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A B S T R A C T   

Sedentary activity and static postures are associated with work-related musculoskeletal disorders (WMSDs) and 
worker discomfort. Ergonomic evaluation for office workers is commonly performed by experts using tools such 
as the Rapid Upper Limb Assessment (RULA), but there is limited evidence suggesting sustained compliance with 
expert’s recommendations. Assessing postural shifts across a day and identifying poor postures would benefit 
from automation by means of real-time, continuous feedback. Automated postural assessment methods exist; 
however, they are usually based on ideal conditions that may restrict users’ postures, clothing, and hair styles, or 
may require unobstructed views of the participants. Using a Microsoft Kinect camera and open-source computer 
vision algorithms, we propose an automated ergonomic assessment algorithm to monitor office worker postures, 
the 3D Automated Joint Angle Assessment, 3D-AJA. The validity of the 3D-AJA was tested by comparing 
algorithm-calculated joint angles to the angles obtained from manual goniometry and the Kinect Software 
Development Kit (SDK) for 20 participants in an office space. The results of the assessment show that the 3D-AJA 
has mean absolute errors ranging from 5.6◦ ± 5.1◦ to 8.5◦ ± 8.1◦ for shoulder flexion, shoulder abduction, and 
elbow flexion relative to joint angle measurements from goniometry. Additionally, the 3D-AJA showed relatively 
good performance on the classification of RULA score A using a Random Forest model (micro averages F1-score 
= 0.759, G-mean = 0.811), even at high levels of occlusion on the subjects’ lower limbs. The results of the study 
provide a basis for the development of a full-body ergonomic assessment for office workers, which can support 
personalized behavior change and help office workers to adjust their postures, thus reducing their risks of 
WMSDs.   

1. Introduction 

Office workers, such as engineers, architects, and designers, spend 
most of their work time at desks and computer stations [1–3]. Those 
employed in deskbound occupations assume sedentary postures for 
approximately 11 h per day [1]. Sedentary work postures are exacer
bated by high levels of work pressure, inappropriate workplace layout 
and the nature of office work [4,5]. Recent shifts in work patterns due to 
COVID-19 have further increased the amount of sedentary work, due to 
reliance on computer workstations for remote work activities [6–8]. 
With long periods in sedentary postures, both sitting and standing, the 
development of work-related musculoskeletal disorders (WMSDs) be
comes more likely [9]. Lack of movement, poor equipment positioning, 

and static, non-natural postures lead to increased neck, back, shoulder, 
and upper extremity discomfort in office workers [10,11]. In 2020, 21% 
of all injuries and illnesses leading to days away from work were due to 
WMSDs, with a median of 14 days away from work compared with 12 
days for all other nonfatal injury and illness cases [12]. Improving office 
worker posture is vital to promote healthy workplaces and to minimize 
lost productivity due to leaves of absence [13], absenteeism [14], and 
presenteeism [15]. Shoulder discomfort is one of the most common 
types of musculoskeletal disorders among office workers [10], and 
studies of office workers from different countries show that people 
frequently complain about shoulder and arm pain [10,11,16]. Non- 
natural shoulder posture and inappropriate placement of the elbows 
are a common cause of shoulder and arm discomfort [17]. Thus, 
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shoulder and elbow joint angles are commonly used as important in
dicators when examining office workers’ posture [10,11]. 

Examining joint angles and assisting office workers to improve and 
correct their postures at work are commonly done using self-rating 
questionnaires or expert observations [18,19]. Self-evaluation of 
posture and work-related body pain via questionnaires is the simplest 
and fastest way to assess workers’ postures. However, this subjective 
method is frequently imprecise and unreliable for ergonomic in
terventions [18] and does not provide continuous recommendations for 
posture change or ergonomic interventions. Expert observations typi
cally consists of postural evaluation and correction through real-time 
observations by an ergonomist, occupational therapist, or other 
human factors professional using tools such as the Rapid Upper Limb 
Assessment (RULA; [20]). The RULA is one of the most widely used 
observational tools for estimating risk of WMSD or musculoskeletal pain 
due to body postures in static or repetitive work involving the arms. 
Positioning of joints across the upper limb, neck, trunk, and legs are 
recorded, and an overall risk score (1–7) that combines all joint posi
tioning together is often reported. Subcomponent scores for positioning 
of the upper limb and the combined position of the neck, trunk, and legs 
can also be identified, making it possible to use the RULA to estimate 
postural risk within each region separately. 

Although both subjective and objective methods can be useful for 
short-term corrections to the work environment and worker posture 
[21], there is a lack of evidence supporting long-term adoption of er
gonomic adjustments or sustained behavior changes without regular 
follow-ups [22,23] as workers tend to revert to their poor postures 
without reinforcement [18]. Reliance on ergonomic specialists to assess 
each worker and provide ongoing follow-ups is extremely labor- 
intensive, time-consuming, and typically cost prohibitive for em
ployers [18]. Moreover, the recent shifts to remote work and work from 
home create further barriers to providing ongoing and expert assessment 
and feedback to correct poor postures. Thus, a portable and cost- 
effective posture monitoring system, that keeps track of office 
workers’ postures without interrupting their daily work routine and 
helps office workers to adapt by providing continuous feedback to adopt 
better work postures without the presence of ergonomic specialists is 
becoming more important. 

Ongoing monitoring and feedback may be best achieved using direct 
measurement of joint angles that can provide an intuitive output and 
more accurate results than other methods [19]. The two most widely 
used direct measurement methods include assessment using wearable 
sensors and cameras. Wearable sensors, such as inertial measurement 
units (IMUs) [24], electromyography (EMG) [25], motion capture sys
tems [26], and reflective sensors [27], track the movement of the human 
body and produce body kinematics data. Wearable sensors, require 
direct attachment to the body and can limit the office workers’ range of 
movement, can be burdensome to wear, and are not suitable for long- 
term use [18]. An alternative is unobtrusive and marker-less camera- 
based assessments that, when supported by machine learning algo
rithms, can provide automated postural assessments for workers 
[28–32]. Although camera-based postural assessments can be based on 
either RGB or RGB-D cameras, the use of RGB-D cameras has been 
preferred in most applications due to robustness in varying lighting 
conditions, calibrated scale estimates, color and texture invariance, 
relative ease of background subtraction, and the ability to locate body 
joints in the 3D-space [33,34]. 

The Microsoft Kinect is one of the most widely used postural sensing 
methods in industry and research that uses two built-in cameras: a 
regular RGB camera and an active sensing depth camera. The Kinect is 
often used as it has a built in Software Development Kit (SDK) for ease of 
use in skeleton detection and body joint recognition applications [35]. 
In these applications, the RGB and depth images captured by the Kinect 
camera are usually rendered and reconstructed into 3D point clouds 
which could be viewed from different viewpoints. RGB–D cameras have 
also been used to evaluate joint angles, kinematics, and range of motion 

of the upper limbs [36–39], sitting postures of office workers [40–43], 
and shoulder kinematics of computer users [44,45]. Many of these ex
periments were conducted in lab settings where participants were 
required to wear specific types of clothing like fitted tank tops [44] and 
participants’ postures were restricted [40]; thus, the accuracy and effi
cacy for using RGB-D cameras in real office environments is uncertain. 
Additionally, despite the reported health benefits related to changing 
between sitting and standing postures during a work shift [46], most 
existing studies have primarily focused on workers who are either 
standing [28,31] or sitting [40,44] and, thus, the robustness of many 
automated assessment methods to changing working conditions and 
workstations setups has not been completely evaluated. 

In this study, we propose an automated ergonomic assessment 
method, the 3D Automated Joint Angle Assessment, 3D-AJA, which uses 
a Kinect camera and computer vision algorithms to compute office 
workers’ upper limb joint angles and their associated postural risk based 
on conversion to a RULA score in both sitting and standing conditions 
across diverse workstation setups. Participants were advised to wear 
their normal clothes, normal hair styles, and behave as they normally 
would in completing their work tasks at a computer. Thus, the objective 
of this study was to develop an automated ergonomic assessment algo
rithm for office workers that could be effectively translated into realistic 
office environments. The following three research questions are answered 
in this study: (1) How accurate is the 3D-AJA for identifying specific 
body joint angles of the shoulder and arm in an office setting? (2) How 
does the 3D-AJA compare to the existing Kinect SDK body joint capture 
method for body joint angle measurements? (3) How might the 3D-AJA 
support assumptions of postural risk as would be manually assessed 
using the RULA? The remainder of the paper is organized as follows. 
Section 2 presents an overview of the relevant literature. The proposed 
methodology of this study is described in Section 3. Section 4 and Sec
tion 5 presents the results and discussion, respectively. Finally, conclu
sions are presented in Section 6. 

2. Literature review 

Camera-based ergonomic assessments can be performed either in 2D 
using regular cameras [47–49] or in 3D using RGB-D cameras, such as 
ranged cameras [50] and Kinect cameras [44,51]. Previous studies 
investigated the application of camera-based ergonomic assessments on 
workers in different settings such as industrial [52–54], manufacturing 
[27,55,56], assembly [30,57], and construction [58,59]. For example, 
studies evaluated the validity of Kinect camera for posture assessment in 
lab environments where participants were asked to perform weightlift
ing tasks [27,59,60], bending [30,61], or moving upper and lower limbs 
in front of the camera [35,37,62]. Other studies tested the performance 
of Kinect camera on worker evaluation in real factory workplaces, such 
as using assembly tables [55] and in a fabric plant [54]. The perfor
mance of these evaluations differs when lab-based and workplace-based 
assessments are compared. For example, Plantard et al. [27] compared 
the performance of Kinect camera for box lifting tasks in a lab envi
ronment and car seat assembly in a real car manufacturing factory and 
found that the strength of agreement between RULA scores computed 
from Kinect data and expert observations in real work conditions was 
around 80% in the lab, which was higher than 70% in a factory. 

However, the outcomes of the methods developed in the above- 
mentioned studies may be different when these methods are applied 
for posture monitoring of office workers. Compared to construction 
workers who stand and perform strenuous and/or repetitive tasks [32], 
office workers sit or stand and perform repetitive tasks with a smaller 
range of movements [16,63]. Additionally, given that part of the office 
workers’ lower body may be occluded by their workstations, it is 
possible that the performance of camera-based postural assessment 
methods based on full body tracking may be compromised in an office 
setting due to occlusion [27,64]. For example, the Kinect Software 
Development Kit (SDK), a built-in body joint and skeleton detection 
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function in the Kinect camera, works better when the participant is 
standing in front of the camera with all body parts exposed [58]. In other 
words, the Kinect SDK skeleton tracking does not usually work well 
when the participant sits behind the desk with parts of their body 
occluded [65], which requires certain remedial measures to overcome 
challenges such as the lack of accuracy when the participant being 
tracked is not facing the camera directly or when parts of the body are 
not visible to the camera [35]. 

Previous studies developed applications based on RGB-D cameras to 
keep track of postures of office workers [66–68]. Several studies focused 
on the sitting postures of office workers [40–43] and used the Kinect 
SDK. Even though moderate-to-high correlations have been found be
tween the Kinect angles and goniometer angles in these studies, in most 
cases, the workstation setups and the requirements on the participants 
postures were too restrictive to be representative of real office envi
ronments. Examples include the use of workstations without computers 
and other objects, combined with participants following predetermined 
protocols and having sensors attached to their bodies [40], the need to 
use markers to detect participant’s body parts and have sensors attached 
to the participant’s body [43]. Because shoulder and elbow joint angles 
are important indicators of office workers’ health [10,11], other studies 
used Kinect SDK to monitor the joint angles [36,37], kinematics [38], 
and range of motion [39] of upper limbs at standing postures. For 0◦ and 
90◦ shoulder flexion and abduction angles, Kinect camera measurements 
have shown a correlation coefficient of 0.76–0.98 with goniometry 
measurements [28], but further studies are needed to evaluate its per
formance in a broader range of angles for these joints. Studies also used 
Kinect SDK to perform postures assessment of office workers whose 
predominant mode of work was using computers [44,45,69]. Again, 
although moderate-to-high correlations have been found between Kin
ect angles and goniometer angles, as it was the case in many studies 
focusing on sitting postures, the boundary conditions in these studies 
may limit their validity in real world conditions. For example, some of 
the existing studies have limited the range of postures the participants 
can use during the experiments and have required participants to wear 
fit clothes to allow the attachment of sensors to the participants’ bodies 
[44]. Table 1 presents a summary of some of the existing studies that 
involve the automated assessment of postural risk in various workplaces. 

While the Kinect SDK has been tested for ergonomic assessment in 
office settings with the above limitations, with the application of deep 
learning in computer vision, postural detection with 2D images has 
attracted attention and is developing rapidly [71]. Automated algo
rithms not only have the potential to improve upon the challenges faced 
in previous studies, but these advanced techniques may also serve as the 
foundation for developing a method for the ongoing assessment and 
feedback required to support behavioral change in office workers. There 

are two categories of emerging algorithms. First, direct body joint 
detection algorithms [72–74] capture the body joints directly and con
nect the detected joints to compute body joint angles. Second, body part 
parsing and segmentation algorithms [75,76] create pixel-level human 
body part segmentations and classify pixels in the 2D image into cate
gories that belong to different body parts. These algorithms have been 
applied to a variety of body movement tracking, such as with athletes 
[77] and construction workers [78]; however, to the best of the authors’ 
knowledge, these algorithms have not been applied in an office context 
for joint angle estimations or overall posture assessment. 

To examine the automated assessment of office worker posture, we 
evaluated a combination of two algorithms, a direct body joint detection 
algorithm, OpenPose [74], and a body part segmentation algorithm, 
Weakly and Semi-Supervised Human Body Part Parsing (WSHP) [76]. 
OpenPose achieves a balance between accuracy and computational 
speed to provide separate joint estimation for the body, foot, and facial 
key points, all of which are suitable for office workers when part of their 
body is occluded behind workstations. WSHP provides pixel-level 
human body segmentation, which helps automatically recognize 
different body parts, providing the basis for body joint angle calcula
tions. Together these algorithms can more precisely determine the po
sition of body parts and avoid the limitations of using 3D body joint 
coordinates from Kinect SDK alone. However, since 2D outputs from the 
OpenPose and WSHP may be limited to compute human body joint 
angles in 3D space, we propose a novel algorithm, 3D-AJA, that com
bines 3D data from Kinect cameras with the 2D outputs of the selected 
computer vision algorithms to determine body joint angles used for 
RULA scores calculations. This algorithm serves as our first step toward 
developing an automated system to conduct ongoing postural risk 
evaluations for office workers. 

3. Materials and methods 

3.1. Automated joint angle assessment − 3D-AJA 

Our automated ergonomic assessment algorithm combines open- 
source computer vision algorithms and a novel body joint angle calcu
lation algorithm. The process involves body joint detection and body 
part segmentation in RGB images, image registration, merging of RGB 
and depth images to construct a 3D human body point cloud model, and 
calculation of body joint angles using the 3D point cloud. Fig. 1 presents 
a flowchart of the proposed body joint angle calculation algorithm, the 
3D-AJA. 

The RGB images and depth images were collected using a Microsoft 
Kinect for Windows V1 camera (step 1.1 in Fig. 1). Two open-source 
computer vision algorithms, OpenPose [74] and WSHP [76], were 

Table 1 
Comparison of performance metrics for existing automated postural assessment in the workspace using computer vision.  

Study Camera Assessment Working condition Boundary conditions Performance metrics 

Seo, S. Lee  
[31] 

RGB OWAS (Ovako Working Posture 
Analyzing System 

Standing, back-bending, arm- 
raising, knee-bending 

Laboratory, limited number of postures (4), 
full body, no occlusion 

Accuracy = 89% 

Dzeng et al.  
[32] 

3 × RGB- 
D 

OWAS (4 action levels) Lifting, assembly, hammering, 
tiling 

Laboratory, eventual partial occlusion of 
lower limbs 

Accuracies between 48.4% 
and 93.9% 

Bhatia et al.  
[40] 

RGB-D Elbow flexion/extension, Knee 
flexion/extension 

Sitting Laboratory, sensors attached to the 
participants, no objects on workstation, 
controlled lighting 

RMSE ranging from 9.7◦ to 
15.4◦

Correlation coefficient 
ranging from 0.6 to 0.9 

Xu et al. [44] RGB-D Shoulder flexion/extension, axial 
rotation, and abduction/ 
adduction 

Sitting Laboratory, controlled clothing (tank-tops), 
occluded lower limbs. 

RMSE ranging from 
6.4◦ ± 0.9◦ to 
27.3◦ ± 15.8◦

Abobakr et al. 
[51] 

RGB-D RULA (grand score) Various Laboratory, full body, eventual partial 
occlusion of body parts 

MAE = 3.19◦ ± 1.50◦

Accuracy = 89% 
Manghisi 

et al. [61] 
RGB-D RULA (grand score) 15 selected postures involving 

sitting, kneeling, among others 
Laboratory, controlled lighting, full body, no 
occlusion 

proportion agreement 
index = 0.96, k = 0.84 

Li et al. [70] RGB RULA (4 action levels) Lifting 
Sitting/Standing using Human 
3.6 data 

Laboratory, full body, no occlusion F1-score = 0.79 (lifting) 
F1-score = 0.93 (Human 
3.6)  
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combined for body joint detection and body part segmentation in RGB 
images (steps 2.1 and 2.2 in Fig. 1, respectively). OpenPose uses a 
bottom-up approach to generate Part Affinity Fields (PAF) to associate a 
body part to an individual. PAFs are a set of 2D vectors that encode the 

location and orientation of a human body part [74]. WSHP uses key 
point annotation to perform per-pixel part segmentation. The key idea is 
to exploit anatomical similarity among humans to transfer the parsing 
results from one person to another with a similar pose [76]. These two 

Fig. 1. Flowchart of the 3D-AJA.  
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algorithms take the RGB images as inputs from the Kinect camera 
positioned in front of the participant. OpenPose outputs 2D coordinates 
of detected body joints (Fig. 2 (a)) and WSHP outputs pixel-wise points 
that are identified as different body parts (Fig. 2 (b)). The detected body 
part pixels from WSHP outputs are labeled as upper arms (yellow), lower 
arms (purple), and trunk (green) in the RGB images. 

The RGB and depth images from Kinect were overlaid on global 
coordinates to construct 3D point clouds (step 3.1 in Fig. 1, results in 
Fig. 3). The sample size of each point cloud in this study was 0.6 in (1.5 
mm) and, on average, each point cloud had 250,000 points. Further 
information regarding camera alignment and 3D point cloud generation 
can be found in MathWorks [79]. Background subtraction was per
formed using the Kinect SDK to eliminate noise from the background 
and to keep points located on or close to the human body (step 4.1 in 
Fig. 1, results in Fig. 4 (a) and (b)). From the 3D human body point cloud 
model, separate point clouds for upper arms, lower arms, and trunk were 
extracted (step 6.1 in Fig. 1). It was found that the WSHP algorithm 
could mismatch the points from the arms and assign incorrect right arm 
labels to left-arm points and vice versa. To solve this problem, region 
growing [80] was used on the upper arm and lower arm point clouds 
separately to differentiate the left and right arms (step 5.1 in Fig. 1). 
Region growing is an algorithm that picks a random pixel as a region 
start point inside the RGB image, examines the Euclidean distance be
tween neighboring pixel points and start point and determines whether 
the pixel neighbors belong to the same region. 

Next, the novel body joint angle calculation algorithm was designed 
to calculate shoulder flexion, shoulder abduction, and elbow flexion 
joint angles by replicating manual goniometry procedures [81]. The 
demonstration of shoulder flexion, shoulder abduction, and elbow 
flexion is shown in Fig. 5. Shoulder flexion/extension is the respective 
movement of the arm up/down in front of the body in the sagittal plane, 
and shoulder abduction/adduction is the respective movement of the 
arm away from and toward the side of the body in the frontal plane. 
Elbow flexion/extension refers to the respective movement of the elbow 
joint that decreases or increases the joint angle relative to a straight arm 
position. Manual joint angle measurements using a goniometer are 
conducted following a 4-step procedure: (1) identify designated parts of 
the body for measurements, (2) approximate the location of bones, the 
skeletal joint, and the body planes, (3) project the location of bones in 
space onto the body planes, and (4) measure projected angles with the 
goniometer centered over the joint as the axis of movement. We devel
oped our body joint angle calculation algorithm to follow the same 
procedure, where the location of arm bones, shoulder and elbow joints, 
and frontal and sagittal planes of the trunk were found first. Then, the 
locations of upper and lower arms were approximated based on the 
orientation of the arm skeleton, and the shoulder and elbow joint angles 
were measured based on the relative angle between arm skeletons and 
trunk planes. 

The trunk frontal plane was approximated by fitting a plane amongst 
all points labeled as the trunk with the least square of the normal dis
tance from all trunk points to the plane (step 7.1 in Fig. 1). The body 
sagittal plane was obtained by forming a plane along the direction 
perpendicular to the vector connecting the two shoulder joint points 
output and aligned with the normal vector on the body frontal plane 
(Fig. 6). Upper arm skeleton locations of left and right upper arms were 
found by fitting two lines in the 3D space among all the points identified 
as left and right upper arms. The equation of each line in space was 
calculated using the least square approximation method, followed by its 
transformation into a vector in space for joint angle calculations. The 
same method was used to find the approximate skeleton location of the 
lower arms (step 7.3 in Fig. 1). The upper arm vectors pointed from the 
shoulder joint to the elbow joint and the lower arm vectors pointed from 
the elbow joint to the wrist joint. 

The approximated arm vectors, trunk frontal planes, and sagittal 
planes were used for body joint angle calculations. Shoulder flexion 
angles were obtained by projecting the upper arm vector in space to the 
body sagittal plane and calculating the angle between the projected 
vector and the body frontal plane (steps 8.1 and 9.1 in Fig. 1, respec
tively). Shoulder abduction angles were obtained by projecting upper 
arm vectors in space to the body frontal plane and calculating the angle 
between the projected vector and the body sagittal plane (steps 8.2 and 
9.3 in Fig. 1, respectively). Elbow flexion angles were calculated from 
the angle between the upper arm and lower arm vector in the 3D space 
(step 9.2 in Fig. 1). Total processing time for each frame was around 80 s 
on an Intel® Xeon® E5420 @ 2.50 GHz CPU with 16 GB RAM. 

Fig. 2. (a) OpenPose sample output and (b) WSHP algorithm sample output (right).  

Fig. 3. 3D human body point cloud model.  
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3.2. Algorithm evaluation 

An experimental study was conducted to obtain a postural dataset 
from a group of healthy participants while working in six different 
computer workstation set-ups. Using this postural dataset, the 3D-AJA 

was evaluated and compared to goniometry measurements and the 
Kinect SDK. The experimental conditions were approved by the Uni
versity’s Institutional Review Board and all participants provided 
informed consent before any data collection. 

3.2.1. Experimental setup 
The experiment was conducted using a standardized office work

station that included a fully adjustable chair, an adjustable-height desk, 
and a monitor, keyboard, and mouse that could each be moved (Fig. 7). 
Previous studies recommended placing the camera directly in front of 
the participant and within approximately 16 feet (4.88 m) to provide the 
best accuracy for determining body angles and use of the depth channel 
[35,40,44,62]. Therefore, in this study, both RGB and depth images 
were captured using a Kinect camera mounted on a tripod 6 in. (15.24 
cm) behind a computer monitor directly in front of the participant, at an 
approximate distance of 6 feet (1.83 m) from the participant. A MATLAB 
script was written to process Kinect data into files containing Kinect 
default RGB images (480x640 resolution), Kinect default depth images 
(480x640 resolution), skeleton joint coordinates from Kinect SDK, and 
relevant metadata. Data files were recorded twice every second, and all 
the data points of a snapshot were then combined into a single file to 
ensure synchronization. An RGB web camera was also mounted on the 
wall to the right of the participant and continuous video recording was 
completed throughout the experiment. This video recording provided 

Fig. 4. Point cloud (a) before and (b) after background subtraction.  

Fig. 5. (a) Shoulder flexion, (b) shoulder abduction, (c) elbow flexion.  

Fig. 6. Body frontal plane (yellow) and sagittal plane (green) approximation. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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additional input for the team to identify potential data errors and 
improve the expert coding of RULA scores for comparison to the 
algorithm-calculated risk scores. 

3.2.2. Data collection 
Twenty participants (8 females and 12 males) without any known 

musculoskeletal disorders or limitations of upper body range of motion 
were recruited. All participants were intense computer users, 19 were 
right-handed, and all wore clothing and had hair styles that would be 
typical for conducting their work. At the outset of the experiment, each 
participant was introduced to the workstation and all possible adjust
ments, including the chair height, seat depth, armrest height, back 
support, desk height, monitor height and tilt, and mobility of the 
keyboard and mouse. The data collection consisted of two one-hour 
observations. The first one-hour observation had six 10-minute condi
tions, including (a) sitting – self-selected, (b) sitting – ideal, (c) sitting – 
poor, (d) standing – self-selected, (e) standing – ideal, (f) standing – 
poor. Workstation adjustments for each of the ideal and poor conditions 
were made by the experimenter as described in Table 2 and pictured in 
Fig. 8 (a)-(f). During the second hour, participants were allowed to 
adjust the workstation to any position preferred. 

During the first hour, participants worked in each of the six work
station conditions (Fig. 8 (a)-(f)) for 10 min per condition. Participants 
were randomly selected to start in either sitting or standing for the first 
three set-ups before alternating to the opposite position for the three 
final conditions. Each set of three conditions started with the self- 
selected set-up, followed by the ideal and poor conditions. A 12-inch 
(30.48 cm) round goniometer was used for manual measurement of 
body joint angles. Each goniometry measurement consisted of bilateral 
readings of shoulder flexion, shoulder abduction, and elbow flexion for 
both the left and right sides of the body using standard goniometric 
procedures. Ten manual goniometry measurements were obtained dur
ing this process, first after the self-selected set-up, then at the start and 
conclusion of both the ideal and poor conditions. At each time point, 
participants were asked to maintain a static posture while goniometry 
measurements were obtained for shoulder flexion (SF), shoulder 
abduction (SA), and elbow flexion (EF) on the left and right arms. During 
the second hour, manual goniometry measurements were performed 
once every 15 min for a total of 4 additional measurements. 

3.2.3. Data processing and analysis 
The three joint angles on both the left and right sides were measured 

14 times for each participant, resulting in a total of 1,680 individual 
measurements across all participants, conditions, and joints. Error in 
manual goniometry was discovered during data cleaning and process
ing. After checking the noted goniometry angles and corresponding RGB 
images at the same time frame, 11 measurements were eliminated from 
the analysis due to the mismatch and obvious large discrepancies be
tween the RGB images and corresponding goniometry measurements. 
These discrepancies were due to a participant moving between the 
measurement of their joint angles for their left and right sides, and/or 
due to human error during the transferring of the goniometer mea
surements to the assessment sheet. Next, body joint angles were calcu
lated using the 3D-AJA as explained in Section 3.1, and skeleton joint 

Fig. 7. Experiment setup.  

Table 2 
Self-selected, ideal, and poor sitting/standing workstation conditions for the 
first hour.  

(a) Sitting – Self- 
selected  

• The participant adjusts all components of the workstation 
to his/her most comfortable or preferred position. 

(b) Sitting – Ideal  • Knees, hips, elbows at approximately 90◦ flexion  
• Shoulders are relaxed, at neutral flexion/abduction  
• Elbow rests placed under participant’s elbow, allowing for 

the arm to rest without shoulders hiking up  
• Monitor height is at eye level  
• Seat pan allows for 1.5 in. (3.81 cm) width space between 

the back of knees and edge of the chair 
(c) Sitting – Poor  • Desk height lowered to encourage full extension of elbows  

• Elbow rests are adjusted so the arms are not supported  
• Monitor height lowered and pushed to one side to 

encourage neck forward and lateral flexion  
• Keyboard away from the participant’s body to encourage 

elbow extension 
(d) Standing – Self- 

selected  
• The chair is removed, and the participant adjusts the desk 

height and all other items to his/her preferred position. 
(e) Standing – Ideal  • Standing with both feet on the floor  

• Elbow at approximately 90◦ and shoulders are relaxed, in 
neutral flexion/abduction  

• Monitor height is at eye level  
• Neck and spine in a neutral position 

(f) Standing – Poor  • Desk height lowered to encourage full extension of elbows  
• Monitor height lowered and pushed to one side to 

encourage neck forward and lateral flexion  
• Keyboard away from the participant’s body to encourage 

elbow extension  
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coordinates from Kinect SDK were used to calculate body joint angles 
following ISB recommendations [82] and Xu et al [44]. 

Raw output from the algorithm and the Kinect SDK was calibrated by 
fitting a linear regression model with goniometry measurements and 
adjusting the raw algorithm and Kinect SDK output based on this model 
to eliminate systematic error in the data (step 10.1 in Fig. 1). Mean 
Absolute Error (MAE) and Pearson correlation (r) were calculated to 
compare the performance of the algorithm and the Kinect SDK relative 
to the goniometry measurements. Specifically, MAEs relative to the 
goniometry measurements were compared between the algorithm and 
Kinect SDK using independent sample t-tests. Comparisons of the MAEs 
between sitting and standing conditions and between the first and sec
ond hours of data collection were also conducted using an independent 
sample t-test. Correlation analyses relative to the goniometry measure
ments were performed for both the algorithm and Kinect SDK and 
Pearson r correlation coefficients were calculated. All statistical testing 
was conducted using MATLAB, and statistical significance was set at p <
0.05. 

3.2.4. Evaluation of the proposed method for estimating postural risk 
Finally, to examine the utility of the 3D-AJA for assessment of po

tential postural risks associated with the participant’s upper limbs, we 
calculated the RULA upper limb component score (i.e., RULA score A) 
using the estimated angles (i.e., shoulder flexion, shoulder abduction, 
and elbow flexion) plus an additional feature that indicated whether the 
participant was sitting or standing. To determine the RULA score A, one 
needs to locate the positions of upper arms, lower arms, wrists, and the 
wrist twist, then determine the individual scores associated with the 
locations of these members after eventual adjustments, and finally use 
these four individual scores to identify the RULA score A in its associated 
table. For an explanation of RULA score A, please refer to [20]. 

The complete evaluation of RULA score A for arm and wrist analysis 
[20] requires nine features: positions of upper arms, lower arms, wrists, 

the wrist twist, and 5 eventual adjustments. However, extracting all 9 
features from the RGB-D data, particularly those associated with wrist 
position, is challenging in real environments because the camera posi
tioning or resolution may not be able to capture hand location appro
priately [70] or because wrists may be located outside the camera’s field 
of view due to the user’s movement during different office tasks. To 
overcome this challenge, we evaluated the potential of using Machine 
Learning models to provide a consistent assessment of RULA score A 
using the arm and shoulder joint angles which are generally visible in 
the camera’s field of view even when the extremities might not be 
visible. For these models, the three joint angles and the participant’s 
condition (sitting/standing) were used as the input features and the 
RULA score A determined by the ergonomists as the class label. Fig. 9 
presents the overall process for training and testing the selected models. 

For each participant, approximately 120 frames were selected from 
the first hour of data collection (1 frame every 30 s), totaling about 
2,400 frames. The decision to select the first hour of data collection 
aimed at including all six combinations of workstation setups and 
working conditions, as presented in Table 2. Two occupational thera
pists with experience in ergonomic assessment conducted the RULA for 
each frame. The upper limb was scored based on positioning of the right 
arm due to the ability for the expert observers to review the additional 
RGB video positioned lateral to the participant as needed. 

Before training and testing the models, the datasets were cleaned to 
remove instances that contained missing values for any of the features 
and eventual outliers. Then, the cleaned datasets were randomly parti
tioned into two sets, one for training and one for testing the ML models 
for seven different folds. As a result of the verification of highly imbal
anced datasets for both the 3D-AJA and the SDK, it was necessary to 
oversample the minority classes in the training datasets, which was done 
using the Synthetic Minority Oversampling TEchnique (SMOTE) algo
rithm [83]. Finally, the testing dataset was used to assess the quality of 
the trained models. 

Fig. 8. Sample images of the six workstation adjustments tested including sitting in (a) self-selected, (b) ideal, and (c) poor set-ups, and standing in (d) self-selected, 
(e) ideal, (f) poor set-ups. 
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Table 3 presents a summary of the distribution of the RULA score A 
classes for the training and testing datasets for the 3D-AJA and the 
Kinect SDK. As Table 3 shows, there is a high imbalance in both datasets 
(3D-AJA and Kinect SDK), with classes 1, and 6–9 having the lowest 
number of instances as compared to the majority classes represented by 
classes 2 and 3. Classes 4 and 5 also represent minority classes, although 
the imbalance ratios of these classes relative to the majority classes are 
not as pronounced as it is for classes 1, 6, and 7. Possible explanations for 
this observation is related to the RULA score A table itself and the set of 
possible workstation adjustments likely to be found in an office work
space. Out of the 144 possible combinations of arm and wrist angles, 
only one results in a RULA score A of 1 [20]. Alternatively, to reach the 
most extreme RULA scores A from 6 to 9, the workers would need to be 
sitting or standing is positions not likely to be found during computer 
work in a common office space. Another observation in Table 3 is that, 
for the 3D-AJA, no instances belonging to class 6 were found in the 
dataset. For the Kinect SDK, only one instance belonging to class 6 was 
captured, although it was dropped because the SMOTE algorithm could 
not be applied to it. No instances were classified as classes 8 or 9 for both 
the 3D-AJA and the Kinect SDK. Finally, Table 3 shows that, due to the 
observed class imbalances in the original datasets, the SMOTE algorithm 
was applied to classes 1, 4, 5, and 7. 

Imbalanced datasets are a common problem in many machine 
learning applications and call for remedial measures and alternative 
analysis metrics to reduce for the potential biases of classifying the 
minority classes under the majority classes due to the unequal distri
bution of the data among the multiple classes in the dataset [84–87]. As 
Table 3 shows, the majority classes 2 and 3 account for almost 90% of 
the instances after data cleaning while the most extreme classes 1, 6, 7, 
8, and 9 together account for less than 1% of the instances in the datasets 

for both the 3D-AJA and the Kinect SDK. In this study, three main 
remedial solutions were tried to improve the classification performance 
of the resulting models including (1) undersampling the majority clas
ses, (2) oversampling the minority classes, and (3) a mix of under
sampling the majority classes and oversampling the minority classes to 
decrease the data imbalance levels. Out of the three methods, the one 
that resulted in the best performance for the classification models was 
oversampling the minority classes with the SMOTE algorithm [83]. 

To compare the qualities of the classification models provided by 
joint angles from the 3D-AJA and the Kinect SDK, nine machine learning 
models were evaluated. These models included the lazy classifiers k- 
Nearest Neighbor, KStar, and Locally Weighted Learning using the J48 
tree, the Naïve Bayes classifier, the Bayes Network classifier with 
Bagging, the Random Tree classifier with Bagging, the rule-based clas
sifier PART with Bagging, the Multilayer Perceptron classifier with the 
MultiClass Classifier (metaclassifier), and the Random Forest Classifier. 
All models were trained and tested using the Waikato Environment for 
Knowledge Analysis (WEKA), version 3.8.5 [88]. 

Given that the classifications dealt with highly imbalanced datasets, 
using accuracy as the main performance metric to compare the quality of 
the models could provide misleading results. This is because a model 
may achieve a high accuracy due to a relatively good performance in the 
classification of the majority classes even if the model has a poor per
formance in the classification of the minority classes, which is known as 
the “accuracy paradox” [89]. Researchers suggest using other perfor
mance metrics to assess the quality of the ML models used to train and 
test imbalanced datasets [85,90,91]. Some of the most used metrics 
include the geometric mean (G-mean) of sensitivity [True Positive (TP) 
Rate] and specificity [1 – False Positive (FP) Rate], and the areas under 
the Receiver Operating Characteristic (ROC) curve. Alternatively, it is 

Fig. 9. Flowchart of the training and testing methods for the selected models.  

Table 3 
Distribution of instances among the RULA scores A classes.  

Class (RULA score A) 3D-AJA Kinect SDK 

Initial % of the dataset Training Testing Initial % of the dataset Training Testing 

1 11 0.5% 51* 11 8 0.4% 51* 8 
2 1175 50.8% 945 230 1081 50.6% 881 200 
3 902 39.0% 715 187 830 38.8% 653 177 
4 175 7.6% 181* 87 172 8.0% 180* 83 
5 49 2.1% 116* 25 43 2.0% 78* 25 
6 – – – – 1 0.0% – – 
7 2 0.1% 24* 2 2 0.1% 24* 2 
8 – – – – – – – – 
9 – – – – – – – – 

* Oversampled classes using the SMOTE algorithm. No instance was used in both training and testing datasets for the same fold. 
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possible to use precision-recall metrics, which also include the F-score 
and the area under the precision-recall curve (PRC). Thus, for this study, 
accuracy was not used as the main performance metric to assess the 
quality of the proposed models, but rather precision-recall metrics and 
sensitivity-specificity metrics were used. Specifically, F1-score and G- 
mean were selected as the main indicators of performance for the 
selected models. The F1-score combines precision and recall into a single 
value that indicates the “goodness” of a model, even in face of class 
imbalances [85]. Alternatively, the G-mean was proposed to deal with 
imbalanced datasets by balancing out the performance of the model in 
terms of both the positive and the negative classes [91]. The formulas 
used for these metrics are presented in Eqs. (1)–(6). 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision =
TP

TP + FP
(2)  

Recall(Sensitivity) =
TP

TP + FN
(3)  

Specificity =
TN

TN + FP
(4)  

F1 − score =
2 × Precision × Recall

Precision + Recall
(5)  

G − mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity × Specificity

√
(6)  

where TP = True Positive cases, TN = True Negative cases, FP = False 
Positive cases, and FN = False Negative cases. 

4. Results 

Table 4 presents the MAEs and their respective standard deviations 
between the paired observations of the 3D-AJA and the Kinect SDK 
angles to the goniometer angles for shoulder flexion, shoulder abduc
tion, and elbow flexion across all workstation conditions. As Table 4 
shows, overall, the MAE for the algorithm was significantly different 
than the Kinect SDK for shoulder flexion (6.3◦ ± 5.7◦ vs. 8.3◦ ± 7.2◦, 
respectively, p < 0.001) and elbow flexion angles (8.5◦ ± 8.1◦ vs. 
18.2◦ ± 16.0◦, respectively, p < 0.001), although for some postural 
conditions (sitting ideal, sitting poor, standing self-selected, and stand
ing ideal) no significant differences were found for shoulder flexion 

angles. For shoulder abduction, overall, no significant differences were 
found between the MAEs of the 3D-AJA (5.6◦ ± 5.1◦ vs. 6.2◦ ± 6.4◦, 
respectively, p = 0.113). 

We also compared the MAEs for each joint angle estimate using the 
3D-AJA and the Kinect SDK between the first and second hours and 
between the overall sitting and standing positions (α = 0.05). For the 3D- 
AJA, the only significant difference between the MAEs occurred for 
shoulder abduction between the overall first and second hours 
(5.1◦ ± 4.2◦ vs. 6.8◦ ± 6.7◦, respectively, p < 0.001). However, for the 
Kinect SDK, there were significant differences between the MAEs for 
shoulder abduction between the overall sitting and standing positions 
(6.9◦ ± 7.1◦ vs. 4.5◦ ± 3.5◦, respectively, p < 0.001), and between the 
overall first and second hours (5.7 ± 5.7 vs. 7.4 ± 7.7, respectively, p =
0.007). Also, for the Kinect SDK, significant differences between the 
MAEs for elbow flexion between the overall first and second hours of 
data collection were detected (19.7 ± 16.4 vs. 14.4 ± 14.2, respectively, 
p < 0.001). 

Pearson correlation coefficients between the calculated body joint 
angles and goniometry measurements are presented in Table 5. For 
almost all cases, the measures obtained using the algorithm were more 
strongly correlated with the goniometry measurements than the mea
sures obtained using the Kinect SDK. The only condition in which the 
Kinect SDK showed a meaningfully stronger correlation with the goni
ometry measurements than the 3D-AJA was the standing ideal condition 
(0.63 vs. 0.52, respectively). Across the varied conditions tested in the 
first hour, there were significantly strong correlations between the al
gorithm calculated joint angles and goniometry measurements at 0.79 
for shoulder flexion, 0.77 for shoulder abduction, and 0.90 for elbow 
flexion. Alternatively, the Kinect SDK showed a weak correlation for 
elbow flexion (0.30) and moderate correlations for shoulder flexion 
(0.61) and shoulder abduction (0.61). Similar results were noted across 
the measures conducted for each method during the self-selected work 
behaviors in the second hour and the overall results throughout all 
conditions during both the first and second hours of data collection as 
shown in Table 5. 

Out of the nine selected machine learning models, the model which 
provided the overall best performances for both the 3D-AJA and the 
Kinect SDK was the Random Forest. The confusion matrices and per
formance metrics for all classes in the Random Forest models are pre
sented in Tables 6 and 7, respectively, for both the 3D-AJA and the 
Kinect SDK. As Table 7 shows, the F1-scores of all classes in the model 
from the 3D-AJA data are at least 0.700, and the G-means of all classes 
are higher than 0.840. Alternatively, the model using the Kinect SDK 
data shows relatively lower F1-scores and G-means for some of the 

Table 4 
Comparisons of mean absolute error (MAE) relative to goniometry measurement between the 3D-AJA and Kinect SDK, in ◦.   

3D-AJA Kinect SDK p-value**  

Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow Flexion Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow Flexion Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow Flexion 

Sitting Self-selected 5.7 ± 5.0 5.7 ± 4.7 7.5 ± 7.8 9.2 ± 8.9 7.4 ± 7.4 14.6 ± 10.9  0.047*  0.249  0.002* 
Sitting Ideal 6.1 ± 5.7 5.4 ± 4.4 6.0 ± 5.1 7.3 ± 7.3 7.4 ± 8.7 11.5 ± 12.3  0.287  0.070  < 0.001* 
Sitting Poor 6.6 ± 5.6 5.6 ± 3.9 10.0 ± 6.7 7.1 ± 5.8 6.1 ± 4.5 27.3 ± 19.5  0.585  0.441  < 0.001* 
Overall Sitting 6.2 ± 5.5 5.5 ± 4.3 7.8 ± 6.6 7.6 ± 7.2 6.9 ± 7.1 18.2 ± 16.8  0.041*  0.023*  < 0.001*  

Standing Self-selected 6.5 ± 4.4 4.6 ± 3.7 6.1 ± 5.4 8.5 ± 6.5 4.3 ± 3.4 14.2 ± 10.8  0.126  0.698  < 0.001* 
Standing Ideal 7.0 ± 5.4 5.1 ± 4.7 8.1 ± 7.9 8.6 ± 6.5 4.2 ± 3.1 17.7 ± 13.9  0.099  0.170  < 0.001* 
Standing Poor 6.2 ± 6.3 4.6 ± 3.6 11.3 ± 11.7 8.5 ± 6.8 4.8 ± 4.0 28.5 ± 17.3  0.031*  0.669  < 0.001* 
Overall Standing 6.6 ± 5.6 4.8 ± 4.1 9.0 ± 9.4 8.6 ± 6.6 4.5 ± 3.5 21.2 ± 15.9  0.002*  0.407  < 0.001*  

Overall First Hour 6.4 ± 5.5 5.1 ± 4.2 8.4 ± 8.2 8.1 ± 6.9 5.7 ± 5.7 19.7 ± 16.4  < 0.001*  0.149  < 0.001* 
Overall Second Hour 6.0 ± 5.9 6.8 ± 6.7 8.5 ± 7.9 8.8 ± 7.9 7.4 ± 7.7 14.4 ± 14.2  < 0.001*  0.440  < 0.001*  

Overall 6.3 ± 5.7 5.6 ± 5.1 8.5 ± 8.1 8.3 ± 7.2 6.2 ± 6.4 18.2 ± 16.0  < 0.001*  0.113  < 0.001* 

*denotes significance at p < 0.05. 
**Independent sample t-test was used to compare the MAEs between the two methods. 
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minority classes, e.g., classes 4 and 5, and even the majority class 3. 
While precision and specificity are appropriate performance measures 
for problems that aim at minimizing false positives, and recall (sensi
tivity) for problems that aim at minimizing false negatives, using any of 
these metrics alone may not tell the whole story since a model may have 
high precision but low recall (and vice-versa), and low sensitivity and 
high specificity (and vice-versa). F1-scores and G-means combine the 
results of precision and recall, and sensitivity and specificity, respec
tively, by means of harmonic (for F1-score) and geometric (for G-mean) 
means in a way that balances out the concerns of minimizing all types of 
classification errors. In both cases (F1-score and G-means), the possible 
performance values range between 0 and 1, with higher values being an 
indication of better performance, i.e., fewer misclassifications. 

5. Discussion 

5.1. MAEs and correlation analysis 

As Tables 4 and 5 show, overall, the 3D-AJA reduced measurement 
error and resulted in higher correlation to standard goniometry mea
surements as compared to the Kinect SDK. Consequently, the estimation 
of joint angles from the 3D-AJA were closer to the actual values provided 
by standard goniometry, which resulted in better performance during 
the determination of the RULA scores A (section 5.2) as it was observed 
for the Kinect SDK method. The results show that the estimation of body 
joint angles by the 3D-AJA has overall MAEs of 6.3◦ ± 5.7◦ for shoulder 
flexion, 5.6◦ ± 5.1◦ for shoulder abduction, and 8.5◦ ± 8.1◦ for elbow 
flexion. Comparatively, the Kinect SDK performed worse, with MAEs of 
8.3◦ ± 7.2◦, 6.2◦ ± 6.4◦, and 18.2◦ ± 16.0◦ for shoulder flexion, shoulder 
abduction, and elbow flexion, respectively. These MAEs for the Kinect 
SDK are similar to errors previously reported for estimating shoulder 
flexion (8.7◦ ± 5.9◦ right/9.1◦ ± 6.4◦ left) and shoulder abduction 
(14.8◦ ± 5.9◦ right/9.9◦ ± 4.6◦ left) in individuals who were sitting [44]. 
A possible explanation for this verified worse performance compared to 
our algorithm might be due to the occlusions on the trunk caused by the 
adjustable desk in sitting and standing postures. As it is presented in Kar 
[65], Diego-Mas, and Alcaide-Marzal [35], the Kinect SDK has low ac
curacy when part of the body is not visible to the camera. No significant 
differences in terms of the MAEs were found for any of the assessed 
angles between sitting and standing positions for the 3D-AJA while for 
the Kinect SDK a significant difference was found between the sitting 
and standing positions for shoulder abduction. This difference in 
shoulder abduction might be due to the variances in the sitting and 
standing height of the participants. When sitting, the locations of the 
upper arms were lower in height relative to the Kinect camera resulting 
in fewer points captured by the depth channel of the Kinect camera for 
the upper arm, thereby influencing the assessment of shoulder abduc
tion angles. 

Table 5 
Pearson correlation (r) between calculated body joint angles and goniometry measurements.   

3D-AJA Kinect SDK  

Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow 
Flexion 

Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow 
Flexion 

Sitting Self-selected  0.86*  0.85*  0.79*  0.46*  0.82*  0.22 
Sitting Ideal  0.78*  0.72*  0.90*  0.65*  0.06  0.42* 
Sitting Poor  0.81*  0.66*  0.94*  0.76*  0.67*  0.34* 
Overall Sitting  0.83*  0.77*  0.92*  0.68*  0.43*  0.36* 
Standing Self-selected  0.76*  0.74*  0.82*  0.51*  0.56*  0.03 
Standing Ideal  0.70*  0.52*  0.83*  0.53*  0.63*  0.24* 
Standing Poor  0.64*  0.52*  0.67*  0.33*  0.37*  −0.11 
Overall Standing  0.69*  0.53*  0.88*  0.45*  0.51*  0.18* 
Overall First Hour  0.79*  0.77*  0.90*  0.61*  0.61*  0.30* 
Overall Second Hour  0.84*  0.72*  0.84*  0.65*  0.64*  0.27* 
Overall  0.81*  0.76*  0.89*  0.63*  0.63*  0.30* 

*denotes significance at p < 0.05. 

Table 6 
Confusion matrices for the Random Forest models for the 3D-AJA and the Kinect 
SDK.  

3D-AJA Predicted Class 

“1” “2” “3” “4” “5” “7” 

Actual Class “1” 7 4 0 0 0 0 
“2” 2 201 27 0 0 0 
“3” 0 55 127 5 0 0 
“4” 0 5 16 56 9 1 
“5” 0 0 4 1 20 0 
“7” 0 0 0 0 0 2  

Kinect SDK Predicted Class 

“1” “2” “3” “4” “5” “7” 

Actual Class “1” 5 3 0 0 0 0 
“2” 1 166 33 0 0 0 
“3” 0 58 114 4 1 0 
“4” 0 15 12 45 11 0 
“5” 0 0 4 4 17 0 
“7” 0 0 0 0 0 2  

Table 7 
Performance metrics for the Random Forest models.  

Class 3D-AJA, Accuracy ¼ 76.20% 

FP 
Rate 

TP Rate 
(Recall) 

Precision F1- 
score 

G- 
mean 

“1” 0.004 0.636 0.778 0.700 0.796 
“2” 0.205 0.874 0.758 0.812 0.834 
“3” 0.132 0.679 0.730 0.704 0.768 
“4” 0.013 0.644 0.903 0.752 0.797 
“5” 0.017 0.800 0.690 0.741 0.887 
“7” 0.002 1.000 0.667 0.800 0.999 
Average 0.062 0.772 0.754 0.752 0.847 
Weighted 

Avg. 
0.136 0.762 0.769 0.759 0.811  

Class Kinect SDK, Accuracy ¼ 70.51% 

FP 
Rate 

TP Rate 
(Recall) 

Precision F1- 
score 

G- 
mean 

“1” 0.002 0.625 0.833 0.714 0.790 
“2” 0.258 0.830 0.686 0.751 0.785 
“3” 0.154 0.644 0.699 0.671 0.738 
“4” 0.019 0.542 0.849 0.662 0.729 
“5” 0.026 0.680 0.586 0.630 0.814 
“7” 0.000 1.000 1.000 1.000 1.000 
Average 0.077 0.720 0.776 0.738 0.809 
Weighted 

Avg. 
0.164 0.705 0.717 0.702 0.768  
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In addition to reducing measurement error as compared to the Kinect 
SDK, the 3D-AJA improved consistency in measurement estimation, 
demonstrating strong correlation to goniometric measures overall (i.e., 
0.81, 0.76, 0.89 for shoulder flexion, shoulder abduction, and elbow 
flexion, respectively) across the three joints as compared to the weak to 
moderate correlations achieved by the Kinect SDK (i.e., 0.63, 0.63, 0.30 
for shoulder flexion, shoulder abduction, and elbow flexion, respec
tively). The results for the second hour also support this finding and 
show that, for the condition in which the participants were completely 
free to select and adjust their working positions over time, the 3D-AJA 
correlated more strongly to the goniometer angles than the angles 
from the Kinect SDK method, which gives an indication of the ecological 
validity of the proposed method. 

5.2. RULA upper limb risk classification 

For the analysis of the ability of the three angles and the sitting/ 
standing condition of the participants to determine the RULA score A (i. 
e., upper limb subscore), the most critical factor was related to the 
imbalanced distribution of the instances in the datasets among the 
possible classes of RULA score A (scores 1 through 9). The use of the 
SMOTE algorithm, however, proved effective as both F1-scores and G- 
means were above 0.700 for all classes in the 3D-AJA and 0.630 for all 
classes in the Kinect SDK. Additionally, as the confusion matrices in 
Table 6 show, most of the misclassifications happened between adjacent 
classes, e.g., classes 2 and 3. The reason behind this observation is 
twofold. First, individual RULA scores associated with each joint during 
RULA assessments are based on a continuum of possible angles relative 
to angle thresholds, which makes it possible for slight differences in 
angle estimates (i.e., 1-degree of error) from the automated methods 
(3D-AJA and Kinect SDK) to incorrectly place the score in the wrong 
RULA class. Second, in this study, only three angles from the automated 
algorithm were used to determine the RULA score A, whereas angles in 
the wrist and adjustments for other upper limb factors were included in 
the expert RULA observations, which can incorrectly place the score in 
the wrong RULA class as well. 

Despite some limitations in data heterogeneity and using only three 
angles to train the classification models, the 3D-AJA data resulted in 
generally good risk assessment models relative to expert observations. 
Taking the Random Forest models depicted in Tables 6 and 7, it is 
possible to observe that, even in face of the imbalanced datasets used to 
build these models, the lowest F1-score for a single class in the model 
resulting from the data from the 3D-AJA is 0.700, with a micro average 
F1-score for all six classes of 0.759. Although the accuracy metric was 
not selected as an indicator of the quality of the models, Table 7 shows 
that the Random Forest model for the 3D-AJA dataset reached 76.20% 
accuracy in classification, which is a relatively good result if one con
siders that only a limited number of features were used to predict the 
RULA score A. It is likely possible to increase the performance of the 
classification models by adding other features involved in the determi
nation of the RULA score A, especially with regards to wrist position. 
However, given the current performance, an automated framework that 
relies on data solely from the shoulder and elbow may adequately 
delineate risk, particularly because positioning of the wrist is likely to be 
highly dependent upon positioning of the proximal joints already being 
assessed. 

5.3. Comparison of 3D-AJA with existing automated assessment methods 

Although no comparisons were directly made between the 3D-AJA 
and other existing automated postural assessments in the literature 
due to the varied requirements, assumptions, and boundary conditions 
made during the development of each proposed method, some com
parisons between the 3D-AJA and other existing automated assessment 
methods are made based on the summaries presented in Table 1 and the 
results presented in Tables 4 to 7. Although the 3D-AJA performed 

relatively worse than some of the listed automated assessment methods, 
the boundary conditions differed among the studies. In most cases, the 
proposed algorithms were based on ideal conditions in which no oc
clusion existed or, when occlusion occurred, it occurred in a restricted 
area of the subject’s body. In the case of the 3D-AJA method described in 
this paper, the effects of occlusion were more significant since for most 
images part of the trunk and both legs were hidden from the Kinect 
camera. Additionally, some studies achieved high levels of accuracy but 
were based on a restricted number of postures on which the algorithms 
were trained and/or on lighting, clothing, and hair style requirements. 
In the 3D-AJA, the subjects were relatively free to select their working 
postures (except for the intervals when they were asked to sit in a bad or 
good posture during part of the first hour of data collection), wear their 
usual clothes, and keep their hair as they wish. 

5.4. Practical implications of the results 

A few considerations need to be made relative to the MAE results for 
the 3D-AJA in terms of its accuracy and practical implications. In clinical 
practice, it is common to limit the clinically significant error in angle 
measurement to ±5.0◦ [36,92], a threshold that was not met for most 
workstation conditions in the experiment. As Table 4 shows, the overall 
MAEs for all three angles of interest, shoulder flexion, shoulder abduc
tion, and elbow flexion, were in the range 5.6◦ ± 5.1◦ to 8.5◦ ± 8.1◦ for 
the 3D-AJA. Added to that, the standard deviation values for all MAEs 
values listed in Table 4 were in the same order of magnitude of the MAE 
value and, on a few occasions, the standard deviation was bigger than 
the mean value. This means that the values of the errors of the angles 
from the 3D-AJA relative to the goniometer angles were spread around 
the mean and a relatively high variability can be expected in terms of the 
predicted angles by the model. In terms of the practical implications of 
these results on automated RULA assessments, when angle measurement 
error is high, there is a higher chance that individual RULA scores for 
different body joints would be underestimated/overestimated, thus 
resulting in incorrect individual RULA scores and, in the long term, 
increased risk of MSDs due to an inaccurate assessment of joint angles. 
Alternatively, when accurate measurements are made, and correct 
RULA scores are calculated, there is an increased chance of providing 
useful feedback to workers and implementing effective changes to the 
workplace, which can ultimately promote behavioral adaptations 
among office workers. In this sense, reducing the overall measurement 
errors of any proposed automated ergonomic assessment method is key 
for its usefulness in clinical practice. For RULA applications, specifically, 
because the method is based on angular thresholds, it tends to minimize 
the effects of noise, especially when the angles are not close to the class 
thresholds, thus leading to lower error rates as compared to methods 
that are based on the values of the joint angles alone [64]. 

Additionally, by allowing participants to adjust the workstation 
based on their preferences during the second hour of the data collection, 
this study provided preliminary ecological validity testing of the algo
rithm, something not done in any of the previous studies in automated 
ergonomic assessment in office environments. Although shoulder 
abduction error was slightly increased during this second hour, the 
average error remained lower than the Kinect SDK. These results provide 
strong impetus for further real-time, direct testing of the algorithm with 
workers in their office workspaces to identify additional improvements 
needed to confirm the utility for automation. Furthermore, in terms of its 
applicability to reduce the injury risk of workers, once developed, the 
application can be used as a personalized behavior change tool that can 
inform workers of potential ergonomic risks throughout their daily 
work, which can help workers to adjust their postures and, thus, reduce 
ergonomic risks. If used along with more traditional ergonomic assess
ments, in which an ergonomist assesses the workplace and suggests 
changes, this tool can support the promotion of the suggested changes by 
providing timely and continuous feedback to the workers. Finally, in 
addition to monitoring office workers’ postures and minimizing the 
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impact of musculoskeletal disorders caused by inappropriate work 
postures, the 3D-AJA can benefit other fields as well. Potential appli
cations include the use of automated assessments in telemedicine ap
plications that involve elderly people, post-surgical patients, and 
physical therapy patients, for example. 

5.5. Limitations of the study and future work 

Some limitations were inherent to the design of this office-based 
validation study. First, although the Kinect camera was placed in front 
of the participants during the experiment, there were times when upper 
body segments became self-occluded, thus reducing the performance of 
the algorithm. Future studies could focus on varying the number of 
cameras used or the camera positioning relative to the worker to mini
mize occlusions. Second, while the algorithm was tested using data from 
20 different participants who had a variety of body habitus, clothing, 
hair, and other behavioral tendencies, observations were only made 
during a selected number of times across 2 h. Considering the average 8- 
hour daily work time, longer hours of posture monitoring and assess
ment are necessary to fully examine the accuracy of the algorithm. 
Although participants of the study included males and females, with 
ages ranging from 20 to 50 years old, and from various ethnicities, the 
sample size of the study was not sufficiently large to evaluate potential 
differences in the performance of the 3D-AJA based on differences in 
terms of gender, age, or ethnicity. Next, this study only investigated 
positioning of the shoulders and arms, and further development and 
testing are needed to develop a robust, full-body ergonomic assessment 
of office workers that includes other key postures and positions, 
particularly in the neck, trunk, and legs (RULA score B) to allow for a 
complete RULA assessment of postural risks. Also, privacy issues related 
to using cameras in the workplace might be a concern for office workers. 
Although the Kinect camera is non-intrusive compared to wearable 
sensors, people might not feel comfortable being monitored at work. 
Processing the data without saving collected images might be helpful to 
alleviate this problem. Finally, installing a Kinect to each workstation 
may not be feasible. There are, however, cheaper RGB-D camera alter
natives, which can bring down the costs in cases when the presented 
methodology is to be employed in a real office space with many work
stations. In terms of computational performance, as the 3D-AJA relies on 
complex computer vision algorithms, the computation times may in
crease in case a less powerful computer is used. As a potential solution, 
developing a cloud version of the application can reduce the need for 
more powerful computers in each workstation. Another important 
consideration is that, in this study, the feedback requirements of the 
application, in terms of frequency and type, were not evaluated and 
were left as suggestions for future research. Also, a potential improve
ment in terms of storage requirements and computational performance 
can be achieved by downsampling the resulting point cloud for each 
frame before computing the joint angles of interest. During the testing 
and validation of the 3D-AJA, however, the impacts of using a down
sampled point cloud relative to the accuracy of the predicted joint angles 
and posterior RULA scoring were not investigated and are left as sug
gestions for future work. 

6. Conclusion 

The objective of this study was to develop and test an automated 
ergonomic assessment algorithm, the 3D-AJA, for office workers in of
fice environments. Results showed that compared to goniometry mea
surements, the joint angles calculated by our algorithm has MAEs of 
6.3◦ ± 5.7◦ for shoulder flexion, 5.6◦ ± 5.1◦ for shoulder abduction, and 
8.5◦ ± 8.1◦ for elbow flexion. The 3D-AJA outperformed Kinect SDK 
body joint capture method for estimating all three selected angles with 
significant differences in terms of shoulder flexion and elbow flexion 
angles. In terms of the resulting classification models for the determi
nation of the RULA score A, the dataset from the 3D-AJA resulted in 

better classification models for all RULA score A classes included in the 
datasets. Despite these datasets being composed of highly imbalanced 
classes, the performance of the resulting classification models achieved 
relatively high results, with F1-scores reaching 0.759 and G-means 
reaching 0.814. Relatively good results were also achieved for individ
ual classes and, for the Random Forest models, F1-score of at least 0.700 
and G-mean of at least 0.768, even in face of high-class imbalances, the 
limited number of features in the dataset, i.e., only three angles and 
sitting/standing condition, and occlusion effects from the desk. This 
study provides a solid foundation for future work to provide a full-body 
ergonomic assessment for office workers. To perform longitudinal 
studies on office worker postures, this algorithm could be a cost- 
effective and efficient tool for future research to gather continuous 
postural data for an extended duration of posture monitoring and the 
effect of work postures on office worker health. 
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