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ARTICLE INFO ABSTRACT

Edited by Menghua Wang The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance
for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and

Keywords: its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s

Flooding resources. More than fifty inundation estimates have been generated for this region, yet major differences exist

E?:ﬁi’;:ivsster among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of

29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi-
source datasets, with 18 covering the lowland Amazon basin (elevation <500 m, which includes most
Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions
range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades.

Interfluvial wetlands
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Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term
maximum inundated area across the lowland basin is estimated at 599,700 + 81,800 km? if considering the
three higher quality SAR-based datasets, and 490,300 =+ 204,800 km? if considering all 18 datasets. However,
even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland
complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater
disagreements among datasets than the maximum extent: 139,300 + 127,800 km? for SAR-based ones and
112,392 -+ 79,300 km? for all datasets. Discrepancies arise from differences among sensors, time periods, dates of
acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in
medium to large river floodplains (drainage area > 1000 km?) is 323,700 km?. The highest spatial agreement is
observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate
agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain).
Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria,
Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison

Table 1

List of 29 studies that mapped inundation over areas ranging from the entire Amazon basin to individual wetland complexes. These data sources were selected based on
data availability and relevance for this intercomparison. In the case of hydrological models, time resolutions are the values assessed or provided by the models, which
can be provided at finer time resolution if necessary, since many of them compute flood maps at daily or sub-daily time steps and report time-integrated results. The
column “Data type” refers to: OS: optical sensor; SAR: synthetic aperture radar; HM: hydrological model; HR: multiple datasets at high resolution; CR: multiple datasets
at coarse resolution. The column “Type of inundation estimated” has three classes: “All”, meaning both open water and vegetated wetlands, “Open water”, and
“Wetland only (no open water)”.

Data Dataset name and main mission/ Spatial Temporal resolution Time Region Type of inundation =~ Reference
type model associated (if applicable) resolution period estimated
CR GIEMS-2 25 km Monthly 1992-2015 Basin All Prigent et al., 2020
CR SWAMPS 25 km Monthly 1992-2020 Basin All Jensen and
McDonald, 2019
CR WAD2M 25 km Monthly 2000-2018 Basin Wetland only (no Zhang et al., 2020
open water)
HR GIEMS-D3 90 m Monthly 1993-2007 Basin All Aires et al., 2017
HR CIFOR 232m Static (max inundation) 1950-2000 Basin All Gumbricht et al.,
2017
HR ESA-CCI 300 m Annual 1992-2015 Basin All Bontemps et al.,
2013
HR GIEMS-D15 500 m Monthly climatology 1993-2004 Basin All Fluet-Chouinard
et al., 2015
HR GLWD 1 km Static 1992-2004 Basin All Lehner and Doll,
2004
HR SWAF-HR/SMOS mission 1 km Weekly to monthly 2010-2020 Basin All Parrens et al.,
2019
HM THMB model 5-min Monthly 1961-2010 Basin All Coe et al., 2008
HM CaMa-Flood model 500 m Monthly 1980-2014 Basin All Yamazaki et al.,
2011
HM MGB model 500 m Monthly 1980-2015 Basin All Siqueira et al.,
2018
HM Bonnet model 180 m Monthly 2006-2019 Janauaca All Bonnet et al., 2017
HM TELEMAC-2D model 30 m Monthly 2006-2015 Janauaca All Pinel et al., 2019
HM LISFLOOD-FP model 90 m Monthly 1994-2015 Curuai All Rudorff et al.,
2014
oS G3WBM/Landsat mission 30 m Static (open water areas) 1990-2010 Basin Open water Yamazaki et al.,
2015
oS GLAD/Landsat mission 30 m Annual and monthly 1999-2018 Basin Open water Pickens et al.,
climatology 2020
oS GSWO/Landsat mission 30m Monthly (cloud cover may ~ 1984-2019 Basin Open water Pekel et al., 2016
occur)
0S Ovando/MODIS mission 500 m 8 days 2001-2014 Llanos de Moxos Open water Ovando et al.,
2016
oS Park/MODIS mission 230 m Monthly climatology 2000-2015 Amazon River down- Open water Park and
stream of Manaus Latrubesse, 2019
SAR Hess/JERS-1 mission 90 m Max. and min. annual 1995-1996 Basin (lowlands) All Hess et al., 2003,
inundation (dual season) 2015
SAR Chapman/ALOS-PALSAR mission 90 m Monthly 2006-2011 Basin All Chapman et al.,
2015
SAR Rosenqvist/ALOS-2 PALSAR-2 50 m Max. and min. annual 2014-2017 Basin All Rosengvist et al.,
inundation (dual season) 2020
SAR Jensen/ALOS-2 PALSAR-2 50 m Irregular (26 images) 2014-2018 Pacaya-Samiria All Jensen et al., 2018
mission
SAR Arnesen/ALOS-PALSAR mission 90 m Irregular (12 images) 2006-2010 Curuai All Arnesen et al.,
2013
SAR Ferreira-Ferreira/ALOS-PALSAR 12.5m Flood frequency only 2007-2010 Mamiraua All Ferreira-Ferreira
mission et al., 2015
SAR Ovando-2/ALOS-PALSAR mission 100 m Irregular (6 images) 2006-2010 Llanos de Moxos All Ovando et al.,
2016
SAR Pinel-2/ALOS-PALSAR mission 30 m Irregular (16 images) 2007-2011 Janauaca All Pinel et al., 2019
SAR Resende/ALOS-PALSAR mission 25m Static (max inundation) 2006-2011 Uatuma All de Resende et al.,
2019
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helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their im-
plications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make
recommendations for future developments of inundation estimates in the Amazon and present a WebGIS
application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization
and data acquisition of current Amazon inundation datasets.

1. Introduction

Aquatic ecosystems cover extensive areas of the Amazon basin, and
are associated with temporally and spatially dynamic habitats such as
floodable forests, savannas, grasslands, large and small rivers, and lakes
(Hess et al., 2015; Junk et al., 2011; Melack and Coe, 2021; Reis et al.,
2019). These systems, hereafter called wetlands, support plants and
animals that are adapted to the flood pulse (Junk et al., 1989), play key
roles in regional and global biogeochemical cycles, especially the carbon
cycle (Richey et al., 1990; Dunne et al., 1998; Abril et al., 2014; Melack
et al., 2004; Pangala et al., 2017; Martinez-Espinosa et al., 2020), and
regulate the riverine transport of dissolved and particulate material,
including sediment and organic matter (Armijos et al., 2020; Fassoni-
Andrade and de Paiva, 2019; Melack and Forsberg, 2001; Ward et al.,
2017). Additionally, human settlements along Amazon wetlands (Blatrix
et al., 2018; Denevan, 1996) benefit from ecosystem services, including
food provision from native plants and animals as well as crop and
livestock production (Coomes et al., 2016; Jardim et al., 2020).

Many of the wetlands of the Amazon basin are considered floodplain
because they are subject to seasonal or periodic inundation by river
overflow (i.e., the flood pulse; Junk et al., 1989). The region also hosts
large interfluvial wetlands, which unlike fringing floodplains along large
rivers, are flooded mainly by local rainfall and runoff and characterized
by shallow water (Belger et al., 2011; Bourrel et al., 2009; Junk et al.,
2011). Water sources, inundation patterns, and geomorphology interact
to determine the structure and function of these biodiverse ecosystems
(Junk et al., 2011; Latrubesse, 2012; Park and Latrubesse, 2017).

The extent of inundated land (also called flooded land or surface
water extent), and its temporal variation, are core variables to under-
stand wetland processes and are of interest for multiple scientific dis-
ciplines, including ecology (Silva et al., 2013; Hawes et al., 2012; Luize
et al., 2015), land-atmosphere interactions (Prigent et al., 2011; ; Taylor
et al., 2018), carbon cycling and greenhouse gas emissions (Guilhen
etal., 2020; Melack et al., 2004; Richey et al., 2002), and natural hazard
management (Restrepo et al., 2020; Trigg et al., 2016). The Amazon
basin has been a focus for remote sensing developments and applications
in hydrology (Fassoni-Andrade et al., 2021), especially for inundation
estimation, given the basin’s large scale and global environmental
relevance, relatively pristine landscape, and technical challenges posed
by persistent cloud cover (Asner, 2001) and dense vegetation. This
resulted in the development of more than 50 inundation maps and
datasets for this region in recent decades. Tables 1 (datasets used in this
study) and S1 (datasets not used due to redundancy or unavailability)
summarize most of the datasets developed for mapping inundation in
the Amazon basin.

Digital wetland maps were first produced for the Amazon basin by
Matthews and Fung (1987) from aeronautical charts. Optical remote
sensing systems in the visible or thermal spectral range, such as Landsat,
are of limited value for most Amazon wetlands, since inundation under
persistent cloud cover and dense vegetation canopies can be difficult to
detect. Because of this, microwave systems have been employed. Large-
scale inundation mapping was pioneered in the region through analysis
of Scanning Multi-channel Microwave Radiometer (SMMR) and Special
Sensor Microwave/Imager (SSM/I) passive microwave observations,
which provided all-weather capability and sensitivity to inundation
even in the presence of partial vegetative cover (Hamilton et al., 2002;
Prigent et al., 2001; Sippel et al., 1998). Meanwhile, research demon-
strated the all-weather capability and superior spatial resolution of

synthetic aperture radar (SAR) systems. L-band SAR that can penetrate
forest canopies and reveal underlying water through the “double
bounce” effect was shown to be promising for mapping inundation in the
Amazon (Hess et al., 2003). More specifically, the high-resolution, dual-
season classification of the Japanese Earth Resources Satellite-1 (JERS-
1) L-band SAR data for the entire lowland Amazon basin by Hess et al.
(2015), validated with airborne videography images, has been used as a
benchmark for the inundation extent of Amazon wetlands. Since these
initial studies, and with the availability of other imagery (e.g., Advanced
Land Observing Satellite (ALOS) 1 and 2 missions), the remote sensing
community seeking to map and characterize inundation employed
various combinations of active and passive microwave data to benefit
from the higher spatial resolution of the former and the higher temporal
resolution of the latter (Aires et al., 2013; Jensen and McDonald, 2019;
Papa et al., 2010; Parrens et al., 2019, 2017; Prigent et al., 2007, 2020;
Schroeder et al., 2015).

Besides the basin-scale mappings (which, in our context, refer to both
basin-scale datasets and those that cover only the lowland areas below
500 m.a.s.l. elevation) of annual maximum and minimum inundation
(Chapman et al., 2015; Hess et al., 2015; Rosenqvist et al., 2020), dy-
namic datasets with high spatial and temporal resolution are mainly
based on satellite passive microwave observations of coarse spatial
resolution (Global Inundation Extent Multi-Satellite — GIEMS), Surface
Water Microwave Product Series (SWAMPS), Surface Water Fraction
(SWAF), Wetland Area and Dynamics for Methane Modeling (WAD2M)
datasets; see Table 1), which can be downscaled using ancillary data
(Aires et al., 2017, 2013; Parrens et al., 2019). Basin-scale, dynamic
inundation estimates based on the ALOS satellite are limited given its
low temporal resolution (repeat cycle of 46 days). Thus, some studies
have analyzed time series of ALOS-Phased Array L-band Synthetic
Aperture Radar (PALSAR) (Arnesen et al., 2013; Ferreira-Ferreira et al.,
2015) and ALOS-2 PALSAR-2 backscatter retrievals (Jensen et al., 2018)
for subsets of Amazon wetlands. However, with a few exceptions using
subregional datasets (Arnesen et al., 2013; Ferreira-Ferreira et al., 2015;
Hess et al., 2003; Jensen et al., 2018; de Resende et al., 2019), in situ
validation of the basin-scale estimates has seldom been performed, given
the remoteness of much of the Amazon basin and the often dense forest
cover, which hampers airborne monitoring of below-canopy inundation.

Complementary to the remotely sensed datasets, process-based hy-
drological models estimating variables such as river discharge and flood
extent have been developed and assessed from basin to local scales in the
major rivers of the basin (Beighley et al., 2009; Coe et al., 2008; Getirana
etal.,2017,2012; Hoch et al., 2017; Luo et al., 2017; Miguez-Macho and
Fan, 2012; Paiva et al., 2013; Yamazaki et al., 2011), thanks to the
advent of new computational and modeling capabilities. Local-scale
hydraulic models with coarse (Trigg et al., 2009; Wilson et al., 2007;
Fleischmann et al., 2020) and detailed input data (Ji et al., 2019; Pinel
et al., 2019; Rudorff et al., 2014; Fassoni-Andrade, 2020) have further
developed model capabilities for mapping inundation dynamics, espe-
cially for the floodplains fringing the Amazon mainstem. These models
complement satellite-based flood mapping due to their higher temporal
and spatial resolution, and capability to estimate long-term time series,
for both past and future (e.g., due to climate change) scenarios. The
understanding of their uncertainties can lead to optimal data fusion with
satellite-based estimates, such as considering multiple constraints
within the water cycle representation (Pellet et al., 2021).

Among these numerous inundation datasets for the Amazon basin
(Tables 1 and S1), divergences can be substantial due to the differences
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in sensor systems, timing, and data processing algorithms (Aires et al.,
2018; Fleischmann et al., 2020; Parrens et al., 2019; Pham-Duc et al.,
2017; Rosenqvist et al., 2020), and a comprehensive assessment of
inundation estimates for the Amazon is lacking. The need to compare
different hydrological datasets for the Amazon has been recently high-
lighted in the context of river discharge (Towner et al., 2019), precipi-
tation (Wongchuig et al., 2017; Zubieta et al, 2019) and
evapotranspiration (da Paca et al., 2019; Wu et al., 2020). Meanwhile,
rapid environmental changes in the basin underscore the urgency for a
better understanding of Amazon water resources (Fassoni-Andrade
et al., 2021), for which management and planning can be hindered by
the discrepancies among datasets. These questions regarding current
data limitations in the largest basin in the world are also timely in
anticipation of forthcoming hydrological satellite missions such as Sur-
face Water and Ocean Topography (SWOT) and NASA-ISRO SAR
(NISAR).

To better understand and quantify the state of understanding of
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inundation patterns in the Amazon wetlands, we address the following
questions: 1) How much Amazon land area is subject to seasonal or
permanent flooding, and how accurate are the estimates? 2) Which areas
are in particular disagreement and thus deserve further attention? 3)
How do basin-scale estimates with coarser resolution and less calibrated
classification methods differ from those for individual wetland com-
plexes, with independent validation? 4) How do the various inundation
estimation approaches (optical imagery, SAR, passive microwave, hy-
drologic models) differ in terms of inundation mapping and for different
wetland types (e.g., floodplains and interfluvial areas)? In order to
answer these questions, we gathered 29 inundation datasets for the
Amazon basin, spanning a wide range of spatial (12.5 m to 25 km) and
temporal (static, dual-season, monthly, daily) resolutions, and coverages
from the whole basin to individual wetland complexes (Table 1), into a
framework that provides a comprehensive assessment of current
knowledge of Amazon inundation.
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Fig. 1. The Amazon basin and its major wetland systems: (a) Amazon basin delineation (red lines) over the countries of South America (black lines). (b) Land cover
based on a 2010 map from the European Space Agency Climate Change Initiative (ESA-CCI) (Bontemps et al., 2013), showing the distribution of forest and non-forest
cover across the basin, as well as large floodplains (see methodology section 2.3). (c) Basin distribution of major wetland systems showing locations of interest for this
study. Elevations lower than 500 m are shown in grey (based on SRTM DEM). The orange polygons show the areas for which a subregional dataset was available for
this study (Fig. 4), and the green ones show wetland areas of interest that do not have datasets specifically designed for these subregions. Photos depicting different
wetland complexes for (d) Mamiraua (courtesy of Joao Paulo Borges Pedro), (e) Llanos de Moxos (courtesy of Alex Ovando), (f) Cabaliana floodplain lake close to
Manacapuru (courtesy of Stephen Hamilton), and (g) Pacaya-Samiria (courtesy of Katherine Jensen) regions, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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2. Methodology
2.1. Study area

The Amazon basin spans around 6 million km? in nine South
American countries (Fig. 1), with high annual rainfall (~2200 mm
year™!), and the Amazon River discharge makes a major contribution to
global freshwater and sediment exports to the ocean (Fassoni-Andrade
et al., 2021). We delineated the catchment area upstream from Gurupa
city, within the tidal river ~390 km from the ocean; hence not including
the Tocantins-Araguaia basin and parts of the Amazon estuary and
Marajé Island. We selected the 5.11 x 10° km? of Amazon lowlands
defined as areas lower than 500 m elevation based on the Shuttle Radar
Topography Mission Digital Elevation Model (SRTM DEM) for the area
of dataset comparisons in our study. This decision is consistent with
several studies limited to lowlands because of the limitations of certain
methods in estimating flooding in mountainous terrain (Hess et al.,
2015).

In addition to basin-scale datasets, estimates of inundated areas for
11 individual wetland complexes (also referred to as “subregional”) in
the Amazon basin were analyzed, including seven areas for which more
detailed estimates were available. This was performed to understand
how the basin-scale datasets may vary in accuracy across different
wetland types (Fig. 1): Curuai floodplain lake (Arnesen et al., 2013;
Rudorff et al., 2014), Janauaca floodplain lake (Bonnet et al., 2017;
Pinel et al., 2019), Uatuma river floodplain (de Resende et al., 2019),
Mamiraua Reserve (Ferreira-Ferreira et al., 2015), Pacaya-Samiria
wetlands (Jensen et al., 2018), Llanos de Moxos wetlands (Ovando
et al., 2016), lower Amazon floodplain (Park and Latrubesse, 2019),
Amazon mainstem floodplain (from Iquitos to Gurupa), Purus flood-
plain, Roraima savannas, and Negro campinas and campinaranas. A
brief summary of these wetlands is provided in supplementary Table S2,
and their main features are summarized in the following. Curuai is
representative of the shallow lakes in the lower Amazon floodplain. It is
separated from the river by narrow levees (Rudorff et al., 2014) and has
a high suspended sediment concentration. Janauaca is typical of the
middle Amazon River floodplain, and is composed of a ria lake (i.e., a
blocked valley lake with relatively sediment-free waters; Latrubesse
(2012)) and “véarzea” environments (white-water floodplains) in its
northern part (Pinel et al., 2019). Uatuma River is an Amazon tributary
with black-water floodplain (“igap6”), and includes the Balbina hydro-
electric reservoir, operating since 1987, which affects the river’s hy-
drological regime (Schongart et al., 2021). The Uatuma floodplain reach
assessed here is the 300-km reach between Balbina dam and the
confluence with the Amazon River. The Mamiraua Sustainable Devel-
opment Reserve is located in the confluence between Solimoes and
Japura rivers, and is characterized by a mosaic of “chavascal”, herba-
ceous, and low and high varzea vegetation (Ferreira-Ferreira et al.,
2015). The Purus River is a major tributary, and its floodplain was
chosen because of its large floodplain to river width ratio. Pacaya-
Samiria wetlands are composed of flooded forests, palm swamps and
peatlands in the upper Solimoes River (Draper et al., 2014; Lahteenoja
et al.,, 2012). The Llanos de Moxos floodable savannas occupy the
interfluvial areas between the Beni, Mamoré and Madre de Dios rivers in
the upper Madeira basin (Hamilton et al., 2004). The Negro’s interflu-
vial wetland vegetation, locally known as “campinas” (herbaceous
vegetation) and “campinaranas” (mixed herbaceous and arboreal
vegetation), are thought to have formed from regional neotectonic de-
pressions and were called the “Septentrional Pantanal” given their large
area (Rossetti et al., 2017a, 2017; Santos et al., 1993). The Roraima
floodable savannas extend from Roraima State in Brazil to the Rupununi
savannas in Guyana, and comprise mainly smaller river floodplains
interspersed with poorly drained interfluvial savannas subject to
flooding by local rainfall (Hamilton et al., 2002); here we only consid-
ered the Roraima wetlands in the upper Branco River basin, which is
within the Amazon basin.
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2.2. Datasets

Twenty-nine inundation datasets covering areas ranging from the
whole-basin scale to individual wetland complexes, based on multiple
data sources and spatiotemporal resolutions, were assembled for our
comparison (Table 1). Most of these datasets are recent, with 18 out of
the 29 published since 2016, and 27 since 2011. They were chosen due
to data availability and representativeness; other datasets that were
either unavailable or methodologically redundant to those in our com-
parison were not used but are catalogued in Table S1. Overall, there are
eight dynamic (weekly to monthly; Fig. 2) and 10 static (which include
long-term maximum, annual or dual-season categories; Fig. 3) basin-
scale datasets.

Passive microwave (PM) data are the basis of SWAF-HR, GIEMS
family (GIEMS-D15, GIEMS-D3, GIEMS-2), and SWAMPS, while ancil-
lary data (i.e., optical imagery and microwave scatterometry) are used
to complement the PM signal. SWAF-HR data result from the disaggre-
gation of water surface fraction in a dataset at coarser spatial resolution
(SWAF), based on L-band passive microwave observations from the Soil
Moisture and Ocean Salinity (SMOS) satellite (Parrens et al., 2017). The
disaggregation of SWAF relies on water occurrence maps from GSWO
and the Digital Elevation Model (DEM) Multi-Error-Removed-Improved-
Terrain (MERIT) (Parrens et al., 2019). A global implementation of
SWAF based on multi-angular and multi-polarization information has
also been implemented (Al Bitar et al., 2020). GIEMS merges multiple
satellite passive and active microwave observations, along with the
optically-derived NDVI (Normalized Difference Vegetation Index), to
detect the surface water and estimate the vegetation attenuation, for a
monthly quantification of the surface water extent at ~25 km spatial
resolution (Prigent et al., 2001, 2007, 2020; Papa et al., 2010). It is
further disaggregated at 90-m resolution (GIEMS-D3) using a topo-
graphical downscaling methodology (Aires et al., 2017).

Three basin-scale datasets are based mainly on SAR data from JERS-1
(Hess et al., 2003, 2015), and its successor missions ALOS-PALSAR
(Chapman et al., 2015) and ALOS-2 PALSAR-2 (Rosenqvist et al.,
2020). These three datasets cover different decades of observation but
are methodologically similar.

Three of the optical-based datasets are based on Landsat data: GSWO
(Pekel et al., 2016), GBWBM (Yamazaki et al., 2015) and GLAD (Pickens
et al., 2020). Although GSWO and GLAD can provide monthly estimates
for the Landsat archive (1984-today), given the inability of optical data
to estimate flooding under cloud cover or dense vegetation canopies,
only annual maximum and minimum values are used. For GLAD and
GSWO, we consider a threshold of occurrence of surface water of 95% to
estimate the minimum inundation (i.e., for the permanently inundated
areas; Aires et al., 2018); otherwise, only a few isolated open water areas
would be considered for the minimum extent.

The European Space Agency Climate Change Initiative dataset (ESA-
CCI) is based on surface reflectance from MERIS, the Advanced Very
High-Resolution Radiometer (AVHRR) and PROBA-V data and Global
Water Bodies from the Envisat Advanced Synthetic Aperture Radar
(ASAR) (Bontemps et al., 2013). Since the wetland pixels in ESA-CCI
varied negligibly throughout the years of observations, we use only
the 2010 dataset as the ESA-CCI estimate for maximum inundation.

Another set of data is based on the merging of multiple global
datasets: GLWD, GIEMS-D15 and WAD2M. GLWD is one of the first
globally consistent databases of wetlands, which was based on a
collection of wetland estimates from diverse institutions worldwide
(Lehner and Doll, 2004). GIEMS-D15 combines GLWD, the Hydrosheds
drainage network, and Global Land Cover 2000. WAD2M is based on
SWAMPS and CIFOR within its merging framework. WAD2M is the only
dataset to exclude open water areas (removal based on GSWO) due to its
goal of estimating wetland methane emissions. SWAF-HR (Parrens et al.,
2019) and GIEMS-D3 (Aires et al., 2017) use additional data and
methodologies to downscale the original 25-km passive microwave-
based SWAF (Parrens et al., 2017) and GIEMS (Papa et al., 2010;
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merging of multiple datasets at coarse resolution). Long-term flood frequency maps are provided for each dataset, calculated as the percentages of observations

labelled as flooded throughout the entire time-series.

Prigent et al., 2007) datasets to 1 km and 90 m, respectively. While
GIEMS-D3 has a different inundation magnitude than the original
GIEMS due to merging with ancillary data, SWAF-HR conserves the
same inundation magnitude across scales.

Among hydrological models, we selected representative datasets
from each of the following broad modeling types: 1) process-based hy-
drologic models that use flood routing to represent inundation processes
(i.e., from a simple kinematic wave model coupled to an inundation
method to more complex flow routing methods); or 2) hydraulic (or
hydrodynamic) models that consider the shallow water equations (or its
simplifications) at any dimension (1D, 2D or 3D). For our analysis, we
adopted two basin-scale models — one hydrologic (THMB; Coe et al.
(2008)) and one hydrologic-hydrodynamic (MGB, Siqueira et al.
(2018)), as well as a global-scale hydrodynamic model (CaMa-Flood,
Yamazaki et al. (2011)), in the Earth20bserve version available at <htt
p://www.earth2observe.eu/>). The inundated area estimation is
largely affected by the DEMs. The DEMs adopted in the model runs were:
Bare-Earth (O’Loughlin et al., 2016) for MGB, MERIT (Yamazaki et al.,
2017) for CaMa-Flood, and SRTM (Farr et al., 2007) for THMB. The
rainfall/runoff input data are MSWEP v.1.1 daily precipitation (Beck
et al., 2017) for MGB, HTESSEL daily runoff (Balsamo et al., 2009) for

CaMa-Flood, and CRU TS v.3.2.1 monthly precipitation (Harris et al.,
2014) for THMB. Although other hydrologic models have been applied
to the Amazon basin (Tables 1 and S1), the models chosen here were
selected as representative of global to local models, for having been well
validated and applied over the Amazon basin, and for representing state-
of-the-art Amazon hydrologic modeling. All basin-scale models repre-
sent one-dimensional (1D) flows only (i.e., floodplains are represented
as storage units without active flow), and thus do not represent 2D
surface flows that occur in wetlands (Alsdorf et al., 2007; Fleischmann
et al., 2020). A detailed comparison of model capabilities and structural
uncertainties is beyond our current scope. Hydrologic models have
different temporal resolution depending on their numerical stability and
forcing data. For instance, MGB and CaMa-Flood models run at an
adaptive time step (sub-minute timestep in the case of MGB), but are
assessed at daily resolution given their daily precipitation forcing. We
aggregated the models’ estimates to monthly averages to make them
comparable to the remote sensing dynamic datasets.

The datasets available for individual wetland complexes are pre-
sented in Fig. 4. ALOS-2 PALSAR-2 data were used for the Pacaya-
Samiria region (Jensen et al., 2018), and the ScanSAR mode of ALOS/
PALSAR for the following datasets: Curuai floodplain lake (Arnesen
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Fig. 3. Basin-scale, static or dual-season inundation datasets used in this study, divided into three classes (merging of multiple datasets at high resolution; based on
optical sensors; and based on SAR data). Flood frequency maps are not provided because the datasets are mainly static or annual-based.

et al., 2013), Mamiraua Reserve (Ferreira-Ferreira et al., 2015), Uatuma
river floodplain (de Resende et al., 2019), and Janauaca floodplain lake
(Pinel et al., 2019). MODIS optical data were used for the Llanos de
Moxos savannas in the upper Madeira River basin (Ovando et al., 2016)
and the lower Amazon floodplain (Park and Latrubesse, 2019). Two
local-scale 2D hydraulic models (LISFLOOD-FP for Curuai lake, Rudorff
et al. (2014), and TELEMAC-2D for Janauaca lake, Pinel et al. (2019)),
and one local-scale hydrologic model (for Janauaca lake; Bonnet et al.
(2017)) were considered; together, these are representative of the state-
of-the-art of hydrological modeling in Amazon wetlands.

The datasets were stored in various formats (i.e., raster and polygon
shapefiles) and projections (mainly projected UTM and geographic co-
ordinate system with WGS84 datum), and were converted to the WGS84
geographic coordinate system to compute areas. SWAMPS was provided
at the Equal-Area Scalable Earth (EASE) Grid, which was used to esti-
mate its flooded areas. Hydrologic model outputs were provided as
either binary inundation maps or flood depth raster files, which were
then converted into binary maps by assuming depth > 0 m as inundated
pixels.

2.3. Comparison framework

The comparison framework involved the following analyses,
considering the entire basin and 11 wetland complexes (seven areas
with available subregional estimates, and four additional areas of in-
terest without subregional estimates; Fig. 1):

@® Annual maximum and minimum inundation estimates for each of the
18 basin-scale datasets (section 3.1);

@ Basin-scale, long-term maximum and minimum inundation estimates
for each of the 18 basin-scale datasets (section 3.1);

@ Long-term maximum and minimum inundation estimates for each of
the 18 basin-scale and 11 subregional datasets (section 3.2);

@ Comparison between basin-scale and subregional datasets with
temporal (nRMSD and Pearson correlation) and spatial (Fit metric)
assessment (section 3.2);

@ Assessment of spatial agreement among the 18 basin-scale datasets at
1 km, for both long-term maximum and minimum inundation maps
(section 3.3);

@ Estimation of long-term maximum inundation for two classes of
wetlands for the entire basin: (i) medium to large river floodplains
and (ii) interfluvial wetlands and small floodplains (section 3.4).

The long-term maximum and minimum inundation extents were
computed for each dataset as the area of all pixels that were inundated at
least once in the whole monthly time series, for the maximum, and as
those pixels that were always inundated, for the minimum. We stress
that analyzing long-term changes in inundation patterns is beyond the
scope of this study, and thus we assumed stationarity in our comparisons
of long-term maximum and minimum inundation extents from different
time-periods.

The agreement of all basin-scale, high-resolution datasets (i.e., all
basin-scale ones except for THMB, GIEMS-2, SWAMPS and WAD2M,
which have a coarse resolution between 9 and 25 km) was assessed for
long-term maximum and minimum inundation at 1 km resolution,
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which is the resolution of SWAF-HR, the coarsest resolution among the
high-resolution datasets. For each 1 km pixel, the total number of
datasets agreeing that it was inundated (either for maximum or mini-
mum extent) was computed, following Trigg et al. (2016). Given the size
of the Amazon basin, a 1 km resolution was considered adequate for the
analysis. The analysis was done by aggregating all datasets to 1 km, and
considering that a 1 km pixel is flooded if more than 50% of its area is
flooded (following Hamilton et al., 2002). A sensitivity test was per-
formed using a 25% threshold and led to similar conclusions at the
whole basin scale (Fig. S1).

The basin-scale and four additional subregional datasets were
compared to seven subregional ones, which were used as independent
validation datasets, and cover the following sites: Curuai (Arnesen et al.,
2013), Uatuma (de Resende et al., 2019), Janauaca (Pinel et al., 2019),
Mamiraud (Ferreira-Ferreira et al., 2015), Pacaya-Samiria (Jensen et al.,
2018), Llanos de Moxos MODIS (Ovando et al., 2016) and lower Amazon
River (Park and Latrubesse, 2019). Varying degrees of validation exer-
cises were performed for these validation datasets, with some being
extensively validated with airborne videography (Hess et al., 2003) or
local surveys (Arnesen et al., 2013; Ferreira-Ferreira et al., 2015; Jensen
etal., 2018; de Resende et al., 2019), while others were assessed through
comparisons with other datasets (Pinel et al., 2019), or visually
inspected, as in the large domains of the Llanos de Moxos (Ovando et al.,

2016) and lower Amazon River (Park and Latrubesse, 2019) subregional
datasets. The four additional subregional datasets are: Curuai
LISFLOOD-FP model (Rudorff et al., 2014), Janauaca hydrological
model (Bonnet et al., 2017), Janauaca TELEMAC-2D model (Pinel et al.,
2019), and Llanos de Moxos ALOS-PALSAR (Ovando et al., 2016).

To use the subregional studies to assess the accuracy of the datasets
covering broader areas, the basin-scale and four additional subregional
datasets were compared to the subregional validation datasets at
monthly temporal resolution, considering the total inundated area per
wetland area (i.e., the whole Curuai Lake domain, the whole Uatuma
floodplain, and so forth). The polygons of each wetland area, which
were used to extract the information from the basin-scale datasets, were
delineated as a 1-km buffer around the maximum inundated area, ac-
cording to each subregional dataset. For the four areas of interest
without subregional datasets (Amazon mainstem and Purus floodplains,
and Roraima and Negro wetlands), the polygons were created consid-
ering the maximum lateral extent in accordance with the MERIT DEM
(Yamazaki et al., 2017) and ESA-CCI land cover for savannas. The time
series were compared with Pearson linear correlation (R) and the
normalized root mean square deviation (nRMSD), computed as the
RMSD between a given inundation map and the subregional validation
map (i.e., the individual wetland complexes) divided by the subregional
long-term average inundation. The term ‘deviation’ was preferred over
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‘error’ to stress the uncertainties inherent to all datasets, for both basin
and subregional scales, although those derived for an individual wetland
complex are considered as superior in accuracy for having a more
dedicated data processing for that particular area, and being validated
with ground surveys in some cases.

The ability of a particular dataset to estimate the local spatial pat-
terns at maximum inundation was assessed with the Fit metric (Bates
and De Roo, 2000), which has been successfully applied to compare
inundation datasets (Bernhofen et al., 2018), and is computed as:

. ANB
Fit = 100% AUB (€D)]
Where A and B are the subregional validation dataset estimates (e.g., the
subregional map that corresponds to maximum inundation) and the
basin-scale maximum inundation maps.

To assess different wetland environments, we differentiate medium
to large river floodplains from interfluvial wetlands and small flood-
plains. An estimation of the total flooded area of large river floodplains
was computed, considering river reaches with upstream drainage area
larger than 1000 kmz, and a buffer mask around the river reaches (mask
presented in Fig. 1). The buffer was defined based on the Hydrosheds
drainage network (Lehner and Grill, 2013), segmented into 15 km-long
reaches as in Siqueira et al. (2018). The buffer was proportional to the
local reach drainage area and further manually adjusted to include the
maximum floodplain lateral extent, as estimated from a visual inspec-
tion of the MERIT DEM (Yamazaki et al., 2017) and the three basin-scale
SAR-based datasets (Hess, Chapman and Rosenqvist datasets). Buffer
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values varied from 4 km in upper reaches to 150 km on the Amazon
mainstem close to the Mamiraua Reserve. Estimating floodplain total
inundated area is relevant to differentiate the Amazon riverine fringing
floodplains from non-floodplain wetlands (here referred to as interflu-
vial wetlands).

Finally, in order to assess the current capabilities of basin-scale
mapping of inundation dynamics at high spatial and temporal resolu-
tion, a further assessment of the four high-resolution dynamic datasets
(GIEMS-D3, CaMa-Flood, SWAF-HR and MGB) at their native resolu-
tions was performed by computing their long-term flood frequency for
the entire basin.

3. Results and discussion
3.1. How much inundation is estimated to occur in the Amazon basin?

3.1.1. Overall assessment

Comparisons among the various estimates of inundation area can
begin with the maximum and minimum inundated area across the entire
Amazon basin. We found wide variation in the annual maximum and
minimum inundation estimates for the entire basin scale (Fig. 5), as well
as the long-term maxima and minima (Fig. 6 and Table 2). The annual
maximum inundation area represents the total area subject to inunda-
tion at some point over the year, whereas the annual minimum inun-
dation area represents the area that remained inundated all year. SAR
estimates, especially those based on L-band sensors and those having
undergone validation (i.e., the Hess et al. (2003) dataset), are assumed
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Table 2
Basin-scale, long-term minimum and maximum inundation estimates for 18
datasets.

Dataset Minimum Maximum
(km?) (km?)
Multiple datasets at coarse GIEMS-2 45,800 486,600
resolution SWAMPS 157,400 491,100
WAD2M 225,500 707,900
Multiple datasets at high GIEMS-D3 116,600 500,700
resolution CIFOR - 872,700
ESA-CCI - 267,400
GIEMS-D15 157,700 545,400
GLWD - 481,200
SWAF-HR 53,200 630,900
Hydrological model THMB 65,200 450,800
CaMa- 188,100 576,700
Flood
MGB 83,600 600,900
Optical sensor G3WBM - 98,500
GLAD 25,700 187,600
GSWO 37,000 128,500
Synthetic Aperture Radar Hess 284,200 633,500
Chapman 91,200 506,400
Rosenqvist 42,400 659,100

to be the most accurate given their high spatial resolution and capability
of mapping flooded areas under dense vegetation canopies and cloud
cover. Given the lack of ground validation for most basin-scale datasets,
we assess their accuracy by comparing them to subregional validation
datasets in section 3.2.

By computing means and standard deviations of the long-term
maximum area subject to inundation by type of data (Table 2), we
obtain the following values: 138,200 + 45,300 km? (mean + S.D.) for
optical, 533,500 + 217,800 km? for multiple datasets at high resolution,
579,100 + 108,900 km? for those at coarse resolution, 542,800 +
80,600 km? for hydrological models, and 599,700 + 81,800 km? for
SAR. The mean area for optical-based datasets is thus around 23% of the
SAR-based estimate. If we assume that the ensemble of datasets could be
a proxy of inundation uncertainty in the Amazon basin, and neglecting
the optical and land cover-based data (G3WBM, GLAD, GSWO and ESA-
CCI) and CIFOR datasets, given their lower capability to map inundation
as discussed below, 13 datasets are left, yielding an estimation for the

10

long-term maximum inundation of 559,300 = 81,100 km?. This value is
around 40,000 km? lower than the mean of the maximum inundation
area from the three SAR datasets. The mean of the maximum inundation
area considering all 18 datasets is 490,300 = 204,800 km?2. Compared to
the maximum inundation area, the relative deviation among available
estimates is higher for the long-term minimum area inundated
125,900 = 77,600 km? (mean = S.D.), with a coefficient of variation
of 0.62, for the 12 basin-scale datasets that provide minimum area, and
139,300 + 127,800 km? for the three SAR-based datasets, with a coef-
ficient of variation of 0.92.

None of the datasets can map small, narrow floodplains or riparian
zones, for which only simple calculations are currently available (e.g.,
Junk et al., 1993), and whose total area can only be estimated through
statistical extrapolation of observable rivers. These small zones
contribute to the overall uncertainties of the inundation estimates. For
instance, a wetland mask developed by Hess et al. (2015) for SAR-based
wetland classification yielded a basin-scale estimation of wetland area
including the smallest floodplains of 840,000 km?. This estimate is much
larger than the largest long-term maximum inundated area obtained
with SAR data (659,100 km? with Rosengvist’s dataset). In section 3.2, it
will be shown that almost all datasets tend to underestimate the
maximum inundation, when compared to subregional ones. The two
SAR-based datasets with highest accuracy underestimate maximum
inundation by 9% (Rosenqvist) and 13% (Hess), based on the average
difference between these and the subregional estimates for the seven
locations with available data. If this holds true for the whole basin, the
basin-scale maximum inundation would be around 10% higher.

3.1.2. Estimates based on SAR datasets

At the basin scale, SAR-based estimates of maximum annual inun-
dation range from 424,600 km? (Rosengvist) to 633,500 km? (Hess), and
minimum inundation from 53,900 km? (Rosengvist) to 284,200 km?
(Hess), as shown in Fig. 5. By considering long-term maximum inun-
dation (i.e., all pixels that were inundated at least once in the entire
available time series), instead of annual maxima, the SAR-based esti-
mates range from 506,400 km? (Chapman) to 659,100 km? (Rosengqvist)
for the entire basin (Table 2). The minima vary from 42,400 km?
(Rosengqvist) to 284,200 km? (Hess). This highlights the large differences
that exist, especially for the minima, usually referred to as the “low-
water period.” Chapman’s dataset, based on the 2006-2011 ALOS-
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PALSAR archive, has a smaller total maximum inundation area than the
other two SAR datasets, as well as a smaller estimate for minimum
inundation in relation to Hess’ estimate, which in turn was developed
from SAR mosaics at two seasons spanning only one year (1995-1996).
Differences among the three datasets may originate from differences in
acquisition dates, interannual and seasonal inundation variability, al-
gorithms, spatial resolutions, or inconsistencies regarding the data
processing. For example, Chapman estimates long-term maxima and
minima based on multiple years, while Hess and Rosenqvist provide
annual values. The calibration uncertainty was also higher for the JERS-
1 data used in Hess’ mapping than in the subsequent satellites (ALOS-
PALSAR and ALOS-2 PALSAR-2) (Hess et al., 2003). For long-term
minimum inundation, the interannual variability seems to be a minor
factor since the Hess dataset, which estimated a larger figure than the
other ones, was developed for a year with minimum water levels higher
than those during Chapman’s acquisition dates, but lower than those
during Rosenqvist’s ones (see Fig. 8 in Rosenqvist et al., 2020). Thus, the
larger minimum inundation extent by Hess et al. (2015) seems to be
more related to algorithm differences (Fig. S2). For the maximum water
levels, Hess’ period was associated with an average year, below the
water levels in Chapman and Rosenqvist, and this may explain the
relatively higher long-term maximum inundation by Rosenqvist, while
Chapman’s smaller values are likely due to algorithm differences. For
the western basin, Hess’ estimate is based on JERS-1 data mostly from
June 1996 (Hess et al., 2015), which likely missed some of the inun-
dation in this region as in the Pacaya-Samiria region, and may partly
explain the larger value by Rosenqvist (see section 3.2.2). Spatial reso-
lution is also an important factor: Rosenqvist’s resolution is 50 m, and it
is capable of representing smaller floodplains than the other two
(Fig. S3), as will be discussed in section 3.2.2.

3.1.3. Assessment of other datasets

The coarse-resolution datasets and hydrologic models generally es-
timate smaller annual maximum inundation areas in comparison to the
SAR datasets, with the exception of SWAF-HR, WAD2M and CaMa-Flood
that yield similar annual maximum inundation. This results from the low
sensitivity of the passive microwave signal, which underlies most
coarse-resolution datasets, to detect small fractional flooded areas
within the grid cells, flooding under particularly dense vegetation, and
flooding of short duration (i.e., less than one month of consecutive
inundation) (Hamilton et al., 2002). The higher sensitivity of the SWAF-
HR may be associated with the use of L-band passive microwave emis-
sion. Given the long-term data availability from dynamic, coarse-
resolution datasets, their long-term mean estimates are closer to the
SAR ones, varying from 450,800 km? (THMB) to 630,900 km? (SWAF-
HR), when compared to the annual scale analysis. Therefore, no clear
relationship between long-term minimum or maximum inundation and
the spatial resolution of the datasets is observed (Fig. 6), which could be
expected when analyzing the annual values (Fig. 5).

As expected, the optical-based datasets (GSWO, G3WBM, GLAD)
cannot map inundation under dense vegetation canopies and thus lead
to much lower estimates of basin-wide inundation area (Aires et al.,
2018; Parrens et al., 2017). Similarly, ESA-CCI, which is based on land
cover classification of optical imagery with the addition of SAR inputs
for delineation of wetland areas, yields low basin-wide inundation areas,
although relatively higher than the purely optical-based estimates. In
contrast, the multi-satellite-based CIFOR provides an unrealistically
large estimate of maximum inundation area (872,700 km?), which may
be due to overestimation of soil moisture by the topographic index used.
This method is sensitive to rainfall overestimation, which may have
occurred in 2011, the year for which CIFOR was developed (Gumbricht
et al., 2017). While the dataset does represent well the spatial extent of
peatlands across the Pacaya-Samiria region (Gumbricht et al., 2017), its
estimation of widespread inundation across the basin has limitations to
represent the large Amazon river floodplains, especially the forested
ones, which are classified as “swamps (including bogs)” by this dataset
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together with extensive interfluvial areas (Fig. S4).

3.2. How much inundation is estimated to occur in individual wetland
regions?

3.2.1. Overall assessment

The 18 basin-scale inundation datasets were compared with the 11
subregional ones through analysis of long-term means of annual
maximum inundated areas (Table 3), long-term means of annual mini-
mum areas (Supplementary Table S3), and multiple comparison metrics
(Supplementary Table S4). The subregional datasets, covering individ-
ual wetland complexes, are considered as independent validation data-
sets, given the ground validation performed for most of them, as well as
the use of a region-specific classification, and the often higher spatial
resolution (e.g., 12.5 m for some based on ALOS-PALSAR imagery).

The Amazon River floodplains (from Iquitos to Gurupd) and the
Llanos de Moxos regions are the largest Amazon wetland complexes:
106,800 + 25,800 km? and 113,500 + 53,400 km?, respectively when
considering the three SAR-based datasets, and 94,100 + 32,500 km? and
85,300 + 52,400 km? when considering all 18 basin-scale datasets.
Besides these two areas, the third largest Amazon wetland region is
Pacaya-Samiria, with 29,700 + 20,600 km? (all datasets) and 40,000 +
4200 km? (SAR datasets).

The comparison of the long-term means of annual maximum and
minimum observed inundation over the available time periods indicates
differences between basin-scale datasets and the subregional validation
datasets. Overall, the subregional datasets had a larger maximum
inundation extent than that estimated for the subregion from the basin-
scale datasets. The underestimation by the basin-scale ones varied from
49% for the Pacaya-Samiria region to 5% for the lower Amazon River
floodplain. Only three datasets overestimated the maximum extent of
inundation: GIEMS-D3, GIEMS-D15 and GLWD. The basin-scale, SAR-
based ones (Hess, Chapman and Rosenqvist) underestimated the
maximum extent in the regions represented by all subregional datasets,
except Rosenqvist for Janauaca Lake, and Hess for the Llanos de Moxos
region. This is likely related to the higher resolution of many of the
subregional datasets (e.g., 12.5 m original and 25 m final resolution for
the Uatuma ALOS-PALSAR classification by de Resende et al., 2019),
differences in image acquisition period, and fine-tuning that may occur
with dedicated processing for a particular region.

To investigate the depiction of seasonal patterns of inundation by the
various datasets, we assessed the correlation between the time series of
absolute inundated areas from the dynamic ones and the estimates for
individual wetland complexes (Table S3). Overall, all datasets agreed
well (average Pearson correlation larger than 0.63 for the four wetland
complexes with available time series), showing a similar depiction of the
inundation seasonality. However, their ability to monitor high-
resolution flood frequency is limited, as will be further discussed in
section 4. A visual comparison of the time series (Fig. S6) shows
agreement on seasonal timing of flooding and drainage, but disagree-
ment in the extent of inundation. In particular, two datasets have a small
overall annual amplitude (SWAMPS and WAD2M).

Overall, four datasets had the best overall representation of spatial
patterns in inundation (Fit metric; see Eq. (1)), as analyzed at 1 km pixel
resolution, in comparison to the subregional validation datasets: Hess,
GLWD and the two hydrodynamic models (MGB and CaMa-Flood),
which were associated with average Fit metric between 0.64 and 0.67
(Table S3). While hydrologic models such as MGB, CaMa-Flood and
THMB have a satisfactory agreement basin wide, they are unable to
represent wetlands not primarily inundated by rivers (Fleischmann
et al.,, 2020; Zhou et al., 2021). For example, the Llanos de Moxos
inundation is underestimated by both CaMa-Flood and MGB with low Fit
metric values (0.19-0.28; Table S3). This is expected for interfluvial
wetlands such as Llanos de Moxos and Roraima, where much of the
flooding is caused by poor drainage of local rainfall and tends to be
shallower, as opposed to overflow of large rivers onto adjacent
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Long-term maximum inundation areas (km?) for the 11 wetland complexes (up to three subregional datasets per complex) and the 18 basin-scale datasets. The
subregional values refer to the following datasets, in this order (semicolon-separated values relate to areas with more than one dataset available): Curuai - ALOS
(Arnesen et al., 2013) and LISFLOOD-FP model (Rudorff et al., 2014); Uatuma - ALOS (de Resende et al., 2019); Janauaca - ALOS (Pinel et al., 2019), hydrologic model
(Bonnet et al., 2017) and TELEMAC-2D model (Pinel et al., 2019); Mamiraud - ALOS (Ferreira-Ferreira et al., 2015); Pacaya-Samiria - ALOS-2 PALSAR-2 (Jensen et al.,
2018); Llanos de Moxos - MODIS (Ovando et al., 2016) and ALOS (Ovando et al., 2016); and Lower Amazon River - MODIS (Park and Latrubesse, 2019). Average,
standard deviation (S.D.) and coefficient of variation (CV) are presented for each area in the last rows.

Dataset Curuai Uatuma Janauaca Mamiraua Pacaya- Llanos de Lower Amazon Purus Roraima Negro
Samiria Moxos Amazon mainstem savannas campinas and
campinaranas
Subregional ~ 4162; 1471 404; 336; 4476 57,913 125,422; 56,722 - - - -
3720 176 133,470
Multiple GIEMS-2 3080 984 623 3344 23,344 156,176 79,871 116,379 7208 7173 12,237
datasets at SWAMPS 3359 722 280 1131 9929 88,753 58,626 72,468 5618 4970 8819
coarse WAD2M 681 243 166 888 42,635 102,780 29,276 49,261 6698 3173 15,450
resolution
Multiple GIEMS-D3 4643 2732 505 3569 11,562 150,285 92,908 127,552 9045 12,355 15,123
datasets at CIFOR 3796 994 177 1714 52,590 116,201 43,509 86,301 10,844 3728 20,712
high ESA-CCI 3236 855 260 3045 28,727 39,795 37,475 84,803 8883 510 12,623
resolution GIEMS-D15 4635 2681 416 2444 44,536 117,979 86,123 127,150 11,186 8129 14,854
GLWD 4275 2267 535 4259 79,124 40,661 67,746 140,921 14,840 1048 95
SWAF-HR 4439 2199 388 3205 16,900 159,712 69,539 110,468 10,785 18,146 15,375
Hydrological THMB 2883 554 164 2840 27,748 52,693 39,193 89,658 19,733 4307 3640
model CaMa- 4246 1613 534 3208 34,096 80,725 63,963 118,577 20,947 3454 6560
Flood
MGB 4098 1549 474 3750 33,344 21,757 61,997 115,047 20,394 240 3224
Optical sensors G3WBM 2732 628 135 795 2694 9564 27,451 37,718 2351 352 1238
GLAD 3479 832 204 1141 4196 38,897 36,930 53,121 3903 3495 3885
GSWO 3163 675 150 962 3637 19,240 31,191 44,731 2982 1442 1880
Synthetic Chapman 2796 934 184 2694 24,001 73,710 39,677 77,632 12,499 4077 5935
Aperture Hess 3996 1045 209 3985 39,741 174,198 52,156 115,822 15,155 8950 15,758
Radar Rosenqvist 3055 1238 446 4362 56,160 92,693 55,262 126,806 20,738 1867 9935
Average 3477 1264 325 2630 29,720 85,323 54,050 94,134 11,323 4856 9297
S.D. 949 748 163 1226 20,591 52,387 19,956 32,503 6185 4666 6201
Ccv 27% 59% 50% 47% 69% 61% 37% 35% 55% 96% 67%

floodplains. The four alternative subregional datasets assessed here -
three hydrological models (one for Curuai and two for Janauacd) and
one classification of ALOS-PALSAR data for the Llanos de Moxos area -
were generally better or similar to some of the best-performing basin-
scale ones, as could be expected given their fine tuning for the specific
areas, which often includes local topographic surveys.

Some of the datasets merging multiple data sources overestimated
the inundation area of individual wetland complexes the most, espe-
cially GIEMS-D15, GIEMS-D3 and GLWD. Furthermore, CIFOR was
originally designed for peatland mapping in the tropics, and generally
overestimates inundation, suggesting a widespread distribution of wet-
lands along interfluvial terraces across the whole basin that may include
areas of poorly drained soils lacking surface water. For the individual
wetland complexes, however, CIFOR generally underestimated inun-
dation and had a poor representation of spatial patterns of inundation
(low Fit metric). WAD2M underestimated the maximum inundation the
most, which is understandable given its removal of open water areas and
because its main inputs (CIFOR and SWAMPS) also underestimated
inundated areas as indicated by the subregional validation datasets.

3.2.2. Individual inundation patterns based on SAR data

Regarding the maximum inundation extent, the Janauacé case pro-
vides a representative example to understand the differences among
multiple L-band SAR datasets: these estimated total inundated area as
209 km?, 184 km? and 446 km? for Hess, Chapman and Rosenqvist,
respectively, in contrast to 404 km? with the subregional ALOS-PALSAR-
based dataset (12.5 m resolution; Pinel et al., 2019). Part of these dif-
ferences occur because of interannual variability, but other factors such
as spatial resolution and algorithm differences seem relevant. Rose-
nqvist led to a more consistent estimation of the spatial inundation
extent in terms of maximum inundation (Table 3) and inundation spatial
patterns (Fit metric; Table S3), which can be a consequence of its higher
spatial resolution (50 m) in contrast to the other two (90 m; Fig. S3).
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Overall, Rosenqvist provided the largest inundation extent among SAR
datasets across all areas along the Amazon mainstem floodplain, except
for the Curuai floodplain and the savanna wetlands, as well as the closest
agreement with subregional validation datasets (—9% + 13%; average
+ S.D.). Hess estimated the largest inundation area in the wetlands
associated with savannas (Llanos de Moxos and Roraima) and campinas
and campinaranas (Negro). However, Hess’ estimate is 39% larger than
the subregional validation dataset for Llanos de Moxos, while the other
two SAR estimates are lower (—26% and — 41% for Chapman and
Rosengqvist, respectively).

One important question remains about the low-water period, as
discussed in the previous section for the basin-scale analysis. Hess sug-
gests much more inundation for this period for the Amazon mainstem
floodplains (54,500 km?), mainly for the upstream forested reaches, and
for the whole basin in general (284,200 kmz), than recent estimates with
ALOS (28,500 and 91,200 km?) and ALOS-2 data (19,500 and 42,400
km?). An assessment with the subregional datasets along the Amazon
floodplain suggests that Hess overestimates the minimum extent for
Curuai, Mamiraua and lower Amazon River, and is accurate for the
Janauaca floodplain lake. Rosenqvist generally underestimates the
minimum inundation. For instance, for the Mamiraua dataset, the
minimum extent (i.e., permanently flooded areas) sums up to 715 km?,
which is increased to 1545 km? if considering all pixels flooded for more
than 295 days per year. For this area, the SAR estimates are 1756 km?
(Hess), 866 km? (Chapman) and 422 km? (Rosengvist). Overall, this
suggests that the actual value of minimum inundation across the central
Amazon floodplains is somewhere between the Hess and Rosenqvist
estimates.

3.2.3. Challenges over floodable savannas, campinas and campinaranas
Large discrepancies are observed for the Roraima and Negro wet-

lands. Roraima wetlands are small river floodplains interspersed with

open savannas subject to flooding, which can be identified by optical
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data. In addition, the typical timing of high and low water in the Ror-
aima region coincides approximately with the JERS-1 dual-season mo-
saics that were designed to reflect the seasonality of the central Amazon
River floodplain (Hamilton et al., 2002). For these reasons, the JERS-1-
based dataset by Hess et al. (2015) seems to satisfactorily represent most
of the Roraima wetlands. However, it misses some small-scale riparian
forests, given its 90 m spatial resolution and snapshot coverage that
likely missed flooding events on smaller, flashier rivers (Fig. S5). Thus,
the maximum inundation is likely higher than the Hess estimate (8900
km?), which in turn is larger than the other ones based on SAR
(1900-4100 km?). The only dataset to estimate a higher value is the
coarse SWAF-HR (18,100 km?), which is similar to the value previously
estimated by Hamilton et al. (2002) (16,500 kmz), also with coarse data
(SMMR passive microwave), though a part of the discrepancy may be
due to interannual variability. More studies are necessary for this area to
understand its actual inundation extent and dynamics. Similarly, the
inundation estimates in the Negro interfluvial areas are subject to large
uncertainty, with the long-term maximum inundation varying between
95 (GLWD) and 20,700 km? (CIFOR), considering all basin-scale data-
sets. SAR-based estimates were between 5900 and 15,800 km?. In
contrast, for the Pacaya-Samiria interfluvial area, which includes a large
complex of forested wetlands, peatlands and palm swamps, the dis-
crepancies are smaller than for the other interfluvial regions, although
still considerable. The basin-scale SAR ranged between 24,000 km?
(Chapman) and 56,200 km? (Rosenqvist), with the subregional
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validation dataset yielding 57,900 km?. The good agreement between
Rosengvist and the subregional dataset was already reported by Rose-
nqvist et al. (2020).

3.3. How much do the datasets agree on the spatial distribution of
inundation?

Agreement maps of the high resolution datasets (< 1 km spatial
resolution) were developed for both long-term maximum (14 datasets
available) and minimum inundation areas (10 datasets), based on the
number of inundation datasets coinciding over a 1 km pixel (Figs. 7 and
8 and their categorization for specific regions in Fig. 9). Overall, 31% of
the Amazon lowlands area (i.e., 1.59 x 10° km? out of 5.11 x 10° km?)
has been estimated as subject to inundation by at least one dataset
(bottom left panel, Fig. 7). Based on the agreement between two data-
sets, this value decreases to 948,300 krnz, which is larger than the value
estimated when there is agreement among four datasets (553,200 km?).
This latter estimate is more similar to the average maximum inundation
as estimated by the ensemble of datasets (559,300 km?) and the three
SAR-based ones (599,700 kmz). Furthermore, there is a lower agreement
for the minimum inundation than for the maximum inundation among
individual regions (Fig. 9).

For specific regions, a high degree of agreement for floodplains
dominated by open water areas is evident for the lower Amazon River
reaches, followed by the forested floodplains fringing large rivers,

Number of datasets agreeing at 1 km

IR EEEE High
1234567 891011121314

Low

12 4 6 8 10 12 14

Total flooded area (x10% km?)

Number of datasets agreeing at 1 km

Fig. 7. Agreement for maximum inundation area among 14 basin-scale datasets at high resolution (<1 km spatial resolution): G3WBM, ESA-CCI, GLAD, GSWO,
GLWD, CIFOR, GIEMS-D15, GIEMS-D3, Chapman, Hess, Rosenqvist, SWAF-HR, CaMa-Flood and MGB. A given pixel of a dataset with resolution higher than 1 km
that had more than 50% of flooding at the maximum inundation extent is classified as inundated.
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Fig. 8. Agreement for minimum inundation area among 10 basin-scale datasets at high resolution (<1 km spatial resolution): GIEMS-D15, Chapman, Hess, Rose-
nqvist, SWAF-HR, CaMa-Flood, MGB, GIEMS-D3, GSWO and GLAD. A given pixel of a dataset with resolution higher than 1 km that had more than 50% of flooding at

the minimum inundation extent is classified as inundated.

especially along the Amazon mainstem, Purus and Negro rivers. The
generally higher accuracies over central Amazon floodplains may also
be related to the attention that dataset developers have devoted to it, in
contrast to other regions. Furthermore, the maximum floodplain extent
can be somewhat delineated with terrain elevation data (i.e., DEMs)
using algorithms such as HAND (Renno et al., 2008), which helps to
explain the relatively small disagreement for floodplains fringing the
largest rivers, and is particularly effective with vegetation bias-removed
DEMs (O’Loughlin et al., 2016; Yamazaki et al., 2017). The best
agreement (for both maximum and minimum inundation extent)
occurred over the Curuai floodplain along the lower Amazon mainstem,
with 37% of its area being estimated as subject to inundation by all 14
datasets (Fig. 9a). An agreement among all 14 datasets occurred, in part
(i.e., more than 10% of the wetland area), for the central Amazon
floodplains (Curuai, Uatuma, Janauacd and lower Amazon River)
because of their relatively large fractions of open water areas.

In the interfluvial wetlands (Negro campinas and campinaranas,
Roraima savannas, Pacaya-Samiria and Llanos de Moxos), the inunda-
tion patterns are less dependent on riverine overflow and more depen-
dent on local rainfall, making them less predictable (Hess et al., 2003).
The disagreement for both maximum and minimum inundation area is
the largest across all regions, e.g., 65-78% of their flooded areas were
mapped by only one model for the minimum inundation (Fig. 9b). The
Llanos de Moxos is conspicuous as a region of particular disagreement,
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perhaps because flooding is mainly shallow and in vegetated areas
(mainly savannas/grasslands), and is highly variable from year to year.
In general, the smaller the flooded patches the higher the challenge to
map them, not only because of resolution but also due to small-scale
variation in topography. Similar disagreement occurred in other inter-
fluvial wetlands such as the Negro and Roraima ones, and would be
expected elsewhere in savanna wetlands of South America (e.g., Pan-
tanal, Llanos de Orinoco and Bananal Island; Hamilton et al., 2002). The
poor agreement over interfluvial areas, however, may also partly reflect
the longer history of study of Amazon mainstem floodplains, for which
there are river gage records that reflect floodplain water levels and
inundation, while more remote areas such as the Negro interfluvial areas
and Pacaya-Samiria regions are more challenging to represent with a
few gages, and have received less attention. The challenges in estimating
inundation over interfluvial areas also affect the SAR-based datasets,
which disagreed the most over these regions (see section 3.5 and dis-
cussion in Rosenqvist et al., 2020).

3.4. Quantifying the inundation extent of different wetland types

Amazon wetlands include a myriad of ecosystems varying in geo-
morphology, hydrology, and vegetation cover. The classification system
proposed by Junk et al. (2011) differentiated Amazon wetlands ac-
cording to amplitude of water level. Wetland types ranged from the
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Fig. 9. Degree of agreement for (a) maximum and (b) minimum inundation area for 10 individual wetland complexes, based on the 1 km agreement map (Figs. 7 and
8). The percentage values indicate the fraction of each area where a given number of datasets agreed that it was flooded, e.g., 14 models agreed that 37% of the
Curuai area was flooded in the maximum inundation extent. The class with number 1 indicates the fraction of the area that only one dataset estimated as being
inundated. The class “others” refers to all classes that had less than 5% of pixels estimated as being inundated.

forested swamps with stable water levels to river floodplains with
oscillating water levels, and to interfluvial areas with small seasonal
water level amplitude due to the main contribution of local rainfall and
runoff (Fleischmann et al., 2020; Junk et al., 2011; Ovando et al., 2018).

A simpler yet hydrologically meaningful classification is the cate-
gorization into river floodplains and interfluvial wetlands adopted here,
since the former typically have a greater hydrological connection to the
main river and thus are subject to a different control of inundation area
by river levels (Reis et al., 2019). We performed a quantitative analysis
of the inundation area in these two main hydrological classes. All pixels
considered flooded by at least two datasets, based on the 1 km agree-
ment map for maximum inundation extent (Fig. 7), are presented in
Fig. 10. Overall, the medium to large river floodplains (upstream
drainage area > 1000 km?) have a larger inundation extent than the
category with small floodplains and interfluvial areas. An average total
area subject to inundation of 317,800 + 84,400 km? (average + S.D.;
median equal to 323,700 kmz) was obtained for the medium to large
floodplains, not including the optical and land cover datasets (G3WBM,
GLAD, GSWO and ESA-CCI). A greater area for large floodplains was
estimated by all except for CIFOR, SWAMPS and WAD2M. Two datasets
estimated a similar value between the two classes (Chapman and
GIEMS-2), which may be related to an overestimation of basin-scale
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isolated flooded patches.

Large floodplains fringing the main rivers, especially along the
Amazon River, have been largely addressed by previous studies (Table 1
and Table S1). However, large river floodplains are also present in less
studied reaches, e.g., in the upper Napo and I¢a rivers in northwest
Amazon basin, and upper Xingu in the southeastern portion (see location
in Fig. 1). These upper reaches are subject to more sporadic, flashy river
hydrological regimes (Hamilton et al., 2007), which make their inun-
dation area difficult to map with current datasets of relatively low
temporal resolution. In our analysis, the non-floodplain areas include
mainly the large interfluvial areas (black rectangles in Fig. 10), small
river floodplains that are challenging to detect with currently available
datasets, and some reservoirs, such as Balbina reservoir on the Uatuma
River.

Besides the central Amazon floodplains, which have been widely
studied, other wetland complexes require more attention, such as the
Negro and Roraima interfluvial areas; the latter was only assessed by a
single study to our knowledge (Hamilton et al., 2002). The inundation
mapping of the Pacaya-Samiria region in the upper Amazon has received
scientific attention recently (Jensen et al., 2018; Rodriguez-Alvarez
et al., 2019), partially because of the region’s role as a carbon sink via
formation of peat (Draper et al.,, 2014; Lahteenoja et al., 2012).
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Fig. 10. Quantification of maximum inundated areas over river floodplains with drainage area larger than 1000 km?, and interfluvial wetlands and small floodplains
(area < 1000 km?) within the Amazon basin. The maximum inundation map depicts all 1 km pixels with at least two datasets agreeing (i.e., a reclassification of
Fig. 7), in order to avoid overestimation caused by pixels with only one dataset classifying them as subject to inundation. The four large areas of interfluvial wetlands
are highlighted with black rectangles (Pacaya-Samiria, Llanos de Moxos, Negro campinas and campinaranas, and Roraima savannas).
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Fig. 11. Amazon basin (< 500 m elevation) agreement maps at 1 km resolution, for maximum inundation and for each type of dataset, considering only the high-
resolution datasets (< 1 km spatial resolution): (a) six datasets based on merging of multiple datasets (GLWD, CIFOR, GIEMS-D3, GIEMS-D15, SWAF-HR, ESA-CCI),
(b) three datasets based on optical sensors (G3WBM, GLAD, GSWO), (c) three datasets based on synthetic aperture radar (Hess, Chapman, Rosenqvist), and (d) two
hydrological models (MGB and CaMa-Flood). The right column graphs present the total inundation area in the Amazon basin for a given number of datasets agreeing,
e.g., the basin area where the two hydrological models (Fig. d) agree to be flooded is 390,900 km?2.
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Regarding open water areas, Melack (2016) reported values ranging
from 64,800 km? (Melack and Hess, 2010) to 72,000 km? (SRTM Water
Body Data) and 92,000 km? (Hansen et al., 2013) for the Amazon basin
(< 500 m in elevation). The three Landsat-based datasets assessed here,
which are mainly capable of detecting open water areas, estimate
98,500 km? (G3WBM), 128,500 km (GSWO) and 187,600 km? (GLAD).

3.5. Limitations in comparing the inundation area datasets

Some of the differences in large-scale inundation mapping high-
lighted by our comparison occur because distinct datasets map temporal
variation in inundation in different ways, varying for example in sensor
type, post processing, and spatial resolution. Fig. 11 shows the agree-
ment maps for maximum inundation for four classes of datasets,
considering the 14 basin-scale high-resolution datasets. Those based on
multiple datasets (GLWD, CIFOR, GIEMS-D3, GIEMS-D15, SWAF-HR)
have the best agreement for the Llanos de Moxos area, and to a
smaller degree, for Pacaya-Samiria, Negro and Roraima wetlands. The L-
band SAR datasets have less overall agreement (Fig. 11c), while the
optical data are mainly applicable to open water areas in the Amazon
mainstem floodplain (Fig. 11b). The 1D hydrological models cannot
represent interfluvial wetlands where flooding is not controlled by river
level and discharge (Fig. 11d).

The different methodologies used to produce each dataset compli-
cate their direct comparison (Rosenqvist et al., 2020), and some meth-
odological differences produce systematic differences and bias among
the data sources included in our comparison. Here we used datasets
covering long-term dynamics (e.g., GIEMS or hydrologic models), short-
term dual-season (e.g., Rosenqvist, spanning four years), and a partic-
ular year (e.g., Hess). Some datasets use alternative approaches to derive
long-term maximum inundation area, such as GIEMS-D15, which
generated estimates by merging 3-year moving-window maximum
values of GIEMS with the GLWD dataset. Therefore, a comparison of all
these datasets must be performed with consideration of their method-
ology. For instance, the comparison of dual-season datasets against
monthly datasets can yield erroneous conclusions, although it has been a
common practice to directly compare such datasets. Some datasets also
consider a “high-water assumption” (Ferreira-Ferreira et al., 2015; Hess
et al., 2003), whereby the high-water maps are forced to contain all
flooded pixels from the low-water map.

In addition to methodological differences, each dataset was devel-
oped for different periods (Table 1), and thus interannual and seasonal
variability accounts for some of the differences among them. To address
this, we performed an annual analysis (Fig. 5), which suggests that the
long-term inundation estimate is fairly stable for each dataset despite
some interannual differences. In fact, the temporal variability of each
dataset is generally smaller than the differences in comparison with the
other estimates. However, the Amazon hydrological cycle has been
shifting over decades (Barichivich et al., 2018; Gloor et al., 2013), and a
recent increase in maximum water levels in the central Amazon suggests
a new hydroclimatic state (Espinoza Villar et al., 2019). Some wetlands
have also been subject to forest loss, and so the detectability of inun-
dation by remote sensing may have increased over time, e.g., major
deforestation has occurred along the lower Amazon River floodplain
(Renod et al., 2011). Similarly, widespread burning might be converting
black-water floodplain forests into savanna vegetation (Flores and
Holmgren, 2021). In addition, in some regions, such as the southern
Amazon, an increase in the dry-season length has been observed, which
is a major climatic constraint for forest sustainability (Fu et al., 2013;
Staver et al., 2011). However, analyzing long-term change in inundation
patterns is beyond the scope of this study, and thus we assumed statio-
narity in our comparison framework.

Another important challenge is to find a common definition of wet-
lands among datasets. Here we focused on inundation extent, however
some datasets (e.g., CIFOR) represent peatland locations instead of
inundated areas, although their areas of peat formation often include

17

Remote Sensing of Environment 278 (2022) 113099

inundated areas. Estimates based on SAR or passive microwave emission
may also be sensitive to saturated soil without standing water above it,
and thus the observed inundation estimates can have some ambiguity.
Hydrologic models provide simulated surface water extent, and we
mapped inundation accounting for pixels with water depth greater than
zero. While hydrologic models have uncertainties related to model
structure (e.g., inadequate representation of inundation processes),
input data (e.g., DEM and climate forcing) and parameterization (e.g.,
soil water capacity and river channel width and depth; assumptions of
level water surfaces between rivers and their floodplains), remote
sensing-based datasets have uncertainties related to spatial and tempo-
ral resolutions (e.g., coarse spatial resolution not capable of detecting
small patches), and detection uncertainty (e.g., dense vegetation can-
opies can obscure passive microwave emission from underlying sur-
faces). Thus, a comparative framework provides an opportunity to
highlight and stress the uncertainties and limitations of each dataset.

Hydrologic models currently available at the Amazon basin scale are
one-dimensional, and thus are capable of simulating flooding mainly
along river floodplains, as corroborated by various validation exercises
in the Amazon that have relied on the Hess, GIEMS and SWAF-HR
datasets (Fleischmann et al., 2020; Luo et al., 2017; Paiva et al., 2013;
Zhou et al., 2021). These models are also largely dependent upon ac-
curate DEMs, which are still challenging to obtain over tropical forested
floodplains. Furthermore, given that a 500 m elevation mask (Amazon
lowlands) has been used for some SAR datasets (Hess et al., 2015), and
the difficulty of some radar and passive microwave ones to detect
inundation at high elevations due to slope and snow effects, for instance
(Parrens et al., 2017), we have adopted the same 500 m threshold in our
lowland mask to improve the comparability among datasets. However,
even though higher elevation wetlands amount to much less total area
compared to lowland wetlands, understanding their flooding dynamics
is important for some parts of the Amazon basin. Although some data-
sets, especially the hydrological models (MGB, CaMa-Flood and THMB),
are capable of estimating inundation in higher elevation parts of the
basin, in this case uncertainties may also be large given errors in pre-
cipitation (low density of in situ gauges and high rainfall spatial het-
erogeneity) and thus runoff fields over mountainous areas, as well as the
tendency for river flows to vary over short time scales (Espinoza Villar
etal., 2009; Zubieta et al., 2015). Furthermore, the availability of in situ
river discharge measurements for model calibration and validation is
lower in the Andean Amazon (Feng et al., 2020; Wongchuig et al., 2019;
Zubieta et al., 2017).

Our analyses were performed at 1 km resolution and at regional
scales, which avoids geolocation problems that affect analyses at higher
resolutions (e.g., 30 or 90 m). Small disagreements among our estimates
and the values presented in the original publications may also arise from
the use of the WGS84 datum with a geographical coordinate system for
all datasets (except for SWAMPS which was provided in the EASE-Grid
format). Also, the coarse-resolution datasets, especially GIEMS-2 and
SWAMPS with 25 km spatial resolution, can be difficult to compare with
estimates for individual wetland complexes (e.g., Curuai and Janauaca),
since only a few 25-km pixels may be located within the wetland
boundaries.

The quantification of inundation over larger river floodplains
(Fig. 10) is also subject to uncertainties. The maximum floodplain lateral
extent was estimated based on an automatic buffer procedure around
the Hydrosheds drainage network, further manually edited by consid-
ering the three SAR-based, basin-scale datasets and the MERIT DEM-
based topography. Although it captures the basin-scale geomorpholog-
ical differences along major floodplains, some uncertainties remain
regarding the true lateral extent for areas where rain-fed savanna wet-
lands are present (e.g., Llanos de Moxos, Roraima), and where inunda-
tion extends far from the main rivers (e.g., Pacaya-Samiria). For these
areas in particular, we assumed buffer values similar to adjacent up-
stream and downstream floodplains (e.g., the Amazon River down-
stream of Pacaya-Samiria), which is reasonable but should undergo
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future scrutiny, including local ground-based surveys.
4. Perspectives and recommendations

Considerable advances have been achieved in recent decades in the
mapping of inundation extent across the Amazon basin. Here, we have
presented an analysis of 29 inundation datasets for the basin, covering
multiple scales, spatial and temporal resolutions, and data sources. We
showed that large discrepancies persist, and this is especially true at
local scales. Below we present some perspectives and recommendations

(a) Basin-scale flood frequency - average
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for future development of inundation mapping in the world’s largest
river basin.

4.1. Which are the most reliable data sources for inundation mapping in
the Amazon River basin?

At basin scale, the Rosenqvist ALOS-2 PALSAR-2 dataset is available
at 50 m, and shows a good overall agreement with the 90 m Hess one
over the large river floodplains, while the latter seems more accurate for
interfluvial wetlands(e.g., Negro and Roraima). The high agreement is

(b) Basin-scale flood frequency - coefficient of variation
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Fig. 12. Analysis of flood frequency for (a) basin-scale average and (b) coefficient of variation of the long-term flood frequency estimated from four high-resolution
dynamic datasets (GIEMS-D3, SWAF-HR, CaMa-Flood and MGB). (c) The four basin-scale datasets are compared to a subregional validation dataset (i.e., the ALOS-
PALSAR-based classification by Ferreira-Ferreira et al. (2015), displayed in the top left panel) for the Mamiraua Sustainable Development Reserve along the central
Amazon River mainstem (location shown by black outline in figure a).
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observed mainly for the maximum inundation estimates, while for the
minimum inundation area, important disagreements persist and more
studies should be performed to understand them. Overall, the Hess’
dataset has been the Amazon inundation benchmark for many years, and
still provides satisfactory estimates. Detection of inundation by L-band
SAR has a sound theoretical and empirical basis that has been validated
for the Amazon (Rosenqvist et al., 2002; Hess et al., 2003). Optical
datasets with resolution higher than 30 m are available, but detection of
inundation is restricted to non-vegetated wetlands and clear-sky pe-
riods, and is most applicable in the lower Amazon River floodplains.
ALOS-PALSAR at 12.5 m resolution and Sentinel SAR at 10 m resolution
(with C-band and limited vegetation penetration) can be applied to
specific regions. Time series of these datasets can estimate seasonal
variations in inundation, but are limited by the length of the acquisi-
tions. Weekly to monthly, spatially coarser data (25 km) are available
from passive microwave-based datasets such as GIEMS, SWAF and
SWAMPS. Downscaling techniques have improved their spatial resolu-
tion to 90 m (GIEMS-D3) and 1 km (SWAF-HR). Hydrological models (e.
g., CaMa-Flood and MGB) are capable of accurately estimating inun-
dation over river floodplains, and at high temporal resolution depending
on the input rainfall data (e.g., hourly to daily). However, they are still
limited over interfluvial wetlands with less connection with rivers, un-
less they are upgraded for simulating 2D inundation processes and
complex floodplain flow paths (Fleischmann et al., 2020; Yamazaki
et al., 2014).

4.2. What are the current capabilities of flood frequency mapping?

At the basin scale, high-resolution, long-term average flood fre-
quency can be estimated by four of the datasets analyzed here (GIEMS-
D3, SWAF-HR, MGB and CaMa-Flood), with spatial resolutions ranging
from 90 m to 1 km. Although multiple SAR data are currently available
(e.g., Sentinel-1, ALOS-PALSAR and ALOS-2 PALSAR-2), they have a
limited temporal resolution, and we still do not have a flood frequency
dataset of higher spatial resolution (i.e., better than 90 m) for the whole
basin based on SAR. The discrepancies among the available datasets are
notable (Fig. 12). The average of the basin-scale flood frequency shows a
higher agreement for areas with high flood frequency along the lower
Amazon River (Fig. 12a). These are associated with a high proportion of
open water areas, and have lower uncertainty (Fig. 12b). Generally,
there is a smaller variation along floodplains bordering the major rivers
(except for their fringes) than in interfluvial areas, especially in the
Negro and Roraima wetlands (Fig. 12b). Detailed inundation mapping
for the Mamiraua Sustainable Development Reserve in the Amazon
mainstem floodplain (Fig. 12c¢) reinforces the challenges for mapping
local spatio-temporal inundation dynamics. The northern part of the
Mamiraua reserve has a shorter flood frequency in all datasets, while
three of them (SWAF-HR, GIEMS-D3, CaMa-Flood) estimate that large
portions are never flooded. For the southern part, there is some
convergence for areas that are frequently flooded.

4.3. Implications for biogeochemistry, ecology and flood management

The divergent estimates of Amazon inundation extent have major
implications for the quantification of the role of wetlands in global
biogeochemical cycles, ecosystem processes and natural disaster
management.

First, different datasets have been used to quantify the role of
Amazon wetlands in the carbon cycle (Guilhen et al., 2020; Melack et al.,
2004; Richey et al., 2002; Saunois et al., 2020). An intercomparison
assessment of global models forced with different inundation datasets
for the Amazon could provide insights into their sensitivity to the esti-
mated inundation. This would be particularly important for modeled
estimates of methane flux, given the region’s significant contribution to
global methane emissions from natural wetlands (Basso et al., 2021).
Furthermore, for a proper estimation of methane and carbon dioxide
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fluxes, dynamic inundation estimates are necessary; this study shows
that most coarse-resolution dynamic datasets capture relatively well the
seasonality (i.e., the timing of high and low water periods) of annual
flooding at a large scale (but not at the local scales), but the magnitude
of inundation area over time is still associated with significant errors
(Fig. S6).

The understanding of the ecology of Amazon freshwaters has
benefited from advances in remote sensing-based mapping of inunda-
tion. Hydrological variables of interest in relation to wildlife (Alvarenga
etal., 2018; Bodmer et al., 2018) and vegetation distribution (Hess et al.,
2015, 2003) include hydroperiod, floodplain water depth (Arantes et al.,
2013; Fassoni-Andrade et al., 2020), and (lateral) surface water con-
nectivity (Castello, 2008; Duponchelle et al., 2021; Reis et al., 2019,
2019b), and should be better estimated by future datasets. In addition,
many wetland ecosystem studies are performed at the tree stand level (e.
g., floristic inventories) and require high spatial resolution inundation
estimates to perform meaningful spatial analyses accounting for spatial
heterogeneity of wetland vegetation. Furthermore, besides a simple
interfluvial/floodplain categorization of wetlands as performed here
(section 3.4), which is reasonable from a hydrologic perspective,
improving our understanding of the ecology of Amazon freshwater
systems requires accurate mapping of habitats and their diverse vege-
tation types (e.g., grasslands, particular monodominant tree species,
herbaceous plants). For instance, floodplain forest cover has been
positively correlated to fishery yields (Arantes et al., 2018) and fish
abundance (Lobon-Cervia et al., 2015). While this wetland habitat
mapping has already been done by some initiatives at the basin (Hess
etal., 2015, 2003) and subregional scales (Ferreira-Ferreira et al., 2015;
Silva et al., 2013), there is still a need for higher resolution and dynamic
datasets.

Regarding flood monitoring in the context of natural hazard man-
agement, the flood warning systems of regional water authorities in the
basin provide information based on river discharge and water level at
monitoring stations (e.g., Brazil’s Geological Survey SACE system;
<http://sace.cprm.gov.br/amazonas/#>). In addition, there are other
available monitoring and forecasting services that have been developed
for the global scale, such as the Global Flood Detection System (https://
www.gdacs.org/flooddetection/), based on remote sensing, and the
Global Flood Monitoring System (http://flood.umd.edu/) and the
Global Flood Awareness System (https://www.globalfloods.eu/), based
on hydrological modeling. The currently available, basin-scale inunda-
tion datasets are unable to map flood hazard at the detailed resolution
required for flood management applications, especially concerning
urban areas (de Almeida et al., 2018). High-resolution flood mapping
has been achieved using hydraulic modeling based on local surveys of
river bathymetry and floodplain LiDAR DTM, but only for a few specific
sites such as the lower Madeira River (Fleischmann et al., 2021).

4.4. Future opportunities and recommendations

Future satellite missions will provide opportunities for improved
inundation mapping in the Amazon, especially the polarimetric and
interferometric L-band SAR data from the upcoming NASA/ISRO
mission (NISAR), the P-Band BIOMASS mission from ESA, and the Ka-
band Radar Interferometer (KaRIn) swath observations from the forth-
coming SWOT mission (Biancamaria et al., 2016). New inundation
detection technology under development with Global Navigation Sat-
ellite System-Reflectometry (GNSS-R), such as the Cyclone GNSS
(CYGNSS) constellation of GNSS-R satellites, holds promise to provide
higher frequency observations of water level changes (Jensen et al.,
2018; Ruf et al., 2018; Rodriguez-Alvarez et al., 2019). Further studies
with the ALOS-2 PALSAR-2 data also are promising, in order to achieve
new dynamic inundation detection, as well as ongoing assessments of
the accuracy of the newly available high temporal resolution inundation
datasets (e.g., SWAF-HR with 3-day availability). Consistent and upda-
ted validation products of Amazon inundation are required, which could
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be derived from airborne, satellite, or UAV-based LiDAR surveys along
multiple wetlands, in particular for overlooked wetlands such as the
Negro and Roraima floodable environments where measured water
levels in rivers may not adequately predict inundation area. This is
especially important for the minimum inundation extent, which showed
large uncertainties among the multiple datasets.

Comprehensive comparisons among multiple inundation datasets
are scarce in the literature, yet are valuable ways to understand benefits
and limitations of each of them. A few examples include a continental-
scale assessment of flood model hazard maps in Africa (Trigg et al.,
2016) and regional assessment of inundation in floodplains of Nigeria
and Mozambique (Bernhofen et al., 2018), both based on global hy-
drological models. Similar initiatives for other areas worldwide would
be welcome, especially for those that lack consistent flood mapping,
such as the Congo and other large wetland systems in Africa (Papa et al.,
2022). Furthermore, the combination and integration of multiple
inundation datasets present a promising and effective approach (Gum-
bricht et al., 2017; Hu et al., 2017). We recommend that future de-
velopments include optimal data merging approaches, e.g., by
integrating inundation extent into models accounting for water cycle
components with multiple constraints (Meyer Oliveira et al., 2020;
Pellet et al., 2021), and by considering new types of datasets (e.g., GNSS-
R; Jensen et al., 2018). Bias of different datasets could be corrected
based on intercomparisons such as those we present here. For instance,
recent studies have performed inundation bias correction using the Hess
dataset (Aires et al., 2013; Sorribas et al., 2016). However, merging of
different datasets must be performed with caution, in a consistent way,
avoiding double counting of surfaces, as well as missing others: its
success critically depends upon a good understanding of the limitations
and assets of each individual dataset. The optimal combination of
hydrological-hydraulic models with satellite flood maps using tech-
niques such as data assimilation is also a promising alternative at the
basin scale (Wongchuig et al., 2020).

There is a need for the development of more large-scale 2D hydro-
logical model applications, especially for large wetland complexes such
as the Llanos de Moxos and Pacaya-Samiria, to better represent inun-
dation dynamics (Fleischmann et al., 2020). 2D models have been
applied mainly to some local-scale areas in the Amazon mainstem
floodplain (Pinel et al., 2019; Rudorff et al., 2014; Trigg et al., 2009;
Wilson et al., 2007). Furthermore, inundation anomalies are still poorly
understood owing to the lack of ground-based inundation observations
during extreme floods and droughts. Therefore, validation of estimates
for extreme years has usually been performed with river water level data
(in situ or from satellite altimetry) (Silva et al., 2018; Wongchuig et al.,
2019). Future works should address which datasets and methodologies
are the most suitable for mapping extreme events. Furthermore, besides
inundation extent, flood storage (Frappart et al., 2005; Papa et al., 2008;
Schumann et al., 2016; Papa and Frappart, 2021) and water velocity
(Pinel et al., 2019) are necessary hydraulic variables to properly address
multiple environmental studies (e.g., flood monitoring, flood attenua-
tion by floodplains, fish floodplain habitats), but to date have not been
well studied in the Amazon.

Finally, there is a need for better-informed usage of the currently
available inundation datasets by multiple local and regional stake-
holders (e.g., local water authorities, national water agencies), as well as
research communities not close to remote sensing groups. This will only
be achieved through a two-way interaction with these actors and
development of easy-to-access visualization platforms (i.e., investment
in hydroinformatics), as well as training of regional/local user com-
munities. To this end, we have developed a WebGIS platform (https://a
mazon-inundation.herokuapp.com/) to display and provide data
acquisition links for the inundation datasets assessed here, which will be
continuously updated once new datasets are made available. The
interaction with local users would bring important feedback on the
large-scale datasets as well, for instance through citizen science initia-
tives that are ongoing in the Amazon (https://www.amazoniacienciaci
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