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We establish some new relationships between Milnor invariants and Heegaard Floer
homology. This includes a formula for the Milnor triple linking number from the link
Floer complex, detection results for the Whitehead link and Borromean rings, and a

structural property of the d-invariants of surgeries on certain algebraically split links.

1 Introduction

Milnor defined in his thesis a family of higher-order linking invariants capable of
detecting triple linking, as in the Borromean rings [35]. The u-invariants are calculated
using coefficients in the Magnus expansion of certain quotients of the fundamental
group of the link complement. The Milnor invariants contain both link homotopy and
concordance invariants of links [3, 36, 52] and are central tools in the study of three-
manifolds and four-manifolds. Geometric interpretations of Milnor's invariants are
numerous. Stallings conjectured that the p-invariants could be described in terms of
Massey products for cohomology [53], following which Turaev and Porter gave explicit

interpretations [49, 60]. Milnor's invariants can be computed using the intersection
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theory of certain “derived” surfaces in the link exterior [5] or expressed in terms of the
Alexander and Conway polynomials [37, 51, 59]. The interpretation of the u-invariants
most relevant to our purposes is the identification of the first non-vanishing coefficient
of the Conway polynomial of an algebraically split link with the Sato-Levine invariant
B and square of the Milnor triple linking number u,,3 for two- and three-component
links, respectively, as determined by Cochran [4].

As many other invariants from knot theory can be seen in Floer homology,
it is natural to ask about the Milnor invariants as well. For example, it is asked in
[48, Problem 17.2.71:

Problem 1.1. Do the Milnor invariants place algebraic restrictions on the structure of

link Floer homology?

In previous work of the first, third, and fourth authors [14], it is shown that
Heegaard Floer homology is able to see the Sato-Levine invariant 8 of an algebraically
split two-component link. In this paper, we address Problem 1.1 to study several
appearances of the Milnor triple linking number p,,5 [36] in the Heegaard Floer theory
of links and three-manifolds. We also apply this to give new Dehn surgery and link Floer
complex detection results for the Whitehead link and the Borromean rings.

The first result we have is that the link Floer complex of Ozsvath-Szabd [45]

contains the Milnor triple linking number.

Theorem 1.2. Let £ be a three-component link with pairwise linking number zero.

Then, there is an explicit formula for |u;,53(£)| in terms of CFL™(L).

For the explicit statement, see Corollary 3.10 below. The main strategy is to
utilize the aforementioned relationship between the triple linking number and the
Conway polynomial and to express this in terms of the Euler characteristic of the link
Floer complex and an associated link invariant.

If we add some additional hypotheses on the links then this formula simplifies
greatly. The formula from Theorem 1.2 becomes especially transparent if the link is a
Brunnian L-space link. First, recall that the h-function is an integer valued link invariant
that is defined using absolute gradings in link Floer homology (see Section 2.2 for a
definition and properties). Second, recall that a link of three or more components is
called Brunnian if all its proper sublinks are unlinks. In this article, we will call a two-
component link Brunnian if it is linking number zero and the components are unknots

and will generally include unlinks in the class of Brunnian links. More generally, a link
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Triple Linking Numbers and Heegaard Floer Homology 3

is called algebraically split if all pairwise linking numbers are zero. Finally, a link is
called an L-space link if all sufficiently large surgeries of S are L-spaces, that is, they
have the simplest possible Heegaard Floer homology. (In the first part of this section,

we will work exclusively with Z,-coefficients.)

Theorem 1.3. Assume that £ is a Brunnian L-space link with three components. Then
1123(£)? = D g h(s).

In particular, > ¢ h(s) is a link homotopy invariant of three-component Brunnian
L-space links. See Corollary 3.10 for a more general statement of homotopy invariance
in the link Floer complex. For such links, the h-function is always non-negative (see
Lemma 2.7 (7)). As the unlink is the only L-space link with vanishing h-function

(Lemma 2.16), we have the following:

Corollary 1.4. Assume that £ is a Brunnian L-space link with three components. If

t123 = 0 then £ is the three-component unlink.

Next, we ask to what extent Floer homology is able to detect the simplest
links admitting rationally framed Dehn surgery to the three-sphere or the Poincaré
homology sphere. We first observe that if there is a rational surgery S?/ml,m,l/m(; (L)
on an ¢-component Brunnian link that is the three-sphere, then £ is the unlink (see
Proposition 4.1). We extend this by considering rational surgeries that are the Poincaré
homology sphere and prove the following results:

Theorem 1.5. Let £ be an £-component Brunnian link, and suppose that S?/mlf" 1/my L)

is the Poincaré homology sphere.
1. If £ =2, then £ is the Whitehead link or its mirror and m;m, = 1.
2. If £ = 3, then £ is the Borromean rings, and all |m,;| = 1 with the same sign.
3. If £ > 4, no such L exists.

In a related vein, we prove that among Brunnian L-space links, the Whitehead
link and Borromean rings are essentially detected by the Sato-Levine invariant and the

triple linking number.

Theorem 1.6. Let £ be an ¢£-component Brunnian L-space link.

1. If ¢ =2 and B =1, then £ is the Whitehead link.
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2. If ¢ =3 and p;y3(L) = %1, then £ is the Borromean rings.
3. If £ > 4, then L is the four-component unlink.

Finally, if we drop the assumption that the components of £ = L; UL, are
unknots, requiring only that it is an L-space link, we widen the detection result as

follows.

Theorem 1.7. Let £ =L, UL, be an algebraically split L-space link such that S?,l (L) is
the Poincaré homology sphere. Then L is either the Whitehead link or the split union of
T(2,3) and the unknot.

We make the following conjecture for three-component algebraically split

L-space links.

Conjecture 1.8. Let £L = L; UL, UL, be an algebraically split L-space link such that

5:15,1,1 (L) is the Poincaré homology sphere. Then £ must be one of the following:

1. the Borromean rings,
2. the split union of the Whitehead link and the unknot,

3. the split union of the right hand trefoil and the two-component unlink.

Remark 1.9. By a similar argument to the one in [14, Proposition 5.6], one of the
manifolds S?(Li) is an L-space where i = 1, 2, 3. Hence at least one of the components of
L is the unknot or the right-handed trefoil T'(2, 3).

Theorems 1.6 is sufficient to establish the following.

Corollary 1.10. The link Floer chain complex detects the Whitehead link and the

Borromean rings.

Proof. The link Floer chain complex determines the Heegaard Floer homology of large
surgeries on a link and hence determines whether a link is an L-space link. The link
Floer chain complex also determines the multivariable Alexander polynomial [45], which
in turn determines the linking number [58], as well as whether the link is Brunnian. By
Theorem 1.6, it thus suffices to know that the link Floer complex determines the Sato—
Levine invariant (for links with two components) or Milnor triple linking number (for
links with three components). This is shown in [14] for links with two components and

Theorem 1.2 for links with three components. |
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The final appearance of the triple linking number involves its relationship
with another Heegaard Floer-theoretic invariant, the d-invariant of a homology three-
sphere. As is common, we write d for the d-invariant when computing Heegaard Floer
homology with Z,-coefficients. We will use dj. for the d-invariant when working
with coefficients in a field k. We show that the non-vanishing of the triple linking
number for a link £ gives an interesting restriction on the d-invariants of integer
homology spheres obtained by Dehn surgeries along £ in the three-sphere. We prove the

following:

Theorem 1.11. Let £ = L; UL, U Ly be an algebraically split link such that all two-
component sublinks are QQ-L-space links. If the triple linking number u,,; is nonzero,
then dQ(SiM(,C)) < —2. If the triple linking number u;,4 is odd, then the analogous

inequality holds with Z,-coefficients.

In Theorem 1.11, we use d-invariants for Heegaard Floer homology with coeffi-
cients in Q and in Z,. Although it is customary for Heegaard Floer homology literature
to work over Z,, we use a comparison with monopole Floer homology to obtain a
separate result over Q. Surprisingly enough, we do not know if dQ and d coincide.
However, note that a Z,-L-space is necessarily a Q-L-space. See Section 2.4 for a

discussion about coefficients.

Remark 1.12. The same proof applies if we work with coefficients in an arbitrary field

k and the characteristic of k is coprime to 11,5(L).

The L-space link assumption in Theorem 1.11 will be shown to be necessary
in Example 5.23. As an immediate application of Theorem 1.11, notice that when
L =L, UL, ULy is an algebraically split link such that all two-component sublinks
are L-space links and has non-vanishing triple linking number 1,5, then Sim(/j) has
infinite order in the homology cobordism group, and, for example, does not bound a

rational homology ball.

Remark 1.13. It is easy to see that Theorem 1.11 holds for algebraically split links
L with n components, which contains a three-component sublink L;; satisfying the

assumption of the theorem.

In Section 5 we establish some d-invariant inequalities for surgeries on links

over an arbitrary field k, which may be of independent interest to the reader. Since
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link Floer homology is only defined over Z, at the moment, for arbitrary coefficients,
we cannot make use of it or various formulas relating link Floer homology with the
Heegaard Floer homology of surgery. Nonetheless, we obtain the following results

(which are known to experts over Z,):

Proposition 1.14. Assume that £ is a nontrivial k-L-space link of any number of
components and pairwise linking zero. Then dlk(s?,m 1(£)) < —2. The same inequality is

true for any (1/m,,...,1/m,)-surgery along £ where m;,..., m, > 0.

Corollary 1.15. Let £ be an algebraically split k-L-space link such that Sf 1(L)is S8,
Then £ is the unlink.

Organization

In Section 2, we review certain numerical invariants extracted from the link Floer
complex, including (and defining) the h-function. In Section 3, we relate these numerical
invariants to the Milnor invariants and prove Theorem 1.2. In Section 4 we establish
the detection results for the Whitehead link and Borromean rings: Theorems 1.5, 1.6
and 1.7. Finally, in Section 5, we establish Theorem 1.11 on the d-invariants of surgeries

on three-component algebraically split links.

2 Background

In this section, we review the relevant aspects of Heegaard Floer homology, especially
properties of the link Floer complex and L-space links. A multi-component link is
denoted by scripted £, and its components are denoted L,. We denote multi-framings
and vectors in an n-dimensional lattice by bold letters (e.g., p = (p;,--- ,p,)-surgery
ors = (s;, -+ ,S,)), and we let e; denote a vector in Z" where the i-th entry is 1 and
other entries are 0. For any subset B C {1,--- ,n}, we let eg = >,z €;. Given two vectors
u = (U, Uy,--,uy) and v = (vy,---,v,) in Z", we write u < v if u; < v; for each

1<ig<n,andu<vifu=<xvandu #v.
Definition 2.1.  Alink £ =L, U---UL, is algebraically split if for all i # j, ¢k(L;, L;) = 0.

Throughout this article, all links will be assumed to be algebraically split,
unless otherwise stated. However, we include a slightly more general discussion below
for the benefit of the reader.
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Definition 2.2. For an oriented link L =L, U---UL, C S2, define H(L) to be the affine

lattice over Z",

tk(L;, L\ L;)

H(L) = @, H,(£), H;(L) =7+ 5

If £ is algebraically split then H(L) = Z".

2.1 d-invariants

We assume familiarity with Heegaard Floer homology, and refer the reader to [34, 41]
for details. With the exception of Section 5, we work over the field F = Z,, as is typical
in Heegaard Floer homology. Recall the d-invariant d(Y, t) of a rational homology sphere
Y equipped with a Spin® structure t is defined to be the maximal degree of a non-
torsion class x € HF~ (Y,t). Here, our grading conventions for HF~ differ by a shift
of two from what appears in Ozsvath-Szabé [41]. For example, we write HF~(S%) = F[U]
where deg(1) = 0 rather than —2. With this convention, we still have d(S®) = 0. For
three-manifolds with b,(Y) > 0, the definition of the d-invariant is more complicated,

see Section 5.1.

2.2 The h-function and L-space links

We review the definition of the h-function for oriented links £ c S%, as defined by the
first author and Némethi [15]. We will quote without proof several technical lemmas
regarding its properties; proofs of these statements can be found in either [2], [14],
or both.

An oriented link £ = L; U--- UL, in S® defines a filtration on the Floer
complex CF~(S%). This filtration is indexed by elements s = (S1,-++.8,) € H(L) (see
Definition 2.2). The generalized Heegaard Floer complex A~ (L,s) C CF~(S%) is the
F[U]-module defined to be the subcomplex of CF~(S®) corresponding to the filtration
indexed by the lattice point s [34]. The large surgery theorem of [34, Theorem 12.1]
implies that the homology of 27 (£, s) is isomorphic to the Heegaard Floer homology
of a sufficiently large surgery on the link £ equipped with some Spin®-structure as an
F[U]-module. Therefore, there is a non-canonical isomorphism between the homology
of A (L, s) and a direct sum of one copy of IF[U] and a U-torsion submodule. Thus the

following is well-defined:
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8 E. Gorsky et al.

Definition 2.3. [2, Definition 3.9] For an oriented link £ C S3, we define the H-function
H_/(s) by saying that —2H(s) is the maximal homological degree of a nonzero element
in the free part of H, (A~ (£, s)) where s € H(L).

Remark 2.4. We will write H,(s) as H(s) for brevity if the context is clear. The notation
H;(s) refers to the H-function of the sublink determined by indices I € {1,--- ,n}.

By definition —2H,(s) is equivalent to the d-invariant of large surgery on £,
following a degree shift that depends only on the linking matrix and s (this is explained
in [34, Section 10] and [2, Theorem 4.10] ). In particular, the H-function is a well-defined
topological invariant of links. For a knot K, the H-function satisfies Hy(s) = V,, where V;
are the similarly defined integer-valued concordance invariants coming from the knot
Floer complex [40, 50].

We will work with a normalized version of the H-function, denoted h, as well as

a “state sum,” denoted k’, that is taken over sublinks of L.

Definition 2.5. Let £ be an n-component algebraically split link, n > 1. We define

h(s) = H(s) — Hy(s;) — ... — Hp(s,,)
Hs)y= > (1" Mhys)
IC{1,...n}

where H,(s) = max(—s, 0) is the H-function for the unknot and k(%) = 0.

Example 2.6. Assume that £ is a Brunnian link, that is, all proper sublinks are unlinks.
Then h;(s) = 0 for all proper subsets I and h/(s) = h(s).

We now list several properties of the H-function.

Lemma 2.7. For an oriented link £ C S3,

The H-function H,(s) takes nonnegative values.

H (s—e)=H;(s)orH.(s —e;) =H;(s)+ 1 wheres € H.
H(—s) =H(s)+ > i ,s; where s = (s;, - ,Sp).

If £ is algebraically split and N is sufficiently large, then

W b=

Hpe(syooo 081 NoSipyoo 08p) =Hpyg Sy S 10Sip1 - 1Sy

for all i and S;-
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5. The functions h and k' have the following symmetry property:
h(—s) = h(s), k' (—s) = h/(s).

6. The function h is non-decreasing towards the origin. That is, h(s — e;) > h(s)
if s; > 0 and h(s — e;) < h(s) if 5; < 0.
7. For all s one has h(s) > 0.

Proof. Items (1) and (2) are proved in [2, Proposition 3.10] and (3) is proved in
[33, Lemma 5.5]. Item (4) is [2, Proposition 3.12]. For (5), the first equation follows from
(3) and the second follows from the first. Item (6) and Item (7) are proved in [14, Lemma
2.16, Corollary 2.17]. [ |

Lemma 2.8. Let £ be an algebraically split link. Then the function h/.(s) is finitely
supported.

Proof. By Lemma 2.7(4), when s; > N for some N, we have hy ;(s) = hi(s). By Lemma
2.7(5), it is therefore sufficient to prove for all i that when s; — 400 we have h/(s) = 0.

Fix any index i and observe that we can write

H(s) =D (=)™ M(hy(s) — hyyy ().
i¢l
|

Lemma 2.9. Suppose that £ is a split union of n knots with n > 1. Then h'(s) = 0 for

all s.

Proof. Since £ is split, we have h;(s) = > ;. h;(s;) for all I, and

H(s) = ZH)""” Zhi(si) = Zhi(si) Z(—l)mm =0
I

iel i iel
forn > 1. |

Corollary 2.10. Let £ be an algebraically split link with n > 1 components. Then

W(sy...,s) = > (D" THLs).

I(1,...n)
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Proof. If £is an unlink, then similarly to Lemma 2.9 the right hand side vanishes, and

then the statement follows by Definition 2.5. |

Lemma 2.11. Let £ be an algebraically split link with n > 1 components. Then for all

s one has
> DYhis—epn= > (DYH (s -e)).

Proof. By Corollary 2.10 we get

> DR s—epn= > (1)"HVIHE (s —e).

Jc{l,...n} IJc(1,...n}

If I is a proper subset of {1 ...,n} then H;(s — e;) = H;(s — e;~;) and we can write
J=J uJ” where JJ=1INJ and J’ = J\ I. Then for this I,

Z (_l)n—|I|+|J\HI(s —e,) = Z(—l)”_"'*‘f‘HI(s ) Z (_1)|J”\ =0,

Jc{l,...n} JcI J'c({1,...n]\I)
so the only surviving terms are from I = {1,...,n}. [ |
2.3 L-spaces

Recall from [44] that a rational homology sphere Y is an L-space if it has the simplest
possible Heegaard Floer homology. More precisely, for any Spin©-structure s, HF~ (Y, s)

is a free F[U]-module of rank one.

Definition 2.12. [15, 33] An oriented n-component link £ c S® is an L-space link

if there exists 0 < p € Z" such that the surgered manifold Sg(ﬁ) is an L-space for

any q = p.

Recall that if a knot K c S® admits any positive surgery to an L-space, then
Sz/q(K) is also an L-space for all p/q > 2g(K) — 1 [44] [47, Proposition 9.5]. For links
though, it is not necessarily the case that the existence of a single p—surgery yielding
an L-space guarantees that all large surgeries are also L-spaces. However, the following

criterion of Y. Liu can determine when this is the case.
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Theorem 2.13. [33]

1. Every sublink of an L-space link is an L-space link.

2. Alink is an L-space link if and only if for all s one has H, (™ (£, s)) = F[UI.

3. Assume that for some p the surgery S}37 (L) is an L-space. In addition, assume
that for all sublinks £’ c £ the surgeries SISJ‘L/ (L) are L-spaces too, and the
framing matrix A|, is positive definite. Then for all ¢ > p the surgered

manifolds Sg(ﬁ) are L-spaces, and so £ is an L-space link.

Example 2.14. If L is algebraically split, then A is positive definite if and only if
all p; > 0. In this case, the existence of any p with all p; > 0 such that SISJ/(E’) is an
L-space for all sublinks £’ is sufficient to conclude £ is an L-space link. In particular,
any Brunnian link admitting a single positive L-space surgery (e.g., (+1,+1,+1)-surgery

along the Borromean rings) is an L-space link.

The link Floer homology HFL™ is defined as the homology of the associated

graded complex:

HFL™(L,s) = H, QA (L,5)/ DA™ (L, V).

vV<s

By [45], the Euler characteristic x(HFL™(L,s)) is the multivariable Alexander

polynomial,

Aplty, -t = > x(HFL (L, s)E -6 0
seH ()

where s = (sy,---,5,), and

(2)

_ (-t )V 2A (ty, -+, L) ifn > 1,
Ag(tlr"'rtn):z[ 1 n L1 n

Ap®)/(1 -t ifn=1.

For L-space links, the H-function can be computed from the multi-variable Alexander
polynomial. Indeed, by Theorem 2.13 (2) and the inclusion-exclusion formula, one can

write

XHFL™(L,9) = > (DPHy(s —ep), ©)
Bc{l,--- n}
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12 E. Gorsky et al.
as in [2, (3.14)].
Example 2.15. The (symmetric) Alexander polynomial of the Whitehead link equals

2 —-1/2 1/2 —1/2
Aty ty) = =81 =t P @y* — £,%),

and the H-function has the following values.

Son

The H-function of the two-component unlink agrees everywhere with the
H-function of the Whitehead link except at s = (0,0), where H,(0) = 0. Therefore, for
the Whitehead link,

]. if Sl = Sz == O
hg(slrsz) = (4)
0 otherwise.

Lastly, we observe:
Lemma 2.16. If for an L-space link £ one has h(0) = 0, then £ is the unlink.

Proof. If h(0) = O then by Lemma 2.7 (6) we have h(s) = 0 for all s € H(£L). The rest of
the proof follows from [30, Theorem 1.3]. | |

We will also make use of the following well-known fact without reference. If K

is an L-space knot, then

g(K) = max{s | h(s) > 0} + 1.
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2.4 Coefficients

As stated above, for most of the paper, we use F = Z, as the field of coefficients.
However, in Section 5, we will use rational coefficients, so we need to discuss the
dependence of the results on the field of coefficients.

First of all, the Heegaard Floer complexes 5?‘, CF—,CF* for knots and three-
manifolds are defined over Z [41]. In particular, CF~ is a complex of finitely generated
free Z[U] modules. Its decomposition into Spin® structures is well defined over Z[U].

Let k be an arbitrary field. We will write CFH_{ = CF~ ®y k, and define El:"ﬂ{, CF]‘f{<>
and HF]kHFﬂ_{HF]‘f{Q similarly. Since k[U] is a principal ideal domain, any finitely
generated graded k[U] module (in particular, HFE_{) can be decomposed as a direct sum
of several copies of k[U] and k[U]/U% for various d;.

If Y is a rational homology sphere, then for any Spin® structure t on ¥ and any
field k the homology HFH;(Y, t) contains exactly one copy of k[U] [43]. We define d) (Y, t),
the d-invariant with coefficients in k, as the homological degree of the generator of this
copy of k[U]. When k = IF = 7Z,, we simply write d(Y,t) = dp(Y, 1), as above.

The following two examples show that d-invariants with coefficients in F
and in @ could be potentially very different. It would be very interesting (but rather
challenging) to find such examples in actual Heegaard Floer homology. In both examples

we consider complexes of free Z[U]-modules with three generators a, b, c.

Example 2.17. Suppose that that 9(c) = U¥a — 2b. The homology over Z can be
identified with the submodule of Z[U] generated by 2 (corresponding to a) and U*
(corresponding to b). In particular, the homology is free as Z-module and has no torsion.

On the other hand, if we consider this complex over I, then d(c) = Uka and the
homology is isomorphic to F[U]/(U¥) @ F[U] as a graded F[Ul-module, its F[U] free part
is generated by b. If we consider the same complex over @), then it is isomorphic to Q[U]
generated by a.

In conclusion, dp = dQ — 2k.

Example 2.18. Suppose that d(a) = U¥c and 3(b) = 2c. In this case the homology has
Z, torsion of rank k, spanned by ¢, Uc, .. ., Uk-lc.

If we consider this complex over IF, then the homology is isomorphic to
F[U1/(U*) & FIU] as a graded F[U]-module, and its F[U] free part is generated by b. If we
consider the same complex over @, then it is isomorphic to Q[U] generated by 2a — U¥b.

In conclusion, d = dQ + 2k.
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14 E. Gorsky et al.

Note that the above examples show that the difference between dp and dQ
could be either positive or negative, and arbitrarily large in absolute value.

It is also important to point out that that the notion of L-space (and hence of
L-space link) depends on the coefficients, so a pedantically inclined reader is invited to
use the terms F-L-space and F-L-space link.

At present, link Floer homology (for links with more than one component) is only

defined over I, so the H-function and its cousins are only defined over IF.

3 Milnor Invariants and the Casson Invariant

In this section, we show how to extract the Milnor triple linking invariant from the link
Floer complex. This will be in terms of the invariant A’ defined in the previous section

and another invariant x’ from the torsion part of H, (2" (L, s)).

3.1 The invariant x’

For non L-space links, the h-function does not determine the Alexander polynomial.
However, we can obtain this from the collection of H, (2" (£, s)) for all s, which we now

explain. Recall that for any link we have a non-canonical splitting

H (A" (L, s)) = FIUI[-2H(s)] ® Ay, (L, 5),

tor

where 2, .(L,s) is finite-dimensional over IF and hence a torsion module over F[U].

tor’

We begin by analyzing the modules 2 as they will feature in our formula for the

Alexander polynomial, and ultimately the Milnor invariants.

Lemma 3.1. For an algebraically split link £, we have
H, (U (L, —8)) = H, (U (L, 8))[-2]s]],
where [s| = ;s;.
Proof. By the large surgery theorem [34] we have (up to a grading shift)
H, (A (L,s)) = HF(S}(L),s), for p > 0.

By [43, Theorem 2.4] we have

HF™(S3(L), —s) = HF ™ (S5(L), 5).
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Triple Linking Numbers and Heegaard Floer Homology 15

Therefore up to a grading shift we have
H (27 (L,—s)) =H, (2" (L, 5)).
To figure out the shift, we can look at the F[U]-free part and use the identity

H(-s) =H(s) +|s|.

Corollary 3.2. For an algebraically split link £, we have
X Rpor (L, —8)) = x Ry, (L, 8)). (5)

We are ready to define the analogue of the function h’ for the torsion parts
of A™.

Definition 3.3. Let £ be an algebraically split link with n components. We define

xp) =x'(s)=" D (="M@ (Ly8p).

Lemma 3.4. The function yx’(s) is finitely supported and enjoys the symmetry
x'(=8) = x'(s).

Proof. The symmetry for x/(s) immediately follows from (5). Let us prove that it

is finitely supported. For s; >» 0 and any subset I not containing s; we have from
[34, Lemma 10.1]

H (A" (Ly,sp) = H, (A (Lpygyyr Sugy)
and, in particular,
X Rior(8D) = x Rlyor(Supy))-

Then similarly to Lemma 2.8 we have x'(s) = 0 for s; > 0. By symmetry, we also have

x'(s) =0 for s; « 0, and therefore x’(s) is finitely supported. [ ]
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16 E. Gorsky et al.

Finally, equation (3) can be generalized in the presence of torsion as follows:

XHFL™(L,s) = > (—DP(x @, (s — ep)) — He(s — ep)). (6)
Bc{1,-- ,n}

Let £ be an algebraically split link with n > 1 components. Then the Torres

condition [568] implies that A, is divisible by (¢; — 1) for all i. Hence, we can write
12 —1/2\%
Aptty o ty) = [ [ =67 )AL, 1), @)
i

where A, is normalized as in equation (2) above.

Theorem 3.5. Assume that £ is an algebraically split link with n > 1 components.
Then

AL (t) = (=1)" D" (x(s) — K (s))t°,
s
where t5 = ¢! - ;.
Proof. Let AL.(t) = q(s)t® and A, (t) = [[;(¢; — DA (1) = > a(s)t®. Then
ais)= > (1" Vgs—e). (8)
By Lemma 2.11 we get
> DVhs—ep= D (~DYH(s-e).

Similarly,

> )l s—ep= D —DYIx@(s —e)).
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Triple Linking Numbers and Heegaard Floer Homology 17

Equations (8) and (9) imply that (—1)"q(s) and x’'(s) — h/(s) satisfy the same recursion

relations, and by Lemmas 2.8 and 3.4 both vanish for sufficiently large s. Therefore,

AL(t) = (=)™ D (x'(s) — K (s)t°.
S
|

Corollary 3.6. Assume that £ is a Brunnian L-space link with n > 1 components. Then
AL(t) = (D™ Y h(s)t®.
S

Proof. For Brunnian links h'(s) = h(s), and since £ is an L-space link, x'(s) = 0 for
all s. |

3.2 Milnor triple linking invariant

To associate the Milnor triple linking invariant to the Alexander polynomial, we must
pass through the Conway polynomial. The Conway polynomial of £ =L, U... UL, can

be written as

V() =2""Yay +ayz? +a,z* 4 ), a; €7,

and

Ve@V2 — 72 = ()" V2 — VA L, . ),
where A,(t;,...,t,) denotes the multi-variable Alexander polynomial of £. Note that
aq depends only on the linking numbers of £, see [17, Theorem 1]. For an algebraically

split link with n > 1 components, a; = 0 and we can write its multivariable Alexander

polynomial as in (7):

1/2 -1/2\%
Apty, ... ty) =[] =t R 8y, ).
i

Then we can set all t; = t and apply the change of variable z = t!/2 — t~1/2:

V@) = (D2 — VDAL, 0 = (DR - VAR, L),
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18 E. Gorsky et al.

We define ﬁﬁ(z) as VE(Z)/Zn'H. With this, the coefficient a, of the Conway polynomial

can be written as
ay(L) = V,(0) = (-)"ALQ1,..., D).
It is an important invariant of the link. By Theorem 3.5 we get

ay(L) = =D (x'(s) — K (s)). (10)
S

Example 3.7. For two-component algebraically split links the invariant a,(£) agrees
with the Sato-Levine invariant (L) up to sign [14, 54]. Equation (10) now gives an
explicit formula for (L) in terms of the link Floer complex for £. Moreover, if £ is a two-
component algebraically split L-space link with unknotted components, then 8(£) = 0

implies £ is the unlink (see [14, Corollary 6.4]).

Remark 3.8. For two-component links, other Milnor invariants of the form u[1P29]
may be written in terms of the link Floer complex as follows. (For example, the linking
number corresponds with x[12] and the Sato-Levine invariant with ©[1122].) One first
writes the multivariable Alexander polynomial as in Theorem 3.5. Then passing to
the Taylor expansion at (1,1) of this two variable polynomial, a result of Murasugi
[37, Theorem 4.1] shows that the coefficients of the Taylor expansion determine these

Milnor invariants.

Example 3.9. If £ is an algebraically split link with n > 4 components then by [4]
a,(L)=0.

Proof. (Proof of Theorem 1.2) For three-component links, by [4, Theorem 5.1], a,(£)

relates to the square of the Milnor triple linking number
ay(L) = u2,s(L). (11)

Equation (10) now establishes an explicit formula for |u;,4| in terms of the link Floer

complex. [ |

220Z 8unp $0 UO Jasn uonoas spJooay sjeuss Aq 68/ +1.59/89€eul/ulwi/S60 | 01 /10p/a[o1e-aduBApE/UILWI/WOo dnoolwapese//:sdiy wWwol) papeojumod
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Corollary 3.10. Assume that £ is an algebraically split link with three components.
Then

1iaa(L) = = D (X'(s) — H(s)).
s

In particular, — > ¢ (x'(s) — h/(s)) is a link homotopy invariant.
For Brunnian L-space links we can get even more information.

Theorem 3.11. Assume that £ is a Brunnian L-space link with three components. Then
the following statements hold:

(@) u2,5(0) = > ¢ h(s).

(b) If py53(L) =0 then £ is the unlink.

(c)  ty93(L) has the same parity as h(0,0,0) = H(0, 0, 0).

(d) pq93(L) cannot equal £2.

Proof. (a) By Corollary 3.10, and the assumption that £ is a Brunnian L-space link, we

have
H%z‘g(ﬁ) = Z h(s).

(b) If py53(L) = O then by (a) we have h(s) = O for all s. By the proof of
[30, Theorem 1.3], which relies only on the assumption of having a vanishing h-function,
the link £ is the unlink.

(c) By Lemma 2.7(5), we have h(—s) = h(s) for all s. Note that s = —s if and only
if s = (0,0,0). Therefore > ; h(s) has the same parity as h(0, 0, 0).

(d) Assume that p,,3(£) = 2, then by (c) h(0,0,0) is even as well. If £(0,0,0) =0
then h(s) = 0 for all s by Lemma 2.7(6), which is a contradiction. Therefore h(0,0,0) > 2,

hence
h(1,0,0),h(0,1,0),h(0,0,1) > 1

by Lemma 2.7. This implies “%23 = > g h(s) > 243 =5, contradicting to the assumption.
|
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20 E. Gorsky et al.

Note that Theorem 3.11(a) and (b) provide the statement of Theorem 1.3 and
Corollary 1.4 in the introduction. We mention here an open problem suggested by the

discussion above:

Problem 3.12. Do there exist examples of Brunnian L-space links with three compo-

nents and large jt;,5?

Let L=L,UL,---UL, be an oriented link in an integer homology sphere Y with
all pairwise linking numbers equal zero, and with framing 1/q; on component L;, for
q; € 7. Hoste [18] proved that the Casson invariant A of the integer homology sphere

Y1/, 1/q, (L) satisfies a state sum formula,
MY /g, 1/gn (0D = MV + D (H Qi) a, (L} Y), (12)
L'cl \iel!

where the sum is taken over all sublinks £’ of L.
For example, let £L =L, UL, UL, be a three-component algebraically split link in

S% with framings g; = 1. Formula (12) simplifies to
)»(Silyl(ﬁ)) = ay(L) + ay(Lyy) + ay(Ly3) + ay(Lyg) + ay(Ly) + ay(Ly) + ay(Lg),

where L;; = L; U L;. Theorem 3.11(a) immediately implies

Corollary 3.13. Assume that £ is a Brunnian L-space link with three components. Then
MSY L 1(L) = uFpa(L) =D hy(s).
s

Example 3.14. Let £ denote the Borromean rings, which are easily checked to form an
L-space link. Since Sil,l (L) is the Poincaré homology sphere, we see that )‘(5‘;’,1,1 (L)) =1.
This confirms the well-known calculation that |u;,5(£)| = 1. From this, we also deduce

that the h-function satisfies h(0,0,0) = 1 and vanishes elsewhere.

4 Detection results

In this section, we will apply the statements from the section above to show that
for Brunnian links or algebraically split L-space links, sometimes information about
surgery or Milnor invariants is sufficient for link detection. In Section 4.1, we focus

on Whitehead link characterizations, in Section 4.2, we focus on Borromean ring
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detections, and finally, in Section 4.3, we discuss analogous results for links with more
components. Combining the results in these sections, we obtain proofs of Theorem 1.5,
Theorem 1.6, and Theorem 1.7.

Before we move to these statements, as a warm-up, we first determine which

Brunnian links admit a rational surgery that is the three-sphere S°.

Proposition 4.1. Let L =L;U---UL, be an £-component Brunnian link, and suppose
that some surgery S3 (L) is the three sphere S, where all m; # 0. Then £ is the

1/my,-,1/my
unlink.

Proof. We first prove that S:IS,M,I(ZZ) = S Let L, be the image of L, in S?/mly“‘,l/mzfl’
which is S® since £ is Brunnian. Then L), is the unknot by Gordon-Luecke [13]. It is easy

to see that
S?/mll”' ,l/mg,lyl(ﬁ) = S?(L%) = SS_

By repeating this argument, one can easily prove that S?,--.,l(ﬁ) = S°. By Example 2.14,
L is an L-space link. Because the Casson invariant of S® is zero, equation 12 implies
that the sum . a,(£’) over all all sublinks £’ of £ is zero, and because £ is Brunnian,
a,(£) = 0. By Example 2.6, h’ = h, and because L is an L-space link, x' = 0. By Lemma
2.7, the h-function is non-negative. Therefore by equation 10, > (h(s) = 0, and so
h(0) = 0. By Lemma 2.16 we have that £ is the unlink. [ |

In the following sections, we will generalize to the case when (1/m,---,1/m,)-
framed Dehn surgery yields the Poincaré homology sphere. We will use the notation
PHS = X(2,3,5) for the Poincaré homology sphere, oriented as the boundary of the
positive-definite E8 plumbing, and Wh and B for the positive Whitehead and Borromean

links, respectively.

4.1 Whitehead link detection

This subsection is devoted to the detection of the Whitehead link. Proposition 4.2
informs and precedes the more general Proposition 4.5, which gives the statement
of Theorem 1.5(1) in the introduction. Corollary 4.7 will give the statement of

Theorem 1.6(1), and following this we prove Theorem 1.7.

Proposition 4.2, Let £ be a two-component Brunnian link. If Sil(ﬁ) is the Poincaré
homology sphere, then £ is the positive Whitehead link Wh.
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Proof. First, since S?J(C) bounds a positive definite four-manifold, the Poincaré
homology sphere under consideration is +PHS. Since £ is Brunnian, each of the
components L, and L, are unknotted. Therefore, S3(L;) = L(n,1) for all integers n.
For notation, let EL denote the exterior of L, and let T; and T, denote the boundary
components corresponding to L, and L,, respectively. Let L, ,,) denote the image of L,
in S3(L,;) and M(En) the exterior of L, , in S3(Ly). Note that M(En) has one torus boundary
component, obtained by Dehn filling EX along T;. We also will study Méo), which is just
a solid torus, since Ly () is unknotted. Since S‘;’yl(ﬁ) is the Poincaré homology sphere,
Ly (1) is the trefoil by [12]. Therefore, Mﬁ) is the exterior of the trefoil in S3, and hence is
a fibered three-manifold.

We first claim that for all n # oo, Ly ) is a genus one fibered knot. From the
above discussion, we see that there are two slopes «, f on the boundary component T} in
E* such that Dehn filling along « results in a fibered three-manifold and filling along
B lowers the Thurston norm. (Here, with respect to the canonical meridian-longitude
coordinates on T}, « = +1 and 8 = oo.) By [39, Theorem 1.4], we see that the core J
of the a-filling sits on the fiber surface F of the trefoil in M(El) and that the framing 8
corresponds to the surface framing of F. It follows that any surgery on J that is distance
one from B is also a genus one fibered three-manifold. Indeed, one cuts along F and
reglues by some number of Dehn twists along J. In meridian-longitude coordinates, J
is the core of +1-surgery on L, in the exterior of L,, 8 corresponds to the co-filling of
T,, and integral n-filling along L, for any n is distance one from g. Therefore, each
MG,
component. Since L, ,,) is nullhomologous, we see that it is a genus one fibered knot
in L(n,1).

By [1, Theorem 4.3], for n # 4, co, we see that Ly ) belongs to one of exactly two

is a fibered three-manifold with fiber having genus one and a single boundary

isotopy classes of knots. These must be either Wh, ., or mzy(n) because the arguments
above imply that integral surgery on a single component of Wh and Wh gives genus one
fibered knots. To see these are distinct, note that +1-surgery on Wh, ., gives S3(Ty 3)
whereas +1-surgery on Why, ) gives S3(4)).

In other words, M{;L) = Mx\gl or Mz’,‘gl for infinitely many n. By Lemma 4.3 below,
E£ = EWh or EWR Tn principle, this does not yet imply that £ is a Whitehead link, since
such links are not determined by their exteriors. However, Lemma 4.4 shows that the
additional condition that S?,l(ﬁ) being the Poincaré homology sphere implies £ is in

fact Wh. [ |

Lemma 4.3. If M(Ln) = M(‘le for infinitely many n, then EX = EWP and similarly for Wh.
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Proof. We do the case of Wh. The mirror is the same.

Suppose EX is hyperbolic with two cusps. Then by Thurston’s hyperbolic Dehn
surgery theorem [57], M(ﬁ) is hyperbolic for all but finitely many n with one cusp. In
addition, EX is the geometric limit of the sequence of complete hyperbolic manifolds
M(lr:l), which is the same as MZ’r\gl Hence, in the limit EL — gWh,

We next prove that EX is hyperbolic. Suppose instead that EZ is not hyperbolic. If
EL is reducible, then £ is split, and so £ is an unlink, and so M(En) * MX‘{?, contradiction.
Note that EZ is not Seifert, since otherwise M(En) would not be hyperbolic for any n. It
follows that there is a non-boundary parallel incompressible torus (i.e., essential torus)
in EX. By [19, Proposition 10.6.2] (see also [38, Proposition 4.1]), the JSJ decomposition of
EX may be assumed to consist of only of tori. Consider the piece X of this decomposition
that contains T;. Let T” denote a boundary component of X, which is not T; or T, and
essential in EX. Then, T’ remains incompressible and non-boundary parallel in all but
finitely many fillings of X along T;, unless X is a cable space (i.e., a Seifert fibered
space with base orbifold an annulus and exactly one cone point) [9, Theorem 2.4.4]. If X
is not a cable space, then generically M(ﬁn) has a non-boundary parallel incompressible
torus. However, M?’r‘gl is hyperbolic for infinitely many n, and hence does not have a non-
boundary parallel incompressible torus, contradiction. If instead X is a cable space, and
infinitely many of the n-fillings of T, are not those that cause T’ to compress in M([,:l),

then again M4 has a non-boundary parallel incompressible torus for infinitely many

(n)
n, while MWP does not, contradiction.

n

Las(tl)y, suppose that X is a cable space, and that infinitely many integral
n-slopes on L, are slopes on X, which cause T’ to compress. The fiber slope on a
boundary component of a cable space is uniquely characterized by the slope that is
distance one from at least 3 different compressing slopes [9, Theorem 2.4.3]. This means
that the oo-slope on L; corresponds to the fiber slope ¢ on X. Recall that for a cable
space, filling one boundary component along the fiber slope results in the connected
sum of a solid torus and a non-trivial lens space. Let X(¢) denote the Dehn filling of T,
with the fiber slope ¢. Therefore, M(ﬁo) contains X(¢) as a codimension zero submanifold

that has a lens space summand, but Méo) is a solid torus, so this is a contradiction. W

Lemma 4.4. If £ is a two-component link in S® with EL = EWh or EWR and Sil,ﬂ(ﬁ) is

the Poincaré homology sphere, then £ = Wh.

To explain why this lemma is necessary, notice that doing 1/n-surgery on a

single component of Wh yields S%, and that the image of the other component is a
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3 NooC

—2m

CCC

Fig. 1. The generalized twist knot K[2n, —2m] is a two-bridge knot described by numerator closure
of the rational tangle with continued fraction [2n, —2m]). For example, K[2, —2] is the right-handed
trefoil.

twist knot K[2n, —2]. The core of that surgery, together with this twist knot, is a two-

component link in S® with the same exterior as Wh.

Proof. We begin with the case that EX = EWP, Since Wh has linking number 0, any £
in S® with the same exterior can be described by the core of (1/m, 1/n)-surgery on Wh,
where that surgery results in S°. Note that 831 1 (Wh) is 1/m-surgery on the twist knot
K[2n,—2] (see Figure 1), and thus either 1/m = "0 or 1/n = oo. Without loss of generality,

1/n = oo. Therefore,

PHS =53 (L) =S%, L(Wh) =5°, (Kl2,-2]) = S3(KI2(m + 1), —2)).
mFT =
It follows that K[2(m + 1), —2] is the right-handed trefoil, and hence m = 0.

We can repeat a similar argument with Wh. In this case, we see that

PHS = S} (L) = (W) = 53%1 (4)) = S3(4),

m+1

which is a contradiction. |

By an argument similar to the one in Proposition 4.2, we now can characterize
which rational surgeries on a Brunnian two-component link are the Poincaré homology

sphere.

Proposition 4.5. Suppose that £ is a two-component Brunnian link. Then S3 m1m (L)
is the Poincaré homology sphere with either orientation if and only if mn =1 and £ is

the Whitehead link or its mirror.
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Proof. The if part is easy. For the only if part, we first claim that if S?/m,un(ﬂ) is the
Poincaré homology sphere, then m = +1 and n = £1. Suppose £ = L, UL,, and let L]
denote the image of L, in S° after blowing down L,. Then Sf’/myl/n(ﬁ) = Sﬁ/m(L/l) = +PHS,
which implies that m = £1, since only a trefoil has a surgery to the Poincaré homology
sphere, and the surgery coefficient is integral [12]. A similar argument applies for n. If
m = n = 1, by Proposition 4.2, £ must be the Whitehead link. If m = n = —1, we have
531,—1 (L) = —Sil (£) where £ is the mirror of £. Then £ must be the Whitehead link, and
hence, £ is the mirror of the Whitehead link.

Without loss of generality, we assume that m = 1,n = —1. By a similar argument
— EWh

as the one in Proposition 4.2, the exterior of the link EL or EWh, However, this is

impossible by applying the same argument as in Lemma 4.4. |

We now transition to characterizing the Whitehead link among two-component

algebraically split L-space links.

Lemma 4.6. Let £L =L, UL, be an algebraically split L-space link with the following
h-function:
]. if Sl == Sz == O

hy(s1,89) = (13)
0 otherwise.

Then £ is the Whitehead link.

Proof. By Lemma 2.7, H(0,00) = H;(0) = 0. Since L, is an L-space knot, it is the unknot.
Similarly, L, is also the unknot. Let us prove that S?,l (L) is the Poincaré homology
sphere. Let L, be the image of L, in S‘T’ (L), so that Sfyl(ﬁ) = S‘;’ (L5).

Since the h-function of £ is given by (13), the link surgery complex for Sil (L) can
be truncated so that it contains only 2/, (£) [14]. Therefore, S? (Ly) = S:f,l (£) is an L-space
with d-invariant equal to —2H(0, 0) = —2. The knot L} is an L-space knot and the L-space
surgery coefficient of +1 satisfies 1 > 2g(L/,) — 1. Because the surgery S:;’(L’z) is not S3,
we must have the genus of L), is exactly 1, and so L, is the right-handed trefoil. This also
shows S?,l(ﬁ) is the Poincaré homology sphere. Finally, since the unknot is determined
by its h-function among L-space knots, Lemma 2.7(4) implies that the components of £

are unknotted. Now the statement follows from Proposition 4.2. |

Corollary 4.7. Suppose that £ is a two-component L-space link with unknotted
components and 8(L£) = +1. Then £ is the Whitehead link.
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Proof. Since £ is an L-space link with unknotted components, we have > ¢ h(s) =
+B(L) = £1. Since h(s) > 0 and h(—s) = h(s), the only possible h-function is given by
(13). Hence, L is the Whitehead link by Lemma 4.6. [ |

The following is a restatement of Theorem 1.7.

Theorem 4.8. Let £ =L, UL, be an algebraically split L-space link such that Sil (L) is
the Poincaré homology sphere. Then £ is either the Whitehead link or the split union of
T(2,3) and the unknot.

Proof. By [14, Proposition 5.6] we have that either S3(L;) or S3(L,) is an L-space.
Without loss of generality, in the remainder of the proof, we assume that S3(L,) is an
L-space. Then L, is an L-space knot of genus 0 or 1, so it is either unknotted or the
right-handed trefoil.

Case 1: L, is an unknot. In this case we can blow it down and obtain a knot L
such that Sil(ﬁ) = S? (L3). This means that Sf (L) is the Poincaré homology sphere. So
L, is T(2,3).

By [14, Theorem 4.8] the H-function for L/, equals H, (0, s,), so

hr(0,s;5) = hT(Z,S) (s2) =
0 otherwise.

By Lemma 2.7(6) we get h.(IN,s,) = 0 for all N > 0 and s, # 0, and hence h,(s,) = 0 for
s, # 0. Since L, is an L-space knot, this implies the genus is at most one, and hence it is
either unknotted or T(2, 3).

If L, is unknotted, then £ is the Whitehead link by Proposition 4.2.

If L, is T(2,3), then hy(0) = h,(V,0) = 1 for all N > 0, and Lemma 2.7(5)
implies that h,(s;,s,) coincides with the h-function of the disjoint union of O L T(2, 3)
(see Figure 2). By the main result of [31] the Thurston polytope of £ is the same as the
Thurston polytope of Ou T(2, 3). In particular, L; bounds a disk not intersecting L,, and
hence L =0UuUT(2,3).

Case 2: L, is the trefoil. Let L, be the knot corresponding to L, in S3(L;) =
PHS. Since +1-framed surgery along L, C PHS yields PHS, by the Dehn surgery
characterization of the unknot in an integer homology sphere L-space [11, 21], L) is

an unknot.
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0 0 0
0 0 0
1 1 1>
0 0 0
0 0 0

Fig. 2. The h-function for O U T(2, 3)

0 010 0
0 010
1 1 11 1« g(L2) —1
. . . . 4
111 1« 1—g(L2)
0 010
0 010 0

Fig. 3. Hypothetical h-function for Case 2.

Now for all d we have S?,d(ﬁ) = PHSd(L’z) = S‘;’,d(T(Z,B) U 0). Similarly to
[14, Theorem 4.8] we conclude that

h(0,53) = hrez,3)u0(0,52) =1

as in Figure 3.
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Now we claim that L, is the unknot. Otherwise, suppose that g(L,) > 1. By
Lemma 2.7(6), hy(sy) = h (V,sy) < h(0,s,) = 1. More precisely, h,(s;) = 0 for all
Isy| > g(L,) and h,(s,) = 1 otherwise as in Figure 3.

Recall that A/(s;, s3) = h (51, S9) —hy(s;) —hy(sy). Since L, is the trefoil, h;(s;) =0
for all s, # 0. By a similar argument to the one in Lemma 2.7(6), one can prove that
h'(s — e;) > h/(s) for all s, > 1. Note that h'(co,s,) = 0 for all s, € Z. Then h'(s;,s,) > 0
forall s; > 1. By Lemma 2.7(5), h'(s;,s,) = O for all |s;| > 1.

By (12),

1= 1(S31(0) = ay(L) + ay(Ly) + ay(Ly).

Note that a,(L;) = D> h,(s;) = 1, ay(Ly) = > hy(sy) = 29(L,) — 1. Then a,(L) =
2 h,(s) = 1—2g(L,) < 0. Observe that (see Figure 3)

D Rp0,s) =1-29(Ly) = > h(sy,sy),
soes seH (L)

and h/;(sy,s,) > 0 for all |s;| > 1. Hence h/;(sy,s,) = 0 for all s; # O, indicating that
h,(s1,85) = hy(s;) + hy(s,) for all s; # 0. Note that h,(s;) = 0 for all s; # 0. This implies
that h,(s;,s,) = hy(s,) for all s; > 1, and the h-function has the form as in Figure 3.

As in [14, Section 5] we may define
b, =min{s; — 1| H(s;,55) = Hy(s,) for all s,}.

Clearly, from Figure 3, we have b; = 0. It is proved in [32, Proposition 4.7] that (under
some assumptions on the h-function that are satisfied in this case) if chil,dz (£) is an
L-space for d; > 2b; and d, <« 0 then L, is the unknot. Since (1, d)-surgery on L yields
PHS#L(d, 1), which is an L-space for any nonzero integer d, L, is the unknot. Hence,
by the same argument as the one in Case 1, £ is the disjoint union of the unknot and
T(2,3). [ ]

4.2 Borromean link detection

In this subsection, Proposition 4.9 will inform the more general Proposition 4.11, which
corresponds with Theorem 1.5(2) in the introduction. Proposition 4.12 will give the

statement of Theorem 1.6(2).

Proposition 4.9. Let £ be a three-component Brunnian link. Then if S? 11(£) is the

Poincaré homology sphere, then £ is the Borromean rings B.
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Proof. Because L; U L, U L, is Brunnian, all proper two-component sublinks L; U L;
are unlinks and Sf'n,n(Li ULj) = L(m, D#L(n, 1) for all integers m, n. We will use notation
similar to that of Proposition 4.2. Let EX denote the exterior of £, and T, the boundary
component corresponding to L;. We write Lg ;) ) to denote the image of L3 in S @y U
L,) = L(m, 1)#L(n, 1), and write M(fn)l(n) for the exterior of L3 im),(n) in L(m, 1)#L(n,1). We
also write L, 5 ) to denote the image of L, UL5 in S3(L,). We similarly have that M(%o),(oo)
is a solid torus. Because Siu(ﬁ) is the (positive) Poincaré homology sphere, Ly (4, ) is
the trefoil knot and M(ﬁl) 1
We will invoke [39, Theorem 1.4] to argue that for all pairs of integers n, m # oo,

is the exterior of the trefoil in S3, a fibered three-manifold.

L3 (n),(m) 18 @ genus one fibered knot. The argument is analogous to that of Proposition
4.2. There are two slopes «y, ; on the boundary component T, in EX such that Dehn
filling along «; results in a fibered three-manifold and filling along g, lowers the
Thurston norm. With respect to the canonical meridian-longitude coordinates on T},
a; = +1 and B; = co. Indeed, we claim that filling along «; results in the complement of
Whitehead link in S%. Since £ is Brunnian, then Ly 3,1) is also Brunnian and Sil Ly,3,1)) =
S?,1,1(£) is the Poincaré homology sphere. By Proposition 4.2, L, 5 ;, is the Whitehead
link. Filling along B, results in the complement of two-component unlink in S%, which
lowers the Thurston norm. By [39, Theorem 1.4], the core J; of the «,-filling of T, sits on
the fiber surface F of the Whitehead link complement M(El). The framing 8, corresponds
to the surface framing of F. Now we repeat this argument. In particular, M(ﬁl) has two
boundary components T, and T;. We consider two fillings «, and 8, along T, similarly
(i.e., ay = +1,B, = o0). By the argument given above, the «, filling M(Ll)’(l) yields a
fibered three-manifold, which is the exterior of the right-handed trefoil and is obtained
by capping off one boundary of the fiber surface of the Whitehead link. The 8, filling
Mo,
By a second application of [39, Theorem 1.4], we have that the core J, of the «,-filling of

that results in the complement of the unknot in S® reduces the Thurston norm.

T, sits on the fiber surface F; in M(El) (1) and any surgery that is distance one from g, will
produce a fibered three-manifold. In fact, any fillings along T, T, that are distance one
from B;, B, will extend the monodromy of the fibration. We now have for any integers

L
m, n that M(m),(n)
fibered knot in L(m, 1)#L(n, 1).

Having established that Lj ) ,) is genus one fibered knot, we turn again to

is fibered and that the fiber is genus one. So Lg () () iS @ genus one

Baker’s classification of genus one fibered knots in lens spaces [1]. By [1, Lemma 2.2],
the isotopy classes (M,K) of genus one fibered knots K in M are in a one-to-one
correspondence with isotopy classes (N,A) where N is a link in S® whose branched

double cover is M, and with a braid axis A that yields a closed 3-braid presentation
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of N. Fix m,n odd and distinct. Applying this here, we must have that N is the
connected sum of torus knots T(2, m)#T(2,n). Indeed, T(2,m) is the unique knot
whose branched double cover is the lens space L(m,1) by Hodgson and Rubin-
stein [16]. By the equivariant sphere theorem for involutions [20], T(2, m)#T(2,n)
is the unique knot with branched double cover L(m,1)#L(n,1). Thus, we seek to
identify the braid axes A yielding closed 3-braid presentations for T(2, m)#T(2,n).
We claim that there is a unique braid axis for closed 3-braid presentations of the
knot T(2, m)#T(2,n) with odd integers satisfying |m|,|n| > 1. Note that the torus
knots T(2,m) and T(2,n) are strongly invertible, so T(2, m)#T(2,n) is invertible.
There is no distinction between the orientations of the knot. By [1, Lemma 3.6],
there is at most one equivalence class of braid axes giving 3-braid representatives for

the oriented knot and its inverse.

Similarly to the argument used for the Whitehead link, we have that M([r:n) m =
M(Bm) (ny for infinitely many m, n. An argument completely analogous to that of Lemma

4.3 implies that the geometric limit EX of the hyperbolic manifolds M(Em) )
with the limit E® of the sequence Mfm)l(n), meaning the exterior EZ is the same as the

Borromean exterior EB. The result now follows from Lemma 4.10 below. | |

agrees

Lemma 4.10. If £ is a three-component Brunnian link in S% with EX = E® and $% | | (0)

is the Poincaré homology sphere, then £ = B.

Proof. Any link £ in S® with the same exterior as B can be described by the core of
(1/m,1/n,1/p)-surgery on B, where this surgery results in S3. By Proposition 4.1, at

least one of m, n, p is zero. Without loss of generality, we assume p = 0. Then

PHS=5S},,(0)=S*, , I(B):Sii(wh).

m+1'n+1"' m+1'n+1
By Proposition 4.5, m = n = 0. Therefore, £ = B. |

Based on the argument for the detection of the Borromean rings, we now
characterize which rational surgeries on a Brunnian three-component link are the

Poincaré homology sphere.

Proposition 4.11. Suppose that £ is a three-component Brunnian link. Then

SS
1/p.1/q1/r
rings, and |p| = |q| = |r| = 1 with the same sign.

(L) is the Poincaré homology sphere if and only if the link £ is the Borromean
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Proof. The if part is easy. For the only if part, we first claim that p,q, r = +1. Suppose
that £ = L, UL, ULy, and let L) denote the image of L; in S® after blowing down L,, L.
Then S?/p,l/q,l/r(/:) = Sﬁ/p(L’l), which implies that 1/p = +1. Hence, p = 1. Further, the
sign of p is determined by the definiteness of the plumbing that the surgered Poincaré
homology sphere bounds. A similar argument can be used to prove that g,r = +1, and
that their signs must agree with that of p. If p = g = r = 1, by Proposition 4.9, L is the
Borromean rings. If p = g = r = —1, then the mirror of £ is the Borromean rings, which

implies that £ is also the Borromean rings. |

Proposition 4.12. Assume that £ is a Brunnian L-space link with three components

and p;53(£) = £1. Then £ is the Borromean rings.

Proof. By Theorem 3.11(a), > h(s) = 1. Recall that h(s) > 0, and takes the maximal
value at h(0,0,0). So

1if s = (0,0,0)
h(s) =
0 otherwise.

Let us prove that S?,1,1(£) is the Poincaré homology sphere. Because L is
Brunnian and the h-function agrees with that of the Borromean rings, the link surgery
complex can be truncated so that it contains only 2,,(£). Just as with the proof of
Lemma 4.6, because S‘;”Ll(/j) is an L-space with d-invariant —2H(0,0,0) = —2 we again
have that S?,l,l(‘c) is the Poincaré sphere. That is, by doing +1-surgery along the link
components L, and L,, we have a knot L} C S® with a +1-surgery to an L-space with
d = —2. Thus L} is the trefoil and S?'Ll(ﬁ) is the Poincaré sphere. By Proposition 4.9, £

is isotopic to the Borromean rings. [ |

4.3 Links with four or more components

In this subsection we show that the above results have no analogues for links with
more than three components. Proposition 4.13 gives Theorem 1.6(3) and Proposition 4.14

gives Theorem 1.5(3) in the introduction.

Proposition 4.13. Assume that £ is a Brunnian L-space link with four or more

components. Then £ is the unlink.
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Proof. By Example 3.9 we have a,(£) = A’(1,...,1) = 0. Therefore by Corollary 3.6
we have » h(s) = 0 and h(s) vanishes for all s. Then by [30, Theorem 1.3] £ is the
unlink. [ |

Now we consider whether rational surgery on a Brunnian link with at least four
components is the Poincaré homology sphere. Note that if £ is a Brunnian link and
..... (L) is an L-space, then by Theorem 2.13 it is an L-space link. By Proposition 4.13, £

is the unlink, and (1, - - - , 1)-surgery cannot be the Poincaré homology sphere. For general

rational surgeries, we have the similar result.

Proposition 4.14. Let £ be an n-component Brunnian link with n > 4. Then

1/ma,. 1 /mn (L) is not the Poincaré homology sphere.

3
1/my,...1/mp

Proof. Suppose S (L) is the Poincaré homology sphere. By the same argu-

. ., . _ . _ . 3 _
ment as in Proposition 4.11, m; = *1 where i = 1,---,n. Since Sl/ml ’’’’’ 1/mn(./:) =
S‘;’/mz ,,,,, 1/mn (L, U...UL,) and the latter is still a Brunnian link, it suffices to consider

the case that £ has four components. By repeating the arguments and notation from
Proposition 4.2 and Proposition 4.9, we see that L, ;) ) g 1S @ genus 1 fibered knot in
(I, p, g@)-surgery on the three-component unlink whenever [, p, q are integers. However,

L(, D)#L(p, 1)#L(q, 1) does not contain a genus 1 fibered knot since its Heegaard genus is

3
1/my,...1/myn

homology sphere. |

3 when [, |p|, |q| > 1, which is a contradiction. Hence, S (£) is not the Poincaré

5 From Triple Linking to d-Invariants

In this section, unlike the rest of the paper, we will use d-invariants for Heegaard Floer
homology with a variety of coefficients. See Section 2.4 for more details on subtleties of
coefficient fields. Some of the results hold over an arbitrary field k, and we will denote
the corresponding d-invariants by dj,.

Let us also introduce some additional notation required in this section. Given
a nullhomologous link £ = L, U-.- UL, in a rational homology sphere Y and integers
m= (my,---,my), let W, denote the four-dimensional two-handle cobordism from Y to
Y, (£), which is the surgery manifold specified by the m-framed link £. The notation s, t
and w, 3 will generally be used to denote Spin®-structures on three-manifolds and four-
manifolds, respectively. In particular, let tv denote a Spin®-structure on W,, = W,,(K)
which extends s in Spin€(Y), where K is a knot in Y. Recall from [46, Theorem 4.2] that
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to induces a Spin°-structure s; on Y,,(K) indexed by
(¢, (1), [F]) + m = 2,

where [F] is the surface in W,,(K) coming from capping off a Seifert surface for K. We
can similarly defines; = s; L iy @S the restriction of Spin€-structures induced by surgery
along links of ¢ components by a similar formula.

We will denote by § (W, ) the quantity

¢, (W) — 3o (W) — 2x (W)

S(W,w) = 1

which describes the shift in absolute grading induced by the Spin®-cobordism map on

the Floer homology associated to (W, w).

5.1 d-invariants for standard three-manifolds

In this subsection we review the definition of d-invariants for standard three-
manifolds from [41, Section 9]. An additional reference for this material can be found
in [28].

Let H be a finitely generated, free abelian group and let A*(H) denote the exterior

algebra of H. If Y is a three-manifold, we denote
A*H' := A*HY(Y; Z), A*H, := A* (H,(Y;Z)/Tors).
The module HF°(Y) is called standard if for each torsion Spin® structure t,
HF®(Y,t) = A*H' @7 klU, U]
as A*H; ®y klUl-modules. The group A*H! is graded by setting gr(A® VW H!(Y;7Z)) =
b,(Y)/2 and by letting the action of H, (Y; Z)/Tors by contraction drop gradings by one.
Let M be any A*(H) ® k-module. The kernel of the action of A*(H) ® k on M is
KM:={xeM|v-x=0 VveHQQk}.

The quotient of M by this action is defined by

OM := M/(T - M).
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where 7 is the two-sided ideal in A*(H) ® k generated by H. For a standard three-

manifold Y, there are then induced maps:

K(w): KHFX(Y,t) — KHF! (Y, 1)

Q(m): QHFX(Y,t) — QHF/ (Y, 1).

We may now define the bottom and top correction terms of (Y,t) to be the
minimal grading of any nonzero element in the image of K(x) and Q(r), denoted by

Apotc and dy,p i, TESpectively.

Proposition 5.1 (Ozsvath-Szabd, [41]). Let K C Y be a nullhomologous knot in a three-
manifold ¥ with b, (Y) < 1. Then

1
dtop,k(YO) - E < dtop,]k(Yl)'

1
Further, if HFyoq, (Y) = 0, then dypp (Vo) = 5 = digp (V7).

Note that if b; (Y) < 1, then b,(Y,) < 2 and b,(Y;) < 1 and hence these manifolds
both have standard HF* [43]. Therefore, our use of dy,,, and d,,,

It is natural to ask about three-manifolds that have non-standard HF*°. Links

is justified.
with ;55 # 0 produce a supply of three-manifolds that are not standard.

Theorem 5.2. Let £ be an algebraically split link with three components. Suppose
that p11,3(£) # 0. Then HF&S (5(3),0,0(@'50) is free of rank 6 over Q[U, U~'], where 50 is the

unique torsion Spin€ structure.

Proof. Recall that since £ has pairwise linking number zero, there exists a basis
a,,a, a; for H (5(3),0,0(5); 7Z) such that the multiplicity of the triple cup product on
cohomology is given by p;,3. It now follows immediately from [22, Proposition 35.3.2]
that WQ(S&O,O(E)'%) is free of rank 6 over Q[U, U~!]. Since Heegaard and monopole
Floer homology are isomorphic over Z by [23-27] or [6-8, 56], we have the same result
for HF®°. |

Remark 5.3. The same proof shows that if k is an arbitrary field and w;,5(£) is
coprime to the characteristic of k then HFI‘f;’ (58,0,0(5)'50) is free of rank 6 over k[U, U~ 1].
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5.2 d-invariant inequalities

In this subsection we collect some inequalities for d-invariants of surgeries of links
over an arbitrary field k. The key result is Proposition 1.14, which shows that the
d).-invariant of S"f (L) detects the unlink when £ is an L-space link.

We recall from [41] that if (W,3) is a negative-definite Spin®-cobordism from

(Y,s) to (Y',s'), two rational homology spheres, then
d(Y',s) — d(Y,s) > 8(W,3). (14)

The following three results are well-known consequences of (14) and the
formulas for the d-invariants of lens spaces from [41]. (Recall that a positive surgery
on a nullhomologous knot induces a positive-definite two-handle cobordism; reversing

orientation produces a negative-definite cobordism.)

Lemma 5.4. Let £ be an ¢{-component algebraically split nullhomologous link in a
rational homology sphere Y. Fix a Spin®-structure s on Y. For any m = (m,, ..., m,) with

m; > 0 we have

J2
dy (Vi (L), 57) < i (Y, 8) + D d(L(my, 1), ). (15)
k=1

wherei = (I}, - ,ip).

Corollary 5.5. Let £ be an algebraically split link in S® with ¢ components. Then for

any integers p;,...,p, > 0 we have
Corollary 5.6. Let £’ be a sublink in £. Then
di(S3(£) < di(S3(L).

In what follows, it will be important to be able to relate the d-invariants of

+1-surgery and large surgery. The key lemma we need is the following.
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Lemma 5.7. Let K be a nullhomologous knot in a rational homology sphere Y with

Spin® structure s. Then, for n > 0, we have

Proof. For n > 0, consider the cobordism W : Y — Y, (K) given by W, (K)#n_l(DPz. of
course, this is a positive-definite four-manifold with diagonalizable intersection form
n(l). We will work with —W. Choose a basis «;,...,«, for Hy(W), where «; = [F;] and
the other o; are given by the exceptional spheres S; in the CP?'s. Here, F; is a capped
off Seifert surface for K. To pin down the signs more carefully, consider the obvious
Kirby diagram for —W and handleslide the n — 1 many —1-framed unknots onto the —1-
framed copy of —K. We now choose the signs on [F;] and [S;] so that [F,] = >"I' ; «;, which
corresponds to the Seifert surface of the knot K with framing n. (This is pinned down
up to an overall sign by the class of [F,,], which will not matter.)

Next, let 3 denote the Spin® structure on —W, which evaluates to one on each of
the basis elements. This is the Spin® structure for which c (5)2 is maximized, that is,
c; (3)> = —n. Note that we can break —W up into two cobordisms X, =Y - -Y,(K)
and X, : —Y,(K) — =Y, (K). Of course, each X, is still negative definite. Let 3, denote the
restriction of 3 to X;.

Therefore, we have from (14):

d1 (Y1 (K), 59) < A1 (Y (K, 3 |y, ) — Xz, 32)- (17)

The result will then be complete if we can establish two results. First, we want
to see that j |y k)= §o. Second, we want to compute that §(X;,3,) = d(L(n, 1),0). Since
F, is supported in X, and [F,] = > ; «;, we see that

(€1G)/ [Fpl) = (c;(3), [F,]) = n.

The last equality follows since ¢, (3) evaluates to 1 on each «;. Since H*(X;) = Z, 3, is
determined by the evaluation of the first Chern class on [F,]. Therefore, it follows that
31 |_v, )= So- (Recall that Spin® structures do not require an orientation to define, so
we can equate the Spin® structures on Y, (K) and —Y,,(XK).)

Therefore, it remains to compute §(Xj, 35). By our choice of 3,

48(~W,3) = ¢;(3)*> — 30 (—=W) — 2 (~W) = 0.

220Z 8unp $0 UO Jasn uonoas spJooay sjeuss Aq 68/ +1.59/89€eul/ulwi/S60 | 01 /10p/a[o1e-aduBApE/UILWI/WOo dnoolwapese//:sdiy wWwol) papeojumod



Triple Linking Numbers and Heegaard Floer Homology 37

Next, note that 01(51)2 —30(X)) — 2x(Xy) = —61(32)2 + 30(X,) + 2x(X,), since each of

these terms is additive over gluing along rational homology spheres. Therefore, we will

compute c; (;,1)2 —30(X;)—2x(X,) instead. This is easy to compute, since the intersection

form of X, is (—n). Since c,(3,) is n times the generator of H2(X;), we have c;(3;)? =
le

—=- = —n. Therefore, we see that

;G2 —30(X) —2x(X;) 1—-n
5(Xy,3,) = 101 41 XAy —

which is exactly —d(L(n, 1),0) and we are now done by (17). [ |

Corollary 5.8. For any algebraically split link £ in S we have

14
di (S3(L)) < dy(S5(L),5) — D d(L(n;,1),0), (18)

i=1

wheren = (n,,...,n,) is chosen to be a sufficiently large surgery, and where s, denotes
the trivial Spin® structure, that is, the unique class corresponding to the trivial element
in H?(S3 (L)).

The following lemma is a straightforward analogue of [40, Theorem 2.5].

Lemma 5.9. Let K be a nullhomologous knot in a rational homology sphere Y. Choose
m a large positive integer and fix a Spin® structure s on Y. Suppose that dy (Y,,(K), sy) =
dy(Y,s) + d(L(m, 1),0). Then dy (Y,,(K), s;) = d|(Y,s) + d(L(m, 1),1) for each i.

Note thats; =s_;.
Proof. First, we assume that 0 < i < % By the large surgery formula from [42]
and absolute gradings on the mapping cone formula [47, Section 7.2], d) (Y,,(K),s;) =
dy (Y, 8)+d(L(m, 1),i)—2H,(i), where H,(i) is defined as follows. The map v, : H (A} ) —
HF*(Y,s) defined in [46] is given by multiplication by a power of U when restricted to
the image of large powers of U in H*(A;i). This exponent is H,(i). Rasmussen shows
H, (i) > H,(i+ 1) > 0 in [50, Proposition 7.6] and the result follows.

If i < 0 we use the conjugation symmetry between s; and 5_;. |

In fact, we can generalize Lemma 5.9 to links by an induction argument.
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Fig. 4. Two different decompositions of the two-handle cobordism Wp,,,... m,,, from Y to ¥Ym (L)

used in Lemma 5.10. The left cobordism consists of first attaching the two-handle to Ly;; and

.....

then attaching the remaining two-handles. The right cobordism consists of first attaching the
two-handles along all components other than Lyy; and then attaching a two-handle along Ly ;.

Lemma 5.10. Let £ be a nullhomologous algebraically split ¢-component link in
a rational homology sphere Y. Choose an ¢-tuple of large positive integers m =

(my,...,m,) and fix a Spin® structure s on Y. Suppose

14
dy (Y (L), 59) = d (Y, 8) + D d(L(my, 1),0).
k=1

Then, dy (Y, (£),s;) = d (Y, s) + Zi:l d(L(my, 1),i;) for any tuplei = (i;,..., ).

Proof. We prove this by induction on the number of components in a link in an
arbitrary rational homology sphere. If £ is a knot, this is simply Lemma 5.9.

Next, suppose that we have established the result for £-component links in an
arbitrary rational homology sphere, and let £ be an (£+ 1)-component link in V. Let £’ =
L — L. We will consider two decompositions of the two-handle cobordism W,
from Y to Y, (L),

sz+1 UXm1,---,mz Y>> Z—- Y0,
Wml,m,mg UXmul Y > 27 > Ym(ﬁ)

both shown in Figure 4. Here Z = (Ly,,) and Z' = Y,/ (L'). Again, the subscripts of

the W- and X-labeled cobordisms indicate the components and framings for which the

Yme+1

two-handles are attached, as in the notation of the beginning of the section. Let L be
the image of £’ in Z, and L, be the image of L, ; in Z’. The Spin® structures on ¥, Z, 7,

and Y,,(£) are denoted as in Figure 4 where s; = Sip iy and s; = LI
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We have
+1
d(Y,5) + D> d(L(my, 1),0) = dy (Y (L), 50)
k=1
< dy(Z,sy) +d(@L(m,,;,1),0) (19)
£+1
< di(Y,8) + D d(Limy, 1),0).
k=1
Similarly,
41
dk(Y,s) + Z d(L(my,1),0) = d]k(Ym (L), sq)
k=1
14
< dy (@ sp) + D dT(my, 1), 0) (20)
k=1
£+1
< di(Y,8) + Y dLimy, 1),0).
k=1

Combining (19) and (20), we conclude

l
dy(Z s¢) = di(Y,5) + D _ d(L(my, 1),0) (21)
k=1
4
dy (Y (£),50) = Ay (Z,50) + D d(L(my, 1),0). (22)
k=1

By (20) we get dy.(Z, so) = d) (Y, s) + d(L(m,,,,1),0). By applying Lemma 5.9 to the knot

Ly, we also have
dy(Z,s;) = dy (Y, s) + d(L(my 1, 1),10). (23)

Now, using (21), by our induction assumption applied to £ in Y,

L
Ay, sy) = dp(Y,5) + D d(Lmy, 1), ). (24)
k=1
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Similarly, by (22), our induction assumption applied to £’ in Z implies that

4
dy (Y (L), 517 ) = dic(Z,50) + D d(L(my, 1), 1)

k=1
Using (23) and (25), we have
. (23) .
d (Y, 9)+ Y dLimy, 1), i) +d(Lm,,,,1),0) = dy(Z,5) + D d(L(my, 1), i)
k=1 k=1

B A (Vi (L), 517 0)
= dﬂ{(z;’n({+1 (L€+1), 51-/'0)

(15)
< dy (7, sp) + d(L(my,,,1),0)
14

L dy (¥, 9+ dTimy, 1), i)
k=1

+d(Lm,,,1),0),

(24

hence
Ay (Zny, ., Lyy1) 510 0) = di(Z'sp) + d(L(my g, 1),0).
By Lemma 5.9 applied to L, ; in Z', we have
Ay Zmy Lei1) 5104, =A@ 5p) + d@(myyy, 1), 8p4).
Since Z;nZ-H (ITH) =Y, (L), (24) now completes the proof.

We are now ready to prove the unlink detection theorem for L-space links.

Proof. (Proof of Proposition 1.14) We prove this by induction on the number of

components. First, suppose that £ is a knot. Then, it is well known that dk(Sf (L)) =0if

and only if £ is unknotted.

Next, suppose that the result holds for ¢-component L-space links and let £ have

¢ + 1 components. Suppose that d]k(Si’ (£)) = 0. Given m > 0, by (18) one has

+1
0 = d (S3(L£)) < dy(S3,(£),50) — D d(L(my, 1),0) < d(S*) =0.
k=1

(25)
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The last inequality follows from Lemma 5.4.

By Lemma 5.10, we have that

41
AL (S (L), 57) = D d(L(my, 1), )
k=1

for all tuples (iy,...,i,, ;). Note that if dlk(Sf(E)) = 0, then by Corollary 5.6 the same
is true for £ = L; U ... U L,. Therefore, we have that £’ is an ¢-component unlink
by the assumption. Hence we have that an,(L/) is #f;zlL(mk, 1), which is an L-space.
Since m > 0, we have that S3,(£) is an L-space. Therefore, the image of L, ; in an,(/;/)
is a knot for which m,_,-surgery yields a three-manifold with the same absolutely
graded Heegaard Floer homology as Sf’n ,(LY#L(m, ., 1). By Gainullin’s Dehn surgery
characterization of the unknot in L-spaces [11, Theorem 8.2], we have that Ly, is
unknotted in an ,(L"). (His paper is only written over F, but the arguments work over
an arbitrary field.) By varying the values of m’, we may apply [10, Corollary 2.4] to
conclude that L, is actually unknotted in the exterior of £'. Since £’ is also an unlink,

we see that £ is an unlink. The second part directly follows from Corollary 5.5. |

Remark 5.11. There is a very elementary proof in the case that k = IF. One simply uses
(18) to see

14
dp(S}(L) < dp(Si L), 59) — . d(L(my, 1),0) = —2h(0) < —2. (26)
k=1

Recall that —2H(0) equals d]F(an (L),sp) up to grading shift, which does not depend
on the link. Hence one can use the unlink to cancel the grading shift, obtaining the
equality in (26). The last inequality follows from the fact that a nontrivial link £ has
h,(0) > 0 [30].

5.3 A bound from non-vanishing triple linking

In order to constrain the d-invariants of Sf (£) in the case that £ is a three-component
link with non-trivial Milnor triple linking, we will connect this with the Floer homology
of Sg(ﬁ), which we know is not standard by Theorem 5.2. To do this, we will use the
d-invariant inequalities (and equalities) that come from the surgery triangle for surgery
on nullhomologous knots in three-manifolds that do have standard HF*. For n = 0, co

or odd, let t,, denote the unique self-conjugate torsion Spin® structure on SS,O,n(‘C)'
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Lemma 5.12. Assume that £ is a Brunnian link with @55 # 0. Then

A1op Q55,01 (£ t1) < Aoy, ©(55,0,00 (L) )

Proof. The first step of the proof is to relate the d-invariants of S%,O,oo(‘a) with
Sg,o,n(ﬁ)' Choose odd n > 0. We begin by considering the surgery exact triangle from
[43, Theorem 9.19]:

HFZ (S 000 (L)1 o) HFG (S ,0(£), to)

f\ /Fz

Fs3
HFg (Sgyoln(ﬁ), t,)

In the above exact triangle, F; is a sum of two Spin® cobordism maps, and by our choice
of t,,, these have the same absolute grading shift, given by —d(L(n, 1), 0) (See for instance
[46, Section 4.8]). Furthermore, F; preserves the absolute Z/2-grading defined in [43].

Since £ is Brunnian, SS,O,OO([’) is #2(S! x S2). Furthermore, for ¥ = Sg,o,n(ﬁ) or
SS,O,OO(E)’ since b, (Y) < 2, the module

HF&’S(Y, 5) = A*HY(Y; %) @7 QIU, U] (27)

is standard for any torsion Spin® structure s. The elements of H,(Y;Z)/Tors act by
contraction on A*H!(Y;Z), hence on HF&S(Y, s).

Choose generators x,y of Hl(Sgyoyn(E);Z)/Tors. Let us choose a QIU, U 1]-
basis for HF&S(SSIOJL(L),’:”), denoted «,B,y,8, which correspond to x* A y* x*,y* 1
respectively under the isomorphism in (27). Likewise, choose generators x’,y’ for
H, (SSIOIOO(E);Z) /Tors that are bordant to x,y in the surgery cobordism from Sg,o,n(ﬁ)
to SS,O,OO(‘C); define the analogous generators of HF(E(SS,O,M(E)’tM) by o/, 8, y’,8'. Then
F; may be expressed as follows:

F3

a=<x*AY*H(X’*Ay’*®1>
B=x"®@L®(y*"®1l)=y ="y ®1)=y

s=(1®1) 8 =(1®1)
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By Theorem 5.2 HF&S (Sg,o,o(ﬁ)' ty) is of rank 6. Exactness implies that

HF (S 0.0(L), to) = coker F; @ ker Fj,

and so each of ker F; and coker F; is rank 3. Recall that the map F; is equivariant with
respect to the action of the exterior algebra, being a sum of cobordism maps. Hence,
the image of « determines the map F;. We claim that F;(«) has a component that is a
non-zero multiple of §’. Before proving the claim, let us see why this will complete the
proof. Assuming the claim, it follows from the long exact sequence relating HF@,HF&S

and HF(E2 that

Aiop QS50 (L) t) — AL(1,1),0) < iy (3(S5,0,00 (L) to)-

The arguments of Lemma 5.7 establish

1op, Q50,01 (L) t1) < dyop (S5 0.0 (L), 1) — d(L(n, 1),0),

which completes the proof.

Therefore, it remains to prove that F;(«) contains a non-zero multiple of §'.
Suppose instead that F5(«) is a linear combination of &/, 8’ and y’.

First, since F; is equivariant with respect to the action of the exterior algebra,
if F3(a) = O, then F; is identically 0. Thus ker F; has rank 4, a contradiction. Since Fj
respects the Z/2-grading, ' and y’ cannot be components of F;. Therefore, it remains
to assume F3(¢) = co’ for a unit ¢ (which might involve a nonzero rational factor and
a power of U). Again, since F; is equivariant with respect to the action the exterior

algebra, contraction by y implies that

Fy(B) Fyx*®1) = —F30L,&x" Ay ®1)

= —i oF3(x*AY*®1) = —C~ty,(x’ *AY *®1) =cx *®1 =cf.

Similarly, F3(y) = cy’ and F5(§) = c§'. Thus, rankker(F;) = 0, which is again a

contradiction. |

Remark 5.13. By Remark 5.3, the above proof works over an arbitrary field k if j1;,5(£)

is coprime to the characteristic of k.

220Z 8unp $0 UO Jasn uonoas spJooay sjeuss Aq 68/ +1.59/89€eul/ulwi/S60 | 01 /10p/a[o1e-aduBApE/UILWI/WOo dnoolwapese//:sdiy wWwol) papeojumod



44 E. Gorsky et al.

Now we can prove the following restatement of Theorem 1.11:

Theorem 5.14. Let £ = L; UL, U L; be an algebraically split link such that all two-
component sublinks are Q-L-space links. If the triple linking number u,,5 is nonzero,
then d(Q(S:f,m(ﬁ)) < —2. If the triple linking number u;,4 is odd, then the analogous

statement holds with Z,-coefficients.

Proof. Let £ be an algebraically split three-component link such that all two-
component sublinks are L-space links. If one of these sublinks is nontrivial, then the
result follows from Corollary 5.6 and Proposition 1.14. Therefore from now on we can
assume that all two-component sublinks are trivial, so £ is a Brunnian link.

Since S§ (L) = S5 5(L; ULy) = #*(S* x S?), we have dbot@(sgloyw(ﬁ)) = —1.By

Lemma 5.12 we get

A1op (85,01 (L) < dpoy @ (S50,00 (L)) = —1.

On the other hand, Sg,oo,l(‘c) =52 x S! and Sgo,l,l(‘c) = S3, so by Proposition 5.1 we get

1 1 1
D1op,QS5,01(0) = dyop, 3 (So,1,1(£) + 5 =d(ST 1 (LN + 5 + 2
and we conclude dQ(S:IS,l,l(ﬁ)) < —2. A similar argument applies for the case of Z,

coefficients by Remark 5.13. (Alternatively, see Corollary 5.22 below.) ]

5.4 0-surgery on links

In this subsection we describe a different approach to the computation of d-invariants
of Sgoo(ﬁ) building on the work of the second author in [29](As the article appears on
arXiv and in thesis form, there is a gap in the argument for b; > 5. This does not affect
the arguments used here.). Since it uses the link surgery formula of [34], we have to
restrict ourselves to the coefficients in IF = Z,,.

Recall that the complex CF~ (SSOO(E)) in the unique torsion Spin®-structure can

be written as in Figure 5 using the surgery formula of [34].

Theorem 5.15 ([34]). The complex CF~ (Sgoo(ﬁ)) in the unique torsion Spin®-structure
is quasi-isomorphic (as a complex of free F[U]-modules) to the complex in Figure 5. The
cube filtration on this complex induces a spectral sequence where all pages are link

invariants.
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Fig. 5. Surgery complex quasi-isomorphic to CF~ (Sgoo(ﬁ)).

Remark 5.16. Theorem 5.15 is not stated in this form in [34]. Instead, the surgery
complex constructed in [34] for a three-component framed link is equivalent to that
of Figure 5, but with the 2~ complexes replaced with F[[U,, U,, Usll-modules. These
modules can be chosen to be free by [34, Section 3]. The homology of the complex
is ultimately a module over F[[U]l by setting U = U; and represents the so-called
U-completed Heegaard Floer homology. (For comparison, for an n-pointed Heegaard
diagram of a three-manifold, the Heegaard Floer homology can be defined as the
homology of a complex of F[U,,...,U,l- or F[[U;,..., U,ll-modules. All variables U; will
act the same on homology and so this becomes an F[U]- or F[[U]]l-module by taking U
to be any U, [45, Proposition 6.5].) For a torsion Spin®-structure t, this completed Floer
homology is the same as HF~ (SSOO([,), t) ®py; FIIUI], which is isomorphic to HF ™, except
that the free IF[U] parts are replaced by F[[U]] [34, Section 2]. Consequently, in this case,
the completed and uncompleted homologies determine each other.

In the case that the linking matrix is the zero matrix, then the Manolescu-
Ozsvath surgery complex can be obtained by instead working over F[U,, U,, U;] and
completing with respect to the maximal ideal (U;,U,, U;). Due to direct product
constructions in the surgery formula, this does not apply if the linking or framings
are non-zero. Since [F[U;, Uy, U3l is Noetherian, F[[U;, U,, U5l is flat over F[U,, Uy, Usl,
and therefore we can compute the homology of the (non-completed) link surgery
complex over IF[U;, U,, U;] and tensor with F[[U;, U,, Usll to recover the homology of
the (completed) link surgery complex. By setting U = U;, and using that all U; act
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F[U, U]
FlU, U] FU, U] F[U,U~]
/\t p123(L)
F[U, U] F[U, U] F[U, U]
F[U,U-1]

Fig. 6. Surgery complex for computing HF>® (Sg00 (L), tg).

identically on homology [34, Theorem 12.1] and [45, Proposition 6.5], we see that we can
recover HF~ (Sgoo(ﬁ)) ®y FIIUI by taking the homology of the the complex in Figure 5
and tensoring with F[[U]]. Note that the 2~ -complexes are free over F[U], but not
finitely generated. Again, for torsion Spin® structures, the completed and uncompleted
homologies determine each other, and so the surgery complex in Figure 5 has isomorphic
homology as that of CF~. Isomorphic homology is the same as quasi-isomorphic for
complexes of (possibly infinitely-generated) free modules over a PID, and so we have
Theorem 5.15.

After tensoring the surgery complex with F[U, U~!] over F[U] and using the fact
that A~ (£, 0) @y, FIU, U1 is homotopy equivalent to F[U, U~!] with trivial differential
for any link £, we can simplify the surgery complex for CF°°(S(3)00(/J)). In fact, we can

simplify it even further.

Theorem 5.17 ([29]). The surgery complex for CF”(SSOO(L),’(O) is quasi-isomorphic to
the complex in Figure 6. The differentials d, and d, in the associated spectral sequence
vanish, while the relevant d; differential is given (up to a unit) by multiplication by the

triple linking number ,5(£) modulo 2.

Corollary 5.18. HF*(S3,,(L), ty) has rank 8 if u,,3(£) is even and rank 6 if ji;,4(L)
is odd.

220Z 8unp $0 UO Jasn uonoas spJooay sjeuss Aq 68/ +1.59/89€eul/ulwi/S60 | 01 /10p/a[o1e-aduBApE/UILWI/WOo dnoolwapese//:sdiy wWwol) papeojumod



Triple Linking Numbers and Heegaard Floer Homology 47

Recall that the homology of each 217 (L, s) is non-canonically isomorphic to
F[U] & M, where M is annihilated by some power of U. Since U-torsion dies after

tensoring with F[U, U~!], we obtain the following result.

Corollary 5.19. Consider the spectral sequence from Theorem 5.15. The components
of the differentials d; and d, that go between free parts vanish. Up to a power of U, the
relevant component of the d differential between free parts is multiplication by p;,5(£)
mod 2.

Remark 5.20. Although the differentials d; and d, between the free parts vanish,
the differentials from the free parts to the torsion are still possible, see Example 5.25.
Because H, (2™ (¥)) = I[I[U], there is no torsion piece to which the d; differential

may map.

We can use these results to give an alternative proof of Theorem 1.11 if the triple

linking number is odd and k = IF.

Theorem 5.21. Suppose that p;,5(L) is odd and all two-component sublinks of £ are
L-space links. Then H.(0,0,0) > 0.

Proof. Letuscompute the spectral sequence for CF~ (Sgoo(ﬁ)). Since all two-component

sublinks L;j are L-space links, the components L; are L-space knots, and
H*(Ql_(LiJ-, 0)) = H, (A (L;),0) = F[UI

Note that the homology of 27 (£, 0) might have torsion, since we do not assume £ is an
L-space link. By Corollary 5.19 the differentials d; and d, vanish on the free part of
H, (2™ (2, 0)) and have trivial image in H, (A~ (#)). The differential d4 from the free part
of H (20" (£,0)) to H (A" (¥)) = F[UI is nontrivial.

On the other hand, d; lowers the homological degree by 1. Further, up to an
absolute shift, the generator of the free part of H, (2 (£,0)) has homological degree
—2H(0, 0, 0) while the generator of the free part of H, (™ ()) has homological degree —3,
so —2H(0,0,0) — 1 < —3 and H(0,0,0) > 1. |

Corollary 5.22. Suppose that j1;,5(L) is odd and all two-component sublinks of £ are
L-space links. Then d(S‘;’,M(ﬁ)) < -2
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N &8
D s

Fig. 7. The link on the left is L; from Example 5.23. The link on the right is the result of applying
n-twisted Bing doubling to K in Ly, yielding L(n) = B(K,n) U U.

Proof. Similar to Remark 5.11, one simply uses (18) to see that for m > 0

3
d(S3(£)) < d(S, (L), 59) — D d(L(my, 1),0) = —2h(0) = —2H.(0) < —2. (28)
k=1
The last inequality follows from Theorem 5.21. |

5.5 Example: generalized Borromean link

The assumption that all 2-component sublinks are L-space links is important in
Theorem 1.11. We will show that there exist three-component algebraically split links
L with nonzero triple linking number and d(s?,l,l(ﬁ)) = 0. Here, we resume working

exclusively over I and omit the coefficients from the notation.

Example 5.23. Start with the two-component link L; = K U U in the left image of
Figure 7 where U is the unknot and K is arbitrary. We can assume the linking number of
L, is —1. Let L(n) = B(K,n) U U denote the new link obtained by applying an n-twisted
Bing-double to K, which is the right image in Figure 7. We order B(K, n) so that the first
component is the one “induced” by K. Note that L(n) is a three-component algebraically
split link and p,5(L(n)) = (—1)€k(L;) = 1 [5, Theorem 8.1].

We claim that d(S} | | (L(n))) = 0 for sufficiently large n. Note that S}, | (L(n))
is diffeomorphic to Sf (D.(K,n —1) where D_(K,n — 1) is the (n — 1)-twisted positively
clasped Whitehead double. The d-invariant for this manifold is computed in [55] to be

0 n > 2t(K)

d(S3(D,(K,n) = [
-2 n < 2t1(K).

Hence, for sufficiently large n, we have p,,3(L(n)) = 1, but d(s?,m(L(”))) =0.
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Remark 5.24. In the above example,
— 083 1(0) = —udps(L) + BBKEK, ) =n — 1.
We also have the alternate computation
BBK,n)) = —A(S} | (B(K,n)) = —A(S;(D,(K,n)) =n.

Example 5.25. For a specific example, let K be the unknot. In our conventions D_ (K, 0)
is the unknot, D (K, —1) = T(2,3) and D_ (K, 1) is the figure eight knot. In particular, for

n = 0, we get L(0) is the Borromean rings and
d(S3,,1L0) = d(S} (D, (K, -1)) = 2.

The above computation shows that for n > 1 we have d(S"fllll(L(n))) = 0. By a sequence
of inequalities similar to (28), we get H;,,(0,0,0) =0 forn > 1.

For n = 1 we can also compute all differentials in the spectral sequence of
Theorem 5.15. Indeed, all components of £ = L(1) are unknots and two of three two-
component sublinks are unlinks. The only interesting two-component sublink is B(K, 1)
and in order to apply Theorem 5.15 we need to describe 2™ (B(K, 1), 0). Observe that the
component of B(K, 1) labeled by K, n in Figure 7 has genus one in the complement of the

other component. This means that for p > 1 the (p, 1) surgery is large for B(K, 1) and
A~ (B(K,1),0) ~ CF_(S;I(B(K, 1),80) ~ CF~ (S5(D, (K, 1),50)) ~ A~ (D, (K, 1),0).

Here the first and last equations follow from the large surgery formula, and the middle
equation is clear.

Since D, (K, 1) is the figure eight knot, it is well known that H, (™ (D, (K, 1),0)) =
F[U]p, ®F. Therefore, the E; page of the spectral sequence in Theorem 5.15 has the form
shown in Figure 8. Let z be a generator of some free summand of H, (A" (£,0)). Then,
since H,(0,0,0) = 0, we see z has degree 3 higher than the generator of H (2™ (¢)). We
claim that d, (2) is the unique non-trivial element in the kernel of U. (This description
is independent of the choice of splitting.) Indeed, suppose that instead d,(z) = 0. By
Corollary 5.19, d,(z) = d,(2) = 0, and the d, differential should map z nontrivially to
the homology of 2™ (), which is not possible by degree reasons.

Therefore, d,(z) is determined and the d; differential vanishes elsewhere by

Corollary 5.19. On the E, page we get a free IF[U] module generated by Uz together with
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F[U ]\@\T\o\r?

o F[U] F[U]

h FU] N
IF[U]«N/,,,,,,,,,,

Fig. 8. Spectral sequence in Example 5.25 for computing HF‘(SSOO(L(I))). The solid arrow
indicates d; while the dashed arrow indicates d3. These are the only non-trivial differentials

in the spectral sequence after the E; page.

the torsion at the top, and F[U] everywhere else, so by Corollary 5.19 the differential d,
vanishes. Now the differential d; sends Uz to a power of U times the generator of the
homology of 2™ (). For degree reasons, d4(Uz) is in fact the generator of H, (™ (¥)), and
hence this pair of free modules is cancelled by the d, differential. The d, differential
vanishes elsewhere, and all other differentials vanish identically. From the algebra, we
cannot seem to determine from the spectral sequence what the torsion coming from
H, (" (£,0)) is and whether it contributes to HFred(Sg,o,o(ﬁ)) or the free part. We will
use some topological input to complete the spectral sequence computation.

It is an easy Kirby calculus exercise to see that 5(3),0,0(@ = T3, and hence
HFred(Sg,o,o(ﬁ)) = 0. Thus, the torsion term contributes to the free part. Further,
ignoring this torsion part, the E_ page of the spectral sequence has six towers. Three
towers come from the second-to-top filtration level and are all supported in the same
gradings. This relies on the fact that d(Sgll(B(K, 1)),585)) = 0 and that the other two
two-component sublinks are trivial. It is also not hard to deduce that this topmost
absolute grading is in fact 1/2. The remaining three towers come from the second-
to-bottom filtration level and are all supported in the same gradings; their topmost
relative grading is one lower than that of the other towers, and hence have topmost
grading —1/2. Note that this agrees with the relative-gradings on HF~(T?), and hence

the torsion term cannot contribute to the free part of the Floer homology. Consequently,
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the torsion term of H, (A~ (£, 0)) is trivial, and we have completed the computation of

the spectral sequence.
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