γ )δ)

where δ > 0 is the off-diagonal entry of G(1, N8). Thus once γ is specified, by

choosing t1, t3, N3 = N4 = N5, N7 we can ensure expression (6) is arbitrarily close

to

log(1 − 4δ(1 − γ 2))

2 log(1 − 4δ(1 − γ )) + log(1 − 4δ(1 − γ 2))
. (7)

Applying L’Hopital’s rule shows the limit of expression (7) as γ → 1 is 1
2

. Thus for

any ε > 0, by first choosing γ near 1 so that the expression (7) is within ε/2 of 1/2,

and then choosing t1 = t3, N3 = N4 = N5, N7 so that expression (6) is within ε/2 of

expression (7), we obtain the desired result. 
�

The results of this section, combined with those of Sect. 5 are summarized by

Fig. 13, which indicates the various regions of the simplex which normalized logDet

triples fill, according to whether the network has a 4-cycle, a 32-cycle, or neither.

Note that the possibility that a 32-cycle (as depicted in the center of Fig. 13) leads to

a triple of normalized logDet distances lying on an extension of the corresponding line

segment for the tree topology displayed on the networks (as depicted to the right of

the figure) echoes a number of similar results arising in studies of network inference

under the coalescent from gene tree data. For unrooted quartets, these include the

works of Solís-Lemus et al. (2016); Baños (2019) and Allman et al. (2019a), and for

rooted triples Long and Kubatko (2018) and Jiao and Yang (2020). In essence, all these

results indicate that the coalescent can lead to anomalous gene trees, in the sense that
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Fig. 13 The regions of the simplex filled by normalized triples of logDet distances under the model M on

a 3-taxon network. The networks shown are those obtained by suppressing all cycles other than 4- and 32-

cycles, and then undirecting the 4-cycle edges. Normalized logDet distances are ordered as (�ab, �ac, �bc).

Networks with 32-cycles fill the solid line segments in the center simplex, but it is unknown whether they

may also produce points in the dashed line segments

the most frequent gene tree topology may not match that of the trees displayed on the

species network, even though all such displayed trees have the same topology.

8 Conclusion

Theorem 1 states that most topological features of an ultrametric level-1 network

can be identified from theoretical logDet distances under a fairly general model of

sequence evolution with incomplete lineage sorting. It more generally implies network

identifiability from pattern frequency arrays, since logDet distances are functions of

these. In particular, individual gene trees, or even sequences partitioned into genes,

are not required for network identifiability.

While identifiability is a theoretical question about the model, it has important

implications for data analysis. Indeed, it is a key requirement for a statistically consis-

tent inference procedure to exist. While our method of proof of identifiability, using

the logDet distance, suggests using that distance as a basis for an inference procedure,

others might be developed as well.

In subsequent work, we will explore using the logDet distance in a procedure for

level-1 network inference following the framework of NANUQ (Allman et al. 2019a).

In outline, for each triple of taxa, the location of the normalized triple of logDet

distances in simplex plots such as those of Fig. 13 can indicate whether the rooted

triple has a 4-cycle or not. A triple near the lines through the centroid can, through some

statistical test, be judged unlikely to have arisen from a 4-cycle, while those farther

away are judged to have arisen from a 4-cycle. Then, modifying the rooted triple

distance of Rhodes (2019) to a network setting, similarly to how NANUQ modified

the quartet distance, an intertaxon distance can be computed from the results of these

statistical tests. Rules for relating a splits graph for the expected rooted triple distance

to the original network will be developed. When applied to the splits graph constructed

by NeighborNet from the empirically-derived distance, this should lead to consistent

network inference. Since individual gene trees are never inferred, this will potentially

give a much faster data analysis pipeline than the current version of NANUQ, which

is built on quartet concordance factors across gene trees.
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