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A B S T R A C T   

The Amazon River basin harbors some of the world’s largest wetland complexes, which are of major importance 
for biodiversity, the water cycle and climate, and human activities. Accurate estimates of inundation extent and 
its variations across spatial and temporal scales are therefore fundamental to understand and manage the basin’s 
resources. More than fifty inundation estimates have been generated for this region, yet major differences exist 
among the datasets, and a comprehensive assessment of them is lacking. Here we present an intercomparison of 
29 inundation datasets for the Amazon basin, based on remote sensing only, hydrological modeling, or multi- 
source datasets, with 18 covering the lowland Amazon basin (elevation <500 m, which includes most 
Amazon wetlands), and 11 covering individual wetland complexes (subregional datasets). Spatial resolutions 
range from 12.5 m to 25 km, and temporal resolution from static to monthly, spanning up to a few decades. 
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Overall, 31% of the lowland basin is estimated as subject to inundation by at least one dataset. The long-term 
maximum inundated area across the lowland basin is estimated at 599,700 ± 81,800 km2 if considering the 
three higher quality SAR-based datasets, and 490,300 ± 204,800 km2 if considering all 18 datasets. However, 
even the highest resolution SAR-based dataset underestimates the maximum values for individual wetland 
complexes, suggesting a basin-scale underestimation of ~10%. The minimum inundation extent shows greater 
disagreements among datasets than the maximum extent: 139,300 ± 127,800 km2 for SAR-based ones and 
112,392 ± 79,300 km2 for all datasets. Discrepancies arise from differences among sensors, time periods, dates of 
acquisition, spatial resolution, and data processing algorithms. The median total area subject to inundation in 
medium to large river floodplains (drainage area > 1000 km2) is 323,700 km2. The highest spatial agreement is 
observed for floodplains dominated by open water such as along the lower Amazon River, whereas intermediate 
agreement is found along major vegetated floodplains fringing larger rivers (e.g., Amazon mainstem floodplain). 
Especially large disagreements exist among estimates for interfluvial wetlands (Llanos de Moxos, Pacaya-Samiria, 
Negro, Roraima), where inundation tends to be shallower and more variable in time. Our data intercomparison 

Table 1 
List of 29 studies that mapped inundation over areas ranging from the entire Amazon basin to individual wetland complexes. These data sources were selected based on 
data availability and relevance for this intercomparison. In the case of hydrological models, time resolutions are the values assessed or provided by the models, which 
can be provided at finer time resolution if necessary, since many of them compute flood maps at daily or sub-daily time steps and report time-integrated results. The 
column “Data type” refers to: OS: optical sensor; SAR: synthetic aperture radar; HM: hydrological model; HR: multiple datasets at high resolution; CR: multiple datasets 
at coarse resolution. The column “Type of inundation estimated” has three classes: “All”, meaning both open water and vegetated wetlands, “Open water”, and 
“Wetland only (no open water)”.  

Data 
type 

Dataset name and main mission/ 
model associated (if applicable) 

Spatial 
resolution 

Temporal resolution Time 
period 

Region Type of inundation 
estimated 

Reference 

CR GIEMS-2 25 km Monthly 1992–2015 Basin All Prigent et al., 2020 
CR SWAMPS 25 km Monthly 1992–2020 Basin All Jensen and 

McDonald, 2019 
CR WAD2M 25 km Monthly 2000–2018 Basin Wetland only (no 

open water) 
Zhang et al., 2020 

HR GIEMS-D3 90 m Monthly 1993–2007 Basin All Aires et al., 2017 
HR CIFOR 232 m Static (max inundation) 1950–2000 Basin All Gumbricht et al., 

2017 
HR ESA-CCI 300 m Annual 1992–2015 Basin All Bontemps et al., 

2013 
HR GIEMS-D15 500 m Monthly climatology 1993–2004 Basin All Fluet-Chouinard 

et al., 2015 
HR GLWD 1 km Static 1992–2004 Basin All Lehner and Döll, 

2004 
HR SWAF-HR/SMOS mission 1 km Weekly to monthly 2010–2020 Basin All Parrens et al., 

2019 
HM THMB model 5-min Monthly 1961–2010 Basin All Coe et al., 2008 
HM CaMa-Flood model 500 m Monthly 1980–2014 Basin All Yamazaki et al., 

2011 
HM MGB model 500 m Monthly 1980–2015 Basin All Siqueira et al., 

2018 
HM Bonnet model 180 m Monthly 2006–2019 Janauacá All Bonnet et al., 2017 
HM TELEMAC-2D model 30 m Monthly 2006–2015 Janauacá All Pinel et al., 2019 
HM LISFLOOD-FP model 90 m Monthly 1994–2015 Curuai All Rudorff et al., 

2014 
OS G3WBM/Landsat mission 30 m Static (open water areas) 1990–2010 Basin Open water Yamazaki et al., 

2015 
OS GLAD/Landsat mission 30 m Annual and monthly 

climatology 
1999–2018 Basin Open water Pickens et al., 

2020 
OS GSWO/Landsat mission 30 m Monthly (cloud cover may 

occur) 
1984–2019 Basin Open water Pekel et al., 2016 

OS Ovando/MODIS mission 500 m 8 days 2001–2014 Llanos de Moxos Open water Ovando et al., 
2016 

OS Park/MODIS mission 230 m Monthly climatology 2000–2015 Amazon River down- 
stream of Manaus 

Open water Park and 
Latrubesse, 2019 

SAR Hess/JERS-1 mission 90 m Max. and min. annual 
inundation (dual season) 

1995–1996 Basin (lowlands) All Hess et al., 2003, 
2015 

SAR Chapman/ALOS-PALSAR mission 90 m Monthly 2006–2011 Basin All Chapman et al., 
2015 

SAR Rosenqvist/ALOS-2 PALSAR-2 50 m Max. and min. annual 
inundation (dual season) 

2014–2017 Basin All Rosenqvist et al., 
2020 

SAR Jensen/ALOS-2 PALSAR-2 
mission 

50 m Irregular (26 images) 2014–2018 Pacaya-Samiria All Jensen et al., 2018 

SAR Arnesen/ALOS-PALSAR mission 90 m Irregular (12 images) 2006–2010 Curuai All Arnesen et al., 
2013 

SAR Ferreira-Ferreira/ALOS-PALSAR 
mission 

12.5 m Flood frequency only 2007–2010 Mamirauá All Ferreira-Ferreira 
et al., 2015 

SAR Ovando-2/ALOS-PALSAR mission 100 m Irregular (6 images) 2006–2010 Llanos de Moxos All Ovando et al., 
2016 

SAR Pinel-2/ALOS-PALSAR mission 30 m Irregular (16 images) 2007–2011 Janauacá All Pinel et al., 2019 
SAR Resende/ALOS-PALSAR mission 25 m Static (max inundation) 2006–2011 Uatumã All de Resende et al., 

2019  
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helps identify the current major knowledge gaps regarding inundation mapping in the Amazon and their im
plications for multiple applications. In the context of forthcoming hydrology-oriented satellite missions, we make 
recommendations for future developments of inundation estimates in the Amazon and present a WebGIS 
application (https://amazon-inundation.herokuapp.com/) we developed to provide user-friendly visualization 
and data acquisition of current Amazon inundation datasets.   

1. Introduction 

Aquatic ecosystems cover extensive areas of the Amazon basin, and 
are associated with temporally and spatially dynamic habitats such as 
floodable forests, savannas, grasslands, large and small rivers, and lakes 
(Hess et al., 2015; Junk et al., 2011; Melack and Coe, 2021; Reis et al., 
2019). These systems, hereafter called wetlands, support plants and 
animals that are adapted to the flood pulse (Junk et al., 1989), play key 
roles in regional and global biogeochemical cycles, especially the carbon 
cycle (Richey et al., 1990; Dunne et al., 1998; Abril et al., 2014; Melack 
et al., 2004; Pangala et al., 2017; Martínez-Espinosa et al., 2020), and 
regulate the riverine transport of dissolved and particulate material, 
including sediment and organic matter (Armijos et al., 2020; Fassoni- 
Andrade and de Paiva, 2019; Melack and Forsberg, 2001; Ward et al., 
2017). Additionally, human settlements along Amazon wetlands (Blatrix 
et al., 2018; Denevan, 1996) benefit from ecosystem services, including 
food provision from native plants and animals as well as crop and 
livestock production (Coomes et al., 2016; Jardim et al., 2020). 

Many of the wetlands of the Amazon basin are considered floodplain 
because they are subject to seasonal or periodic inundation by river 
overflow (i.e., the flood pulse; Junk et al., 1989). The region also hosts 
large interfluvial wetlands, which unlike fringing floodplains along large 
rivers, are flooded mainly by local rainfall and runoff and characterized 
by shallow water (Belger et al., 2011; Bourrel et al., 2009; Junk et al., 
2011). Water sources, inundation patterns, and geomorphology interact 
to determine the structure and function of these biodiverse ecosystems 
(Junk et al., 2011; Latrubesse, 2012; Park and Latrubesse, 2017). 

The extent of inundated land (also called flooded land or surface 
water extent), and its temporal variation, are core variables to under
stand wetland processes and are of interest for multiple scientific dis
ciplines, including ecology (Silva et al., 2013; Hawes et al., 2012; Luize 
et al., 2015), land-atmosphere interactions (Prigent et al., 2011; ; Taylor 
et al., 2018), carbon cycling and greenhouse gas emissions (Guilhen 
et al., 2020; Melack et al., 2004; Richey et al., 2002), and natural hazard 
management (Restrepo et al., 2020; Trigg et al., 2016). The Amazon 
basin has been a focus for remote sensing developments and applications 
in hydrology (Fassoni-Andrade et al., 2021), especially for inundation 
estimation, given the basin’s large scale and global environmental 
relevance, relatively pristine landscape, and technical challenges posed 
by persistent cloud cover (Asner, 2001) and dense vegetation. This 
resulted in the development of more than 50 inundation maps and 
datasets for this region in recent decades. Tables 1 (datasets used in this 
study) and S1 (datasets not used due to redundancy or unavailability) 
summarize most of the datasets developed for mapping inundation in 
the Amazon basin. 

Digital wetland maps were first produced for the Amazon basin by 
Matthews and Fung (1987) from aeronautical charts. Optical remote 
sensing systems in the visible or thermal spectral range, such as Landsat, 
are of limited value for most Amazon wetlands, since inundation under 
persistent cloud cover and dense vegetation canopies can be difficult to 
detect. Because of this, microwave systems have been employed. Large- 
scale inundation mapping was pioneered in the region through analysis 
of Scanning Multi-channel Microwave Radiometer (SMMR) and Special 
Sensor Microwave/Imager (SSM/I) passive microwave observations, 
which provided all-weather capability and sensitivity to inundation 
even in the presence of partial vegetative cover (Hamilton et al., 2002; 
Prigent et al., 2001; Sippel et al., 1998). Meanwhile, research demon
strated the all-weather capability and superior spatial resolution of 

synthetic aperture radar (SAR) systems. L-band SAR that can penetrate 
forest canopies and reveal underlying water through the “double 
bounce” effect was shown to be promising for mapping inundation in the 
Amazon (Hess et al., 2003). More specifically, the high-resolution, dual- 
season classification of the Japanese Earth Resources Satellite-1 (JERS- 
1) L-band SAR data for the entire lowland Amazon basin by Hess et al. 
(2015), validated with airborne videography images, has been used as a 
benchmark for the inundation extent of Amazon wetlands. Since these 
initial studies, and with the availability of other imagery (e.g., Advanced 
Land Observing Satellite (ALOS) 1 and 2 missions), the remote sensing 
community seeking to map and characterize inundation employed 
various combinations of active and passive microwave data to benefit 
from the higher spatial resolution of the former and the higher temporal 
resolution of the latter (Aires et al., 2013; Jensen and McDonald, 2019; 
Papa et al., 2010; Parrens et al., 2019, 2017; Prigent et al., 2007, 2020; 
Schroeder et al., 2015). 

Besides the basin-scale mappings (which, in our context, refer to both 
basin-scale datasets and those that cover only the lowland areas below 
500 m.a.s.l. elevation) of annual maximum and minimum inundation 
(Chapman et al., 2015; Hess et al., 2015; Rosenqvist et al., 2020), dy
namic datasets with high spatial and temporal resolution are mainly 
based on satellite passive microwave observations of coarse spatial 
resolution (Global Inundation Extent Multi-Satellite – GIEMS), Surface 
Water Microwave Product Series (SWAMPS), Surface Water Fraction 
(SWAF), Wetland Area and Dynamics for Methane Modeling (WAD2M) 
datasets; see Table 1), which can be downscaled using ancillary data 
(Aires et al., 2017, 2013; Parrens et al., 2019). Basin-scale, dynamic 
inundation estimates based on the ALOS satellite are limited given its 
low temporal resolution (repeat cycle of 46 days). Thus, some studies 
have analyzed time series of ALOS-Phased Array L-band Synthetic 
Aperture Radar (PALSAR) (Arnesen et al., 2013; Ferreira-Ferreira et al., 
2015) and ALOS-2 PALSAR-2 backscatter retrievals (Jensen et al., 2018) 
for subsets of Amazon wetlands. However, with a few exceptions using 
subregional datasets (Arnesen et al., 2013; Ferreira-Ferreira et al., 2015; 
Hess et al., 2003; Jensen et al., 2018; de Resende et al., 2019), in situ 
validation of the basin-scale estimates has seldom been performed, given 
the remoteness of much of the Amazon basin and the often dense forest 
cover, which hampers airborne monitoring of below-canopy inundation. 

Complementary to the remotely sensed datasets, process-based hy
drological models estimating variables such as river discharge and flood 
extent have been developed and assessed from basin to local scales in the 
major rivers of the basin (Beighley et al., 2009; Coe et al., 2008; Getirana 
et al., 2017, 2012; Hoch et al., 2017; Luo et al., 2017; Miguez-Macho and 
Fan, 2012; Paiva et al., 2013; Yamazaki et al., 2011), thanks to the 
advent of new computational and modeling capabilities. Local-scale 
hydraulic models with coarse (Trigg et al., 2009; Wilson et al., 2007; 
Fleischmann et al., 2020) and detailed input data (Ji et al., 2019; Pinel 
et al., 2019; Rudorff et al., 2014; Fassoni-Andrade, 2020) have further 
developed model capabilities for mapping inundation dynamics, espe
cially for the floodplains fringing the Amazon mainstem. These models 
complement satellite-based flood mapping due to their higher temporal 
and spatial resolution, and capability to estimate long-term time series, 
for both past and future (e.g., due to climate change) scenarios. The 
understanding of their uncertainties can lead to optimal data fusion with 
satellite-based estimates, such as considering multiple constraints 
within the water cycle representation (Pellet et al., 2021). 

Among these numerous inundation datasets for the Amazon basin 
(Tables 1 and S1), divergences can be substantial due to the differences 
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in sensor systems, timing, and data processing algorithms (Aires et al., 
2018; Fleischmann et al., 2020; Parrens et al., 2019; Pham-Duc et al., 
2017; Rosenqvist et al., 2020), and a comprehensive assessment of 
inundation estimates for the Amazon is lacking. The need to compare 
different hydrological datasets for the Amazon has been recently high
lighted in the context of river discharge (Towner et al., 2019), precipi
tation (Wongchuig et al., 2017; Zubieta et al., 2019) and 
evapotranspiration (da Paca et al., 2019; Wu et al., 2020). Meanwhile, 
rapid environmental changes in the basin underscore the urgency for a 
better understanding of Amazon water resources (Fassoni-Andrade 
et al., 2021), for which management and planning can be hindered by 
the discrepancies among datasets. These questions regarding current 
data limitations in the largest basin in the world are also timely in 
anticipation of forthcoming hydrological satellite missions such as Sur
face Water and Ocean Topography (SWOT) and NASA-ISRO SAR 
(NISAR). 

To better understand and quantify the state of understanding of 

inundation patterns in the Amazon wetlands, we address the following 
questions: 1) How much Amazon land area is subject to seasonal or 
permanent flooding, and how accurate are the estimates? 2) Which areas 
are in particular disagreement and thus deserve further attention? 3) 
How do basin-scale estimates with coarser resolution and less calibrated 
classification methods differ from those for individual wetland com
plexes, with independent validation? 4) How do the various inundation 
estimation approaches (optical imagery, SAR, passive microwave, hy
drologic models) differ in terms of inundation mapping and for different 
wetland types (e.g., floodplains and interfluvial areas)? In order to 
answer these questions, we gathered 29 inundation datasets for the 
Amazon basin, spanning a wide range of spatial (12.5 m to 25 km) and 
temporal (static, dual-season, monthly, daily) resolutions, and coverages 
from the whole basin to individual wetland complexes (Table 1), into a 
framework that provides a comprehensive assessment of current 
knowledge of Amazon inundation. 

Fig. 1. The Amazon basin and its major wetland systems: (a) Amazon basin delineation (red lines) over the countries of South America (black lines). (b) Land cover 
based on a 2010 map from the European Space Agency Climate Change Initiative (ESA-CCI) (Bontemps et al., 2013), showing the distribution of forest and non-forest 
cover across the basin, as well as large floodplains (see methodology section 2.3). (c) Basin distribution of major wetland systems showing locations of interest for this 
study. Elevations lower than 500 m are shown in grey (based on SRTM DEM). The orange polygons show the areas for which a subregional dataset was available for 
this study (Fig. 4), and the green ones show wetland areas of interest that do not have datasets specifically designed for these subregions. Photos depicting different 
wetland complexes for (d) Mamirauá (courtesy of João Paulo Borges Pedro), (e) Llanos de Moxos (courtesy of Alex Ovando), (f) Cabaliana floodplain lake close to 
Manacapuru (courtesy of Stephen Hamilton), and (g) Pacaya-Samiria (courtesy of Katherine Jensen) regions, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Methodology 

2.1. Study area 

The Amazon basin spans around 6 million km2 in nine South 
American countries (Fig. 1), with high annual rainfall (~2200 mm 
year−1), and the Amazon River discharge makes a major contribution to 
global freshwater and sediment exports to the ocean (Fassoni-Andrade 
et al., 2021). We delineated the catchment area upstream from Gurupá 
city, within the tidal river ~390 km from the ocean; hence not including 
the Tocantins-Araguaia basin and parts of the Amazon estuary and 
Marajó Island. We selected the 5.11 × 106 km2 of Amazon lowlands 
defined as areas lower than 500 m elevation based on the Shuttle Radar 
Topography Mission Digital Elevation Model (SRTM DEM) for the area 
of dataset comparisons in our study. This decision is consistent with 
several studies limited to lowlands because of the limitations of certain 
methods in estimating flooding in mountainous terrain (Hess et al., 
2015). 

In addition to basin-scale datasets, estimates of inundated areas for 
11 individual wetland complexes (also referred to as “subregional”) in 
the Amazon basin were analyzed, including seven areas for which more 
detailed estimates were available. This was performed to understand 
how the basin-scale datasets may vary in accuracy across different 
wetland types (Fig. 1): Curuai floodplain lake (Arnesen et al., 2013; 
Rudorff et al., 2014), Janauacá floodplain lake (Bonnet et al., 2017; 
Pinel et al., 2019), Uatumã river floodplain (de Resende et al., 2019), 
Mamirauá Reserve (Ferreira-Ferreira et al., 2015), Pacaya-Samiria 
wetlands (Jensen et al., 2018), Llanos de Moxos wetlands (Ovando 
et al., 2016), lower Amazon floodplain (Park and Latrubesse, 2019), 
Amazon mainstem floodplain (from Iquitos to Gurupá), Purus flood
plain, Roraima savannas, and Negro campinas and campinaranas. A 
brief summary of these wetlands is provided in supplementary Table S2, 
and their main features are summarized in the following. Curuai is 
representative of the shallow lakes in the lower Amazon floodplain. It is 
separated from the river by narrow levees (Rudorff et al., 2014) and has 
a high suspended sediment concentration. Janauacá is typical of the 
middle Amazon River floodplain, and is composed of a ria lake (i.e., a 
blocked valley lake with relatively sediment-free waters; Latrubesse 
(2012)) and “várzea” environments (white-water floodplains) in its 
northern part (Pinel et al., 2019). Uatumã River is an Amazon tributary 
with black-water floodplain (“igapó”), and includes the Balbina hydro
electric reservoir, operating since 1987, which affects the river’s hy
drological regime (Schöngart et al., 2021). The Uatumã floodplain reach 
assessed here is the 300-km reach between Balbina dam and the 
confluence with the Amazon River. The Mamirauá Sustainable Devel
opment Reserve is located in the confluence between Solimões and 
Japurá rivers, and is characterized by a mosaic of “chavascal”, herba
ceous, and low and high várzea vegetation (Ferreira-Ferreira et al., 
2015). The Purus River is a major tributary, and its floodplain was 
chosen because of its large floodplain to river width ratio. Pacaya- 
Samiria wetlands are composed of flooded forests, palm swamps and 
peatlands in the upper Solimões River (Draper et al., 2014; Lähteenoja 
et al., 2012). The Llanos de Moxos floodable savannas occupy the 
interfluvial areas between the Beni, Mamoré and Madre de Dios rivers in 
the upper Madeira basin (Hamilton et al., 2004). The Negro’s interflu
vial wetland vegetation, locally known as “campinas” (herbaceous 
vegetation) and “campinaranas” (mixed herbaceous and arboreal 
vegetation), are thought to have formed from regional neotectonic de
pressions and were called the “Septentrional Pantanal” given their large 
area (Rossetti et al., 2017a, 2017; Santos et al., 1993). The Roraima 
floodable savannas extend from Roraima State in Brazil to the Rupununi 
savannas in Guyana, and comprise mainly smaller river floodplains 
interspersed with poorly drained interfluvial savannas subject to 
flooding by local rainfall (Hamilton et al., 2002); here we only consid
ered the Roraima wetlands in the upper Branco River basin, which is 
within the Amazon basin. 

2.2. Datasets 

Twenty-nine inundation datasets covering areas ranging from the 
whole-basin scale to individual wetland complexes, based on multiple 
data sources and spatiotemporal resolutions, were assembled for our 
comparison (Table 1). Most of these datasets are recent, with 18 out of 
the 29 published since 2016, and 27 since 2011. They were chosen due 
to data availability and representativeness; other datasets that were 
either unavailable or methodologically redundant to those in our com
parison were not used but are catalogued in Table S1. Overall, there are 
eight dynamic (weekly to monthly; Fig. 2) and 10 static (which include 
long-term maximum, annual or dual-season categories; Fig. 3) basin- 
scale datasets. 

Passive microwave (PM) data are the basis of SWAF-HR, GIEMS 
family (GIEMS-D15, GIEMS-D3, GIEMS-2), and SWAMPS, while ancil
lary data (i.e., optical imagery and microwave scatterometry) are used 
to complement the PM signal. SWAF-HR data result from the disaggre
gation of water surface fraction in a dataset at coarser spatial resolution 
(SWAF), based on L-band passive microwave observations from the Soil 
Moisture and Ocean Salinity (SMOS) satellite (Parrens et al., 2017). The 
disaggregation of SWAF relies on water occurrence maps from GSWO 
and the Digital Elevation Model (DEM) Multi-Error-Removed-Improved- 
Terrain (MERIT) (Parrens et al., 2019). A global implementation of 
SWAF based on multi-angular and multi-polarization information has 
also been implemented (Al Bitar et al., 2020). GIEMS merges multiple 
satellite passive and active microwave observations, along with the 
optically-derived NDVI (Normalized Difference Vegetation Index), to 
detect the surface water and estimate the vegetation attenuation, for a 
monthly quantification of the surface water extent at ~25 km spatial 
resolution (Prigent et al., 2001, 2007, 2020; Papa et al., 2010). It is 
further disaggregated at 90-m resolution (GIEMS-D3) using a topo
graphical downscaling methodology (Aires et al., 2017). 

Three basin-scale datasets are based mainly on SAR data from JERS-1 
(Hess et al., 2003, 2015), and its successor missions ALOS-PALSAR 
(Chapman et al., 2015) and ALOS-2 PALSAR-2 (Rosenqvist et al., 
2020). These three datasets cover different decades of observation but 
are methodologically similar. 

Three of the optical-based datasets are based on Landsat data: GSWO 
(Pekel et al., 2016), G3WBM (Yamazaki et al., 2015) and GLAD (Pickens 
et al., 2020). Although GSWO and GLAD can provide monthly estimates 
for the Landsat archive (1984-today), given the inability of optical data 
to estimate flooding under cloud cover or dense vegetation canopies, 
only annual maximum and minimum values are used. For GLAD and 
GSWO, we consider a threshold of occurrence of surface water of 95% to 
estimate the minimum inundation (i.e., for the permanently inundated 
areas; Aires et al., 2018); otherwise, only a few isolated open water areas 
would be considered for the minimum extent. 

The European Space Agency Climate Change Initiative dataset (ESA- 
CCI) is based on surface reflectance from MERIS, the Advanced Very 
High-Resolution Radiometer (AVHRR) and PROBA-V data and Global 
Water Bodies from the Envisat Advanced Synthetic Aperture Radar 
(ASAR) (Bontemps et al., 2013). Since the wetland pixels in ESA-CCI 
varied negligibly throughout the years of observations, we use only 
the 2010 dataset as the ESA-CCI estimate for maximum inundation. 

Another set of data is based on the merging of multiple global 
datasets: GLWD, GIEMS-D15 and WAD2M. GLWD is one of the first 
globally consistent databases of wetlands, which was based on a 
collection of wetland estimates from diverse institutions worldwide 
(Lehner and Döll, 2004). GIEMS-D15 combines GLWD, the Hydrosheds 
drainage network, and Global Land Cover 2000. WAD2M is based on 
SWAMPS and CIFOR within its merging framework. WAD2M is the only 
dataset to exclude open water areas (removal based on GSWO) due to its 
goal of estimating wetland methane emissions. SWAF-HR (Parrens et al., 
2019) and GIEMS-D3 (Aires et al., 2017) use additional data and 
methodologies to downscale the original 25-km passive microwave- 
based SWAF (Parrens et al., 2017) and GIEMS (Papa et al., 2010; 
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Prigent et al., 2007) datasets to 1 km and 90 m, respectively. While 
GIEMS-D3 has a different inundation magnitude than the original 
GIEMS due to merging with ancillary data, SWAF-HR conserves the 
same inundation magnitude across scales. 

Among hydrological models, we selected representative datasets 
from each of the following broad modeling types: 1) process-based hy
drologic models that use flood routing to represent inundation processes 
(i.e., from a simple kinematic wave model coupled to an inundation 
method to more complex flow routing methods); or 2) hydraulic (or 
hydrodynamic) models that consider the shallow water equations (or its 
simplifications) at any dimension (1D, 2D or 3D). For our analysis, we 
adopted two basin-scale models – one hydrologic (THMB; Coe et al. 
(2008)) and one hydrologic-hydrodynamic (MGB, Siqueira et al. 
(2018)), as well as a global-scale hydrodynamic model (CaMa-Flood, 
Yamazaki et al. (2011)), in the Earth2Observe version available at <htt 
p://www.earth2observe.eu/>). The inundated area estimation is 
largely affected by the DEMs. The DEMs adopted in the model runs were: 
Bare-Earth (O’Loughlin et al., 2016) for MGB, MERIT (Yamazaki et al., 
2017) for CaMa-Flood, and SRTM (Farr et al., 2007) for THMB. The 
rainfall/runoff input data are MSWEP v.1.1 daily precipitation (Beck 
et al., 2017) for MGB, HTESSEL daily runoff (Balsamo et al., 2009) for 

CaMa-Flood, and CRU TS v.3.2.1 monthly precipitation (Harris et al., 
2014) for THMB. Although other hydrologic models have been applied 
to the Amazon basin (Tables 1 and S1), the models chosen here were 
selected as representative of global to local models, for having been well 
validated and applied over the Amazon basin, and for representing state- 
of-the-art Amazon hydrologic modeling. All basin-scale models repre
sent one-dimensional (1D) flows only (i.e., floodplains are represented 
as storage units without active flow), and thus do not represent 2D 
surface flows that occur in wetlands (Alsdorf et al., 2007; Fleischmann 
et al., 2020). A detailed comparison of model capabilities and structural 
uncertainties is beyond our current scope. Hydrologic models have 
different temporal resolution depending on their numerical stability and 
forcing data. For instance, MGB and CaMa-Flood models run at an 
adaptive time step (sub-minute timestep in the case of MGB), but are 
assessed at daily resolution given their daily precipitation forcing. We 
aggregated the models’ estimates to monthly averages to make them 
comparable to the remote sensing dynamic datasets. 

The datasets available for individual wetland complexes are pre
sented in Fig. 4. ALOS-2 PALSAR-2 data were used for the Pacaya- 
Samiria region (Jensen et al., 2018), and the ScanSAR mode of ALOS/ 
PALSAR for the following datasets: Curuai floodplain lake (Arnesen 

Fig. 2. Basin-scale, dynamic inundation datasets used in this study, divided into three classes (hydrological models; merging of multiple datasets at high resolution; 
merging of multiple datasets at coarse resolution). Long-term flood frequency maps are provided for each dataset, calculated as the percentages of observations 
labelled as flooded throughout the entire time-series. 
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et al., 2013), Mamirauá Reserve (Ferreira-Ferreira et al., 2015), Uatumã 
river floodplain (de Resende et al., 2019), and Janauacá floodplain lake 
(Pinel et al., 2019). MODIS optical data were used for the Llanos de 
Moxos savannas in the upper Madeira River basin (Ovando et al., 2016) 
and the lower Amazon floodplain (Park and Latrubesse, 2019). Two 
local-scale 2D hydraulic models (LISFLOOD-FP for Curuai lake, Rudorff 
et al. (2014), and TELEMAC-2D for Janauacá lake, Pinel et al. (2019)), 
and one local-scale hydrologic model (for Janauacá lake; Bonnet et al. 
(2017)) were considered; together, these are representative of the state- 
of-the-art of hydrological modeling in Amazon wetlands. 

The datasets were stored in various formats (i.e., raster and polygon 
shapefiles) and projections (mainly projected UTM and geographic co
ordinate system with WGS84 datum), and were converted to the WGS84 
geographic coordinate system to compute areas. SWAMPS was provided 
at the Equal-Area Scalable Earth (EASE) Grid, which was used to esti
mate its flooded areas. Hydrologic model outputs were provided as 
either binary inundation maps or flood depth raster files, which were 
then converted into binary maps by assuming depth > 0 m as inundated 
pixels. 

2.3. Comparison framework 

The comparison framework involved the following analyses, 
considering the entire basin and 11 wetland complexes (seven areas 
with available subregional estimates, and four additional areas of in
terest without subregional estimates; Fig. 1):  

● Annual maximum and minimum inundation estimates for each of the 
18 basin-scale datasets (section 3.1);  

● Basin-scale, long-term maximum and minimum inundation estimates 
for each of the 18 basin-scale datasets (section 3.1);  

● Long-term maximum and minimum inundation estimates for each of 
the 18 basin-scale and 11 subregional datasets (section 3.2);  

● Comparison between basin-scale and subregional datasets with 
temporal (nRMSD and Pearson correlation) and spatial (Fit metric) 
assessment (section 3.2);  

● Assessment of spatial agreement among the 18 basin-scale datasets at 
1 km, for both long-term maximum and minimum inundation maps 
(section 3.3);  

● Estimation of long-term maximum inundation for two classes of 
wetlands for the entire basin: (i) medium to large river floodplains 
and (ii) interfluvial wetlands and small floodplains (section 3.4). 

The long-term maximum and minimum inundation extents were 
computed for each dataset as the area of all pixels that were inundated at 
least once in the whole monthly time series, for the maximum, and as 
those pixels that were always inundated, for the minimum. We stress 
that analyzing long-term changes in inundation patterns is beyond the 
scope of this study, and thus we assumed stationarity in our comparisons 
of long-term maximum and minimum inundation extents from different 
time-periods. 

The agreement of all basin-scale, high-resolution datasets (i.e., all 
basin-scale ones except for THMB, GIEMS-2, SWAMPS and WAD2M, 
which have a coarse resolution between 9 and 25 km) was assessed for 
long-term maximum and minimum inundation at 1 km resolution, 

Fig. 3. Basin-scale, static or dual-season inundation datasets used in this study, divided into three classes (merging of multiple datasets at high resolution; based on 
optical sensors; and based on SAR data). Flood frequency maps are not provided because the datasets are mainly static or annual-based. 
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which is the resolution of SWAF-HR, the coarsest resolution among the 
high-resolution datasets. For each 1 km pixel, the total number of 
datasets agreeing that it was inundated (either for maximum or mini
mum extent) was computed, following Trigg et al. (2016). Given the size 
of the Amazon basin, a 1 km resolution was considered adequate for the 
analysis. The analysis was done by aggregating all datasets to 1 km, and 
considering that a 1 km pixel is flooded if more than 50% of its area is 
flooded (following Hamilton et al., 2002). A sensitivity test was per
formed using a 25% threshold and led to similar conclusions at the 
whole basin scale (Fig. S1). 

The basin-scale and four additional subregional datasets were 
compared to seven subregional ones, which were used as independent 
validation datasets, and cover the following sites: Curuai (Arnesen et al., 
2013), Uatumã (de Resende et al., 2019), Janauacá (Pinel et al., 2019), 
Mamirauá (Ferreira-Ferreira et al., 2015), Pacaya-Samiria (Jensen et al., 
2018), Llanos de Moxos MODIS (Ovando et al., 2016) and lower Amazon 
River (Park and Latrubesse, 2019). Varying degrees of validation exer
cises were performed for these validation datasets, with some being 
extensively validated with airborne videography (Hess et al., 2003) or 
local surveys (Arnesen et al., 2013; Ferreira-Ferreira et al., 2015; Jensen 
et al., 2018; de Resende et al., 2019), while others were assessed through 
comparisons with other datasets (Pinel et al., 2019), or visually 
inspected, as in the large domains of the Llanos de Moxos (Ovando et al., 

2016) and lower Amazon River (Park and Latrubesse, 2019) subregional 
datasets. The four additional subregional datasets are: Curuai 
LISFLOOD-FP model (Rudorff et al., 2014), Janauacá hydrological 
model (Bonnet et al., 2017), Janauacá TELEMAC-2D model (Pinel et al., 
2019), and Llanos de Moxos ALOS-PALSAR (Ovando et al., 2016). 

To use the subregional studies to assess the accuracy of the datasets 
covering broader areas, the basin-scale and four additional subregional 
datasets were compared to the subregional validation datasets at 
monthly temporal resolution, considering the total inundated area per 
wetland area (i.e., the whole Curuai Lake domain, the whole Uatumã 
floodplain, and so forth). The polygons of each wetland area, which 
were used to extract the information from the basin-scale datasets, were 
delineated as a 1-km buffer around the maximum inundated area, ac
cording to each subregional dataset. For the four areas of interest 
without subregional datasets (Amazon mainstem and Purus floodplains, 
and Roraima and Negro wetlands), the polygons were created consid
ering the maximum lateral extent in accordance with the MERIT DEM 
(Yamazaki et al., 2017) and ESA-CCI land cover for savannas. The time 
series were compared with Pearson linear correlation (R) and the 
normalized root mean square deviation (nRMSD), computed as the 
RMSD between a given inundation map and the subregional validation 
map (i.e., the individual wetland complexes) divided by the subregional 
long-term average inundation. The term ‘deviation’ was preferred over 

Fig. 4. Long-term flood frequency maps from subregional inundation datasets (i.e., for individual wetland complexes) used in this study. The Uatumã dataset (2) is 
static and is displayed as the maximum extent. Flood frequency maps are produced by computing the long-term average of all inundation maps available for 
each dataset. 
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‘error’ to stress the uncertainties inherent to all datasets, for both basin 
and subregional scales, although those derived for an individual wetland 
complex are considered as superior in accuracy for having a more 
dedicated data processing for that particular area, and being validated 
with ground surveys in some cases. 

The ability of a particular dataset to estimate the local spatial pat
terns at maximum inundation was assessed with the Fit metric (Bates 
and De Roo, 2000), which has been successfully applied to compare 
inundation datasets (Bernhofen et al., 2018), and is computed as: 

Fit = 100%*
A ∩ B
A ∪ B

(1)  

Where A and B are the subregional validation dataset estimates (e.g., the 
subregional map that corresponds to maximum inundation) and the 
basin-scale maximum inundation maps. 

To assess different wetland environments, we differentiate medium 
to large river floodplains from interfluvial wetlands and small flood
plains. An estimation of the total flooded area of large river floodplains 
was computed, considering river reaches with upstream drainage area 
larger than 1000 km2, and a buffer mask around the river reaches (mask 
presented in Fig. 1). The buffer was defined based on the Hydrosheds 
drainage network (Lehner and Grill, 2013), segmented into 15 km-long 
reaches as in Siqueira et al. (2018). The buffer was proportional to the 
local reach drainage area and further manually adjusted to include the 
maximum floodplain lateral extent, as estimated from a visual inspec
tion of the MERIT DEM (Yamazaki et al., 2017) and the three basin-scale 
SAR-based datasets (Hess, Chapman and Rosenqvist datasets). Buffer 

values varied from 4 km in upper reaches to 150 km on the Amazon 
mainstem close to the Mamirauá Reserve. Estimating floodplain total 
inundated area is relevant to differentiate the Amazon riverine fringing 
floodplains from non-floodplain wetlands (here referred to as interflu
vial wetlands). 

Finally, in order to assess the current capabilities of basin-scale 
mapping of inundation dynamics at high spatial and temporal resolu
tion, a further assessment of the four high-resolution dynamic datasets 
(GIEMS-D3, CaMa-Flood, SWAF-HR and MGB) at their native resolu
tions was performed by computing their long-term flood frequency for 
the entire basin. 

3. Results and discussion 

3.1. How much inundation is estimated to occur in the Amazon basin? 

3.1.1. Overall assessment 
Comparisons among the various estimates of inundation area can 

begin with the maximum and minimum inundated area across the entire 
Amazon basin. We found wide variation in the annual maximum and 
minimum inundation estimates for the entire basin scale (Fig. 5), as well 
as the long-term maxima and minima (Fig. 6 and Table 2). The annual 
maximum inundation area represents the total area subject to inunda
tion at some point over the year, whereas the annual minimum inun
dation area represents the area that remained inundated all year. SAR 
estimates, especially those based on L-band sensors and those having 
undergone validation (i.e., the Hess et al. (2003) dataset), are assumed 

Fig. 5. (a) Annual maximum and minimum flooded areas for the Amazon basin (< 500 m in elevation) for 18 basin-scale datasets over their respective observation 
time periods. Note that some datasets provide only average estimates based on multiple years of observation (e.g., GLWD, Chapman, G3WBM), and are marked as 
horizontal lines for the period of observation. 
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to be the most accurate given their high spatial resolution and capability 
of mapping flooded areas under dense vegetation canopies and cloud 
cover. Given the lack of ground validation for most basin-scale datasets, 
we assess their accuracy by comparing them to subregional validation 
datasets in section 3.2. 

By computing means and standard deviations of the long-term 
maximum area subject to inundation by type of data (Table 2), we 
obtain the following values: 138,200 ± 45,300 km2 (mean ± S.D.) for 
optical, 533,500 ± 217,800 km2 for multiple datasets at high resolution, 
579,100 ± 108,900 km2 for those at coarse resolution, 542,800 ±

80,600 km2 for hydrological models, and 599,700 ± 81,800 km2 for 
SAR. The mean area for optical-based datasets is thus around 23% of the 
SAR-based estimate. If we assume that the ensemble of datasets could be 
a proxy of inundation uncertainty in the Amazon basin, and neglecting 
the optical and land cover-based data (G3WBM, GLAD, GSWO and ESA- 
CCI) and CIFOR datasets, given their lower capability to map inundation 
as discussed below, 13 datasets are left, yielding an estimation for the 

long-term maximum inundation of 559,300 ± 81,100 km2. This value is 
around 40,000 km2 lower than the mean of the maximum inundation 
area from the three SAR datasets. The mean of the maximum inundation 
area considering all 18 datasets is 490,300 ± 204,800 km2. Compared to 
the maximum inundation area, the relative deviation among available 
estimates is higher for the long-term minimum area inundated 
—125,900 ± 77,600 km2 (mean ± S.D.), with a coefficient of variation 
of 0.62, for the 12 basin-scale datasets that provide minimum area, and 
139,300 ± 127,800 km2 for the three SAR-based datasets, with a coef
ficient of variation of 0.92. 

None of the datasets can map small, narrow floodplains or riparian 
zones, for which only simple calculations are currently available (e.g., 
Junk et al., 1993), and whose total area can only be estimated through 
statistical extrapolation of observable rivers. These small zones 
contribute to the overall uncertainties of the inundation estimates. For 
instance, a wetland mask developed by Hess et al. (2015) for SAR-based 
wetland classification yielded a basin-scale estimation of wetland area 
including the smallest floodplains of 840,000 km2. This estimate is much 
larger than the largest long-term maximum inundated area obtained 
with SAR data (659,100 km2 with Rosenqvist’s dataset). In section 3.2, it 
will be shown that almost all datasets tend to underestimate the 
maximum inundation, when compared to subregional ones. The two 
SAR-based datasets with highest accuracy underestimate maximum 
inundation by 9% (Rosenqvist) and 13% (Hess), based on the average 
difference between these and the subregional estimates for the seven 
locations with available data. If this holds true for the whole basin, the 
basin-scale maximum inundation would be around 10% higher. 

3.1.2. Estimates based on SAR datasets 
At the basin scale, SAR-based estimates of maximum annual inun

dation range from 424,600 km2 (Rosenqvist) to 633,500 km2 (Hess), and 
minimum inundation from 53,900 km2 (Rosenqvist) to 284,200 km2 

(Hess), as shown in Fig. 5. By considering long-term maximum inun
dation (i.e., all pixels that were inundated at least once in the entire 
available time series), instead of annual maxima, the SAR-based esti
mates range from 506,400 km2 (Chapman) to 659,100 km2 (Rosenqvist) 
for the entire basin (Table 2). The minima vary from 42,400 km2 

(Rosenqvist) to 284,200 km2 (Hess). This highlights the large differences 
that exist, especially for the minima, usually referred to as the “low- 
water period.” Chapman’s dataset, based on the 2006–2011 ALOS- 

Fig. 6. Summary of long-term (a) minimum and (b) maximum inundation for the 18 basin-scale datasets, which are categorized into five types (optical data; 
combination of datasets at high resolution; combination of datasets at low resolution; synthetic aperture radar; and hydrological models). Estimates by dynamic 
datasets are not directly comparable to the static ones; thus, each is colored differently: red (dynamic) and black (static). Legend for dataset types: OS: Optical Sensor; 
SAR: Synthetic Aperture Radar; HM: Hydrological Model; HR: multiple datasets at High Resolution; CR: multiple datasets at Coarse Resolution. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Basin-scale, long-term minimum and maximum inundation estimates for 18 
datasets.   

Dataset Minimum 
(km2) 

Maximum 
(km2) 

Multiple datasets at coarse 
resolution 

GIEMS-2 45,800 486,600 
SWAMPS 157,400 491,100 
WAD2M 225,500 707,900 

Multiple datasets at high 
resolution 

GIEMS-D3 116,600 500,700 
CIFOR – 872,700 
ESA-CCI – 267,400 
GIEMS-D15 157,700 545,400 
GLWD – 481,200 
SWAF-HR 53,200 630,900 

Hydrological model THMB 65,200 450,800 
CaMa- 
Flood 

188,100 576,700 

MGB 83,600 600,900 
Optical sensor G3WBM – 98,500 

GLAD 25,700 187,600 
GSWO 37,000 128,500 

Synthetic Aperture Radar Hess 284,200 633,500 
Chapman 91,200 506,400 
Rosenqvist 42,400 659,100  
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PALSAR archive, has a smaller total maximum inundation area than the 
other two SAR datasets, as well as a smaller estimate for minimum 
inundation in relation to Hess’ estimate, which in turn was developed 
from SAR mosaics at two seasons spanning only one year (1995–1996). 
Differences among the three datasets may originate from differences in 
acquisition dates, interannual and seasonal inundation variability, al
gorithms, spatial resolutions, or inconsistencies regarding the data 
processing. For example, Chapman estimates long-term maxima and 
minima based on multiple years, while Hess and Rosenqvist provide 
annual values. The calibration uncertainty was also higher for the JERS- 
1 data used in Hess’ mapping than in the subsequent satellites (ALOS- 
PALSAR and ALOS-2 PALSAR-2) (Hess et al., 2003). For long-term 
minimum inundation, the interannual variability seems to be a minor 
factor since the Hess dataset, which estimated a larger figure than the 
other ones, was developed for a year with minimum water levels higher 
than those during Chapman’s acquisition dates, but lower than those 
during Rosenqvist’s ones (see Fig. 8 in Rosenqvist et al., 2020). Thus, the 
larger minimum inundation extent by Hess et al. (2015) seems to be 
more related to algorithm differences (Fig. S2). For the maximum water 
levels, Hess’ period was associated with an average year, below the 
water levels in Chapman and Rosenqvist, and this may explain the 
relatively higher long-term maximum inundation by Rosenqvist, while 
Chapman’s smaller values are likely due to algorithm differences. For 
the western basin, Hess’ estimate is based on JERS-1 data mostly from 
June 1996 (Hess et al., 2015), which likely missed some of the inun
dation in this region as in the Pacaya-Samiria region, and may partly 
explain the larger value by Rosenqvist (see section 3.2.2). Spatial reso
lution is also an important factor: Rosenqvist’s resolution is 50 m, and it 
is capable of representing smaller floodplains than the other two 
(Fig. S3), as will be discussed in section 3.2.2. 

3.1.3. Assessment of other datasets 
The coarse-resolution datasets and hydrologic models generally es

timate smaller annual maximum inundation areas in comparison to the 
SAR datasets, with the exception of SWAF-HR, WAD2M and CaMa-Flood 
that yield similar annual maximum inundation. This results from the low 
sensitivity of the passive microwave signal, which underlies most 
coarse-resolution datasets, to detect small fractional flooded areas 
within the grid cells, flooding under particularly dense vegetation, and 
flooding of short duration (i.e., less than one month of consecutive 
inundation) (Hamilton et al., 2002). The higher sensitivity of the SWAF- 
HR may be associated with the use of L-band passive microwave emis
sion. Given the long-term data availability from dynamic, coarse- 
resolution datasets, their long-term mean estimates are closer to the 
SAR ones, varying from 450,800 km2 (THMB) to 630,900 km2 (SWAF- 
HR), when compared to the annual scale analysis. Therefore, no clear 
relationship between long-term minimum or maximum inundation and 
the spatial resolution of the datasets is observed (Fig. 6), which could be 
expected when analyzing the annual values (Fig. 5). 

As expected, the optical-based datasets (GSWO, G3WBM, GLAD) 
cannot map inundation under dense vegetation canopies and thus lead 
to much lower estimates of basin-wide inundation area (Aires et al., 
2018; Parrens et al., 2017). Similarly, ESA-CCI, which is based on land 
cover classification of optical imagery with the addition of SAR inputs 
for delineation of wetland areas, yields low basin-wide inundation areas, 
although relatively higher than the purely optical-based estimates. In 
contrast, the multi-satellite-based CIFOR provides an unrealistically 
large estimate of maximum inundation area (872,700 km2), which may 
be due to overestimation of soil moisture by the topographic index used. 
This method is sensitive to rainfall overestimation, which may have 
occurred in 2011, the year for which CIFOR was developed (Gumbricht 
et al., 2017). While the dataset does represent well the spatial extent of 
peatlands across the Pacaya-Samiria region (Gumbricht et al., 2017), its 
estimation of widespread inundation across the basin has limitations to 
represent the large Amazon river floodplains, especially the forested 
ones, which are classified as “swamps (including bogs)” by this dataset 

together with extensive interfluvial areas (Fig. S4). 

3.2. How much inundation is estimated to occur in individual wetland 
regions? 

3.2.1. Overall assessment 
The 18 basin-scale inundation datasets were compared with the 11 

subregional ones through analysis of long-term means of annual 
maximum inundated areas (Table 3), long-term means of annual mini
mum areas (Supplementary Table S3), and multiple comparison metrics 
(Supplementary Table S4). The subregional datasets, covering individ
ual wetland complexes, are considered as independent validation data
sets, given the ground validation performed for most of them, as well as 
the use of a region-specific classification, and the often higher spatial 
resolution (e.g., 12.5 m for some based on ALOS-PALSAR imagery). 

The Amazon River floodplains (from Iquitos to Gurupá) and the 
Llanos de Moxos regions are the largest Amazon wetland complexes: 
106,800 ± 25,800 km2 and 113,500 ± 53,400 km2, respectively when 
considering the three SAR-based datasets, and 94,100 ± 32,500 km2 and 
85,300 ± 52,400 km2 when considering all 18 basin-scale datasets. 
Besides these two areas, the third largest Amazon wetland region is 
Pacaya-Samiria, with 29,700 ± 20,600 km2 (all datasets) and 40,000 ±
4200 km2 (SAR datasets). 

The comparison of the long-term means of annual maximum and 
minimum observed inundation over the available time periods indicates 
differences between basin-scale datasets and the subregional validation 
datasets. Overall, the subregional datasets had a larger maximum 
inundation extent than that estimated for the subregion from the basin- 
scale datasets. The underestimation by the basin-scale ones varied from 
49% for the Pacaya-Samiria region to 5% for the lower Amazon River 
floodplain. Only three datasets overestimated the maximum extent of 
inundation: GIEMS-D3, GIEMS-D15 and GLWD. The basin-scale, SAR- 
based ones (Hess, Chapman and Rosenqvist) underestimated the 
maximum extent in the regions represented by all subregional datasets, 
except Rosenqvist for Janauacá Lake, and Hess for the Llanos de Moxos 
region. This is likely related to the higher resolution of many of the 
subregional datasets (e.g., 12.5 m original and 25 m final resolution for 
the Uatumã ALOS-PALSAR classification by de Resende et al., 2019), 
differences in image acquisition period, and fine-tuning that may occur 
with dedicated processing for a particular region. 

To investigate the depiction of seasonal patterns of inundation by the 
various datasets, we assessed the correlation between the time series of 
absolute inundated areas from the dynamic ones and the estimates for 
individual wetland complexes (Table S3). Overall, all datasets agreed 
well (average Pearson correlation larger than 0.63 for the four wetland 
complexes with available time series), showing a similar depiction of the 
inundation seasonality. However, their ability to monitor high- 
resolution flood frequency is limited, as will be further discussed in 
section 4. A visual comparison of the time series (Fig. S6) shows 
agreement on seasonal timing of flooding and drainage, but disagree
ment in the extent of inundation. In particular, two datasets have a small 
overall annual amplitude (SWAMPS and WAD2M). 

Overall, four datasets had the best overall representation of spatial 
patterns in inundation (Fit metric; see Eq. (1)), as analyzed at 1 km pixel 
resolution, in comparison to the subregional validation datasets: Hess, 
GLWD and the two hydrodynamic models (MGB and CaMa-Flood), 
which were associated with average Fit metric between 0.64 and 0.67 
(Table S3). While hydrologic models such as MGB, CaMa-Flood and 
THMB have a satisfactory agreement basin wide, they are unable to 
represent wetlands not primarily inundated by rivers (Fleischmann 
et al., 2020; Zhou et al., 2021). For example, the Llanos de Moxos 
inundation is underestimated by both CaMa-Flood and MGB with low Fit 
metric values (0.19–0.28; Table S3). This is expected for interfluvial 
wetlands such as Llanos de Moxos and Roraima, where much of the 
flooding is caused by poor drainage of local rainfall and tends to be 
shallower, as opposed to overflow of large rivers onto adjacent 
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floodplains. The four alternative subregional datasets assessed here - 
three hydrological models (one for Curuai and two for Janauacá) and 
one classification of ALOS-PALSAR data for the Llanos de Moxos area - 
were generally better or similar to some of the best-performing basin- 
scale ones, as could be expected given their fine tuning for the specific 
areas, which often includes local topographic surveys. 

Some of the datasets merging multiple data sources overestimated 
the inundation area of individual wetland complexes the most, espe
cially GIEMS-D15, GIEMS-D3 and GLWD. Furthermore, CIFOR was 
originally designed for peatland mapping in the tropics, and generally 
overestimates inundation, suggesting a widespread distribution of wet
lands along interfluvial terraces across the whole basin that may include 
areas of poorly drained soils lacking surface water. For the individual 
wetland complexes, however, CIFOR generally underestimated inun
dation and had a poor representation of spatial patterns of inundation 
(low Fit metric). WAD2M underestimated the maximum inundation the 
most, which is understandable given its removal of open water areas and 
because its main inputs (CIFOR and SWAMPS) also underestimated 
inundated areas as indicated by the subregional validation datasets. 

3.2.2. Individual inundation patterns based on SAR data 
Regarding the maximum inundation extent, the Janauacá case pro

vides a representative example to understand the differences among 
multiple L-band SAR datasets: these estimated total inundated area as 
209 km2, 184 km2 and 446 km2 for Hess, Chapman and Rosenqvist, 
respectively, in contrast to 404 km2 with the subregional ALOS-PALSAR- 
based dataset (12.5 m resolution; Pinel et al., 2019). Part of these dif
ferences occur because of interannual variability, but other factors such 
as spatial resolution and algorithm differences seem relevant. Rose
nqvist led to a more consistent estimation of the spatial inundation 
extent in terms of maximum inundation (Table 3) and inundation spatial 
patterns (Fit metric; Table S3), which can be a consequence of its higher 
spatial resolution (50 m) in contrast to the other two (90 m; Fig. S3). 

Overall, Rosenqvist provided the largest inundation extent among SAR 
datasets across all areas along the Amazon mainstem floodplain, except 
for the Curuai floodplain and the savanna wetlands, as well as the closest 
agreement with subregional validation datasets (−9% ± 13%; average 
± S.D.). Hess estimated the largest inundation area in the wetlands 
associated with savannas (Llanos de Moxos and Roraima) and campinas 
and campinaranas (Negro). However, Hess’ estimate is 39% larger than 
the subregional validation dataset for Llanos de Moxos, while the other 
two SAR estimates are lower (−26% and − 41% for Chapman and 
Rosenqvist, respectively). 

One important question remains about the low-water period, as 
discussed in the previous section for the basin-scale analysis. Hess sug
gests much more inundation for this period for the Amazon mainstem 
floodplains (54,500 km2), mainly for the upstream forested reaches, and 
for the whole basin in general (284,200 km2), than recent estimates with 
ALOS (28,500 and 91,200 km2) and ALOS-2 data (19,500 and 42,400 
km2). An assessment with the subregional datasets along the Amazon 
floodplain suggests that Hess overestimates the minimum extent for 
Curuai, Mamirauá and lower Amazon River, and is accurate for the 
Janauacá floodplain lake. Rosenqvist generally underestimates the 
minimum inundation. For instance, for the Mamirauá dataset, the 
minimum extent (i.e., permanently flooded areas) sums up to 715 km2, 
which is increased to 1545 km2 if considering all pixels flooded for more 
than 295 days per year. For this area, the SAR estimates are 1756 km2 

(Hess), 866 km2 (Chapman) and 422 km2 (Rosenqvist). Overall, this 
suggests that the actual value of minimum inundation across the central 
Amazon floodplains is somewhere between the Hess and Rosenqvist 
estimates. 

3.2.3. Challenges over floodable savannas, campinas and campinaranas 
Large discrepancies are observed for the Roraima and Negro wet

lands. Roraima wetlands are small river floodplains interspersed with 
open savannas subject to flooding, which can be identified by optical 

Table 3 
Long-term maximum inundation areas (km2) for the 11 wetland complexes (up to three subregional datasets per complex) and the 18 basin-scale datasets. The 
subregional values refer to the following datasets, in this order (semicolon-separated values relate to areas with more than one dataset available): Curuai - ALOS 
(Arnesen et al., 2013) and LISFLOOD-FP model (Rudorff et al., 2014); Uatumã - ALOS (de Resende et al., 2019); Janauacá - ALOS (Pinel et al., 2019), hydrologic model 
(Bonnet et al., 2017) and TELEMAC-2D model (Pinel et al., 2019); Mamirauá - ALOS (Ferreira-Ferreira et al., 2015); Pacaya-Samiria - ALOS-2 PALSAR-2 (Jensen et al., 
2018); Llanos de Moxos - MODIS (Ovando et al., 2016) and ALOS (Ovando et al., 2016); and Lower Amazon River - MODIS (Park and Latrubesse, 2019). Average, 
standard deviation (S.D.) and coefficient of variation (CV) are presented for each area in the last rows.   

Dataset Curuai Uatumã Janauacá Mamirauá Pacaya- 
Samiria 

Llanos de 
Moxos 

Lower 
Amazon 

Amazon 
mainstem 

Purus Roraima 
savannas 

Negro 
campinas and 
campinaranas  

Subregional 4162; 
3720 

1471 404; 336; 
176 

4476 57,913 125,422; 
133,470 

56,722 – – – – 

Multiple 
datasets at 
coarse 
resolution 

GIEMS-2 3080 984 623 3344 23,344 156,176 79,871 116,379 7208 7173 12,237 
SWAMPS 3359 722 280 1131 9929 88,753 58,626 72,468 5618 4970 8819 
WAD2M 681 243 166 888 42,635 102,780 29,276 49,261 6698 3173 15,450 

Multiple 
datasets at 
high 
resolution 

GIEMS-D3 4643 2732 505 3569 11,562 150,285 92,908 127,552 9045 12,355 15,123 
CIFOR 3796 994 177 1714 52,590 116,201 43,509 86,301 10,844 3728 20,712 
ESA-CCI 3236 855 260 3045 28,727 39,795 37,475 84,803 8883 510 12,623 
GIEMS-D15 4635 2681 416 2444 44,536 117,979 86,123 127,150 11,186 8129 14,854 
GLWD 4275 2267 535 4259 79,124 40,661 67,746 140,921 14,840 1048 95 
SWAF-HR 4439 2199 388 3205 16,900 159,712 69,539 110,468 10,785 18,146 15,375 

Hydrological 
model 

THMB 2883 554 164 2840 27,748 52,693 39,193 89,658 19,733 4307 3640 
CaMa- 
Flood 

4246 1613 534 3208 34,096 80,725 63,963 118,577 20,947 3454 6560 

MGB 4098 1549 474 3750 33,344 21,757 61,997 115,047 20,394 240 3224 
Optical sensors G3WBM 2732 628 135 795 2694 9564 27,451 37,718 2351 352 1238 

GLAD 3479 832 204 1141 4196 38,897 36,930 53,121 3903 3495 3885 
GSWO 3163 675 150 962 3637 19,240 31,191 44,731 2982 1442 1880 

Synthetic 
Aperture 
Radar 

Chapman 2796 934 184 2694 24,001 73,710 39,677 77,632 12,499 4077 5935 
Hess 3996 1045 209 3985 39,741 174,198 52,156 115,822 15,155 8950 15,758 
Rosenqvist 3055 1238 446 4362 56,160 92,693 55,262 126,806 20,738 1867 9935  
Average 3477 1264 325 2630 29,720 85,323 54,050 94,134 11,323 4856 9297  
S.D. 949 748 163 1226 20,591 52,387 19,956 32,503 6185 4666 6201  
CV 27% 59% 50% 47% 69% 61% 37% 35% 55% 96% 67%  
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data. In addition, the typical timing of high and low water in the Ror
aima region coincides approximately with the JERS-1 dual-season mo
saics that were designed to reflect the seasonality of the central Amazon 
River floodplain (Hamilton et al., 2002). For these reasons, the JERS-1- 
based dataset by Hess et al. (2015) seems to satisfactorily represent most 
of the Roraima wetlands. However, it misses some small-scale riparian 
forests, given its 90 m spatial resolution and snapshot coverage that 
likely missed flooding events on smaller, flashier rivers (Fig. S5). Thus, 
the maximum inundation is likely higher than the Hess estimate (8900 
km2), which in turn is larger than the other ones based on SAR 
(1900–4100 km2). The only dataset to estimate a higher value is the 
coarse SWAF-HR (18,100 km2), which is similar to the value previously 
estimated by Hamilton et al. (2002) (16,500 km2), also with coarse data 
(SMMR passive microwave), though a part of the discrepancy may be 
due to interannual variability. More studies are necessary for this area to 
understand its actual inundation extent and dynamics. Similarly, the 
inundation estimates in the Negro interfluvial areas are subject to large 
uncertainty, with the long-term maximum inundation varying between 
95 (GLWD) and 20,700 km2 (CIFOR), considering all basin-scale data
sets. SAR-based estimates were between 5900 and 15,800 km2. In 
contrast, for the Pacaya-Samiria interfluvial area, which includes a large 
complex of forested wetlands, peatlands and palm swamps, the dis
crepancies are smaller than for the other interfluvial regions, although 
still considerable. The basin-scale SAR ranged between 24,000 km2 

(Chapman) and 56,200 km2 (Rosenqvist), with the subregional 

validation dataset yielding 57,900 km2. The good agreement between 
Rosenqvist and the subregional dataset was already reported by Rose
nqvist et al. (2020). 

3.3. How much do the datasets agree on the spatial distribution of 
inundation? 

Agreement maps of the high resolution datasets (≤ 1 km spatial 
resolution) were developed for both long-term maximum (14 datasets 
available) and minimum inundation areas (10 datasets), based on the 
number of inundation datasets coinciding over a 1 km pixel (Figs. 7 and 
8 and their categorization for specific regions in Fig. 9). Overall, 31% of 
the Amazon lowlands area (i.e., 1.59 × 106 km2 out of 5.11 × 106 km2) 
has been estimated as subject to inundation by at least one dataset 
(bottom left panel, Fig. 7). Based on the agreement between two data
sets, this value decreases to 948,300 km2, which is larger than the value 
estimated when there is agreement among four datasets (553,200 km2). 
This latter estimate is more similar to the average maximum inundation 
as estimated by the ensemble of datasets (559,300 km2) and the three 
SAR-based ones (599,700 km2). Furthermore, there is a lower agreement 
for the minimum inundation than for the maximum inundation among 
individual regions (Fig. 9). 

For specific regions, a high degree of agreement for floodplains 
dominated by open water areas is evident for the lower Amazon River 
reaches, followed by the forested floodplains fringing large rivers, 

Fig. 7. Agreement for maximum inundation area among 14 basin-scale datasets at high resolution (≤1 km spatial resolution): G3WBM, ESA-CCI, GLAD, GSWO, 
GLWD, CIFOR, GIEMS-D15, GIEMS-D3, Chapman, Hess, Rosenqvist, SWAF-HR, CaMa-Flood and MGB. A given pixel of a dataset with resolution higher than 1 km 
that had more than 50% of flooding at the maximum inundation extent is classified as inundated. 
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especially along the Amazon mainstem, Purus and Negro rivers. The 
generally higher accuracies over central Amazon floodplains may also 
be related to the attention that dataset developers have devoted to it, in 
contrast to other regions. Furthermore, the maximum floodplain extent 
can be somewhat delineated with terrain elevation data (i.e., DEMs) 
using algorithms such as HAND (Rennó et al., 2008), which helps to 
explain the relatively small disagreement for floodplains fringing the 
largest rivers, and is particularly effective with vegetation bias-removed 
DEMs (O’Loughlin et al., 2016; Yamazaki et al., 2017). The best 
agreement (for both maximum and minimum inundation extent) 
occurred over the Curuai floodplain along the lower Amazon mainstem, 
with 37% of its area being estimated as subject to inundation by all 14 
datasets (Fig. 9a). An agreement among all 14 datasets occurred, in part 
(i.e., more than 10% of the wetland area), for the central Amazon 
floodplains (Curuai, Uatumã, Janauacá and lower Amazon River) 
because of their relatively large fractions of open water areas. 

In the interfluvial wetlands (Negro campinas and campinaranas, 
Roraima savannas, Pacaya-Samiria and Llanos de Moxos), the inunda
tion patterns are less dependent on riverine overflow and more depen
dent on local rainfall, making them less predictable (Hess et al., 2003). 
The disagreement for both maximum and minimum inundation area is 
the largest across all regions, e.g., 65–78% of their flooded areas were 
mapped by only one model for the minimum inundation (Fig. 9b). The 
Llanos de Moxos is conspicuous as a region of particular disagreement, 

perhaps because flooding is mainly shallow and in vegetated areas 
(mainly savannas/grasslands), and is highly variable from year to year. 
In general, the smaller the flooded patches the higher the challenge to 
map them, not only because of resolution but also due to small-scale 
variation in topography. Similar disagreement occurred in other inter
fluvial wetlands such as the Negro and Roraima ones, and would be 
expected elsewhere in savanna wetlands of South America (e.g., Pan
tanal, Llanos de Orinoco and Bananal Island; Hamilton et al., 2002). The 
poor agreement over interfluvial areas, however, may also partly reflect 
the longer history of study of Amazon mainstem floodplains, for which 
there are river gage records that reflect floodplain water levels and 
inundation, while more remote areas such as the Negro interfluvial areas 
and Pacaya-Samiria regions are more challenging to represent with a 
few gages, and have received less attention. The challenges in estimating 
inundation over interfluvial areas also affect the SAR-based datasets, 
which disagreed the most over these regions (see section 3.5 and dis
cussion in Rosenqvist et al., 2020). 

3.4. Quantifying the inundation extent of different wetland types 

Amazon wetlands include a myriad of ecosystems varying in geo
morphology, hydrology, and vegetation cover. The classification system 
proposed by Junk et al. (2011) differentiated Amazon wetlands ac
cording to amplitude of water level. Wetland types ranged from the 

Fig. 8. Agreement for minimum inundation area among 10 basin-scale datasets at high resolution (≤1 km spatial resolution): GIEMS-D15, Chapman, Hess, Rose
nqvist, SWAF-HR, CaMa-Flood, MGB, GIEMS-D3, GSWO and GLAD. A given pixel of a dataset with resolution higher than 1 km that had more than 50% of flooding at 
the minimum inundation extent is classified as inundated. 
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forested swamps with stable water levels to river floodplains with 
oscillating water levels, and to interfluvial areas with small seasonal 
water level amplitude due to the main contribution of local rainfall and 
runoff (Fleischmann et al., 2020; Junk et al., 2011; Ovando et al., 2018). 

A simpler yet hydrologically meaningful classification is the cate
gorization into river floodplains and interfluvial wetlands adopted here, 
since the former typically have a greater hydrological connection to the 
main river and thus are subject to a different control of inundation area 
by river levels (Reis et al., 2019). We performed a quantitative analysis 
of the inundation area in these two main hydrological classes. All pixels 
considered flooded by at least two datasets, based on the 1 km agree
ment map for maximum inundation extent (Fig. 7), are presented in 
Fig. 10. Overall, the medium to large river floodplains (upstream 
drainage area > 1000 km2) have a larger inundation extent than the 
category with small floodplains and interfluvial areas. An average total 
area subject to inundation of 317,800 ± 84,400 km2 (average ± S.D.; 
median equal to 323,700 km2) was obtained for the medium to large 
floodplains, not including the optical and land cover datasets (G3WBM, 
GLAD, GSWO and ESA-CCI). A greater area for large floodplains was 
estimated by all except for CIFOR, SWAMPS and WAD2M. Two datasets 
estimated a similar value between the two classes (Chapman and 
GIEMS-2), which may be related to an overestimation of basin-scale 

isolated flooded patches. 
Large floodplains fringing the main rivers, especially along the 

Amazon River, have been largely addressed by previous studies (Table 1 
and Table S1). However, large river floodplains are also present in less 
studied reaches, e.g., in the upper Napo and Içá rivers in northwest 
Amazon basin, and upper Xingu in the southeastern portion (see location 
in Fig. 1). These upper reaches are subject to more sporadic, flashy river 
hydrological regimes (Hamilton et al., 2007), which make their inun
dation area difficult to map with current datasets of relatively low 
temporal resolution. In our analysis, the non-floodplain areas include 
mainly the large interfluvial areas (black rectangles in Fig. 10), small 
river floodplains that are challenging to detect with currently available 
datasets, and some reservoirs, such as Balbina reservoir on the Uatumã 
River. 

Besides the central Amazon floodplains, which have been widely 
studied, other wetland complexes require more attention, such as the 
Negro and Roraima interfluvial areas; the latter was only assessed by a 
single study to our knowledge (Hamilton et al., 2002). The inundation 
mapping of the Pacaya-Samiria region in the upper Amazon has received 
scientific attention recently (Jensen et al., 2018; Rodriguez-Alvarez 
et al., 2019), partially because of the region’s role as a carbon sink via 
formation of peat (Draper et al., 2014; Lähteenoja et al., 2012). 

Fig. 9. Degree of agreement for (a) maximum and (b) minimum inundation area for 10 individual wetland complexes, based on the 1 km agreement map (Figs. 7 and 
8). The percentage values indicate the fraction of each area where a given number of datasets agreed that it was flooded, e.g., 14 models agreed that 37% of the 
Curuai area was flooded in the maximum inundation extent. The class with number 1 indicates the fraction of the area that only one dataset estimated as being 
inundated. The class “others” refers to all classes that had less than 5% of pixels estimated as being inundated. 
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Fig. 10. Quantification of maximum inundated areas over river floodplains with drainage area larger than 1000 km2, and interfluvial wetlands and small floodplains 
(area < 1000 km2) within the Amazon basin. The maximum inundation map depicts all 1 km pixels with at least two datasets agreeing (i.e., a reclassification of 
Fig. 7), in order to avoid overestimation caused by pixels with only one dataset classifying them as subject to inundation. The four large areas of interfluvial wetlands 
are highlighted with black rectangles (Pacaya-Samiria, Llanos de Moxos, Negro campinas and campinaranas, and Roraima savannas). 

Fig. 11. Amazon basin (< 500 m elevation) agreement maps at 1 km resolution, for maximum inundation and for each type of dataset, considering only the high- 
resolution datasets (≤ 1 km spatial resolution): (a) six datasets based on merging of multiple datasets (GLWD, CIFOR, GIEMS-D3, GIEMS-D15, SWAF-HR, ESA-CCI), 
(b) three datasets based on optical sensors (G3WBM, GLAD, GSWO), (c) three datasets based on synthetic aperture radar (Hess, Chapman, Rosenqvist), and (d) two 
hydrological models (MGB and CaMa-Flood). The right column graphs present the total inundation area in the Amazon basin for a given number of datasets agreeing, 
e.g., the basin area where the two hydrological models (Fig. d) agree to be flooded is 390,900 km2. 

A.S. Fleischmann et al.                                                                                                                                                                                                                        



Remote Sensing of Environment 278 (2022) 113099

17

Regarding open water areas, Melack (2016) reported values ranging 
from 64,800 km2 (Melack and Hess, 2010) to 72,000 km2 (SRTM Water 
Body Data) and 92,000 km2 (Hansen et al., 2013) for the Amazon basin 
(< 500 m in elevation). The three Landsat-based datasets assessed here, 
which are mainly capable of detecting open water areas, estimate 
98,500 km2 (G3WBM), 128,500 km (GSWO) and 187,600 km2 (GLAD). 

3.5. Limitations in comparing the inundation area datasets 

Some of the differences in large-scale inundation mapping high
lighted by our comparison occur because distinct datasets map temporal 
variation in inundation in different ways, varying for example in sensor 
type, post processing, and spatial resolution. Fig. 11 shows the agree
ment maps for maximum inundation for four classes of datasets, 
considering the 14 basin-scale high-resolution datasets. Those based on 
multiple datasets (GLWD, CIFOR, GIEMS-D3, GIEMS-D15, SWAF-HR) 
have the best agreement for the Llanos de Moxos area, and to a 
smaller degree, for Pacaya-Samiria, Negro and Roraima wetlands. The L- 
band SAR datasets have less overall agreement (Fig. 11c), while the 
optical data are mainly applicable to open water areas in the Amazon 
mainstem floodplain (Fig. 11b). The 1D hydrological models cannot 
represent interfluvial wetlands where flooding is not controlled by river 
level and discharge (Fig. 11d). 

The different methodologies used to produce each dataset compli
cate their direct comparison (Rosenqvist et al., 2020), and some meth
odological differences produce systematic differences and bias among 
the data sources included in our comparison. Here we used datasets 
covering long-term dynamics (e.g., GIEMS or hydrologic models), short- 
term dual-season (e.g., Rosenqvist, spanning four years), and a partic
ular year (e.g., Hess). Some datasets use alternative approaches to derive 
long-term maximum inundation area, such as GIEMS-D15, which 
generated estimates by merging 3-year moving-window maximum 
values of GIEMS with the GLWD dataset. Therefore, a comparison of all 
these datasets must be performed with consideration of their method
ology. For instance, the comparison of dual-season datasets against 
monthly datasets can yield erroneous conclusions, although it has been a 
common practice to directly compare such datasets. Some datasets also 
consider a “high-water assumption” (Ferreira-Ferreira et al., 2015; Hess 
et al., 2003), whereby the high-water maps are forced to contain all 
flooded pixels from the low-water map. 

In addition to methodological differences, each dataset was devel
oped for different periods (Table 1), and thus interannual and seasonal 
variability accounts for some of the differences among them. To address 
this, we performed an annual analysis (Fig. 5), which suggests that the 
long-term inundation estimate is fairly stable for each dataset despite 
some interannual differences. In fact, the temporal variability of each 
dataset is generally smaller than the differences in comparison with the 
other estimates. However, the Amazon hydrological cycle has been 
shifting over decades (Barichivich et al., 2018; Gloor et al., 2013), and a 
recent increase in maximum water levels in the central Amazon suggests 
a new hydroclimatic state (Espinoza Villar et al., 2019). Some wetlands 
have also been subject to forest loss, and so the detectability of inun
dation by remote sensing may have increased over time, e.g., major 
deforestation has occurred along the lower Amazon River floodplain 
(Renó et al., 2011). Similarly, widespread burning might be converting 
black-water floodplain forests into savanna vegetation (Flores and 
Holmgren, 2021). In addition, in some regions, such as the southern 
Amazon, an increase in the dry-season length has been observed, which 
is a major climatic constraint for forest sustainability (Fu et al., 2013; 
Staver et al., 2011). However, analyzing long-term change in inundation 
patterns is beyond the scope of this study, and thus we assumed statio
narity in our comparison framework. 

Another important challenge is to find a common definition of wet
lands among datasets. Here we focused on inundation extent, however 
some datasets (e.g., CIFOR) represent peatland locations instead of 
inundated areas, although their areas of peat formation often include 

inundated areas. Estimates based on SAR or passive microwave emission 
may also be sensitive to saturated soil without standing water above it, 
and thus the observed inundation estimates can have some ambiguity. 
Hydrologic models provide simulated surface water extent, and we 
mapped inundation accounting for pixels with water depth greater than 
zero. While hydrologic models have uncertainties related to model 
structure (e.g., inadequate representation of inundation processes), 
input data (e.g., DEM and climate forcing) and parameterization (e.g., 
soil water capacity and river channel width and depth; assumptions of 
level water surfaces between rivers and their floodplains), remote 
sensing-based datasets have uncertainties related to spatial and tempo
ral resolutions (e.g., coarse spatial resolution not capable of detecting 
small patches), and detection uncertainty (e.g., dense vegetation can
opies can obscure passive microwave emission from underlying sur
faces). Thus, a comparative framework provides an opportunity to 
highlight and stress the uncertainties and limitations of each dataset. 

Hydrologic models currently available at the Amazon basin scale are 
one-dimensional, and thus are capable of simulating flooding mainly 
along river floodplains, as corroborated by various validation exercises 
in the Amazon that have relied on the Hess, GIEMS and SWAF-HR 
datasets (Fleischmann et al., 2020; Luo et al., 2017; Paiva et al., 2013; 
Zhou et al., 2021). These models are also largely dependent upon ac
curate DEMs, which are still challenging to obtain over tropical forested 
floodplains. Furthermore, given that a 500 m elevation mask (Amazon 
lowlands) has been used for some SAR datasets (Hess et al., 2015), and 
the difficulty of some radar and passive microwave ones to detect 
inundation at high elevations due to slope and snow effects, for instance 
(Parrens et al., 2017), we have adopted the same 500 m threshold in our 
lowland mask to improve the comparability among datasets. However, 
even though higher elevation wetlands amount to much less total area 
compared to lowland wetlands, understanding their flooding dynamics 
is important for some parts of the Amazon basin. Although some data
sets, especially the hydrological models (MGB, CaMa-Flood and THMB), 
are capable of estimating inundation in higher elevation parts of the 
basin, in this case uncertainties may also be large given errors in pre
cipitation (low density of in situ gauges and high rainfall spatial het
erogeneity) and thus runoff fields over mountainous areas, as well as the 
tendency for river flows to vary over short time scales (Espinoza Villar 
et al., 2009; Zubieta et al., 2015). Furthermore, the availability of in situ 
river discharge measurements for model calibration and validation is 
lower in the Andean Amazon (Feng et al., 2020; Wongchuig et al., 2019; 
Zubieta et al., 2017). 

Our analyses were performed at 1 km resolution and at regional 
scales, which avoids geolocation problems that affect analyses at higher 
resolutions (e.g., 30 or 90 m). Small disagreements among our estimates 
and the values presented in the original publications may also arise from 
the use of the WGS84 datum with a geographical coordinate system for 
all datasets (except for SWAMPS which was provided in the EASE-Grid 
format). Also, the coarse-resolution datasets, especially GIEMS-2 and 
SWAMPS with 25 km spatial resolution, can be difficult to compare with 
estimates for individual wetland complexes (e.g., Curuai and Janauacá), 
since only a few 25-km pixels may be located within the wetland 
boundaries. 

The quantification of inundation over larger river floodplains 
(Fig. 10) is also subject to uncertainties. The maximum floodplain lateral 
extent was estimated based on an automatic buffer procedure around 
the Hydrosheds drainage network, further manually edited by consid
ering the three SAR-based, basin-scale datasets and the MERIT DEM- 
based topography. Although it captures the basin-scale geomorpholog
ical differences along major floodplains, some uncertainties remain 
regarding the true lateral extent for areas where rain-fed savanna wet
lands are present (e.g., Llanos de Moxos, Roraima), and where inunda
tion extends far from the main rivers (e.g., Pacaya-Samiria). For these 
areas in particular, we assumed buffer values similar to adjacent up
stream and downstream floodplains (e.g., the Amazon River down
stream of Pacaya-Samiria), which is reasonable but should undergo 
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future scrutiny, including local ground-based surveys. 

4. Perspectives and recommendations 

Considerable advances have been achieved in recent decades in the 
mapping of inundation extent across the Amazon basin. Here, we have 
presented an analysis of 29 inundation datasets for the basin, covering 
multiple scales, spatial and temporal resolutions, and data sources. We 
showed that large discrepancies persist, and this is especially true at 
local scales. Below we present some perspectives and recommendations 

for future development of inundation mapping in the world’s largest 
river basin. 

4.1. Which are the most reliable data sources for inundation mapping in 
the Amazon River basin? 

At basin scale, the Rosenqvist ALOS-2 PALSAR-2 dataset is available 
at 50 m, and shows a good overall agreement with the 90 m Hess one 
over the large river floodplains, while the latter seems more accurate for 
interfluvial wetlands(e.g., Negro and Roraima). The high agreement is 

Fig. 12. Analysis of flood frequency for (a) basin-scale average and (b) coefficient of variation of the long-term flood frequency estimated from four high-resolution 
dynamic datasets (GIEMS-D3, SWAF-HR, CaMa-Flood and MGB). (c) The four basin-scale datasets are compared to a subregional validation dataset (i.e., the ALOS- 
PALSAR-based classification by Ferreira-Ferreira et al. (2015), displayed in the top left panel) for the Mamirauá Sustainable Development Reserve along the central 
Amazon River mainstem (location shown by black outline in figure a). 
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observed mainly for the maximum inundation estimates, while for the 
minimum inundation area, important disagreements persist and more 
studies should be performed to understand them. Overall, the Hess’ 
dataset has been the Amazon inundation benchmark for many years, and 
still provides satisfactory estimates. Detection of inundation by L-band 
SAR has a sound theoretical and empirical basis that has been validated 
for the Amazon (Rosenqvist et al., 2002; Hess et al., 2003). Optical 
datasets with resolution higher than 30 m are available, but detection of 
inundation is restricted to non-vegetated wetlands and clear-sky pe
riods, and is most applicable in the lower Amazon River floodplains. 
ALOS-PALSAR at 12.5 m resolution and Sentinel SAR at 10 m resolution 
(with C-band and limited vegetation penetration) can be applied to 
specific regions. Time series of these datasets can estimate seasonal 
variations in inundation, but are limited by the length of the acquisi
tions. Weekly to monthly, spatially coarser data (25 km) are available 
from passive microwave-based datasets such as GIEMS, SWAF and 
SWAMPS. Downscaling techniques have improved their spatial resolu
tion to 90 m (GIEMS-D3) and 1 km (SWAF-HR). Hydrological models (e. 
g., CaMa-Flood and MGB) are capable of accurately estimating inun
dation over river floodplains, and at high temporal resolution depending 
on the input rainfall data (e.g., hourly to daily). However, they are still 
limited over interfluvial wetlands with less connection with rivers, un
less they are upgraded for simulating 2D inundation processes and 
complex floodplain flow paths (Fleischmann et al., 2020; Yamazaki 
et al., 2014). 

4.2. What are the current capabilities of flood frequency mapping? 

At the basin scale, high-resolution, long-term average flood fre
quency can be estimated by four of the datasets analyzed here (GIEMS- 
D3, SWAF-HR, MGB and CaMa-Flood), with spatial resolutions ranging 
from 90 m to 1 km. Although multiple SAR data are currently available 
(e.g., Sentinel-1, ALOS-PALSAR and ALOS-2 PALSAR-2), they have a 
limited temporal resolution, and we still do not have a flood frequency 
dataset of higher spatial resolution (i.e., better than 90 m) for the whole 
basin based on SAR. The discrepancies among the available datasets are 
notable (Fig. 12). The average of the basin-scale flood frequency shows a 
higher agreement for areas with high flood frequency along the lower 
Amazon River (Fig. 12a). These are associated with a high proportion of 
open water areas, and have lower uncertainty (Fig. 12b). Generally, 
there is a smaller variation along floodplains bordering the major rivers 
(except for their fringes) than in interfluvial areas, especially in the 
Negro and Roraima wetlands (Fig. 12b). Detailed inundation mapping 
for the Mamirauá Sustainable Development Reserve in the Amazon 
mainstem floodplain (Fig. 12c) reinforces the challenges for mapping 
local spatio-temporal inundation dynamics. The northern part of the 
Mamirauá reserve has a shorter flood frequency in all datasets, while 
three of them (SWAF-HR, GIEMS-D3, CaMa-Flood) estimate that large 
portions are never flooded. For the southern part, there is some 
convergence for areas that are frequently flooded. 

4.3. Implications for biogeochemistry, ecology and flood management 

The divergent estimates of Amazon inundation extent have major 
implications for the quantification of the role of wetlands in global 
biogeochemical cycles, ecosystem processes and natural disaster 
management. 

First, different datasets have been used to quantify the role of 
Amazon wetlands in the carbon cycle (Guilhen et al., 2020; Melack et al., 
2004; Richey et al., 2002; Saunois et al., 2020). An intercomparison 
assessment of global models forced with different inundation datasets 
for the Amazon could provide insights into their sensitivity to the esti
mated inundation. This would be particularly important for modeled 
estimates of methane flux, given the region’s significant contribution to 
global methane emissions from natural wetlands (Basso et al., 2021). 
Furthermore, for a proper estimation of methane and carbon dioxide 

fluxes, dynamic inundation estimates are necessary; this study shows 
that most coarse-resolution dynamic datasets capture relatively well the 
seasonality (i.e., the timing of high and low water periods) of annual 
flooding at a large scale (but not at the local scales), but the magnitude 
of inundation area over time is still associated with significant errors 
(Fig. S6). 

The understanding of the ecology of Amazon freshwaters has 
benefited from advances in remote sensing-based mapping of inunda
tion. Hydrological variables of interest in relation to wildlife (Alvarenga 
et al., 2018; Bodmer et al., 2018) and vegetation distribution (Hess et al., 
2015, 2003) include hydroperiod, floodplain water depth (Arantes et al., 
2013; Fassoni-Andrade et al., 2020), and (lateral) surface water con
nectivity (Castello, 2008; Duponchelle et al., 2021; Reis et al., 2019, 
2019b), and should be better estimated by future datasets. In addition, 
many wetland ecosystem studies are performed at the tree stand level (e. 
g., floristic inventories) and require high spatial resolution inundation 
estimates to perform meaningful spatial analyses accounting for spatial 
heterogeneity of wetland vegetation. Furthermore, besides a simple 
interfluvial/floodplain categorization of wetlands as performed here 
(section 3.4), which is reasonable from a hydrologic perspective, 
improving our understanding of the ecology of Amazon freshwater 
systems requires accurate mapping of habitats and their diverse vege
tation types (e.g., grasslands, particular monodominant tree species, 
herbaceous plants). For instance, floodplain forest cover has been 
positively correlated to fishery yields (Arantes et al., 2018) and fish 
abundance (Lobón-Cerviá et al., 2015). While this wetland habitat 
mapping has already been done by some initiatives at the basin (Hess 
et al., 2015, 2003) and subregional scales (Ferreira-Ferreira et al., 2015; 
Silva et al., 2013), there is still a need for higher resolution and dynamic 
datasets. 

Regarding flood monitoring in the context of natural hazard man
agement, the flood warning systems of regional water authorities in the 
basin provide information based on river discharge and water level at 
monitoring stations (e.g., Brazil’s Geological Survey SACE system; 
<http://sace.cprm.gov.br/amazonas/#>). In addition, there are other 
available monitoring and forecasting services that have been developed 
for the global scale, such as the Global Flood Detection System (https:// 
www.gdacs.org/flooddetection/), based on remote sensing, and the 
Global Flood Monitoring System (http://flood.umd.edu/) and the 
Global Flood Awareness System (https://www.globalfloods.eu/), based 
on hydrological modeling. The currently available, basin-scale inunda
tion datasets are unable to map flood hazard at the detailed resolution 
required for flood management applications, especially concerning 
urban areas (de Almeida et al., 2018). High-resolution flood mapping 
has been achieved using hydraulic modeling based on local surveys of 
river bathymetry and floodplain LiDAR DTM, but only for a few specific 
sites such as the lower Madeira River (Fleischmann et al., 2021). 

4.4. Future opportunities and recommendations 

Future satellite missions will provide opportunities for improved 
inundation mapping in the Amazon, especially the polarimetric and 
interferometric L-band SAR data from the upcoming NASA/ISRO 
mission (NISAR), the P-Band BIOMASS mission from ESA, and the Ka- 
band Radar Interferometer (KaRIn) swath observations from the forth
coming SWOT mission (Biancamaria et al., 2016). New inundation 
detection technology under development with Global Navigation Sat
ellite System-Reflectometry (GNSS-R), such as the Cyclone GNSS 
(CYGNSS) constellation of GNSS-R satellites, holds promise to provide 
higher frequency observations of water level changes (Jensen et al., 
2018; Ruf et al., 2018; Rodriguez-Alvarez et al., 2019). Further studies 
with the ALOS-2 PALSAR-2 data also are promising, in order to achieve 
new dynamic inundation detection, as well as ongoing assessments of 
the accuracy of the newly available high temporal resolution inundation 
datasets (e.g., SWAF-HR with 3-day availability). Consistent and upda
ted validation products of Amazon inundation are required, which could 
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be derived from airborne, satellite, or UAV-based LiDAR surveys along 
multiple wetlands, in particular for overlooked wetlands such as the 
Negro and Roraima floodable environments where measured water 
levels in rivers may not adequately predict inundation area. This is 
especially important for the minimum inundation extent, which showed 
large uncertainties among the multiple datasets. 

Comprehensive comparisons among multiple inundation datasets 
are scarce in the literature, yet are valuable ways to understand benefits 
and limitations of each of them. A few examples include a continental- 
scale assessment of flood model hazard maps in Africa (Trigg et al., 
2016) and regional assessment of inundation in floodplains of Nigeria 
and Mozambique (Bernhofen et al., 2018), both based on global hy
drological models. Similar initiatives for other areas worldwide would 
be welcome, especially for those that lack consistent flood mapping, 
such as the Congo and other large wetland systems in Africa (Papa et al., 
2022). Furthermore, the combination and integration of multiple 
inundation datasets present a promising and effective approach (Gum
bricht et al., 2017; Hu et al., 2017). We recommend that future de
velopments include optimal data merging approaches, e.g., by 
integrating inundation extent into models accounting for water cycle 
components with multiple constraints (Meyer Oliveira et al., 2020; 
Pellet et al., 2021), and by considering new types of datasets (e.g., GNSS- 
R; Jensen et al., 2018). Bias of different datasets could be corrected 
based on intercomparisons such as those we present here. For instance, 
recent studies have performed inundation bias correction using the Hess 
dataset (Aires et al., 2013; Sorribas et al., 2016). However, merging of 
different datasets must be performed with caution, in a consistent way, 
avoiding double counting of surfaces, as well as missing others: its 
success critically depends upon a good understanding of the limitations 
and assets of each individual dataset. The optimal combination of 
hydrological-hydraulic models with satellite flood maps using tech
niques such as data assimilation is also a promising alternative at the 
basin scale (Wongchuig et al., 2020). 

There is a need for the development of more large-scale 2D hydro
logical model applications, especially for large wetland complexes such 
as the Llanos de Moxos and Pacaya-Samiria, to better represent inun
dation dynamics (Fleischmann et al., 2020). 2D models have been 
applied mainly to some local-scale areas in the Amazon mainstem 
floodplain (Pinel et al., 2019; Rudorff et al., 2014; Trigg et al., 2009; 
Wilson et al., 2007). Furthermore, inundation anomalies are still poorly 
understood owing to the lack of ground-based inundation observations 
during extreme floods and droughts. Therefore, validation of estimates 
for extreme years has usually been performed with river water level data 
(in situ or from satellite altimetry) (Silva et al., 2018; Wongchuig et al., 
2019). Future works should address which datasets and methodologies 
are the most suitable for mapping extreme events. Furthermore, besides 
inundation extent, flood storage (Frappart et al., 2005; Papa et al., 2008; 
Schumann et al., 2016; Papa and Frappart, 2021) and water velocity 
(Pinel et al., 2019) are necessary hydraulic variables to properly address 
multiple environmental studies (e.g., flood monitoring, flood attenua
tion by floodplains, fish floodplain habitats), but to date have not been 
well studied in the Amazon. 

Finally, there is a need for better-informed usage of the currently 
available inundation datasets by multiple local and regional stake
holders (e.g., local water authorities, national water agencies), as well as 
research communities not close to remote sensing groups. This will only 
be achieved through a two-way interaction with these actors and 
development of easy-to-access visualization platforms (i.e., investment 
in hydroinformatics), as well as training of regional/local user com
munities. To this end, we have developed a WebGIS platform (https://a 
mazon-inundation.herokuapp.com/) to display and provide data 
acquisition links for the inundation datasets assessed here, which will be 
continuously updated once new datasets are made available. The 
interaction with local users would bring important feedback on the 
large-scale datasets as well, for instance through citizen science initia
tives that are ongoing in the Amazon (https://www.amazoniacienciaci 

udadana.org/). 
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da Paca, V.H.M., Espinoza-Dávalos, G.E., Hessels, T.M., Moreira, D.M., Comair, G.F., 
Bastiaanssen, W.G.M., 2019. The spatial variability of actual evapotranspiration 
across the Amazon River basin based on remote sensing products validated with flux 
towers. Ecol. Process. 8, 6. https://doi.org/10.1186/s13717-019-0158-8. 

de Almeida, G.A.M., Bates, P., Ozdemir, H., 2018. Modelling urban floods at submetre 
resolution: challenges or opportunities for flood risk management? J. Flood Risk 
Manag. 11, S855–S865. https://doi.org/10.1111/jfr3.12276. 
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University of Rio Grande do Sul. PhD thesis. Available at. https://lume.ufrgs.br 
/handle/10183/211269>. 

Fassoni-Andrade, A.C., de Paiva, R.C.D., 2019. Mapping spatial-temporal sediment 
dynamics of river-floodplains in the Amazon. Remote Sens. Environ. https://doi.org/ 
10.1016/j.rse.2018.10.038. 

Fassoni-Andrade, A.C., de Paiva, R.C.D., de Rudorff, C.M., Barbosa, C.C.F., de Novo, E.M. 
L.M., 2020. High-resolution mapping of floodplain topography from space: a case 
study in the Amazon. Remote Sens. Environ. 251, 112065 https://doi.org/10.1016/ 
j.rse.2020.112065. 

Fassoni-Andrade, A.C., Fleischmann, A.S., Papa, F., de Paiva, R.C.D., Wongchuig, S., 
Melack, J.M., Moreira, A.A., Paris, A., Ruhoff, A., Barbosa, C., Maciel, D.A., Novo, E., 
Durand, F., Frappart, F., Aires, F., Abrahão, G.M., Ferreira-Ferreira, J., Espinoza, J. 
C., Laipelt, L., Costa, M.H., Espinoza-Villar, R., Calmant, S., Pellet, V., 2021. Amazon 
hydrology from space: scientific advances and future challenges. Rev. Geophys. 59, 
1–97. https://doi.org/10.1029/2020RG000728. 

Feng, D., Raoufi, R., Beighley, E., Melack, J.M., Goulding, M., Barthem, R.B., 
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Espinoza, J.C., Lloyd, J., Phillips, O.L., 2013. Intensification of the Amazon 
hydrological cycle over the last two decades. Geophys. Res. Lett. 40, 1729–1733. 
https://doi.org/10.1002/grl.50377. 

Guilhen, J., Al Bitar, A., Sauvage, S., Parrens, M., Martinez, J., Abril, G., Moreira- 
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Lehner, B., Döll, P., 2004. Development and validation of a global database of lakes, 
reservoirs and wetlands. J. Hydrol. 296, 1–22. https://doi.org/10.1016/j. 
jhydrol.2004.03.028. 

Lehner, B., Grill, G., 2013. Global river hydrography and network routing: baseline data 
and new approaches to study the world’s large river systems. Hydrol. Process. 
https://doi.org/10.1002/hyp.9740. 
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Rennó, C.D., Nobre, A.D., Cuartas, L.A., Soares, J.V., Hodnett, M.G., Tomasella, J., 
Waterloo, M.J., 2008. HAND, a new terrain descriptor using SRTM-DEM: mapping 
terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112, 
3469–3481. https://doi.org/10.1016/j.rse.2008.03.018. 
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