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ARTICLE INFO ABSTRACT

Keywords: Sedentary activity and static postures are associated with work-related musculoskeletal disorders (WMSDs) and
Ergonomic assessment worker discomfort. Ergonomic evaluation for office workers is commonly performed by experts using tools such
RULA

as the Rapid Upper Limb Assessment (RULA), but there is limited evidence suggesting sustained compliance with
expert’s recommendations. Assessing postural shifts across a day and identifying poor postures would benefit
from automation by means of real-time, continuous feedback. Automated postural assessment methods exist;
however, they are usually based on ideal conditions that may restrict users’ postures, clothing, and hair styles, or
may require unobstructed views of the participants. Using a Microsoft Kinect camera and open-source computer
vision algorithms, we propose an automated ergonomic assessment algorithm to monitor office worker postures,
the 3D Automated Joint Angle Assessment, 3D-AJA. The validity of the 3D-AJA was tested by comparing
algorithm-calculated joint angles to the angles obtained from manual goniometry and the Kinect Software
Development Kit (SDK) for 20 participants in an office space. The results of the assessment show that the 3D-AJA
has mean absolute errors ranging from 5.6° & 5.1° to 8.5° & 8.1° for shoulder flexion, shoulder abduction, and
elbow flexion relative to joint angle measurements from goniometry. Additionally, the 3D-AJA showed relatively
good performance on the classification of RULA score A using a Random Forest model (micro averages F1-score
= 0.759, G-mean = 0.811), even at high levels of occlusion on the subjects’ lower limbs. The results of the study
provide a basis for the development of a full-body ergonomic assessment for office workers, which can support
personalized behavior change and help office workers to adjust their postures, thus reducing their risks of
WMSDs.
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1. Introduction and static, non-natural postures lead to increased neck, back, shoulder,

and upper extremity discomfort in office workers [10,11]. In 2020, 21%

Office workers, such as engineers, architects, and designers, spend
most of their work time at desks and computer stations [1-3]. Those
employed in deskbound occupations assume sedentary postures for
approximately 11 h per day [1]. Sedentary work postures are exacer-
bated by high levels of work pressure, inappropriate workplace layout
and the nature of office work [4,5]. Recent shifts in work patterns due to
COVID-19 have further increased the amount of sedentary work, due to
reliance on computer workstations for remote work activities [6-8].
With long periods in sedentary postures, both sitting and standing, the
development of work-related musculoskeletal disorders (WMSDs) be-
comes more likely [9]. Lack of movement, poor equipment positioning,

of all injuries and illnesses leading to days away from work were due to
WMSDs, with a median of 14 days away from work compared with 12
days for all other nonfatal injury and illness cases [12]. Improving office
worker posture is vital to promote healthy workplaces and to minimize
lost productivity due to leaves of absence [13], absenteeism [14], and
presenteeism [15]. Shoulder discomfort is one of the most common
types of musculoskeletal disorders among office workers [10], and
studies of office workers from different countries show that people
frequently complain about shoulder and arm pain [10,11,16]. Non-
natural shoulder posture and inappropriate placement of the elbows
are a common cause of shoulder and arm discomfort [17]. Thus,
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shoulder and elbow joint angles are commonly used as important in-
dicators when examining office workers’ posture [10,11].

Examining joint angles and assisting office workers to improve and
correct their postures at work are commonly done using self-rating
questionnaires or expert observations [18,19]. Self-evaluation of
posture and work-related body pain via questionnaires is the simplest
and fastest way to assess workers’ postures. However, this subjective
method is frequently imprecise and unreliable for ergonomic in-
terventions [18] and does not provide continuous recommendations for
posture change or ergonomic interventions. Expert observations typi-
cally consists of postural evaluation and correction through real-time
observations by an ergonomist, occupational therapist, or other
human factors professional using tools such as the Rapid Upper Limb
Assessment (RULA; [20]). The RULA is one of the most widely used
observational tools for estimating risk of WMSD or musculoskeletal pain
due to body postures in static or repetitive work involving the arms.
Positioning of joints across the upper limb, neck, trunk, and legs are
recorded, and an overall risk score (1-7) that combines all joint posi-
tioning together is often reported. Subcomponent scores for positioning
of the upper limb and the combined position of the neck, trunk, and legs
can also be identified, making it possible to use the RULA to estimate
postural risk within each region separately.

Although both subjective and objective methods can be useful for
short-term corrections to the work environment and worker posture
[21], there is a lack of evidence supporting long-term adoption of er-
gonomic adjustments or sustained behavior changes without regular
follow-ups [22,23] as workers tend to revert to their poor postures
without reinforcement [18]. Reliance on ergonomic specialists to assess
each worker and provide ongoing follow-ups is extremely labor-
intensive, time-consuming, and typically cost prohibitive for em-
ployers [18]. Moreover, the recent shifts to remote work and work from
home create further barriers to providing ongoing and expert assessment
and feedback to correct poor postures. Thus, a portable and cost-
effective posture monitoring system, that keeps track of office
workers’ postures without interrupting their daily work routine and
helps office workers to adapt by providing continuous feedback to adopt
better work postures without the presence of ergonomic specialists is
becoming more important.

Ongoing monitoring and feedback may be best achieved using direct
measurement of joint angles that can provide an intuitive output and
more accurate results than other methods [19]. The two most widely
used direct measurement methods include assessment using wearable
sensors and cameras. Wearable sensors, such as inertial measurement
units (IMUs) [24], electromyography (EMG) [25], motion capture sys-
tems [26], and reflective sensors [27], track the movement of the human
body and produce body kinematics data. Wearable sensors, require
direct attachment to the body and can limit the office workers’ range of
movement, can be burdensome to wear, and are not suitable for long-
term use [18]. An alternative is unobtrusive and marker-less camera-
based assessments that, when supported by machine learning algo-
rithms, can provide automated postural assessments for workers
[28-32]. Although camera-based postural assessments can be based on
either RGB or RGB-D cameras, the use of RGB-D cameras has been
preferred in most applications due to robustness in varying lighting
conditions, calibrated scale estimates, color and texture invariance,
relative ease of background subtraction, and the ability to locate body
joints in the 3D-space [33,34].

The Microsoft Kinect is one of the most widely used postural sensing
methods in industry and research that uses two built-in cameras: a
regular RGB camera and an active sensing depth camera. The Kinect is
often used as it has a built in Software Development Kit (SDK) for ease of
use in skeleton detection and body joint recognition applications [35].
In these applications, the RGB and depth images captured by the Kinect
camera are usually rendered and reconstructed into 3D point clouds
which could be viewed from different viewpoints. RGB-D cameras have
also been used to evaluate joint angles, kinematics, and range of motion
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of the upper limbs [36-39], sitting postures of office workers [40-43],
and shoulder kinematics of computer users [44,45]. Many of these ex-
periments were conducted in lab settings where participants were
required to wear specific types of clothing like fitted tank tops [44] and
participants’ postures were restricted [40]; thus, the accuracy and effi-
cacy for using RGB-D cameras in real office environments is uncertain.
Additionally, despite the reported health benefits related to changing
between sitting and standing postures during a work shift [46], most
existing studies have primarily focused on workers who are either
standing [28,31] or sitting [40,44] and, thus, the robustness of many
automated assessment methods to changing working conditions and
workstations setups has not been completely evaluated.

In this study, we propose an automated ergonomic assessment
method, the 3D Automated Joint Angle Assessment, 3D-AJA, which uses
a Kinect camera and computer vision algorithms to compute office
workers’ upper limb joint angles and their associated postural risk based
on conversion to a RULA score in both sitting and standing conditions
across diverse workstation setups. Participants were advised to wear
their normal clothes, normal hair styles, and behave as they normally
would in completing their work tasks at a computer. Thus, the objective
of this study was to develop an automated ergonomic assessment algo-
rithm for office workers that could be effectively translated into realistic
office environments. The following three research questions are answered
in this study: (1) How accurate is the 3D-AJA for identifying specific
body joint angles of the shoulder and arm in an office setting? (2) How
does the 3D-AJA compare to the existing Kinect SDK body joint capture
method for body joint angle measurements? (3) How might the 3D-AJA
support assumptions of postural risk as would be manually assessed
using the RULA? The remainder of the paper is organized as follows.
Section 2 presents an overview of the relevant literature. The proposed
methodology of this study is described in Section 3. Section 4 and Sec-
tion 5 presents the results and discussion, respectively. Finally, conclu-
sions are presented in Section 6.

2. Literature review

Camera-based ergonomic assessments can be performed either in 2D
using regular cameras [47-49] or in 3D using RGB-D cameras, such as
ranged cameras [50] and Kinect cameras [44,51]. Previous studies
investigated the application of camera-based ergonomic assessments on
workers in different settings such as industrial [52-54], manufacturing
[27,55,56], assembly [30,57], and construction [58,59]. For example,
studies evaluated the validity of Kinect camera for posture assessment in
lab environments where participants were asked to perform weightlift-
ing tasks [27,59,60], bending [30,61], or moving upper and lower limbs
in front of the camera [35,37,62]. Other studies tested the performance
of Kinect camera on worker evaluation in real factory workplaces, such
as using assembly tables [55] and in a fabric plant [54]. The perfor-
mance of these evaluations differs when lab-based and workplace-based
assessments are compared. For example, Plantard et al. [27] compared
the performance of Kinect camera for box lifting tasks in a lab envi-
ronment and car seat assembly in a real car manufacturing factory and
found that the strength of agreement between RULA scores computed
from Kinect data and expert observations in real work conditions was
around 80% in the lab, which was higher than 70% in a factory.

However, the outcomes of the methods developed in the above-
mentioned studies may be different when these methods are applied
for posture monitoring of office workers. Compared to construction
workers who stand and perform strenuous and/or repetitive tasks [32],
office workers sit or stand and perform repetitive tasks with a smaller
range of movements [16,63]. Additionally, given that part of the office
workers’ lower body may be occluded by their workstations, it is
possible that the performance of camera-based postural assessment
methods based on full body tracking may be compromised in an office
setting due to occlusion [27,64]. For example, the Kinect Software
Development Kit (SDK), a built-in body joint and skeleton detection
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function in the Kinect camera, works better when the participant is
standing in front of the camera with all body parts exposed [58]. In other
words, the Kinect SDK skeleton tracking does not usually work well
when the participant sits behind the desk with parts of their body
occluded [65], which requires certain remedial measures to overcome
challenges such as the lack of accuracy when the participant being
tracked is not facing the camera directly or when parts of the body are
not visible to the camera [35].

Previous studies developed applications based on RGB-D cameras to
keep track of postures of office workers [66-68]. Several studies focused
on the sitting postures of office workers [40-43] and used the Kinect
SDK. Even though moderate-to-high correlations have been found be-
tween the Kinect angles and goniometer angles in these studies, in most
cases, the workstation setups and the requirements on the participants
postures were too restrictive to be representative of real office envi-
ronments. Examples include the use of workstations without computers
and other objects, combined with participants following predetermined
protocols and having sensors attached to their bodies [40], the need to
use markers to detect participant’s body parts and have sensors attached
to the participant’s body [43]. Because shoulder and elbow joint angles
are important indicators of office workers’ health [10,11], other studies
used Kinect SDK to monitor the joint angles [36,37], kinematics [38],
and range of motion [39] of upper limbs at standing postures. For 0° and
90° shoulder flexion and abduction angles, Kinect camera measurements
have shown a correlation coefficient of 0.76-0.98 with goniometry
measurements [28], but further studies are needed to evaluate its per-
formance in a broader range of angles for these joints. Studies also used
Kinect SDK to perform postures assessment of office workers whose
predominant mode of work was using computers [44,45,69]. Again,
although moderate-to-high correlations have been found between Kin-
ect angles and goniometer angles, as it was the case in many studies
focusing on sitting postures, the boundary conditions in these studies
may limit their validity in real world conditions. For example, some of
the existing studies have limited the range of postures the participants
can use during the experiments and have required participants to wear
fit clothes to allow the attachment of sensors to the participants’ bodies
[44]. Table 1 presents a summary of some of the existing studies that
involve the automated assessment of postural risk in various workplaces.

While the Kinect SDK has been tested for ergonomic assessment in
office settings with the above limitations, with the application of deep
learning in computer vision, postural detection with 2D images has
attracted attention and is developing rapidly [71]. Automated algo-
rithms not only have the potential to improve upon the challenges faced
in previous studies, but these advanced techniques may also serve as the
foundation for developing a method for the ongoing assessment and
feedback required to support behavioral change in office workers. There

Table 1
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are two categories of emerging algorithms. First, direct body joint
detection algorithms [72-74] capture the body joints directly and con-
nect the detected joints to compute body joint angles. Second, body part
parsing and segmentation algorithms [75,76] create pixel-level human
body part segmentations and classify pixels in the 2D image into cate-
gories that belong to different body parts. These algorithms have been
applied to a variety of body movement tracking, such as with athletes
[77] and construction workers [78]; however, to the best of the authors’
knowledge, these algorithms have not been applied in an office context
for joint angle estimations or overall posture assessment.

To examine the automated assessment of office worker posture, we
evaluated a combination of two algorithms, a direct body joint detection
algorithm, OpenPose [74], and a body part segmentation algorithm,
Weakly and Semi-Supervised Human Body Part Parsing (WSHP) [76].
OpenPose achieves a balance between accuracy and computational
speed to provide separate joint estimation for the body, foot, and facial
key points, all of which are suitable for office workers when part of their
body is occluded behind workstations. WSHP provides pixel-level
human body segmentation, which helps automatically recognize
different body parts, providing the basis for body joint angle calcula-
tions. Together these algorithms can more precisely determine the po-
sition of body parts and avoid the limitations of using 3D body joint
coordinates from Kinect SDK alone. However, since 2D outputs from the
OpenPose and WSHP may be limited to compute human body joint
angles in 3D space, we propose a novel algorithm, 3D-AJA, that com-
bines 3D data from Kinect cameras with the 2D outputs of the selected
computer vision algorithms to determine body joint angles used for
RULA scores calculations. This algorithm serves as our first step toward
developing an automated system to conduct ongoing postural risk
evaluations for office workers.

3. Materials and methods
3.1. Automated joint angle assessment — 3D-AJA

Our automated ergonomic assessment algorithm combines open-
source computer vision algorithms and a novel body joint angle calcu-
lation algorithm. The process involves body joint detection and body
part segmentation in RGB images, image registration, merging of RGB
and depth images to construct a 3D human body point cloud model, and
calculation of body joint angles using the 3D point cloud. Fig. 1 presents
a flowchart of the proposed body joint angle calculation algorithm, the
3D-AJA.

The RGB images and depth images were collected using a Microsoft
Kinect for Windows V1 camera (step 1.1 in Fig. 1). Two open-source
computer vision algorithms, OpenPose [74] and WSHP [76], were

Comparison of performance metrics for existing automated postural assessment in the workspace using computer vision.

Study Camera Assessment Working condition Boundary conditions Performance metrics
Seo, S. Lee RGB OWAS (Ovako Working Posture Standing, back-bending, arm- Laboratory, limited number of postures (4), Accuracy = 89%
[31] Analyzing System raising, knee-bending full body, no occlusion
Dzeng et al. 3 x RGB-  OWAS (4 action levels) Lifting, assembly, hammering, Laboratory, eventual partial occlusion of Accuracies between 48.4%
[32] D tiling lower limbs and 93.9%
Bhatia et al. RGB-D Elbow flexion/extension, Knee Sitting Laboratory, sensors attached to the RMSE ranging from 9.7° to
[40] flexion/extension participants, no objects on workstation, 15.4°
controlled lighting Correlation coefficient
ranging from 0.6 to 0.9
Xu et al. [44] RGB-D Shoulder flexion/extension, axial Sitting Laboratory, controlled clothing (tank-tops), RMSE ranging from
rotation, and abduction/ occluded lower limbs. 6.4° +£0.9° to
adduction 27.3°+£15.8°
Abobakretal.  RGB-D RULA (grand score) Various Laboratory, full body, eventual partial MAE = 3.19° +1.50°
[51] occlusion of body parts Accuracy = 89%
Manghisi RGB-D RULA (grand score) 15 selected postures involving Laboratory, controlled lighting, full body, no  proportion agreement
etal. [61] sitting, kneeling, among others occlusion index = 0.96, k = 0.84
Lietal. [70] RGB RULA (4 action levels) Lifting Laboratory, full body, no occlusion F1-score = 0.79 (lifting)

Sitting/Standing using Human
3.6 data

F1-score = 0.93 (Human
3.6)
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Fig. 1. Flowchart of the 3D-AJA.

combined for body joint detection and body part segmentation in RGB
images (steps 2.1 and 2.2 in Fig. 1, respectively). OpenPose uses a
bottom-up approach to generate Part Affinity Fields (PAF) to associate a
body part to an individual. PAFs are a set of 2D vectors that encode the

location and orientation of a human body part [74]. WSHP uses key
point annotation to perform per-pixel part segmentation. The key idea is
to exploit anatomical similarity among humans to transfer the parsing
results from one person to another with a similar pose [76]. These two
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algorithms take the RGB images as inputs from the Kinect camera
positioned in front of the participant. OpenPose outputs 2D coordinates
of detected body joints (Fig. 2 (a)) and WSHP outputs pixel-wise points
that are identified as different body parts (Fig. 2 (b)). The detected body
part pixels from WSHP outputs are labeled as upper arms (yellow), lower
arms (purple), and trunk (green) in the RGB images.

The RGB and depth images from Kinect were overlaid on global
coordinates to construct 3D point clouds (step 3.1 in Fig. 1, results in
Fig. 3). The sample size of each point cloud in this study was 0.6 in (1.5
mm) and, on average, each point cloud had 250,000 points. Further
information regarding camera alignment and 3D point cloud generation
can be found in MathWorks [79]. Background subtraction was per-
formed using the Kinect SDK to eliminate noise from the background
and to keep points located on or close to the human body (step 4.1 in
Fig. 1, results in Fig. 4 (a) and (b)). From the 3D human body point cloud
model, separate point clouds for upper arms, lower arms, and trunk were
extracted (step 6.1 in Fig. 1). It was found that the WSHP algorithm
could mismatch the points from the arms and assign incorrect right arm
labels to left-arm points and vice versa. To solve this problem, region
growing [80] was used on the upper arm and lower arm point clouds
separately to differentiate the left and right arms (step 5.1 in Fig. 1).
Region growing is an algorithm that picks a random pixel as a region
start point inside the RGB image, examines the Euclidean distance be-
tween neighboring pixel points and start point and determines whether
the pixel neighbors belong to the same region.

Next, the novel body joint angle calculation algorithm was designed
to calculate shoulder flexion, shoulder abduction, and elbow flexion
joint angles by replicating manual goniometry procedures [81]. The
demonstration of shoulder flexion, shoulder abduction, and elbow
flexion is shown in Fig. 5. Shoulder flexion/extension is the respective
movement of the arm up/down in front of the body in the sagittal plane,
and shoulder abduction/adduction is the respective movement of the
arm away from and toward the side of the body in the frontal plane.
Elbow flexion/extension refers to the respective movement of the elbow
joint that decreases or increases the joint angle relative to a straight arm
position. Manual joint angle measurements using a goniometer are
conducted following a 4-step procedure: (1) identify designated parts of
the body for measurements, (2) approximate the location of bones, the
skeletal joint, and the body planes, (3) project the location of bones in
space onto the body planes, and (4) measure projected angles with the
goniometer centered over the joint as the axis of movement. We devel-
oped our body joint angle calculation algorithm to follow the same
procedure, where the location of arm bones, shoulder and elbow joints,
and frontal and sagittal planes of the trunk were found first. Then, the
locations of upper and lower arms were approximated based on the
orientation of the arm skeleton, and the shoulder and elbow joint angles
were measured based on the relative angle between arm skeletons and
trunk planes.
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Fig. 3. 3D human body point cloud model.

The trunk frontal plane was approximated by fitting a plane amongst
all points labeled as the trunk with the least square of the normal dis-
tance from all trunk points to the plane (step 7.1 in Fig. 1). The body
sagittal plane was obtained by forming a plane along the direction
perpendicular to the vector connecting the two shoulder joint points
output and aligned with the normal vector on the body frontal plane
(Fig. 6). Upper arm skeleton locations of left and right upper arms were
found by fitting two lines in the 3D space among all the points identified
as left and right upper arms. The equation of each line in space was
calculated using the least square approximation method, followed by its
transformation into a vector in space for joint angle calculations. The
same method was used to find the approximate skeleton location of the
lower arms (step 7.3 in Fig. 1). The upper arm vectors pointed from the
shoulder joint to the elbow joint and the lower arm vectors pointed from
the elbow joint to the wrist joint.

The approximated arm vectors, trunk frontal planes, and sagittal
planes were used for body joint angle calculations. Shoulder flexion
angles were obtained by projecting the upper arm vector in space to the
body sagittal plane and calculating the angle between the projected
vector and the body frontal plane (steps 8.1 and 9.1 in Fig. 1, respec-
tively). Shoulder abduction angles were obtained by projecting upper
arm vectors in space to the body frontal plane and calculating the angle
between the projected vector and the body sagittal plane (steps 8.2 and
9.3 in Fig. 1, respectively). Elbow flexion angles were calculated from
the angle between the upper arm and lower arm vector in the 3D space
(step 9.2 in Fig. 1). Total processing time for each frame was around 80 s
on an Intel® Xeon® E5420 @ 2.50 GHz CPU with 16 GB RAM.

(b)

Fig. 2. (a) OpenPose sample output and (b) WSHP algorithm sample output (right).
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(®)

Fig. 4. Point cloud (a) before and (b) after background subtraction.

| Abduction

Adduction

Flexion

Extension

(b) ©

Fig. 5. (a) Shoulder flexion, (b) shoulder abduction, (c) elbow flexion.

Fig. 6. Body frontal plane (yellow) and sagittal plane (green) approximation.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3.2. Algorithm evaluation
An experimental study was conducted to obtain a postural dataset

from a group of healthy participants while working in six different
computer workstation set-ups. Using this postural dataset, the 3D-AJA

was evaluated and compared to goniometry measurements and the
Kinect SDK. The experimental conditions were approved by the Uni-
versity’s Institutional Review Board and all participants provided
informed consent before any data collection.

3.2.1. Experimental setup

The experiment was conducted using a standardized office work-
station that included a fully adjustable chair, an adjustable-height desk,
and a monitor, keyboard, and mouse that could each be moved (Fig. 7).
Previous studies recommended placing the camera directly in front of
the participant and within approximately 16 feet (4.88 m) to provide the
best accuracy for determining body angles and use of the depth channel
[35,40,44,62]. Therefore, in this study, both RGB and depth images
were captured using a Kinect camera mounted on a tripod 6 in. (15.24
cm) behind a computer monitor directly in front of the participant, at an
approximate distance of 6 feet (1.83 m) from the participant. A MATLAB
script was written to process Kinect data into files containing Kinect
default RGB images (480x640 resolution), Kinect default depth images
(480x640 resolution), skeleton joint coordinates from Kinect SDK, and
relevant metadata. Data files were recorded twice every second, and all
the data points of a snapshot were then combined into a single file to
ensure synchronization. An RGB web camera was also mounted on the
wall to the right of the participant and continuous video recording was
completed throughout the experiment. This video recording provided
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camera

Computer
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Keyboard

Adjustable
desk

Advanced Engineering Informatics 52 (2022) 101596

Adjustable
office chair

Fig. 7. Experiment setup.

additional input for the team to identify potential data errors and
improve the expert coding of RULA scores for comparison to the
algorithm-calculated risk scores.

3.2.2. Data collection

Twenty participants (8 females and 12 males) without any known
musculoskeletal disorders or limitations of upper body range of motion
were recruited. All participants were intense computer users, 19 were
right-handed, and all wore clothing and had hair styles that would be
typical for conducting their work. At the outset of the experiment, each
participant was introduced to the workstation and all possible adjust-
ments, including the chair height, seat depth, armrest height, back
support, desk height, monitor height and tilt, and mobility of the
keyboard and mouse. The data collection consisted of two one-hour
observations. The first one-hour observation had six 10-minute condi-
tions, including (a) sitting — self-selected, (b) sitting — ideal, (c) sitting —
poor, (d) standing — self-selected, (e) standing — ideal, (f) standing —
poor. Workstation adjustments for each of the ideal and poor conditions
were made by the experimenter as described in Table 2 and pictured in
Fig. 8 (a)-(f). During the second hour, participants were allowed to
adjust the workstation to any position preferred.

During the first hour, participants worked in each of the six work-
station conditions (Fig. 8 (a)-(f)) for 10 min per condition. Participants
were randomly selected to start in either sitting or standing for the first
three set-ups before alternating to the opposite position for the three
final conditions. Each set of three conditions started with the self-
selected set-up, followed by the ideal and poor conditions. A 12-inch
(30.48 cm) round goniometer was used for manual measurement of
body joint angles. Each goniometry measurement consisted of bilateral
readings of shoulder flexion, shoulder abduction, and elbow flexion for
both the left and right sides of the body using standard goniometric
procedures. Ten manual goniometry measurements were obtained dur-
ing this process, first after the self-selected set-up, then at the start and
conclusion of both the ideal and poor conditions. At each time point,
participants were asked to maintain a static posture while goniometry
measurements were obtained for shoulder flexion (SF), shoulder
abduction (SA), and elbow flexion (EF) on the left and right arms. During
the second hour, manual goniometry measurements were performed
once every 15 min for a total of 4 additional measurements.

Table 2
Self-selected, ideal, and poor sitting/standing workstation conditions for the
first hour.

(a) Sitting — Self- e The participant adjusts all components of the workstation
selected to his/her most comfortable or preferred position.
(b) Sitting — Ideal e Knees, hips, elbows at approximately 90° flexion

Shoulders are relaxed, at neutral flexion/abduction

Elbow rests placed under participant’s elbow, allowing for

the arm to rest without shoulders hiking up

Monitor height is at eye level

Seat pan allows for 1.5 in. (3.81 cm) width space between

the back of knees and edge of the chair

(c) Sitting — Poor e Desk height lowered to encourage full extension of elbows

Elbow rests are adjusted so the arms are not supported

Monitor height lowered and pushed to one side to

encourage neck forward and lateral flexion

Keyboard away from the participant’s body to encourage

elbow extension

(d) Standing — Self- e The chair is removed, and the participant adjusts the desk
selected height and all other items to his/her preferred position.

(e) Standing — Ideal e Standing with both feet on the floor

Elbow at approximately 90° and shoulders are relaxed, in

neutral flexion/abduction

Monitor height is at eye level

Neck and spine in a neutral position

Desk height lowered to encourage full extension of elbows

Monitor height lowered and pushed to one side to

encourage neck forward and lateral flexion

Keyboard away from the participant’s body to encourage

elbow extension

(f) Standing — Poor

3.2.3. Data processing and analysis

The three joint angles on both the left and right sides were measured
14 times for each participant, resulting in a total of 1,680 individual
measurements across all participants, conditions, and joints. Error in
manual goniometry was discovered during data cleaning and process-
ing. After checking the noted goniometry angles and corresponding RGB
images at the same time frame, 11 measurements were eliminated from
the analysis due to the mismatch and obvious large discrepancies be-
tween the RGB images and corresponding goniometry measurements.
These discrepancies were due to a participant moving between the
measurement of their joint angles for their left and right sides, and/or
due to human error during the transferring of the goniometer mea-
surements to the assessment sheet. Next, body joint angles were calcu-
lated using the 3D-AJA as explained in Section 3.1, and skeleton joint
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®

Fig. 8. Sample images of the six workstation adjustments tested including sitting in (a) self-selected, (b) ideal, and (c) poor set-ups, and standing in (d) self-selected,

(e) ideal, (f) poor set-ups.

coordinates from Kinect SDK were used to calculate body joint angles
following ISB recommendations [82] and Xu et al [44].

Raw output from the algorithm and the Kinect SDK was calibrated by
fitting a linear regression model with goniometry measurements and
adjusting the raw algorithm and Kinect SDK output based on this model
to eliminate systematic error in the data (step 10.1 in Fig. 1). Mean
Absolute Error (MAE) and Pearson correlation (r) were calculated to
compare the performance of the algorithm and the Kinect SDK relative
to the goniometry measurements. Specifically, MAEs relative to the
goniometry measurements were compared between the algorithm and
Kinect SDK using independent sample t-tests. Comparisons of the MAEs
between sitting and standing conditions and between the first and sec-
ond hours of data collection were also conducted using an independent
sample t-test. Correlation analyses relative to the goniometry measure-
ments were performed for both the algorithm and Kinect SDK and
Pearson r correlation coefficients were calculated. All statistical testing
was conducted using MATLAB, and statistical significance was set at p <
0.05.

3.2.4. Evaluation of the proposed method for estimating postural risk

Finally, to examine the utility of the 3D-AJA for assessment of po-
tential postural risks associated with the participant’s upper limbs, we
calculated the RULA upper limb component score (i.e., RULA score A)
using the estimated angles (i.e., shoulder flexion, shoulder abduction,
and elbow flexion) plus an additional feature that indicated whether the
participant was sitting or standing. To determine the RULA score A, one
needs to locate the positions of upper arms, lower arms, wrists, and the
wrist twist, then determine the individual scores associated with the
locations of these members after eventual adjustments, and finally use
these four individual scores to identify the RULA score A in its associated
table. For an explanation of RULA score A, please refer to [20].

The complete evaluation of RULA score A for arm and wrist analysis
[20] requires nine features: positions of upper arms, lower arms, wrists,

the wrist twist, and 5 eventual adjustments. However, extracting all 9
features from the RGB-D data, particularly those associated with wrist
position, is challenging in real environments because the camera posi-
tioning or resolution may not be able to capture hand location appro-
priately [70] or because wrists may be located outside the camera’s field
of view due to the user’s movement during different office tasks. To
overcome this challenge, we evaluated the potential of using Machine
Learning models to provide a consistent assessment of RULA score A
using the arm and shoulder joint angles which are generally visible in
the camera’s field of view even when the extremities might not be
visible. For these models, the three joint angles and the participant’s
condition (sitting/standing) were used as the input features and the
RULA score A determined by the ergonomists as the class label. Fig. 9
presents the overall process for training and testing the selected models.

For each participant, approximately 120 frames were selected from
the first hour of data collection (1 frame every 30 s), totaling about
2,400 frames. The decision to select the first hour of data collection
aimed at including all six combinations of workstation setups and
working conditions, as presented in Table 2. Two occupational thera-
pists with experience in ergonomic assessment conducted the RULA for
each frame. The upper limb was scored based on positioning of the right
arm due to the ability for the expert observers to review the additional
RGB video positioned lateral to the participant as needed.

Before training and testing the models, the datasets were cleaned to
remove instances that contained missing values for any of the features
and eventual outliers. Then, the cleaned datasets were randomly parti-
tioned into two sets, one for training and one for testing the ML models
for seven different folds. As a result of the verification of highly imbal-
anced datasets for both the 3D-AJA and the SDK, it was necessary to
oversample the minority classes in the training datasets, which was done
using the Synthetic Minority Oversampling TEchnique (SMOTE) algo-
rithm [83]. Finally, the testing dataset was used to assess the quality of
the trained models.
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Fig. 9. Flowchart of the training and testing methods for the selected models.

Table 3 presents a summary of the distribution of the RULA score A
classes for the training and testing datasets for the 3D-AJA and the
Kinect SDK. As Table 3 shows, there is a high imbalance in both datasets
(3D-AJA and Kinect SDK), with classes 1, and 6-9 having the lowest
number of instances as compared to the majority classes represented by
classes 2 and 3. Classes 4 and 5 also represent minority classes, although
the imbalance ratios of these classes relative to the majority classes are
not as pronounced as it is for classes 1, 6, and 7. Possible explanations for
this observation is related to the RULA score A table itself and the set of
possible workstation adjustments likely to be found in an office work-
space. Out of the 144 possible combinations of arm and wrist angles,
only one results in a RULA score A of 1 [20]. Alternatively, to reach the
most extreme RULA scores A from 6 to 9, the workers would need to be
sitting or standing is positions not likely to be found during computer
work in a common office space. Another observation in Table 3 is that,
for the 3D-AJA, no instances belonging to class 6 were found in the
dataset. For the Kinect SDK, only one instance belonging to class 6 was
captured, although it was dropped because the SMOTE algorithm could
not be applied to it. No instances were classified as classes 8 or 9 for both
the 3D-AJA and the Kinect SDK. Finally, Table 3 shows that, due to the
observed class imbalances in the original datasets, the SMOTE algorithm
was applied to classes 1, 4, 5, and 7.

Imbalanced datasets are a common problem in many machine
learning applications and call for remedial measures and alternative
analysis metrics to reduce for the potential biases of classifying the
minority classes under the majority classes due to the unequal distri-
bution of the data among the multiple classes in the dataset [84-87]. As
Table 3 shows, the majority classes 2 and 3 account for almost 90% of
the instances after data cleaning while the most extreme classes 1, 6, 7,
8, and 9 together account for less than 1% of the instances in the datasets

for both the 3D-AJA and the Kinect SDK. In this study, three main
remedial solutions were tried to improve the classification performance
of the resulting models including (1) undersampling the majority clas-
ses, (2) oversampling the minority classes, and (3) a mix of under-
sampling the majority classes and oversampling the minority classes to
decrease the data imbalance levels. Out of the three methods, the one
that resulted in the best performance for the classification models was
oversampling the minority classes with the SMOTE algorithm [83].

To compare the qualities of the classification models provided by
joint angles from the 3D-AJA and the Kinect SDK, nine machine learning
models were evaluated. These models included the lazy classifiers k-
Nearest Neighbor, KStar, and Locally Weighted Learning using the J48
tree, the Naive Bayes classifier, the Bayes Network classifier with
Bagging, the Random Tree classifier with Bagging, the rule-based clas-
sifier PART with Bagging, the Multilayer Perceptron classifier with the
MultiClass Classifier (metaclassifier), and the Random Forest Classifier.
All models were trained and tested using the Waikato Environment for
Knowledge Analysis (WEKA), version 3.8.5 [88].

Given that the classifications dealt with highly imbalanced datasets,
using accuracy as the main performance metric to compare the quality of
the models could provide misleading results. This is because a model
may achieve a high accuracy due to a relatively good performance in the
classification of the majority classes even if the model has a poor per-
formance in the classification of the minority classes, which is known as
the “accuracy paradox” [89]. Researchers suggest using other perfor-
mance metrics to assess the quality of the ML models used to train and
test imbalanced datasets [85,90,91]. Some of the most used metrics
include the geometric mean (G-mean) of sensitivity [True Positive (TP)
Rate] and specificity [1 — False Positive (FP) Rate], and the areas under
the Receiver Operating Characteristic (ROC) curve. Alternatively, it is

Table 3

Distribution of instances among the RULA scores A classes.
Class (RULA score A) 3D-AJA Kinect SDK

Initial % of the dataset Training Testing Initial % of the dataset Training Testing

1 11 0.5% 51* 11 8 0.4% 51* 8
2 1175 50.8% 945 230 1081 50.6% 881 200
3 902 39.0% 715 187 830 38.8% 653 177
4 175 7.6% 181* 87 172 8.0% 180* 83
5 49 2.1% 116* 25 43 2.0% 78* 25
6 - - - 1 0.0% - -
7 2 0.1% 24* 2 0.1% 24* 2
8 _ - _ _
9 _ _ _ _ _ _ _ _

* Oversampled classes using the SMOTE algorithm. No instance was used in both training and testing datasets for the same fold.
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possible to use precision-recall metrics, which also include the F-score
and the area under the precision-recall curve (PRC). Thus, for this study,
accuracy was not used as the main performance metric to assess the
quality of the proposed models, but rather precision-recall metrics and
sensitivity-specificity metrics were used. Specifically, Fl-score and G-
mean were selected as the main indicators of performance for the
selected models. The F1-score combines precision and recall into a single
value that indicates the “goodness” of a model, even in face of class
imbalances [85]. Alternatively, the G-mean was proposed to deal with
imbalanced datasets by balancing out the performance of the model in
terms of both the positive and the negative classes [91]. The formulas
used for these metrics are presented in Egs. (1)-(6).
TP + TN

Accuracy = ———————————— 1
CCUTaY =Tp L IN + FP+ FN W

TP

Precision = ——— (©))
TP+ FP
TP

Recall(Sensitivity) = ———— 3
ecall(Sensitivity) TP 1 FN 3)

TN
Specificity = ————— 4
pecificity = o Fp )

2 X Precision x Recall
F1 —score = 5
score Precision + Recall ®)

G — mean = \/Sensitivily X Specificity (6)

where TP = True Positive cases, TN = True Negative cases, FP = False
Positive cases, and FN = False Negative cases.

4. Results

Table 4 presents the MAEs and their respective standard deviations
between the paired observations of the 3D-AJA and the Kinect SDK
angles to the goniometer angles for shoulder flexion, shoulder abduc-
tion, and elbow flexion across all workstation conditions. As Table 4
shows, overall, the MAE for the algorithm was significantly different
than the Kinect SDK for shoulder flexion (6.3° £5.7° vs. 8.3° £7.2°,
respectively, p < 0.001) and elbow flexion angles (8.5°+8.1° vs.
18.2° +16.0°, respectively, p < 0.001), although for some postural
conditions (sitting ideal, sitting poor, standing self-selected, and stand-
ing ideal) no significant differences were found for shoulder flexion

Advanced Engineering Informatics 52 (2022) 101596

angles. For shoulder abduction, overall, no significant differences were
found between the MAEs of the 3D-AJA (5.6° +5.1° vs. 6.2° +6.4°,
respectively, p = 0.113).

We also compared the MAEs for each joint angle estimate using the
3D-AJA and the Kinect SDK between the first and second hours and
between the overall sitting and standing positions (« = 0.05). For the 3D-
AJA, the only significant difference between the MAEs occurred for
shoulder abduction between the overall first and second hours
(5.1° £4.2° vs. 6.8° +6.7°, respectively, p < 0.001). However, for the
Kinect SDK, there were significant differences between the MAEs for
shoulder abduction between the overall sitting and standing positions
(6.9° +7.1° vs. 4.5° + 3.5°, respectively, p < 0.001), and between the
overall first and second hours (5.7 + 5.7 vs. 7.4 + 7.7, respectively, p =
0.007). Also, for the Kinect SDK, significant differences between the
MAEs for elbow flexion between the overall first and second hours of
data collection were detected (19.7 + 16.4 vs. 14.4 & 14.2, respectively,
p < 0.001).

Pearson correlation coefficients between the calculated body joint
angles and goniometry measurements are presented in Table 5. For
almost all cases, the measures obtained using the algorithm were more
strongly correlated with the goniometry measurements than the mea-
sures obtained using the Kinect SDK. The only condition in which the
Kinect SDK showed a meaningfully stronger correlation with the goni-
ometry measurements than the 3D-AJA was the standing ideal condition
(0.63 vs. 0.52, respectively). Across the varied conditions tested in the
first hour, there were significantly strong correlations between the al-
gorithm calculated joint angles and goniometry measurements at 0.79
for shoulder flexion, 0.77 for shoulder abduction, and 0.90 for elbow
flexion. Alternatively, the Kinect SDK showed a weak correlation for
elbow flexion (0.30) and moderate correlations for shoulder flexion
(0.61) and shoulder abduction (0.61). Similar results were noted across
the measures conducted for each method during the self-selected work
behaviors in the second hour and the overall results throughout all
conditions during both the first and second hours of data collection as
shown in Table 5.

Out of the nine selected machine learning models, the model which
provided the overall best performances for both the 3D-AJA and the
Kinect SDK was the Random Forest. The confusion matrices and per-
formance metrics for all classes in the Random Forest models are pre-
sented in Tables 6 and 7, respectively, for both the 3D-AJA and the
Kinect SDK. As Table 7 shows, the Fl-scores of all classes in the model
from the 3D-AJA data are at least 0.700, and the G-means of all classes
are higher than 0.840. Alternatively, the model using the Kinect SDK
data shows relatively lower Fl-scores and G-means for some of the

Table 4
Comparisons of mean absolute error (MAE) relative to goniometry measurement between the 3D-AJA and Kinect SDK, in °.
3D-AJA Kinect SDK p-value**
Shoulder Shoulder Elbow Flexion Shoulder Shoulder Elbow Flexion Shoulder Shoulder Elbow Flexion
Flexion Abduction Flexion Abduction Flexion Abduction
Sitting Self-selected 5.7+5.0 5.7+ 4.7 7.5+7.8 9.2+89 74+74 14.6 +£10.9 0.047* 0.249 0.002*
Sitting Ideal 6.1 £5.7 5.4+ 4.4 6.0 £5.1 73+7.3 7.4 £8.7 115+ 123 0.287 0.070 < 0.001*
Sitting Poor 6.6 £5.6 5.6 +£3.9 10.0 £ 6.7 7.1+£5.8 6.1 £4.5 27.3 £19.5 0.585 0.441 < 0.001*
Overall Sitting 6.2+ 5.5 5.5+ 43 7.8+ 6.6 7.6 +7.2 69+7.1 18.2+16.8 0.041* 0.023* < 0.001*
Standing Self-selected 6.5+ 4.4 4.6 +3.7 6.1 £5.4 8.5+6.5 43 +34 14.2 £10.8 0.126 0.698 < 0.001*
Standing Ideal 7.0+54 5.1+4.7 81+79 8.6 + 6.5 4.2 +3.1 17.7 £13.9 0.099 0.170 < 0.001*
Standing Poor 6.2 +6.3 4.6 + 3.6 11.3 +£11.7 8.5+6.8 4.8 £ 4.0 28.5+17.3 0.031* 0.669 < 0.001*
Overall Standing 6.6 £5.6 4.8 +4.1 9.0 £9.4 8.6 £ 6.6 4.5+ 3.5 21.2 £159 0.002* 0.407 < 0.001*
Overall First Hour 6.4 £5.5 51+42 8.4 £8.2 8.1+6.9 5.7 £ 5.7 19.7 £ 16.4 < 0.001* 0.149 < 0.001*
Overall Second Hour 6.0 £5.9 6.8 £6.7 85+7.9 88+7.9 7.4+77 14.4 £ 14.2 < 0.001* 0.440 < 0.001*
Overall 6.3 £5.7 5.6 +£5.1 85+8.1 83+72 6.2 +6.4 18.2 £16.0 < 0.001* 0.113 < 0.001*

*denotes significance at p < 0.05.

**Independent sample t-test was used to compare the MAEs between the two methods.
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Table 5
Pearson correlation (r) between calculated body joint angles and goniometry measurements.
3D-AJA Kinect SDK
Shoulder Shoulder Elbow Shoulder Shoulder Elbow
Flexion Abduction Flexion Flexion Abduction Flexion
Sitting Self-selected 0.86* 0.85* 0.79* 0.46* 0.82* 0.22
Sitting Ideal 0.78* 0.72* 0.90* 0.65* 0.06 0.42*
Sitting Poor 0.81* 0.66* 0.94* 0.76* 0.67* 0.34*
Overall Sitting 0.83* 0.77* 0.92% 0.68* 0.43* 0.36*
Standing Self-selected 0.76* 0.74* 0.82* 0.51* 0.56* 0.03
Standing Ideal 0.70* 0.52* 0.83* 0.53* 0.63* 0.24*
Standing Poor 0.64* 0.52* 0.67* 0.33* 0.37* —0.11
Overall Standing 0.69* 0.53* 0.88* 0.45% 0.51* 0.18*
Overall First Hour 0.79* 0.77* 0.90* 0.61* 0.61* 0.30*
Overall Second Hour 0.84* 0.72* 0.84* 0.65* 0.64* 0.27*
Overall 0.81* 0.76* 0.89* 0.63* 0.63* 0.30%

*denotes significance at p < 0.05.

Table 6
Confusion matrices for the Random Forest models for the 3D-AJA and the Kinect
SDK.

3D-AJA Predicted Class
“17 “2” “3” “4 “5” “7”
Actual Class “1” 7 4 0 0 0 0
“2” 2 201 27 0 0 0
“3” 0 55 127 5 0 0
“4 0 5 16 56 9 1
“5” 0 0 4 1 20 0
“77 0 0 0 0 0 2
Kinect SDK Predicted Class
“1” “2” “3” “4 “5” “7”
Actual Class “1” 5 3 0 0 0 0
“27 1 166 33 0 0 0
“3” 0 58 114 4 1 0
“4 0 15 12 45 11 0
“5” 0 0 4 4 17 0
“7” 0 0 0 0 0 2
Table 7
Performance metrics for the Random Forest models.
Class 3D-AJA, Accuracy = 76.20%
FP TP Rate Precision F1- G-
Rate (Recall) score mean
“1” 0.004 0.636 0.778 0.700 0.796
“27 0.205 0.874 0.758 0.812 0.834
“3” 0.132 0.679 0.730 0.704 0.768
“4” 0.013 0.644 0.903 0.752 0.797
“5” 0.017 0.800 0.690 0.741 0.887
“7” 0.002 1.000 0.667 0.800 0.999
Average 0.062 0.772 0.754 0.752 0.847
Weighted 0.136 0.762 0.769 0.759 0.811
Avg.
Class Kinect SDK, Accuracy = 70.51%
FP TP Rate Precision  F1- G-
Rate (Recall) score mean
“1” 0.002 0.625 0.833 0.714 0.790
“2” 0.258 0.830 0.686 0.751 0.785
“3” 0.154 0.644 0.699 0.671 0.738
“4” 0.019 0.542 0.849 0.662 0.729
“5” 0.026 0.680 0.586 0.630 0.814
“7” 0.000 1.000 1.000 1.000 1.000
Average 0.077 0.720 0.776 0.738 0.809
Weighted 0.164 0.705 0.717 0.702 0.768
Avg.
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minority classes, e.g., classes 4 and 5, and even the majority class 3.
While precision and specificity are appropriate performance measures
for problems that aim at minimizing false positives, and recall (sensi-
tivity) for problems that aim at minimizing false negatives, using any of
these metrics alone may not tell the whole story since a model may have
high precision but low recall (and vice-versa), and low sensitivity and
high specificity (and vice-versa). Fl-scores and G-means combine the
results of precision and recall, and sensitivity and specificity, respec-
tively, by means of harmonic (for F1-score) and geometric (for G-mean)
means in a way that balances out the concerns of minimizing all types of
classification errors. In both cases (F1-score and G-means), the possible
performance values range between 0 and 1, with higher values being an
indication of better performance, i.e., fewer misclassifications.

5. Discussion
5.1. MAEs and correlation analysis

As Tables 4 and 5 show, overall, the 3D-AJA reduced measurement
error and resulted in higher correlation to standard goniometry mea-
surements as compared to the Kinect SDK. Consequently, the estimation
of joint angles from the 3D-AJA were closer to the actual values provided
by standard goniometry, which resulted in better performance during
the determination of the RULA scores A (section 5.2) as it was observed
for the Kinect SDK method. The results show that the estimation of body
joint angles by the 3D-AJA has overall MAEs of 6.3° 4 5.7° for shoulder
flexion, 5.6° +5.1° for shoulder abduction, and 8.5° + 8.1° for elbow
flexion. Comparatively, the Kinect SDK performed worse, with MAEs of
8.3°+7.2°,6.2° + 6.4°, and 18.2° & 16.0° for shoulder flexion, shoulder
abduction, and elbow flexion, respectively. These MAEs for the Kinect
SDK are similar to errors previously reported for estimating shoulder
flexion (8.7°+5.9° right/9.1° +6.4° left) and shoulder abduction
(14.8° +5.9° right/9.9° + 4.6° left) in individuals who were sitting [44].
A possible explanation for this verified worse performance compared to
our algorithm might be due to the occlusions on the trunk caused by the
adjustable desk in sitting and standing postures. As it is presented in Kar
[65], Diego-Mas, and Alcaide-Marzal [35], the Kinect SDK has low ac-
curacy when part of the body is not visible to the camera. No significant
differences in terms of the MAEs were found for any of the assessed
angles between sitting and standing positions for the 3D-AJA while for
the Kinect SDK a significant difference was found between the sitting
and standing positions for shoulder abduction. This difference in
shoulder abduction might be due to the variances in the sitting and
standing height of the participants. When sitting, the locations of the
upper arms were lower in height relative to the Kinect camera resulting
in fewer points captured by the depth channel of the Kinect camera for
the upper arm, thereby influencing the assessment of shoulder abduc-
tion angles.
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In addition to reducing measurement error as compared to the Kinect
SDK, the 3D-AJA improved consistency in measurement estimation,
demonstrating strong correlation to goniometric measures overall (i.e.,
0.81, 0.76, 0.89 for shoulder flexion, shoulder abduction, and elbow
flexion, respectively) across the three joints as compared to the weak to
moderate correlations achieved by the Kinect SDK (i.e., 0.63, 0.63, 0.30
for shoulder flexion, shoulder abduction, and elbow flexion, respec-
tively). The results for the second hour also support this finding and
show that, for the condition in which the participants were completely
free to select and adjust their working positions over time, the 3D-AJA
correlated more strongly to the goniometer angles than the angles
from the Kinect SDK method, which gives an indication of the ecological
validity of the proposed method.

5.2. RULA upper limb risk classification

For the analysis of the ability of the three angles and the sitting/
standing condition of the participants to determine the RULA score A (i.
e., upper limb subscore), the most critical factor was related to the
imbalanced distribution of the instances in the datasets among the
possible classes of RULA score A (scores 1 through 9). The use of the
SMOTE algorithm, however, proved effective as both Fl-scores and G-
means were above 0.700 for all classes in the 3D-AJA and 0.630 for all
classes in the Kinect SDK. Additionally, as the confusion matrices in
Table 6 show, most of the misclassifications happened between adjacent
classes, e.g., classes 2 and 3. The reason behind this observation is
twofold. First, individual RULA scores associated with each joint during
RULA assessments are based on a continuum of possible angles relative
to angle thresholds, which makes it possible for slight differences in
angle estimates (i.e., 1-degree of error) from the automated methods
(3D-AJA and Kinect SDK) to incorrectly place the score in the wrong
RULA class. Second, in this study, only three angles from the automated
algorithm were used to determine the RULA score A, whereas angles in
the wrist and adjustments for other upper limb factors were included in
the expert RULA observations, which can incorrectly place the score in
the wrong RULA class as well.

Despite some limitations in data heterogeneity and using only three
angles to train the classification models, the 3D-AJA data resulted in
generally good risk assessment models relative to expert observations.
Taking the Random Forest models depicted in Tables 6 and 7, it is
possible to observe that, even in face of the imbalanced datasets used to
build these models, the lowest F1-score for a single class in the model
resulting from the data from the 3D-AJA is 0.700, with a micro average
F1-score for all six classes of 0.759. Although the accuracy metric was
not selected as an indicator of the quality of the models, Table 7 shows
that the Random Forest model for the 3D-AJA dataset reached 76.20%
accuracy in classification, which is a relatively good result if one con-
siders that only a limited number of features were used to predict the
RULA score A. It is likely possible to increase the performance of the
classification models by adding other features involved in the determi-
nation of the RULA score A, especially with regards to wrist position.
However, given the current performance, an automated framework that
relies on data solely from the shoulder and elbow may adequately
delineate risk, particularly because positioning of the wrist is likely to be
highly dependent upon positioning of the proximal joints already being
assessed.

5.3. Comparison of 3D-AJA with existing automated assessment methods

Although no comparisons were directly made between the 3D-AJA
and other existing automated postural assessments in the literature
due to the varied requirements, assumptions, and boundary conditions
made during the development of each proposed method, some com-
parisons between the 3D-AJA and other existing automated assessment
methods are made based on the summaries presented in Table 1 and the
results presented in Tables 4 to 7. Although the 3D-AJA performed
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relatively worse than some of the listed automated assessment methods,
the boundary conditions differed among the studies. In most cases, the
proposed algorithms were based on ideal conditions in which no oc-
clusion existed or, when occlusion occurred, it occurred in a restricted
area of the subject’s body. In the case of the 3D-AJA method described in
this paper, the effects of occlusion were more significant since for most
images part of the trunk and both legs were hidden from the Kinect
camera. Additionally, some studies achieved high levels of accuracy but
were based on a restricted number of postures on which the algorithms
were trained and/or on lighting, clothing, and hair style requirements.
In the 3D-AJA, the subjects were relatively free to select their working
postures (except for the intervals when they were asked to sit in a bad or
good posture during part of the first hour of data collection), wear their
usual clothes, and keep their hair as they wish.

5.4. Practical implications of the results

A few considerations need to be made relative to the MAE results for
the 3D-AJA in terms of its accuracy and practical implications. In clinical
practice, it is common to limit the clinically significant error in angle
measurement to +5.0° [36,92], a threshold that was not met for most
workstation conditions in the experiment. As Table 4 shows, the overall
MAE: for all three angles of interest, shoulder flexion, shoulder abduc-
tion, and elbow flexion, were in the range 5.6° + 5.1° to 8.5° & 8.1° for
the 3D-AJA. Added to that, the standard deviation values for all MAEs
values listed in Table 4 were in the same order of magnitude of the MAE
value and, on a few occasions, the standard deviation was bigger than
the mean value. This means that the values of the errors of the angles
from the 3D-AJA relative to the goniometer angles were spread around
the mean and a relatively high variability can be expected in terms of the
predicted angles by the model. In terms of the practical implications of
these results on automated RULA assessments, when angle measurement
error is high, there is a higher chance that individual RULA scores for
different body joints would be underestimated/overestimated, thus
resulting in incorrect individual RULA scores and, in the long term,
increased risk of MSDs due to an inaccurate assessment of joint angles.
Alternatively, when accurate measurements are made, and correct
RULA scores are calculated, there is an increased chance of providing
useful feedback to workers and implementing effective changes to the
workplace, which can ultimately promote behavioral adaptations
among office workers. In this sense, reducing the overall measurement
errors of any proposed automated ergonomic assessment method is key
for its usefulness in clinical practice. For RULA applications, specifically,
because the method is based on angular thresholds, it tends to minimize
the effects of noise, especially when the angles are not close to the class
thresholds, thus leading to lower error rates as compared to methods
that are based on the values of the joint angles alone [64].

Additionally, by allowing participants to adjust the workstation
based on their preferences during the second hour of the data collection,
this study provided preliminary ecological validity testing of the algo-
rithm, something not done in any of the previous studies in automated
ergonomic assessment in office environments. Although shoulder
abduction error was slightly increased during this second hour, the
average error remained lower than the Kinect SDK. These results provide
strong impetus for further real-time, direct testing of the algorithm with
workers in their office workspaces to identify additional improvements
needed to confirm the utility for automation. Furthermore, in terms of its
applicability to reduce the injury risk of workers, once developed, the
application can be used as a personalized behavior change tool that can
inform workers of potential ergonomic risks throughout their daily
work, which can help workers to adjust their postures and, thus, reduce
ergonomic risks. If used along with more traditional ergonomic assess-
ments, in which an ergonomist assesses the workplace and suggests
changes, this tool can support the promotion of the suggested changes by
providing timely and continuous feedback to the workers. Finally, in
addition to monitoring office workers’ postures and minimizing the
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impact of musculoskeletal disorders caused by inappropriate work
postures, the 3D-AJA can benefit other fields as well. Potential appli-
cations include the use of automated assessments in telemedicine ap-
plications that involve elderly people, post-surgical patients, and
physical therapy patients, for example.

5.5. Limitations of the study and future work

Some limitations were inherent to the design of this office-based
validation study. First, although the Kinect camera was placed in front
of the participants during the experiment, there were times when upper
body segments became self-occluded, thus reducing the performance of
the algorithm. Future studies could focus on varying the number of
cameras used or the camera positioning relative to the worker to mini-
mize occlusions. Second, while the algorithm was tested using data from
20 different participants who had a variety of body habitus, clothing,
hair, and other behavioral tendencies, observations were only made
during a selected number of times across 2 h. Considering the average 8-
hour daily work time, longer hours of posture monitoring and assess-
ment are necessary to fully examine the accuracy of the algorithm.
Although participants of the study included males and females, with
ages ranging from 20 to 50 years old, and from various ethnicities, the
sample size of the study was not sufficiently large to evaluate potential
differences in the performance of the 3D-AJA based on differences in
terms of gender, age, or ethnicity. Next, this study only investigated
positioning of the shoulders and arms, and further development and
testing are needed to develop a robust, full-body ergonomic assessment
of office workers that includes other key postures and positions,
particularly in the neck, trunk, and legs (RULA score B) to allow for a
complete RULA assessment of postural risks. Also, privacy issues related
to using cameras in the workplace might be a concern for office workers.
Although the Kinect camera is non-intrusive compared to wearable
sensors, people might not feel comfortable being monitored at work.
Processing the data without saving collected images might be helpful to
alleviate this problem. Finally, installing a Kinect to each workstation
may not be feasible. There are, however, cheaper RGB-D camera alter-
natives, which can bring down the costs in cases when the presented
methodology is to be employed in a real office space with many work-
stations. In terms of computational performance, as the 3D-AJA relies on
complex computer vision algorithms, the computation times may in-
crease in case a less powerful computer is used. As a potential solution,
developing a cloud version of the application can reduce the need for
more powerful computers in each workstation. Another important
consideration is that, in this study, the feedback requirements of the
application, in terms of frequency and type, were not evaluated and
were left as suggestions for future research. Also, a potential improve-
ment in terms of storage requirements and computational performance
can be achieved by downsampling the resulting point cloud for each
frame before computing the joint angles of interest. During the testing
and validation of the 3D-AJA, however, the impacts of using a down-
sampled point cloud relative to the accuracy of the predicted joint angles
and posterior RULA scoring were not investigated and are left as sug-
gestions for future work.

6. Conclusion

The objective of this study was to develop and test an automated
ergonomic assessment algorithm, the 3D-AJA, for office workers in of-
fice environments. Results showed that compared to goniometry mea-
surements, the joint angles calculated by our algorithm has MAEs of
6.3° £+ 5.7° for shoulder flexion, 5.6° + 5.1° for shoulder abduction, and
8.5° £8.1° for elbow flexion. The 3D-AJA outperformed Kinect SDK
body joint capture method for estimating all three selected angles with
significant differences in terms of shoulder flexion and elbow flexion
angles. In terms of the resulting classification models for the determi-
nation of the RULA score A, the dataset from the 3D-AJA resulted in
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better classification models for all RULA score A classes included in the
datasets. Despite these datasets being composed of highly imbalanced
classes, the performance of the resulting classification models achieved
relatively high results, with Fl-scores reaching 0.759 and G-means
reaching 0.814. Relatively good results were also achieved for individ-
ual classes and, for the Random Forest models, F1-score of at least 0.700
and G-mean of at least 0.768, even in face of high-class imbalances, the
limited number of features in the dataset, i.e., only three angles and
sitting/standing condition, and occlusion effects from the desk. This
study provides a solid foundation for future work to provide a full-body
ergonomic assessment for office workers. To perform longitudinal
studies on office worker postures, this algorithm could be a cost-
effective and efficient tool for future research to gather continuous
postural data for an extended duration of posture monitoring and the
effect of work postures on office worker health.
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