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Abstract

Inference of network-like evolutionary relationships between species from genomic
data must address the interwoven signals from both gene flow and incomplete lineage
sorting. The heavy computational demands of standard approaches to this problem
severely limit the size of datasets that may be analyzed, in both the number of species
and the number of genetic loci. Here we provide a theoretical pointer to more efficient
methods, by showing that logDet distances computed from genomic-scale sequences
retain sufficient information to recover network relationships in the level-1 ultrametric
case. This result is obtained under the Network Multispecies Coalescent model com-
bined with a mixture of General Time-Reversible sequence evolution models across
individual gene trees. It applies to both unlinked site data, such as for SNPs, and
to sequence data in which many contiguous sites may have evolved on a common
tree, such as concatenated gene sequences. Thus under standard stochastic mod-
els statistically justifiable inference of network relationships from sequences can be
accomplished without consideration of individual genes or gene trees.
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1 Introduction

As genomic-scale sequencing has become increasingly common, attention in phylo-
genetics has shifted from inferring trees of evolutionary relationships for individual
genetic loci from a set of species to inferring relationships between the species them-
selves. A substantial complication is that population genetic processes within species,
as modeled by the Multispecies Coalescent (MSC) model can lead to individual gene
trees having quite different topological structures than the tree relating the species
overall. If the evolutionary history of the species also involved hybridization or other
forms of horizontal gene flow, so that a species network is a more suitable depiction
of relationships, the relationships of gene trees to the network, as modeled by the
Network Multispecies Coalescent (NMSC) model, is even more complex.

Inference of species networks, through a combined NMSC and sequence substitu-
tion model, can be performed in a Bayesian framework (Zhang et al. 2017; Wen and
Nakhleh 2018) but computational demands severely limit both the number of taxa and
the number of genetic loci considered. Other methods take a faster two-stage approach,
first inferring gene trees which are treated as “data” for a second inference of a species
network. Approaches include maximum pseudolikelihood using either rooted triples
(PhyloNet) or quartets (SNaQ) displayed on the gene trees (Yu and Nakhleh 2015;
Solis-Lemus and Ané 2016), or the faster, distance-based analysis built on gene quar-
tets of NANUQ (Allman et al. 2019a). Still, the first stage of these approaches, the
inference of individual gene trees, can be a major computational burden. Avoiding such
gene tree inference, and passing more directly from sequences to an inferred network,
could substantially reduce total computational time in data analysis pipelines.

The goal of this paper is to show that most topological features of a level-1 species
network can be identified from logDet intertaxon distances computed from aligned
genomic-scale sequences. In particular this can be done without partitioning the
sequences by genes, under a combined model of the NMSC and a mixture of general
time-reversible (GTR) substitution processes on gene trees. While the main result,
that the logDet distances retain enough information to recover most of the species
network, despite having lost information on individual genes, is a theoretical one, it
points the way toward faster algorithms for practical inference. In particular, since the
computation of logDet distances requires little effort, it suggests that a distance-based
approach similar to NANUQ’s, but avoiding individual gene tree inference, may offer
substantially faster analyses than current methods.

The model of sequence evolution underlying our result accounts not only for base
substitutions along each gene tree, but also for variation in gene trees due to their
formation under a coalescent process combined with hybridization or similar gene
transfer. Our model extends to networks the mixture of coalescent mixtures model on
species trees of Allman et al. (2019b), which itself extended the coalescent mixture
introduced by Chifman and Kubatko (2015). More specifically, for a fixed species net-
work, gene trees are formed under the Network Multispecies Coalescent model (Meng
and Kubatko 2009; Yu et al. 2011; Zhu et al. 2016) for each site independently. GTR
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substitution parameters for base evolution on each site’s tree are then independently
chosen from some distribution, leading to a site pattern distribution. These site distri-
butions are finally combined to give a site pattern distribution for genomic sequences.
(As discussed in Sect. 6, this distribution also applies to a more realistic model in
which multisite genes with a single substitution process have lengths chosen indepen-
dently from some distribution.) While this pattern frequency distribution thus reflects
the substitution processes on all the gene trees, information about pattern frequencies
arising on any individual gene tree is hidden.

The logDet distance was first introduced in the context of a single class general
Markov model of sequence evolution on a single gene tree (Steel 1994; Lockhart et al.
1994), and has been used both to obtain both gene tree identifiability results and for
inference of individual gene trees. Considering genomic sequences, Liu and Edwards
(2009), and independently Dasarathy et al. (2015), showed that for a Jukes-Cantor
substitution model and an ultrametric species tree, the Jukes-Cantor distances obtained
under the coalescent mixture model still allowed for consistent inference of topological
species trees. By passing to the logDet distance, Allman et al. (2019b) extended this
result to the more realistic mixture of coalescent mixtures model, showing that the
logDet distance allowed for consistent inference of a topological species tree, assuming
itis ultrametric in generations. This study builds on all these works on gene and species
tree models, but considers level-1 species networks on which all extant species are
equidistant from the root.

Passing from species trees to networks is a substantial step, however, and our
approach is strongly motivated by the approach taken by Bafios (2019) in studying
identifiability of features of unrooted level-1 topological species networks from gene
tree quartet concordance factors (probabilities of the different quartet topologies dis-
played on gene trees). In the ultrametric setting of this work, we show that logDet
distances computed from genomic sequences suffice to determine 4-cycles on undi-
rected rooted triple networks, and then that this 4-cycle information for different rooted
triples can be combined to determine all cycles of size 4 or more, and even all hybrid
nodes in those cycles of size 5 or more. We do not obtain information on 2- or 3- cycles,
so our results closely parallel those of Bafos (2019), despite the rather different source
of information.

There are a number of other theoretical works in the literature on determining phy-
logenetic networks from limited information. For instance, Jansson and Sung (2006)
investigate determining a level-1 network from the rooted triple trees it displays, Huber
etal. (2017, 2018) discuss how knowledge of trinets (induced 3-taxon directed rooted
networks) and quarnets (induced 4-taxon undirected unrooted networks) determine
larger networks, and van Iersel et al. (2020) explore determination of networks from
distances. However, the question of how, or whether, these results can be applied to
biological data is not addressed, and the setting of these works is not directly applicable
to obtaining our results.

Other works (Gross and Long 2018; Gross et al. 2020; Hollering and Sullivant
2021) use algebraic approaches to show that certain types of level-1 networks can be
identified from joint pattern frequency arrays under group-based models of sequence
evolution such as the Jukes-Cantor and Kimura models. In addition to their restriction
on sequence evolution models, these works do not incorporate a coalescent process.
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That is, all sequence sites are assumed to have evolved on one of the finitely-many
trees displayed on the network. Since the absence of a coalescent process is a limiting
case of our coalescent-based model, our results allowing for mixtures of more general
sequence evolution models extend those results in the ultrametric case. Algebraic
study of a network model combined with the general Markov model, again with no
coalescent process, was also conducted by Casanellas and Fernandez-Sanchez (2020).

This paper proceeds as follows. Section 2 defines the networks and models under
consideration, as well as the logDet distance. For most of the paper we restrict to a
model of unlinked sites, only later passing to a model allowing concatenated genes
whose sites evolve on the same gene tree. Section 3 uses combinatorial arguments to
show how information on undirected rooted triple networks can be used to determine
features of a larger directed network from which they are induced. Expected frequen-
cies of site patterns for sequences produced by the mixture of coalescent mixtures
model are studied in Sect. 4, and shown to be expressible as convex combinations
of pattern frequencies from simpler networks. In Sect. 5 we show that the ordering
by magnitude of logDet distances for triples of taxa tells us about the induced rooted
triple species network, and by combining this with the result of Sect. 3 we obtain our
main identifiability result, Theorem 1. Section 6 discusses two variations on our main
result that are implied by it. The first is to a model with genes of linked sites that
evolve on a common tree. The second is to a non-coalescent model, in which all gene
trees must be displayed on the species network. Section 7 further studies the logDet
distances from a rooted triple network, in order to better understand what triples of
distances can arise under the mixture of coalescent mixtures model. We conclude in
Sect. 8 with an outline of how these results can be developed into a practical inference
algorithm.

2 Networks and models
2.1 Phylogenetic networks

Although there are many variations on the notion of a phylogenetic network in the
literature, we adopt ones appropriate to the Network Multispecies Coalescent (NMSC)
model. This model, which describes the formation of trees of gene lineages in the pres-
ence of both incomplete lineage sorting and hybridization, will be further developed
in the next subsection. First, we focus on setting forth combinatorial aspects of the
networks.

Definition 1 (Solis-Lemus and Ané 2016; Baiios 2019) A topological binary rooted
phylogenetic network N'* on taxon set X is a connected directed acyclic graph with
vertices V = V(N™T) and edges E = E(NT), where V is a disjoint union V =
{r} UV, U Vg UuVrand E is a disjoint union £ = Ey U E7, with a bijective
leaf-labeling function f : Vi — X with the following characteristics:

1. The root r has indegree 0 and outdegree 2.
2. Aleaf v € Vi, has indegree 1 and outdegree O.
3. A tree node v € Vr has indegree 1 and outdegree 2.
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4. A hybrid node v € Vg has indegree 2 and outdegree 1.

5. A hybrid edge e = (v, w) € Ep is an edge whose child node w is hybrid.

6. A tree edge e = (v, w) € E7 is an edge whose child node w is either a tree node
or a leaf.

When | X| = 3 or 4, we refer to N as a rooted triple network or a rooted quartet
network, respectively.

The vertices, and edges, of N'* are partially ordered by the directedness of the
graph. For instance, a node u is below a node v, and v is above u, if there exists a
non-empty directed path in At from v to u. The root is thus above all other nodes.

A metric notion of the network above incorporates some of the parameters of the
NMSC model. This introduces edge lengths, measured in generations throughout this
article, as well as probabilities that a gene lineage at a hybrid node follows one or the
other hybrid edge as it traces back in time toward the network root. Since we focus on
binary networks, only hybrid edges are allowed to have length 0, to model possibly
instantaneous jumping of a lineage from one population to another.

Definition 2 A metric binary rooted phylogenetic network (N, {€.}ecE, {VelecEy)
is a topological binary rooted phylogenetic network together with an assignment of
weights or lengths £, to all edges and hybridization parameters y, to all hybrid edges,
subject to the following restrictions:

1. The length €, of a tree edge e € E7 is positive.

2. The length £, of a hybrid edge e € Eg is non-negative.

3. The hybridization parameters y, and y, for a pair of hybrid edges e, ¢’ € Ey with
the same child hybrid node are positive and sum to 1.

A metric network of this sort is said to be ultrametric if every directed path from the
root to a leaf has the same total length. This is equivalent to requiring the ultrametricity
of all trees displayed on the network. An example of a simple ultrametric network is
shown in Fig. 1 (Right).

On directed networks there are several analogs (Steel 2016) of the most recent
common ancestor of a set of taxa on a tree. The following is the most useful in this
work.

Definition 3 (Steel 2016) Let At be a (metric or topological) binary rooted phyloge-
netic network on a set of taxa X and let Z C X. Let D be the set of nodes which lie
on every directed path from the root » of N to any z € Z. Then the lowest stable
ancestor of Z on N7, denoted LSA(Z, N'1), is the unique node v € D such that v
is below all u € D with u # v. The lowest stable ancestor (LSA) of a network on X
is LSA(X).

Phylogenetic networks as defined here have no cycles in the usual sense for a
directed graph. The term cycle will thus be used to refer to a collection of edges
that form a cycle when all edges are undirected. A cycle must contain at least two
hybrid edges sharing a hybrid node, and may contain any non-negative number of tree
edges. The class of networks we focus on is those in which cycles are separated, in
the following sense.
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a b c d a b c d

Fig.1 (Left) An ultrametric species network A/t with time  in generations before the present, hybrid edges
h and h’ shown in red, and population functions N, (¢) on each edge depicted by widths of “tubes.” The
edge lengths t are measured on the #-axis between the dashed lines indicating speciation and hybridization
events. The dashed red/blue boundary represents a hybrid node, the top dashed line the root of the network,
and other dashed lines tree nodes. (Right) A schematic of the same species tree, which does not show
population sizes. Hybridization parameters y and y’ are omitted from both drawings

Definition 4 A rooted binary phylogenetic network /T is said to be level-1 if no two
distinct cycles in VT share an edge.

Although this is not the standard definition of level-1 (Rossellé and Valiente 2009),
in the setting of binary networks it is equivalent.

Each cycle on a level-1 phylogenetic network contains exactly one hybrid node and
two hybrid edges with that node as a child. Thus there is a one-to-one correspondence
between cycles and the hybrid nodes they contain. A cycle composed of n edges, 2 of
which are hybrid, is called an n-cycle. If the cycle’s hybrid node has k leaf descendants,
it is an ng-cycle.

Passing from a large network to one on a subset of the taxa is similar to the process
for trees.

Definition 5 Suppressing a node with both in- and out-degree 1 in a directed phylo-
genetic network means replacing it and its two incident edges with a single edge from
its parent to its child. For a metric network, the new edge is assigned a length equal
to the sum of lengths of the two replaced. If the outedge was hybrid, the new edge is
also hybrid and retains the hybridization parameter.

Similarly, suppressing a node of degree 2 between two undirected edges means
replacing it and its two incident edges with a single undirected edge.

Definition 6 Let A/t be a (metric or topological) binary rooted phylogenetic network
on X and let Y C X. The induced rooted network /\/';r on Y is the network obtained
from N by retaining nodes and edges in every path from the root r on N'* to any
y € Y, and then suppressing all nodes with in- and out-degree 1. We then say N'*
displays Ny .

We also need the notion of a rooted undirected network, in which all edges have
been undirected but the root retained. Note that if a rooted network is a tree, knowledge
of the root alone is enough to recover the direction of every edge, so this notion is
not useful in that setting. If cycles are present, knowledge of the root determines only
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Fig.2 A rooted network N’ O
whose LSA network N'® is the

rooted tree ((a, b), c), but which
has a chain of 2-cycles above
LSA(a, b, c)

the direction of every cut edge (an edge whose deletion results in a graph with two
connected components), and edges directly descended from cut edges. Knowing the
root and all hybrid nodes in an undirected level-1 network does, however, determine
the full directed network.

Several other notions of networks induced from a directed one are needed.

Definition 7 Let A/t be a (metric or topological) binary rooted phylogenetic network
on X.

1. (Bafios 2019) The LSA network N'® induced from AT is the network on X obtained
by deleting all edges and nodes above LSA (X, N'"), and designating LSA (X, V')
as the root node.

2. The undirected LSA network N'© is the rooted network obtained from the LSA
network N'® by undirecting all edges.

3. (Bafios 2019) The unrooted semidirected network N~ is the unrooted network
obtained from the LSA network N'® by undirecting all tree edges and suppressing
the root, but retaining directions of hybrid edges.

For a binary level-1 network N, the only possible structure above the LSA has
the form of a (possibly empty) chain of 2-cycles (Bafios 2019), an example of which
is shown in Fig. 2. The LSA network A/® is obtained by simply deleting that chain.

Note that the terminology of “ni-cycles” can be applied to LSA networks N'®,
as hybrid edges retain their direction. On undirected LSA networks N'©, however,
“n-cycle” can still be applied, but “ng-cycle” generally cannot.

Definition 8 By suppressing a cycle C in a topological level-1 network we mean
deleting all edges in C, identifying all nodes in C, and if the resulting node is of
degree 2 suppressing it. If the network is rooted and this results in the root becoming
a degree 1-node, then the resulting edge below the root is also deleted, with its child
becoming the root.

Suppressing an n-cycle in a binary level-1 network results in a non-binary network
when n > 4. However if only 2- and 3-cycles are suppressed, the result is binary.
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2.2 Coalescent model on networks

The formation of gene trees within a species network, as ancestral lineages of sampled
loci from extant taxa join together moving backwards in time, is given a mechanis-
tic description by the Network Multispecies Coalescent Model (NMSC) (Meng and
Kubatko 2009; Yu et al. 2011; Zhu et al. 2016).

Parameters of the NMSC for a set of taxa X include a metric rooted binary phyloge-
netic network (N ", {£,}, {¥.}) on X, with edge lengths £, in generations. In addition,
for each edge e = (u, v) fix a function N, : [0, ¢,) — R>0 giving the (haploid)
population size along the edge, where N,(0) is the population size at the child node
v and N,(¢) is the population at time ¢ units above it. Finally, let N, : [0, c0) — R>0
be an additional population size function for an infinite length ‘edge’ ancestral to
the root r of the network. The N, need not be constant nor equal, although those
are common assumptions in other works. As did Allman et al. (2019b), we make the
biologically-plausible technical assumptions that the functions N, are bounded, and
that all 1/N,(t) are integrable over finite intervals.

Figure 1 (Left) depicts an example species network that is ultrametric in generations,
with hybrid edges & and 4’, and population functions N, on each edge depicted by
time-varying widths of the network edges. The edge lengths ¢, are measured on the
t-axis between the horizontal lines indicating speciation and hybridization events.
Figure 1 (Right) gives a schematic of the same species tree, without a depiction of
population functions.

The standard Kingman coalescent models the formation of gene trees, with edge
lengths in generations, within a single population edge e, with pairs of lineages coa-
lescing independently as they trace backward in time, at instantaneous rate 1/N,(¢).
The multispecies coalescent model (MSC) extends this to a tree of populations, by
using the standard coalescent on each edge, as well as an infinite length edge above the
root, allowing multiple gene lineages to enter a population from its descendant ones
at a tree node. The NMSC extends this further, so that lineages reaching hybrid nodes
randomly enter one or the other hybrid edge above them, with the choice determined
independently according to the hybridization parameter probabilities. Thus the NMSC
parameters (N, {£.}, {y.}) and {N,} determine a distribution of rooted metric gene
trees. The structure of the NMSC also ensures that the distributions of gene trees
obtained by marginalization to a subset ¥ of taxa are the same as the distributions
obtained from the NMSC on the displayed network N, ;r .

2.3 Sequence substitution models on gene trees

The k-state general time-reversible model (GTR) for sequence evolution is a
continuous-time Markov process on a metric gene tree. Gene tree edge lengths are in
substitution units, and sequences are composed of k possible states, or bases. Model
parameters are a k X k instantaneous rate matrix Q together with a k-state distribution
7, with non-negative entries summing to 1, satisfying the following:

1. off-diagonals entries of Q are positive,
2. row sums of Q are 0,
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3. trace Q = —1,
4. 1Q =0,
5. diag(w) Q is symmetric.

In the ultrametric framework for our species networks, we introduce an additional
time-dependent but lineage-independent rate scalar w(¢) for Q, where ¢ is measured
in generations from leaves to the root and beyond, and w(¢) has units of substitu-
tions/generation. We assume u is piecewise-continuous, wu(t) > 0 for all # > 0 so
that the mutations process never stops, and fooo u(t)dt = oo so that the total amount
of possible mutation is unbounded. Following Allman et al. (2019b), this substitution
model is denoted by GTR+xt.

For any node u on a gene tree, let 7, denote the distance, in generations, to that
node from its descendant leaves. The states at a single site in sequences at the taxa at
the leaves on the gene tree are then determined as follows: A state is randomly chosen
at the root of the tree from the distribution 7. For each edge ¢ = (u, v) descendant
from a node u the site undergoes random state changes with rates p(#) Q for times
t € [ty, t,] to obtain states at the child nodes. The full substitution process on the edge
is thus described by the Markov matrix

tLl
M, = exp (/ w(t)dt Q> .
ty

A similar process is then repeated for those nodes’ children, and so on, until states at
the taxa have been determined.

2.4 Mixture of coalescent mixtures

The model we focus on is the m-class mixture of coalescent mixtures (Allman et al.
2019b) extended from a tree to an ultrametric network. This model has as parameters an
ultrametric species network (NVT, {£.}, {y.}), population size functions {N.}, a finite
collection {(Q;, ;; ui)}iL; of GTR+u parameters for the m classes, and a vector A
of m positive class size parameters summing to 1.

Sequence data is generated as follows: For each site:

1. a gene tree T is sampled according to the NMSC model on (M, {£,}, {y.}) with
population sizes {N,},

2. class i is sampled from the distribution A to determine parameters (Q;, 7;; (i),

3. the bases for each x € X are sampled under the GTR+p process on 7 with
parameters (Q;, w;; (i).

This model is denoted by M = M(0) where

0 = ((N+1 {Ze}v {Ve})v {NE}3 )Vs {(in TTj 5 Ml)})
Sampling » independent sites from this model produces k-state aligned sequences

of n unlinked sites. As usual in phylogenetics, these are summarized through counts
of site patterns across the sequences in an |X|-dimensional k x k x --- X k array.
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Marginalizations of this array to 2-dimensions give pairwise k x k site pattern count
matrices that compare only the sequences for two taxa in X.

In the tree context, two extensions of this model were discussed by Allman et al.
(2019b). For the first, the model assumption of one independently drawn gene tree for
each site is modified to a more realistic one for genomic sequences in which all sites
for a genetic locus share a gene tree. If the lengths (in number of sites) of the loci are
independent identically distributed draws from some distribution, then the expected
site pattern distribution for such a model is unchanged from that determined by M.
Only the rate of convergence, as the number of sampled genes grows, of frequencies
of sampled site patterns to the asymptotic distribution will be slowed. This model is
considered in Sect. 6, as its analysis follows easily from that for unlinked sites.

Another extension in the tree setting of Allman et al. (2019b) allowed for relaxing
the ultrametric condition while retaining strong results on identifiability from the
logDet distances. In that extension, the scalar rate function was allowed to be edge
dependent as long as a certain symmetry condition on mixture components resulted
in ultrametricity in substitution units “on average” across gene trees. While a similar
model extension in the network setting seems likely to lead to similar results, it is not
explored here, as the technical complications are greater than in the tree case.

2.5 LogDet distance

The fundamental tool we use to study relationships of taxa under the mixture of coa-
lescent mixtures model M is the logDet distance between a pair of aligned sequences.
It is computed as follows: For taxa a, b € X, let F% be a k x k matrix of empirical
relative site-pattern frequencies, obtained by normalizing the site pattern count matrix
for a and b, so that its entries sum to 1. Thus the ij entry of Fab is the proportion
of sites in the sequences exhibiting base i for a and base j for b. With fa and fb
the vectors of row and column sums of F%*, which give the proportions of various
bases in the sequences for a and b, let g, and g; the products of the entries of fa, fb,
respectively. Then the empirical logDet distance is

n 1 -~ 1
dip(a.b) = (m det (") - 5 1n<§a§b)) 1)

Under most phylogenetic models, including the mixture of coalescent mixtures
model, individual site patterns in sequences are assumed to be independent and iden-
tically distributed. By the weak law of large numbers, Fab computed from a sample
will converge in probability to its expected value F¢’ as the sequence length goes
to co. By the continuous function theorem, e.g. (van der Vaart 1998), the empirical
logDet distance thus converges in probability to the logDet distance computed by the
same formula from the expected F??, a quantity we refer to as the theoretical logDet
distance and denote by dr.p(a, b).
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3 Rooted Networks from Undirected Rooted Triple Networks

The goal of this section is to establish Proposition 1, a combinatorial result indicating
features of a topological level-1 rooted n-taxon network that can be recovered from its
induced undirected rooted triple networks with 2- and 3-cycles suppressed. This is a
rooted analog of a key result of Bafios (2019) relating unrooted semidirected networks
and their induced undirected quartet networks. Later sections of this paper focus on
identifying these rooted triple networks under the model M.

There are several possible routes to Proposition 1. One approach would be to follow
the argument of the quartet analog, with modifications throughout due to the rooted
setting. Another would be to imitate the alternate proof of the quartet result given
by Allman et al. (2019a), based on an extension of the intertaxon quartet distance of
Rhodes (2019), but instead using the rooted triple distance also introduced in that work.
The argument presented here is shorter than these approaches, as it leverages informa-
tion about undirected rooted triple networks to obtain information about undirected
quartet networks, and then applies the theory of Bafios (2019).

The following result, extracted from the proof of Theorem 4 of Bafios (2019),
will be used. In it, and throughout this work, by a network modulo 2- and 3-cycles
we mean the network obtained by suppressing all 2- and 3-cycles. Similarly, modulo
directions of edges in 4-cycles means that all edges in 4-cycles are undirected. As a
result, which of the edges in a 4-cycle are hybrid, and therefore which node is hybrid,
is not indicated.

Lemma 1 (Bafios 2019) Let N'" be a level-1 rooted binary topological phylogenetic
network on X. Let Q be the set of undirected quartet networks obtained from those
displayed on N'* by unrooting, suppressing all cycles of size 2 and 3, and undirect-
ing all edges. Then modulo 2- and 3-cycles and directions of edges in 4-cycles, the
semidirected unrooted network N~ is determined by Q.

In order to apply this to rooted triples, we first recall some combinatorial properties
of rooted triple and quartet networks.

Lemma2 (Bafos 2019) Let Q~ be a level-1 unrooted semidirected binary quartet
network. Then Q™ has no k-cycles for k > 5, and at most one 4-cycle. If Q™ has a
4-cycle, then it has neither 3- nor 2-cycles. If there is no 4-cycle, then there are at
most two 3-cycles, with at most one of these a 3,-cycle.

Lemma 2 can be used to characterize possible cycles in a rooted triple network,
by attaching an outgroup at the root. More specifically, by attaching an outgroup o
to the root of an n-taxon network on taxa X with o ¢ X we mean identifying the
root r of the network with the node » on an edge (7, 0) and undirecting all tree edges.
This gives a (n + 1)-taxon unrooted semidirected network. The rooted triple networks
displayed on the original network are then in one-to-one correspondence with induced
semidirected quartet networks containing o on the new network. This construction
yields the following.

Corollary 1 Let N be a level-1 binary rooted triple network. Then N'* has no k-
cycles for k > 5, and at most one 4-cycle in which case there are no 3- or 23-cycles.
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Fig.3 All rooted directed topological quartet networks with a single 4- or 5-cycle, and no other cycles, up
to relabeling of taxa. Networks in the top row display exactly one rooted triple with a 4-cycle, those in the
middle row display two, and those in the bottom row display three

If there is no 4-cycle, then there are at most two 3-cycles, with at most one of these a
35-cycle.

Considering arooted quartet network Q, and the impact of passing to its associated
unrooted semidirected quartet network @, Lemma 2 also immediately yields the
following.

Corollary 2 Let QT be a level-1 rooted binary quartet network. Then Q% has no
k-cycles for k > 6, and has at most a one 5-cycle or 4-cycle, but not both.

We now catalog the rooted quartet networks with 4- or 5-cycles, modulo smaller
cycles.

Lemma3 Let Q% be a level-1 binary rooted quartet network with one 4-cycle or one
5-cycle. Then modulo 2- and 3- cycles and up to taxon relabelling, the LSA network
Q% is one of those shown in Fig. 3. Thus Q7 displays either 1, 2, or 3 rooted triples
with a 4-cycle.

Proof Let Q7 be arooted level-1 network on {a, b, ¢, d} with a cycle C of size 4 or 5.
By Corollary 2, C is the only cycle of size greater than 3. Figure 3 shows the topologies,
up to taxon relabeling, of all the rooted quartet networks with a 4- or 5-cycle and no
2- or 3-cycles, as determined by enumerating all possible locations for adding hybrid
edges to a rooted 4-taxon tree. The top row of Fig. 3 shows the quartet networks
with exactly one displayed rooted triple, on {a, b, c}, having a 4-cycle. The middle
row shows the networks with exactly two displayed rooted triples, on {a, b, ¢} and
{a, b, d}, having a 4-cycle. The bottom row shows those with exactly three displayed
rooted triples, on {a, b, c}, {a, b, d}, and {a, c, d}, having a 4-cycle. O

Now we proceed to the main result of this section.
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Proposition 1 Let N'F be a level-1 rooted binary topological phylogenetic network on
X. Let S be the set of undirected rooted triple networks obtained from those displayed
on N by suppressing all cycles of size 2 and 3 and undirecting all edges. Then
modulo 2- and 3-cycles and directions of edges in 4-cycles, the LSA network N'® is
determined by S.

Proof We first build a set of rooted quartet networks from S. Let {a, b, ¢, d} € X and
let Sypca < S be the set of undirected rooted triple networks on any three elements
of {a, b, c,d}, so |Sapca| = 4. By Corollary 2 and Lemma 3, there are k = 0, 1, 2,
or 3 elements of S;pc.q With a 4-cycle. We consider each possibility in turn, showing
that we can determine the undirected rooted quartet network N, heq Modulo 2- and
3-cycles.

If k = 0, all rooted triples in Sypcq are trees and since N, ;l’) g N1as no 4- or 5-cycles
by Lemma 3, the undirected LSA network NV, ﬁc 4 modulo 2-and 3-cyclesis a tree. By a
well-known result for trees (Semple and Steel 2005), S,pcq determines N ﬁ,e 4 modulo
2- and 3-cycles.

If k = 1, then modulo 2- and 3-cycles and relabelling of taxa, A", abed 18 isomorphic
to one of the networks in the top row of Fig. 3. But for these networks if a, b, c are
the taxa in the rooted triple network with a 4-cycle, then the rooted 4-taxon network
is obtained by attaching d as an outgroup to it. Thus N’ abeq 18 determined modulo 2-
and 3-cycles.

Ifk=2,N" abeq 18 isomorphic, modulo 2- and 3-cycles and relabeling, to one of the
networks in the middle row of Fig. 3. Note that for all those rooted quartet networks,
the displayed rooted triple networks with 4-cycles are on {a, b, c} and {a, b, d}, and
the 4-taxon network can be obtained from either of these by replacing ¢ or d with a
cherry on {c, d}, thus determining N/ 2heg Modulo 2- and 3-cycles.

Ifk =3, N} abed 18 1somorphic, modulo 2-, and 3-cycles and relabeling, to one of
the networks in the bottom row of Fig. 3. In both of these, there is exactly one taxon,
a, that is in all three rooted triple networks with 4-cycles, and there is exactly one
taxon, c, that has graph-theoretic distance 3 from a in exactly one of the two rooted
triples with 4-cycles it appears in. Thus we can determine which taxon is a, and which
is ¢. For the remaining pair b, d, if there is a taxon that is at distance 4 from a in both
4-cycle rooted triple networks it appears in, then the 4-taxon network is the one shown
on the left, and that taxon is d. Otherwise, the network is the one shown on the right. In
this case there is exactly one rooted triple network on a and ¢ which has its third taxon
at distance 2 from the root, and this determines b. Thus we obtain the rooted 4-taxon
network A/ ﬁ ¢ Modulo 2- and 3-cycles, and hence N, aeb ¢ Modulo 2- and 3-cycles.

With all rooted 4-taxon networks A a@bc 4 modulo 2- and 3-cycles determined, we
attach an outgroup o to all, giving the collection of all 5-taxon unrooted networks
including o, modulo 2- and 3-cycles, induced from the unrooted network A/ formed
by attaching o to the root of A'*. But the unrooted 4-taxon networks displayed on
these 5-taxon ones form the collection of all 4-taxon undirected networks (possibly
including 0) modulo 2- and 3-cycles displayed on .

Lemma 1 now determines A" modulo 2- and 3-cycles, with directions of cut edges
and edges in cycles of size > 5, though not in 4-cycles. Rooting N’ by the outgroup
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Fig. 4 Examples of level-1 rooted triple networks with 21-, 31-, and 41-cycles. While multiple 2;-cycles
may be present along any pendant edge shown here in dashes, there can be at most two 31-cycles, whose
hybrid nodes are located on a dashed pendant edge. At most one 41-cycle can be present. Site-pattern
frequency matrices from the model M on rooted triple networks with these types of cycles are convex
combinations of such matrices for 1, 2, or 4 networks without those cycles, as shown by Lemmas 4 and 5

o we recover the topology of N'® modulo 2- and 3-cycles and directions of edges in
4-cycles. O

4 Expected pattern frequencies as convex sums

The theoretical logDet distance between taxa depends on the matrix of expected rela-
tive site-pattern frequencies F*Y in aligned sequences for taxa x, y, under the mixture
of coalescent mixtures model M(0). The goal of this section is to show that F*¥ on
a level-1 ultrametric rooted triple network can be expressed as a convex combination
of frequency matrices for networks with no cycles below the LSA of the taxa. In this
way, we reduce the computation of F*Y to its computation on simpler networks. This
is complicated somewhat by the fact that the convex combination may have terms
which are expected pattern frequencies conditioned on a pair of lineages coalescing
below a certain node in a network.

The lemmas that follow often involve modifying a network At by removing a
hybrid edge, to obtain a new network ./\fl.+. If one hybrid edge in a cycle is removed,
the hybrid node is then suppressed as the other hybrid edge is joined to the descendant
tree edge and given the induced length and population size. We retain all other edge
lengths and population sizes, as well as hybrid parameters for unaffected cycles. The
parameters for the substitution process describing sequence evolution on gene trees are
also retained. If © denotes the full set of parameters associated to A/ +, then 6; denotes
the full set of parameters associated to /\fi+ in this way. Notation such as F*¥(0) or
F*Y(6;) denotes the dependence of F*¥ on the parameters 6 or 6;, which include the
network V'™ or NV*.

The most straightforward network simplifications occur when the hybrid node of a
cycle has a single descendant leaf, as depicted by the example 2;-, 3;- and 4;-cycles
in Fig. 4.

Lemma4 (Removing 2;-cycles) Let Nt be a binary level-1 ultrametric rooted triple
network on {a, b, ¢} and let C be a 21-cycle in N* with hybrid edges hy, h>. Let N1+
be the network obtained from N'* by removing hy. Then, under the model M for any
x,y €f{a,b,c},
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F¥(0) = F* 6).

Proof Since the hybrid node of C has only one descendant, the combined coalescent
and substitution process on N/ can be expressed as a linear combination of those
processes on N7, A, weighted by y; = y (h1), y» = y (h2). That s, for any x, y €
{a, b, c},

FY(0) = yi F(01) + 2 F (02).

But ./\/'1+ and V. 2+ only differ by 4 and h; which have the same length, though possibly
different population sizes. However, since only one lineage can be present in the
population for those edges, those population sizes have no impact in model M, so
F*Y(6,) = F*Y(0). Since y; + y» = 1, the claim follows. O

If a network /\N/' T has multiple 2;-cycles, then applying Lemma 4 repeatedly gives
F¥Y(0) = F*Y(9) where N'T is a rooted network with no 2;-cycles obtained from
N by deleting one hybrid edge in each of the 21-cycles on N'T.

Lemma5 (Decomposing 3;- and 4;-cycles) Let N be a binary level-1 ultrametric
rooted triple network on {a, b, ¢} and let C be either a 31- or a 4-cycle on N". Let
h1, ho be the hybrid edges of C with y; = y(h;). Let ./\/'l.+ be the network obtained
from Nt by removing h j, j # i. Then, under the model M for any x, y € {a, b, c},

FY0) = y1 FY(61) + 12 F7 (62).

Proof Since the hybrid node of C has only one descendant, we can express the com-
bined coalescent and substitution process on N as a linear combination of the
processes of the A;, with coefficients y;,i = 1, 2. O

A level-1 rooted triple network may have one 4;-cycle, one 31-cycle, or two 31-
cycles. In the last case, Lemma 5 may be applied twice, to express the pattern frequency
matrix under the model as a convex combination of four such matrices for networks
with no 31-cycles.

With Lemma 4 this shows that computation of the matrix of relative site-pattern
frequencies of a level-1 ultrametric rooted triple network N reduces to cases where
there are no 21-, 31-, or 41-cycles. The effects of 2,- and 3,-cycles are more compli-
cated, however, as a coalescent event may or may not occur below the hybrid nodes
of such cycles.

The following definition facilitates studying the impact of such cycles. In it a node
p may be either an existing node or a new node introduced along an edge of a network,
with appropriate division of the original edge length and population function. Although
strictly speaking this second case passes out of the class of binary networks, we allow
this only to simplify reference to intermediate states of the coalescent process.

Definition 9 Let K, () be the random variable giving the number of lineages at node
p € V(N) under the NMSC. With X, € X denoting the set of taxa below p, K, (9)
has sample space {1,2,...,|X,}.
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Fig.5 (Top) Arooted level-1 ultrametric network on {a, b, c}, with the 25-cycle closest to LSA(a, b) shown.
(Bottom) The networks N/ ]+ R N2+ , and Na’ obtained from AT, respectively, as described in Lemma 6.
Note that there may be additional cycles along the dashed lines, with hybrid nodes above node ¢ and taxon
c

When 6 is clear from context we write K, = K,(6). We also use the notation
F|);<yp:m (0) to denote the joint distribution of site patterns conditioned on K, = m
under the model M with parameters 6.

Lemma 6 (Decomposing 2,-cycles) Let Nt be a binary level-1 ultrametric rooted
triple network on {a, b, c} without 21- or 31-cycles. Suppose, as depicted in Fig. 5, C
is a 25-cycle on N'&, with edges hy, ho from node q to hybrid node p, hybridization
parameters y; = y(h;), leaf descendants a, b of p, and no cycles below p. Denote
by N*, i = 1,2 the network obtained from N'* by removing hj, j # i and by N
the network obtained from N'= by deleting all edges and nodes below q and attaching
edges (q, a) and (g, b) of appropriate length so that J\f0+ is ultrametric. Then, under
the model M for any x,y € {a, b, c},

FY(0) =y F™(0)) + y3 F¥ (02) + P(K = 2)2y172F (6))
+ P(K, = 1)2y V2F|);(yp:1(91)~

Proof Since the structure of the model for N’ T, AF, and ./\/2+ is identical below p, we
may also use K, to denote K, (61) and K, (62). Thus

FY@0)=P(K, = 2)F|);§'P=2(9) + P(K, = 1)F|§<yp:1(e)

= P(Ky =D [V2FR 00 + V2F} () + 20172 F 0]
+ P(K, = 1)F|);§p:] ). )
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p
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Fig.6 Networks /T meeting the hypothesis of Lemma 7, with at least one 2;- or 35-cycle, and possibly
23-cycles. In both figures the dashed internal edge represents a possible chain of 2>-cycles, and the dashed
edge above the LSA a possible chain of 23-cycles. Note that a network with a 35-cycle may also have no
27-cycles (not shown), in which case p would be the 3,-cycle’s hybrid node

But since F Ggp:l ©)=F f;(yp: 1) fori = 1, 2 by the argument used for Lemma 4,
and the identity 1 = y2 + y2 + 2y172,

Fﬁ(ypzl(e) = V12F|);(yp:1(01) + V22F|);(yp:l(02) + 2y VzFl);gp:l(@]).

Substituting this into equation (2) and using P(K, = 1) + P(K, = 2) = 1 yields
the claim. O

Note that while A, 1+ and N;’ of Lemma 6 have the same topology and edge lengths,
the hybrid edges %1, hy may have different population sizes. Thus F*Y (61) # F*Y(6>)
is possible. This is in contrast to the argument on removing 2;-cycles in Lemma 4, in
which hybrid edge population sizes did not play a role.

Since a level-1 3-taxon rooted network cannot have a 2;-cycle above a 3,-cycle,
Lemma 6 can be applied recursively to the J\/'l.+, i € {1, 2} to eliminate all 25-cycles.
Thus the remaining complication to producing an expression for F*”(0) as a convex
combination of such matrices for networks without 21-, 31 -, or 25-cycles is the presence
of terms of the form Fﬁ(yp:l (0") where N’ has cherry {a, b} and neither 2;- nor 3;-
cycles. Such terms are handled with the following.

Lemma 7 (Decomposing 2;- and 3-cycles conditioned on coalescence) Let N be
a binary level-1 ultrametric rooted triple network on {a, b, ¢} on which {a, b} form a
cherry, withno 21-, 31-, or 41-cycles, and at least one 2;- or 32-cyc£e. (See Fig. 6.) Let
p be the hybrid node parental to the common parent of a, b. Let N be the network
obtained from N’ by removing one hybrid edge from each 2;-cycle.

If N'* has no 3,-cycle, then

Xy Xy Y
Flezl(G) = F\KP:I(G)‘

IfFNT hasa 3a-cycle, with hybrid edges hi, hy and hybridization parameters y; =

y (h;), then let J\/’l.+ be the network obtained from Nt by removing h;, j # i. Then

F|);gp:1(0) = J/1F|);gvp:1(§1) + VZF‘?]pzl(éé)'
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Proof Conditioned on K, = 1, there is only one lineage in any population above
p and below the hybrid node of a 3;-cycle, if such a cycle is present, or the LSA
otherwise. Thus, as in the proof of Lemma 4, no 2;-cycle will have any effect on the
joint distribution. If there is no 3;-cycle on N'T this yields the claim. If there is a
3,-cycle, since only one lineage reaches the hybrid node of the 3,-cycle, we obtain
the claim as in the proof of Lemma 5. O

Lemma 8 (Decomposing 3,-cycles) Let N'* be a binary level-1 ultrametric rooted
triple network on {a, b, ¢} with no cycles below its LSA except a 32-cycle C. Let p
denote the hybrid node of C, and h1, hy the hybrid edges with hybridization parameters
vi = y(h;) and lengths y, z, as depicted at the top of Fig. 7. Let Nit, N5F, N5, and
N, 4+ be the networks derived from N'* shown at the bottom of Fig. 7. Then, under the
model M, for any x,y € {a, b, c}, with K, = K (),

F20) =y FY 61 + y; F¥(62) + P(K)p = 2y1y2 (FV (63) + F (63))
+ P(Ky = Dy (F 200 + Y 6).

Proof Observe that

F?©0) = P(Ky =2)Fg ,0)+ P(Kp=1DFy _ )

= P(Kp =2 [V FR 200 + VP FR 50 + 1 FP 0 + nnFP 9] (3)
+P(Kp = 1)F"‘,§p:1(9),

Since Fig, _(0) = y1Fg,_1(01) + v2Fg _j(@2) and y1 +y2 = 1,

F 10 = vEFR @) + V3F 02+ nv (FE 2600 + F L 62).

Using this and P(K, = 1) + P(K, = 2) = 1 in equation (3) yields the claim. O

5 Theoretical logDet distances

In this section, we show that, under the mixture of coalescent mixtures model M on an
ultrametric level-1 rooted triple network, the theoretical logDet distances between taxa
determine most topological features of the network. The previous section established
that the pattern frequency matrices for the model on such networks can be expressed as
convex combinations of those on simpler networks (possibly subject to conditioning),
whose only cycles are 23-cycles located above LSA(a, b, c), such as depicted in Fig. 2.
The following algebraic lemma is key to drawing conclusions about the determinants
of such linear combinations of matrices.

Lemma 9 ((Allmanetal.2019b), Lemma 3.1) Suppose for eachi, F; and G; are k X k
symmetric positive definite matrices such that y' Fiy > yT G;y for every y € R with
the inequality strict for some y and some i. For a; > 0, let
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Fig. 7 (Top) A rooted level-1 ultrametric network with a 3;-cycle, and (Bottom) the networks N/ 1'" s J\/’Z+ s
N;r ,and f used in Lemma 8. Although only topology and branch lengths are shown, population size

parameters for each edge of j\/iJr are obtained from the corresponding ones of N’

m m
F:ZO{,’Fi, GZZO{l‘Gi.
i=1

i=1
Then

det F > detG.

Analyzing the pattern frequency matrix for networks with 23-cycles above
LSA(a, b, ¢) requires a detailed look at the coalescent process in such a chain of
2-cycles. For a simple case, aspsume lineages x and y enter the single cycle chain
depicted in Fig. 8. Population functions N1, N> , N3, and N, are fixed for each edge,
where for convenience, we shift domains from the convention in Sect. 2.2 so that N
is defined on [0, #y), N2, N3 on [fg, t1), and N4 on [t1, 00).

The probability density c(¢) for time to coalescence of the lineages x, y entering at
the bottom node (# = 0) can be calculated piecewise as follows: For ¢ € [0, ),

1 S|
c(t) = N exp <—/0 Ni(D) d‘L’) , 4

as given by Allman et al. (2019b).
Fort € [1, 1),

ey = po (Y20 + (1 = e (1)
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Fig.8 A 2-cycle and adjacent A
tree edges in a species network, N,
depicted (Left) with pipes whose 4
width represent population sizes, 44
and (Right) as a schematic
Ny N3
iy 7
N
10

where po = 1 — féo c(t) dt is the probability of no coalescence before f(, and for

i=2,3
@)= ( N(r) ’)'

Finally, for ¢ € [t1, 00), with p; = 1 — fo[] c(t) dt the probability of no coalescence

before 1,
f N4(I)

It is straightforward to extend this analysis of c(#) to a chain with an arbitrary
number of 2-cycles. Since we will not need an explicit formula for the distribution of
coalescent times for two lineages entering such a chain of 2-cycles, we omit a complete
derivation, and only state the properties of it that we use.

Formally, a chain of 2-cycles is a species network with leaf ag, internal vertices by,
ai, by, az, ..., a,, withrootr = a,, tree edges e; = (b;, a;—1), and hybrid edges elf =
(ai, by), el’.’ = (a;, b;), together with edge lengths, piecewise-continuous population
size functions on each edge, including above the root, and hybrid parameters y/, /" =
1 — y/ for each pair of hybrid edges el e

Using the technical assumptions given in Sect. 2.2, it is straightforward to deduce
the following.

c(t) =

Lemma 10 Consider a fixed chain of 2-cycles with leaf ag. Let ¢ : [0, 00) — RZ°
denote the probability density function under the NMSC for the time T of coalescence of
two lineages entering the chain at ag. Then c(t) is piecewise continuous, and c(t) > 0
forallt € [0, co).

The next three technical lemmas generalize Lemmas 4.1, 4.4, and 4.5 of Allman

etal. (2019b) from a tree to a network setting. These culminate in Proposition 2 below,
which justifies the application of Lemma 9.
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Lemma 11 Letc : [0, 00) — RZ0 be the probability density function under the NMSC

for the time T of coalescence of two lineages entering a chain of 2-cycles, and for
times to > t; > 0 let ¢; be the conditional density given T > t;. Then the cumulative
distribution functions for c¢1 and c; satisfy

Ci(1) = C2(1),

with the inequality strict on some interval.

Proof Since 0 = c>(¢) < c(¢) for all t < 1, the inequality is immediate for t < f;.
Since using Lemma 10 we have c1(¢) > c2(t) = 0 for t € (1, 12), the inequality is
strict on a subinterval.

Fort > n,let J = [ ci(t)dt and I(1) = [, ci(s)ds, so

1)
Cl0) =) =T +1() = +—

J
1_Jl(t).

=J-

Differentiating and using Lemma 10 shows C(¢) — C2(¢) is decreasing for t > 5.
Since C1(t) — C2(t) — 0 ast — oo, this implies C1(¢) — Co(¢) > 0, as claimed. O

Lemma 12 Let ¢y, ca be probability density functions on [0, 00), with cumulative dis-
tribution functions Cy, Ca, such that C(t) > C»(t) for all t, with the inequality strict

on some interval. Let s(t) = fé w(x)dx for a positive, piecewise-continuous |4 on
[0, 00) such that s(00) = oco. For A < 0 let

fo,u, C) = / exp(2As(1))ci(t) dt.
0
Then if A =0,
f(()’ M, Cl) = f((), “, C2) =1.
while for A < 0

SO, C) > fa, u, Co).

Proof For A =0 we find £(0, u, C;) = [y~ ¢i(t)dt = 1.
If A < 0, integrating by parts yields

o]

J . Ci) = exp(2hs (1)) Ci (1)

—2X /OO w(t) exp(rs(t))C;(t)dt
0 0

=

= —2X /OO w(t) expRis(t))Ci(t)dt.
0
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Thus
SO, u, C)— f,u, Co) = —ZKfO u(@) expas(t))(Ci (1) — Ca(2))dt.

As the integrand is non-negative, and positive on some interval, the claim for A < 0
follows. O

Lemma 13 Consider a GTR substitution model with rate matrix Q # 0, a scalar-
valued rate function p(t) satisfying the assumptions of Sect. 2.3, and a cumulative
distribution function C (t) for the time T to coalescence of 2 lineages in a population.

Let F(x) = F(Q, u, C, x) be the expected site-pattern frequency array for two
lineages that enter a population at time 0 and undergo substitutions at rate (1) Q
conditioned on T > x. For x < x1 let F(x,x1) = F(Q, u, C, x, x1) be the expected
site-pattern frequency array for two lineages that enter a population at time 0 and
undergo substitutions at rate |1(t) Q conditionedon x < T < xj.

Then for all 0 # y € RF the functions yT F(x)y and yTF(x, X1)y are positive-
valued and decreasing in x. Moreover there exists a y for which both are strictly
decreasing, and for which if xog < x1 < x2

VI Fxo, x0)y > yT F(x)y.
Proof Let c, () denote the conditional probability density function for the coalescent

time 7 given T > x. With s(¢) = fot wu(t)dt, the Markov matrix describing the
substitution process on a single lineage from time O to time ¢ is

M, Q.1) =exp(s(1)Q) .

Thus using time-reversibility of the substitution process, with 7 the stationary distri-
bution for Q,

F(x) = diag(r) / (M, 0, 1) ex (1) dt.
0

Here the square of the Markov matrix accounts for substitutions in the two lineages
before coalescence.

Now S~1QS is diagonal for a matrix S = diag(r)~!/2U with U orthogonal, and
Q’s eigenvalues satisfy 0 = A1 > Ay > --- > XA; with at least one A; < 0 (Lemma
2.2 of Allman et al. (2019b)). Thus diagonalizing the Markov matrix yields

o0
UTdiag(n)—1/2F(x)diag(n)—1/2U=/ AM(u,0.n¢x (1) dt
0

where Ay, 0,1) i diagonal with entries exp(2s(#)A;). The diagonal entries of this
integral are thus

/00 exp(2s(t)Ai)cx () dt.
0
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But Lemmas 11 and 12 show this is positive, decreasing in x, and strictly decreasing
for some i. This establishes the claims about F, by choosing y to be any eigenvector
of O whose eigenvalue is negative to obtain a strictly decreasing function.

The corresponding claims about F are given by the same argument with the cumu-
lative distribution function C replaced by the conditional distribution function given
the coalescent time 7 < x1, that is, with

&2 |corce itr<x
T ifr>x

Finally, since for every ¢ the function C v, (t) is decreasing in x1, then for any y and
X0, a similar diagonalization argument and again using Lemma 12 shows the function
yT F(xg, x1)y is decreasing in x;. Thus if xg < x| < x2, then

yI F(xo, x1)y > x}gnwny(xo, x1)y =y Fxo)y = yT F(x2)y.

Moreover, if y is an eigenvector of O whose eigenvalue is negative, then strict inequal-
ity holds. o

Proposition 2 Let N be a binary level-1 ultrametric rooted triple network on {a, b, c)
whose LSA network has topology ((a, b), ¢), but above LSA({a, b, ¢}, N'*) there is
possibly a chain of 2-cycles.Then, under a coalescent mixture model on N’ with fixed
parameters [1(t), {N.}, O, 7, the relative site-pattern frequency matrices Fab pbe
and F® are symmetric positive definite, with F* = F°, and satisfy

yTFaby > yTFacy

for every y € R, with the inequality strict for some y. Moreover, the same statements
hold when the arrays F*Y are replaced by F I);gpzl with p a node placed above the

parent of a, b and below the parent of c.

Proof Let x| be the length of the pendant edges to a and b, and x; the length of the
pendant edge to ¢, so xo > x1. Then applying Lemma 13 for an appropriately chosen
distribution C (¢) of coalescent times so

Fab — F()C]), Fac — FbC — F(XQ),
the result is immediate.

Let x,, denote the distance from a or b to p, so x; < x,, < x2. Then conditioning
on K, = 1, in the notation of Lemma 13 we have

FIC;?pzl = ﬁ(xlv-xp), Fl%p:l = Fll;gp:1 = Fbc = F(x2),
so again Lemma 13 yields the claim. O
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We now turn from considering a coalescent mixture model, with a single substitution
model class, to the mixture of coalescent mixtures M.

Lemma 14 Let N'* be a level-1 ultrametric rooted triple network on {a, b, c} with no
4-cycle. Suppose {a, b} form a cherry in the tree topology obtained from suppressing
all cycles of N'*. Then, under the mixture of coalescent mixtures model M on N'T,
Fe () = Fbc(9).

Proof By Lemmas 4 and 5, we may assume A" has neither a 2;- nor a 3;-cycle,
so there are no cycles below the parent of a, b. By the ultrametricity of the network,
a and b are exchangeable under the combined coalescent and substitution model for
each substitution model class, and therefore for the model M. O

This result is used to show that logDet distances from rooted triple networks with
only 2- and 31-cycles satisfy the same equality and inequality relationships as those
from trees.

Proposition 3 (No 4;-cycles or 3p-cycles) Let Nt be a level-1 ultrametric rooted
triple network on {a, b, ¢} with neither a 4-cycle nor a 3-cycle. Let T = ((a, b), ¢)
be the tree topology obtained after suppressing all cycles in N'*. Under the mixture
of coalescent mixtures model M on NV the theoretical logDet distances satisfy

dip(a,c) =drp(b,c) >drp(a,b).

Proof Under the model M, the frequencies of bases at any taxon are identical, given
by the same convex combination of the base frequency vectors 7; for substitution
classes i. Thus the value of In(g, g,) in the definition of the logDet distance, equation
(1), is identical for every pair of distinct taxa x, y € {a, b, c}. It thus suffices to show

det F?(9) > det F(9) = det F*°(0).

Lemma 14 gives the equality. By Lemmas 4, 5, and 6, we can express F*Y(6) as a
convex combination of relative site-pattern frequency matrices, possibly conditioned
on K, = 1, of networks of the form of the tree 7 joined to a (possibly empty) chain
of 2-cycles above 7 ’s root, such as depicted in Fig. 2. By Proposition 2 each of those
matrices for coalescent mixture models satisfy the hypotheses of Lemma 9. Lemma 9
thus yields the claim for mixtures of coalescent mixtures by considering a convex
combination across both the networks and substitution model classes. O

A weaker result, without the inequality, applies to networks with 3;-cycles.

Proposition4 (3-cycle) Let N'© be a level-1 ultrametric rooted triple network on
{a, b, ¢} with a 3p-cycle. Let T = ((a, b), ¢) be the tree topology obtained after
suppressing all cycles in NT. Then under the mixture of coalescent mixtures model
M on N'F, the theoretical logDet distances satisfy

dip(a,c) =dpp(b,c).
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Proof From Lemma 14, F(9) = F%¢(#), so the result follows as in the previous
proof. O

Proposition 3, and the arguments leading to it, show that the equality and inequality
relationships of logDet distances between only 3 taxa carry no signal of either 2- or
31-cycles. Proposition 4, however, leaves open the possibility that for a network with
a 35-cycle the smallest distance may not necessarily correspond to the taxa which are
neighbors after 2- and 3- cycles are suppressed. This suggests that the presence of a
3,-cycle might be detectable, at least under some circumstances. In Sect. 7 we return
to this issue, providing a more in-depth analysis of triples of logDet distances.

Proposition 5 (41-cycle) Let N be a level-1 ultrametric rooted triple network on
{a, b, c} with a 4-cycle, such that contracting all cycles except the 4-cycle and then
deleting one of its hybrid edges gives the trees ((a, b), c) and ((a, c), b). (See Fig. 9).
Then under the mixture of coalescent mixtures model M on N'*, the theoretical logDet
distances satisfy

dpp(b,c) > drp(a,b) anddyp(b,c) > drp(a,c).

Moreover, if all other parameters are fixed, then for generic values of the hybridization
parameters,

drp(a,b) #drp(a,c).

Proof As in Proposition 3, to establish these inequalities for the logDet distance, it is
enough to show

det Fb€(0) < det F**(9) and det F*°(0) < det F*(0). 5)
From Lemmas 4 and 5, for x, y € {a, b, c}
FXY(0) = y1 FY(01) + 2 F(02)

where N, 1+ and ./\/2+ have the structure of the trees ((a, b), ¢) and ((a, c¢), b) with
chains of 2-cycles possibly attached above their roots. Proposition 2 implies that for
each GTR substitution model class

yl F @)y = yT FP0))y = yT F*(0))y and
Yy F@2)y > yTF®(62)y = yT F*(62)y,

for every y € R¥, with the inequalities strict for some choices of y. From this and
Lemma 9 we obtain the inequalities (5).

To see dpp(a, b) # drp(a, c) for generic hybridization parameters, first observe
that these distances extend to analytic functions of the y on all of C. To show the
inequality for generic y, it is enough to show there exists one specific choice of y € C
for which they are not equal. First consider a choice on the boundary of the parameter

@ Springer



35 Page 26 0f 38 E.S. Allman et al.

b a c b a c b a c

b a c

Fig.9 (Top) Three topologically-distinct rooted triple networks with a 4-cycle displaying the trees ((a, b), ¢)
and ((a, c), b). (Bottom) The undirected rooted topology shared by them

space, by letting y, = 1, y» = 0 for every pair e, ¢’ of hybrid edges with a common
child so that the model reduces to one on the tree ((a, ¢), b). In this case Theorem 1
of Allman et al. (2019b) establishes the inequality. Continuity implies that there are
then choices of 0 < y, < 1, where the model does not degenerate to one on a tree, for
which these distances are also not equal. O

Assuming generic parameter values, Proposition 5 combined with earlier results
implies that the presence of a 4-cycle is indicated by three distinct logDet distances
computed from expected pattern frequencies. However, the three networks at the top of
Fig. 9 all satisfy the hypothesis of Proposition 5, but using equalities and inequalities
of logDet distances we cannot distinguish them. We can only identify their undirected
version as depicted in the bottom of Fig. 9.

Nonetheless, the combinatorial result of Proposition 1 yields information on larger
cycles and their hybrid nodes by first using logDet distances to determine undirected
rooted triple networks. This gives our main result.

TNheorem 1 Let N be a binary level-1 ultrametric network on X with a |X| > 3. Let
N denote the topological LSA network N'® modulo 2- and 3-cycles and directions
of edges in 4-cycles. Then for generic hybridization parameters under the mixture of
coalescent mixtures model M on N7, N is identifiable from the theoretical logDet
distances for pairs of taxa.

Proof Propositions 3, 4, and 5 imply that for generic parameters the three logDet
distances for any choice of 3 taxa are distinct if, and only if, the induced rooted triple
network has a 4-cycle. Moreover, the unrooted topology of the 4-cycle is determined
by the largest of the three distances. Thus the set S of Proposition 1 is determined,
yielding the result. O

An example of a rooted level-1 network and the structure that we have shown to be
identifiable from logDet distances under the model M is given in Fig. 10. On the left
is a level-1 rooted phylogenetic network with cycles of various sizes, and on the right
the partially directed network that could be inferred from it for generic parameters.
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abcdefg hij kilmno abcdefg hij kimno

Fig. 10 (Left) A rooted binary level-1 network and (Right) that part of its structure that Theorem 1 identifies
from logDet distances under the model M for generic parameters. Both 2- and 3- cycles are lost, as are the
directions of 4-cycle edges, and hence knowledge of the hybrid nodes in 4-cycles. Directed edges in cycles
of size greater than 4 are identifiable

6 Modifying the model

In this section we show how our results apply to two variants of the model used
throughout earlier sections. In the first, we no longer require that sites be independent,
allowing instead finite subsets of sites (e.g., modeling individual genes) evolving on
common gene trees. In the second, we consider a limiting case of the model, in which
gene lineages entering a population have an immediate common ancestor, without any
delay from a coalescent process. Other variants, such as one combining the features
of the two considered here, could be treated similarly.

6.1 Variant 1: A model for unlinked genes

The first model variation allows for unlinked genetic loci, each composed of linked
sites evolving on a common gene tree. This is a relaxation of the model assumption
in Sect. 2 that sites be unlinked. The original model only properly applies to unlinked
SNP data, while this variant allows for concatenated gene sequences. We require only
that the length of each locus be a random draw from some length distribution with
finite mean, independent of the topology of the gene tree.

To formalize this, let g be a probability mass function supported on N, with mean
m =Y 1> g(n)n < co. The model description in Sect. 2 is modified so that sequence
data is generated as follows: For each gene,

1. a gene tree T is sampled according to the NMSC model on (N, {£.}, {y.}) with
population sizes {N,},

2. class i is sampled from the distribution A to determine parameters (Q;, 7;; i4;),
and gene length 7 is sampled according to g, and

3. for n independent sites, the bases for each extant taxon x € X are sampled under
the GTR+u process on 7' with parameters (Q;, 7;; [Li)-

All sites are then summarized by a site pattern frequency array, so that information as
to which sites evolved on the same gene tree is lost.
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To show that Theorem 1 applies to this model, we need only show that the expected
pattern frequency array for two taxa, F, under this model, is the same as the expec-
tation, F*, under the model of Sect. 2. Let F, |“Tb and F, |“Tb denote expected pattern
frequencies conditioned on a particular gene tree 7. Then with dT denoting the prob-
ability measure for gene trees under the NMSC with the given parameters,

fab :/ ﬁf}b dT
T
1 o0
= /; (Z Zg(n)nFI“Tb> dT
n=1
1 o
= fT (Z Zg(n)n) FdT
n=1

= / FdT
T

= F,

Note that in applications of the theory developed here, empirical frequency arrays
produced from gene sequences are likely to converge more slowly to their expected
values than for those produced from SNP data, due to the linkage of sites. The argument
above suggests that enough genes are needed so that the variation in gene length
averages out over each possible gene tree.

6.2 Variant 2: A non-coalescent model

The second model variation we consider is a non-coalescent model for an ultrametric
level-1 species network, in which gene trees must be displayed on the species network.
One can think of this as simply requiring immediate coalescence of gene lineages
when they enter a common population. Population size parameters are thus no longer
relevant, but all other features of the model of Sect. 2 are retained.

This model is similar to the non-coalescent model considered by Gross et al. (2020),
who used algebraic and combinatorial arguments to obtain an identifiability result
for most features of a level-1 species network topology assuming generic numerical
parameters. However, we impose one more restrictive assumption, namely that the
network be ultrametric. On the other hand, we considerably relax their assumptions
on the sequence substitution model, from a requirement of a single Jukes-Cantor or
Kimura process to the mixture of GTR processes used throughout this paper.

Informally, to produce immediate coalescence of gene lineages in a coalescent
model, one can simply take a limit as the population sizes approach 0. Small population
size produces bottlenecks, which encourage rapid coalescence of lineages. In general,
results obtained under the coalescent model will still apply under a non-coalescent
model, provided the arguments respect taking such a limit.

To sketch how this applies in our arguments, first fix all population sizes N, on
edges in a species network to have a common value N. Note that population size plays
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no role in any of our arguments before those of Sect. 5, except through probabilities
such as P(K, = 1) and P(K, = 2) which appear in formulas in Sect. 4 but are not
computed there. Thus all results through Sect. 4 remain valid.

As N — 07T, the density function c(¢) of equation (4) for the time to coalescence of
two lineages in a population is easily seen to approach &g, a point mass at # = 0. Thus
with probability 1 lineages coalesce immediately upon entering a common population.
While this observation can be traced through the remaining lemmas of Sect. 5 (making
some modifications to their presentation), it is simpler to give a direct proof of the
following analog of Proposition 2.

Proposition 6 Let N be a binary level-1 ultrametric rooted triple network on {a, b, c}
whose LSA network has topology ((a, b), ¢), but above LSA({a, b, ¢}, N'") there is
possibly a chain of 2-cycles. Then, under a non-coalescent model on N'* with fixed
parameters (1), Q, 7, the relative site-pattern frequency matrices F®°, F*, and F¢
are symmetric positive definite, with F?¢ = F*_ and satisfy

yTFaby > yTFacy
foreveryy € R¥, with the inequality strict for some y.

Proof Let x| be the length of the pendant edges to a, b and x; the length of the pendant
edge to c. With s(t) = fot u(t)dt, the Markov matrix describing the substitution
process on a single lineage from time O to time ¢ is

M, Q,1) =exp(s(1)Q) .

Thus using time-reversibility of the substitution process

F® = diag(m)M (11, Q, x1)* = diag(7) exp (2s(x1) Q)
F = F" = diag(m)M (1, Q. x2)* = diag(m) exp (25(x2) Q) .

Since Q is a GTR rate matrix, the result follows by diagonalization, as in Lemma 13.
O

The remainder of the arguments of Sect. 5 apply unchanged, to yield an analog of
Theorem 1. Note that while population sizes are no longer model parameters, all other
parameters are unchanged in the limit.

Remark 1 In general, results under the MSC and NMSC models yield results for
simpler non-coalescent models in the limit as population sizes decrease to 0. For
instance, without considering a site substitution process Bafios (2019) and Allman
et al. (2019a) show that most features of a level-1 network can be identified from the
frequencies of displayed gene quartet trees under the NMSC. Letting all population
sizes — 0 then gives that most features of a level-1 network can be identified from
the frequencies of its displayed quartet trees.
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7 Normalized triples of logDet distances

In the previous section, we obtained linear equalities and inequalities that the logDet
distances between three taxa must satisfy if they are related by various level-1 rooted
networks. Combined with the combinatorial result of Sect. 3 these are sufficient for
proving the identifiability claim that is the main focus of this work. However, it is
worthwhile to seek a more complete characterization of what distances are achievable
by various network topologies. In particular, with an eye toward practical application,
any tighter characterizations would enable stronger testing for network topology from
the empirical distances.

Here we conduct a partial investigation, characterizing not the triple of theoretical
logDet distances that may be produced on rooted 3-taxon networks, but rather the nor-
malized triple obtained by dividing the distances by their sum. The triple of distances
forms a point in the non-negative octant (R20)3, while the normalized triple gives
a point in the 2-dimensional simplex. Thus plots can be made with the normalized
distances that are analogous to the simplex plots for visualizing gene quartet concor-
dance factors (Bafios 2019; Mitchell et al. 2019; Allman et al. 2021). Just as simplex
plots of concordance factors aid in understanding genomic data sets, we anticipate that
the 2-simplex visualization of the normalized logDet distance triples will be similarly
useful.

We begin with the logDet triples from 3-taxon trees.

Proposition7 Let ¢ = (Lap, Lac, Lpe) With O < Lgp < Lye = Lpe be a triple of
positive numbers summing to 1. Then there exists an ultrametric rooted tree with
topology ((a, b), c) and GTR substitution model parameters such that the normalized
theoretical logDet distances of sequences generated under the coalescent mixture
model are L.

Proof Consider the metric species tree ((a:0, b:0):x/2, c:x/2), and constant popula-
tion sizes € > 0 on all edges. Fix a single substitution model, say the Jukes-Cantor, for
sequence generation. Since small population sizes € result in rapid coalescence with
arbitrarily high probability, by taking € sufficiently small one can show the expected
frequency array can be made arbitrarily close to that which would arise if all gene trees
exactly matched the species tree. Thus the theoretical logDet distances can be made
arbitrarily close to dy p(a, b) = 0 and dyp(a, ¢) = dpp(b, ¢) = x, which normalizes
to (0, 1/2, 1/2).

The unresolved species tree (a:x/2, b:x/2, c:x/2), regardless of choice of popu-
lation functions on the edges yields, by exchangeability of the taxa, a triple of equal
logDet distances, which normalizes to (1/3, 1/3, 1/3).

While the two trees above have 0-length edges and hence are non-binary, pertur-
bations to binary trees with positive length edges can produce normalized logDet
distances that are arbitrarily close.

Since the normalized logDet distances are continuous functions of parameters, the
parameter space is connected, and the image of the normalized distances lies in a line
segment by Proposition 3, the claim follows. O

We turn now to networks with a single cycle.
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Fig. 11 The 4-cycle network, t 1
with times in generations,
constructed in Proposition 8.

Hybridization parameters are y, t 0
1 — y, and hybrid edges have Yy Thi—v
length O

b a c

Proposition8 Let ¢ = (Lyp, Lac, Loe) With 0 < €ap < Lae < Lpe be a triple of positive
numbers summing to 1. Then there exists a binary ultrametric rooted network on taxa
a, b, ¢ with a single 4-cycle and GTR substitution model parameters such that the
normalized theoretical logDet distances of sequences generated under a single-class
coalescent mixture model are {.

Proof The 4-cycle network we construct is shown in Fig. 11, with #(, #; measured in
generations, and the hybrid edges of length 0. Consider a single constant population
size N > O for all populations over the tree and above the root, and a Jukes-Cantor
substitution process with constant rate ;© > 0. We will choose values for 7y, 1; > 0,
y € [1/2, 1) so that the normalized distances for the coalescent mixture model with
this single substitution process are given by £.

Recall that if M(t) denotes the Jukes-Cantor Markov matrix for a substitution
process over time ¢ with rate 1, then the common value of all its off-diagonal entries
is

f(6) = % (1 — e—%’> .

With D = diag(1/4, 1/4,1/4,1/4), the Jukes-Cantor pattern frequency array is
DM (t), and the logDet distance (equal to Jukes-Cantor distance) is

3
=) = —Zlog(1 =41 @).

Note that f is an increasing function.

From equation 4.1 of Allman et al. (2019b), for a coalescent mixture Jukes-Cantor
model on an ultrametric tree with uniform population size N and mutation rate pu,
sequences for two taxa x, y whose MRCA is at time ¢ before the present has expected
pattern frequency array

F(t) = DMQ1)M(p, N),
where M (u, N) is a Markov matrix of Jukes-Cantor form describing the expected
additional substitutions due to the coalescent model delaying lineages merging until

some time above the MRCA. The logDet distance between x, y is then the same as
the Jukes-Cantor distance, which is computed to be

dpp(x,y) =2tpn+p
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where 8 = B(u, N) > 0 can be explicitly computed from M, N), though we will
not do so here. Since 8 is continuous and B(, N) — 0as N — Oand S(u, N) — o0
as N — oo, it follows that g takes on all positive values.

Now by Lemma 5 on the 4-cycle network of Fig. 11 the expected pattern frequency
array fora, b is

y (1) + (1 = y)F(11) = DMapM (1, N)
where
Map =y M Q2top) + (1 — y)M 2t )
has the usual Jukes-Cantor form, with off-diagonal entries
Jab =y fQtop) + (1 — y) fQ2t110).
This shows
drp(a.b) = [~ (fap) + B-
A similar calculation shows
drpla.c) = 7' (fu) + B
where
Jae =y fQupw) + A —y) fQiop).
The expected pattern frequencies for b, ¢ sequences is F (1), SO
drp(b.c) = ' (foe) + B
where
Joe = fQ21p).

We now determine parameters which produce the normalized triple of distances £.
Fixing values of 1, N determines a fixed value of 8 > 0. Next, choose some value m
so that

f@ww—ﬁ)>%,

which can be done since f : R®? — (0, 1/4) is surjective and increasing. Then, with
xij=f (mEU — ﬂ), because £, < Ly < Lpe We have

1

§<xab§)€ac<x1)c<z.
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Fig.12 A 35-network, with
numbered edges, as used in
Proposition 9. The hybridization
parameter on edge e5 is y, and
onegisl—vy

Let xo = x4p + Xac — Xpe, 00 < x9 < %. Determine 79 by f(2tou) = xo, and
y €[1/2,1) by

Xbe — Xab Xbe — Xac
= sol—-"y=—————.
2Xpe — Xab — Xac 2Xpe — Xab — Xac

Then choose #| by f(2t114) = Xpe-
To verify that these parameter choices give the desired normalized triple of dis-
tances, the expected distance between a, b is

drpla,b) = f~(y fQtow) + (1 — y) fFR11w) + B
= yxo+ (1= y)xpe) + 8
= fﬁl(xab) +.B

= mﬁab.
Similarly, we see dr.p(a, ¢) = m€,.. Finally we have

drpb,c) = fN Q) + B = 7 (xbe) + B = mépe.
O

Note that even if £,. = £;., the argument of Proposition 8 can be modified slightly
by taking y = 1 in the analytic continuation of the parameterization. However, that
choice of the hybridization parameter essentially means that in place of a 4-cycle
network parameter we have a tree.

Finally, we consider a network with a 3-cycle. While Proposition 4 shows the
normalized triples of theoretical logDet distances lie on the same line as those for
a tree, we establish they need not be restricted to the same line segment of tree-like
distances. However, we do not completely characterize the extent of the segment they
fill out.

Proposition9 Let £ = (Lgp, Lac, Lpe) With Lye = Lpe be a triple of positive numbers
summing to I withQ < £gp < % Then there exists a binary ultrametric rooted network
on taxa {a, b, c} with a single 3,-cycle whose leaf-descendants are a, b and GTR
substitution model parameters such that the normalized theoretical LogDet distances

of sequences generated under the coalescent mixture model are L.
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Proof We construct several 3,-cycle species networks of the form shown in Fig. 12,
with edge lengths #; = £(e;). In making choices of numerical parameters, since the
network is ultrametric we view t1, 13, t5, t7 as independent, determining 5, t4, f6. The
population size on edge ¢; for 3 < i < 8 are constants N;, with the sizes on terminal
edges irrelevant. The hybridization parameters are 1 — y and y on edges e4 and e;
respectively. We also fix a single Jukes-Cantor substitution process with any constant
rate u > 0.

By Proposition 4, for any choices of the #;, N;, y, the theoretical LogDet distances
will satisfy dpp(a,c) = dpp(b, c) so the normalized theoretical LogDet distance
triple lies on a line. Since the parameter space is connected, it is enough to show that

dip(a,b)
2dyp(a,c)+dpp(a,b)

(6)

is arbitrarily close to 0 for some choice of the parameters, and arbitrarily close to
1/2 for others, to conclude that the rescaled expected distances give all the described
triples.

To make expression (6) near 0, we choose parameters with #; and N3 sufficiently
small so that with high probability the a, b lineages coalesce quickly. Specifically, let
13 = 1, and fix any positive values for fs, 7 and N; for i # 3. Now for any € > 0, as
N3 — 07T, the probability of lineages from a, b coalescing on e3 within € of entering
it approaches 1. Using this, it is straightforward to show that as N3 — 07 the expected
pattern frequency array for a, b approaches that for the JC model on a 2-taxon tree of
total length 2¢;. This then implies that d; p(a, b) — 2ut; as N3 — 0T. On the other
hand, for all values of N3 > 0 one can show dyp(a,c) > 2u(t; + 2). Thus for a
sufficiently small choices of #; and N3, we can make dyp(a, b)/(2d(a, c¢) + d(a, b))
as close to 0 as desired.

To produce a value of expression (6) near 1/2 is more subtle. We choose parameters
so that a, b lineages are likely to enter es, but if they both do they are then unlikely
to coalesce in it, and coalescence of any pair of lineages in e7 is likely to occur
quickly. First set t5 = 0, t7 = 1 and Ng arbitrary. For any #1, 3 and y, by choosing
N3 = N4 = Njs sufficiently large, the probability that the a, b lineages coalesce on
e3, e4, Or e5 can be made arbitrarily small, so that if they coalesce below the root with
(conditional) probability approaching 1 they must do so on e7. This requires that both
the a, b lineages follow es, which occurs with probability y2. If lineages a, ¢ coalesce
below the root, they must do so on e7, requiring the a lineage to follow e5, which
occurs with probability y. By picking N7 sufficiently small, the probability that two
lineages in edge e7 coalesce near the lower end can be made close to 1. All this shows
that once 71, 13 and y are chosen, by appropriate choices of the N; we can ensure the
expected frequency arrays for a, b and a, c are arbitrarily close to

YIF(t + 1)+ (1 —yHG + 13+ 1, Ng)
and
yF(t+85)+ (1 —-y)G(t +13+ 1, Ng),
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respectively, where F(¢) is the expected pattern frequency array for two samples at
distance 27 and G (¢, N) is the expected array under the coalescent for 2 lineages which
enter acommon population of size N at time ¢. Further picking sufficiently small values
for 11, t3, the pattern frequency arrays for a, b and a, ¢ can be made arbitrarily close
to

21 2
yog I+ =yHG, Ng)

and
1
VZI + (1 —y)G, Ng),

respectively. Thus for any y the theoretical distance can be made arbitrarily close to
the distance computed from the above arrays. Using the formulas defined in the proof
of Proposition 8, we find these distances are

dipa.b) = £ (1= 7"s)
and

dip(a,c) = £~ (1 = y)8)

where § > 0 is the off-diagonal entry of G(1, Ng). Thus once y is specified, by
choosing t1, 3, N3 = N4 = N5, N7 we can ensure expression (6) is arbitrarily close
to

log(1 —458(1 — y?))
2log(1 —48(1 — y)) +log(1 —48(1 — y2))"

(N

Applying L’Hopital’s rule shows the limit of expression (7) as y — 1 is % Thus for
any € > 0, by first choosing y near 1 so that the expression (7) is within € /2 of 1/2,
and then choosing #; = t3, N3 = N4 = N5, N7 so that expression (6) is within € /2 of
expression (7), we obtain the desired result. m]

The results of this section, combined with those of Sect. 5 are summarized by
Fig. 13, which indicates the various regions of the simplex which normalized logDet
triples fill, according to whether the network has a 4-cycle, a 3,-cycle, or neither.

Note that the possibility that a 35-cycle (as depicted in the center of Fig. 13) leads to
atriple of normalized logDet distances lying on an extension of the corresponding line
segment for the tree topology displayed on the networks (as depicted to the right of
the figure) echoes a number of similar results arising in studies of network inference
under the coalescent from gene tree data. For unrooted quartets, these include the
works of Solis-Lemus et al. (2016); Bafios (2019) and Allman et al. (2019a), and for
rooted triples Long and Kubatko (2018) and Jiao and Yang (2020). In essence, all these
results indicate that the coalescent can lead to anomalous gene trees, in the sense that
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(1,0.0) (1,0,0)

Fig. 13 The regions of the simplex filled by normalized triples of logDet distances under the model M on
a 3-taxon network. The networks shown are those obtained by suppressing all cycles other than 4- and 3,-
cycles, and then undirecting the 4-cycle edges. Normalized logDet distances are ordered as (45, Lac, £pe)-
Networks with 35-cycles fill the solid line segments in the center simplex, but it is unknown whether they
may also produce points in the dashed line segments

the most frequent gene tree topology may not match that of the trees displayed on the
species network, even though all such displayed trees have the same topology.

8 Conclusion

Theorem 1 states that most topological features of an ultrametric level-1 network
can be identified from theoretical logDet distances under a fairly general model of
sequence evolution with incomplete lineage sorting. It more generally implies network
identifiability from pattern frequency arrays, since logDet distances are functions of
these. In particular, individual gene trees, or even sequences partitioned into genes,
are not required for network identifiability.

While identifiability is a theoretical question about the model, it has important
implications for data analysis. Indeed, it is a key requirement for a statistically consis-
tent inference procedure to exist. While our method of proof of identifiability, using
the logDet distance, suggests using that distance as a basis for an inference procedure,
others might be developed as well.

In subsequent work, we will explore using the logDet distance in a procedure for
level-1 network inference following the framework of NANUQ (Allman et al. 2019a).
In outline, for each triple of taxa, the location of the normalized triple of logDet
distances in simplex plots such as those of Fig. 13 can indicate whether the rooted
triple has a 4-cycle or not. A triple near the lines through the centroid can, through some
statistical test, be judged unlikely to have arisen from a 4-cycle, while those farther
away are judged to have arisen from a 4-cycle. Then, modifying the rooted triple
distance of Rhodes (2019) to a network setting, similarly to how NANUQ modified
the quartet distance, an intertaxon distance can be computed from the results of these
statistical tests. Rules for relating a splits graph for the expected rooted triple distance
to the original network will be developed. When applied to the splits graph constructed
by NeighborNet from the empirically-derived distance, this should lead to consistent
network inference. Since individual gene trees are never inferred, this will potentially
give a much faster data analysis pipeline than the current version of NANUQ, which
is built on quartet concordance factors across gene trees.
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