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We establish some new relationships between Milnor invariants and Heegaard Floer

homology. This includes a formula for the Milnor triple linking number from the link

Floer complex, detection results for the Whitehead link and Borromean rings, and a

structural property of the d-invariants of surgeries on certain algebraically split links.

1 Introduction

Milnor defined in his thesis a family of higher-order linking invariants capable of

detecting triple linking, as in the Borromean rings [35]. The μ-invariants are calculated

using coefficients in the Magnus expansion of certain quotients of the fundamental

group of the link complement. The Milnor invariants contain both link homotopy and

concordance invariants of links [3, 36, 52] and are central tools in the study of three-

manifolds and four-manifolds. Geometric interpretations of Milnor’s invariants are

numerous. Stallings conjectured that the μ-invariants could be described in terms of

Massey products for cohomology [53], following which Turaev and Porter gave explicit

interpretations [49, 60]. Milnor’s invariants can be computed using the intersection
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2 E. Gorsky et al.

theory of certain “derived” surfaces in the link exterior [5] or expressed in terms of the

Alexander and Conway polynomials [37, 51, 59]. The interpretation of the μ-invariants

most relevant to our purposes is the identification of the first non-vanishing coefficient

of the Conway polynomial of an algebraically split link with the Sato–Levine invariant

β and square of the Milnor triple linking number μ123 for two- and three-component

links, respectively, as determined by Cochran [4].

As many other invariants from knot theory can be seen in Floer homology,

it is natural to ask about the Milnor invariants as well. For example, it is asked in

[48, Problem 17.2.7]:

Problem 1.1. Do the Milnor invariants place algebraic restrictions on the structure of

link Floer homology?

In previous work of the first, third, and fourth authors [14], it is shown that

Heegaard Floer homology is able to see the Sato–Levine invariant β of an algebraically

split two-component link. In this paper, we address Problem 1.1 to study several

appearances of the Milnor triple linking number μ123 [36] in the Heegaard Floer theory

of links and three-manifolds. We also apply this to give new Dehn surgery and link Floer

complex detection results for the Whitehead link and the Borromean rings.

The first result we have is that the link Floer complex of Ozsváth–Szabó [45]

contains the Milnor triple linking number.

Theorem 1.2. Let L be a three-component link with pairwise linking number zero.

Then, there is an explicit formula for |μ123(L)| in terms of CFL−(L).

For the explicit statement, see Corollary 3.10 below. The main strategy is to

utilize the aforementioned relationship between the triple linking number and the

Conway polynomial and to express this in terms of the Euler characteristic of the link

Floer complex and an associated link invariant.

If we add some additional hypotheses on the links then this formula simplifies

greatly. The formula from Theorem 1.2 becomes especially transparent if the link is a

Brunnian L-space link. First, recall that the h-function is an integer valued link invariant

that is defined using absolute gradings in link Floer homology (see Section 2.2 for a

definition and properties). Second, recall that a link of three or more components is

called Brunnian if all its proper sublinks are unlinks. In this article, we will call a two-

component link Brunnian if it is linking number zero and the components are unknots

and will generally include unlinks in the class of Brunnian links. More generally, a link
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Triple Linking Numbers and Heegaard Floer Homology 3

is called algebraically split if all pairwise linking numbers are zero. Finally, a link is

called an L-space link if all sufficiently large surgeries of S3 are L-spaces, that is, they

have the simplest possible Heegaard Floer homology. (In the first part of this section,

we will work exclusively with Z2-coefficients.)

Theorem 1.3. Assume that L is a Brunnian L-space link with three components. Then

μ123(L)2 = ∑
s h(s).

In particular,
∑

s h(s) is a link homotopy invariant of three-component Brunnian

L-space links. See Corollary 3.10 for a more general statement of homotopy invariance

in the link Floer complex. For such links, the h-function is always non-negative (see

Lemma 2.7 (7)). As the unlink is the only L-space link with vanishing h-function

(Lemma 2.16), we have the following:

Corollary 1.4. Assume that L is a Brunnian L-space link with three components. If

μ123 = 0 then L is the three-component unlink.

Next, we ask to what extent Floer homology is able to detect the simplest

links admitting rationally framed Dehn surgery to the three-sphere or the Poincaré

homology sphere. We first observe that if there is a rational surgery S3
1/m1,··· ,1/m�

(L)

on an �-component Brunnian link that is the three-sphere, then L is the unlink (see

Proposition 4.1). We extend this by considering rational surgeries that are the Poincaré

homology sphere and prove the following results:

Theorem 1.5. Let L be an �-component Brunnian link, and suppose that S3
1/m1,··· ,1/m�

(L)

is the Poincaré homology sphere.

1. If � = 2, then L is the Whitehead link or its mirror and m1m2 = 1.

2. If � = 3, then L is the Borromean rings, and all |mi| = 1 with the same sign.

3. If � � 4, no such L exists.

In a related vein, we prove that among Brunnian L-space links, the Whitehead

link and Borromean rings are essentially detected by the Sato–Levine invariant and the

triple linking number.

Theorem 1.6. Let L be an �-component Brunnian L-space link.

1. If � = 2 and β = 1, then L is the Whitehead link.
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4 E. Gorsky et al.

2. If � = 3 and μ123(L) = ±1, then L is the Borromean rings.

3. If � � 4, then L is the four-component unlink.

Finally, if we drop the assumption that the components of L = L1 ∪ L2 are

unknots, requiring only that it is an L-space link, we widen the detection result as

follows.

Theorem 1.7. Let L = L1 ∪ L2 be an algebraically split L-space link such that S3
1,1(L) is

the Poincaré homology sphere. Then L is either the Whitehead link or the split union of

T(2, 3) and the unknot.

We make the following conjecture for three-component algebraically split

L-space links.

Conjecture 1.8. Let L = L1 ∪ L2 ∪ L3 be an algebraically split L-space link such that

S3
1,1,1(L) is the Poincaré homology sphere. Then L must be one of the following:

1. the Borromean rings,

2. the split union of the Whitehead link and the unknot,

3. the split union of the right hand trefoil and the two-component unlink.

Remark 1.9. By a similar argument to the one in [14, Proposition 5.6], one of the

manifolds S3
1(Li) is an L-space where i = 1, 2, 3. Hence at least one of the components of

L is the unknot or the right-handed trefoil T(2, 3).

Theorems 1.6 is sufficient to establish the following.

Corollary 1.10. The link Floer chain complex detects the Whitehead link and the

Borromean rings.

Proof. The link Floer chain complex determines the Heegaard Floer homology of large

surgeries on a link and hence determines whether a link is an L-space link. The link

Floer chain complex also determines the multivariable Alexander polynomial [45], which

in turn determines the linking number [58], as well as whether the link is Brunnian. By

Theorem 1.6, it thus suffices to know that the link Floer complex determines the Sato–

Levine invariant (for links with two components) or Milnor triple linking number (for

links with three components). This is shown in [14] for links with two components and

Theorem 1.2 for links with three components. �
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Triple Linking Numbers and Heegaard Floer Homology 5

The final appearance of the triple linking number involves its relationship

with another Heegaard Floer-theoretic invariant, the d-invariant of a homology three-

sphere. As is common, we write d for the d-invariant when computing Heegaard Floer

homology with Z2-coefficients. We will use dk for the d-invariant when working

with coefficients in a field k. We show that the non-vanishing of the triple linking

number for a link L gives an interesting restriction on the d-invariants of integer

homology spheres obtained by Dehn surgeries along L in the three-sphere. We prove the

following:

Theorem 1.11. Let L = L1 ∪ L2 ∪ L3 be an algebraically split link such that all two-

component sublinks are Q-L-space links. If the triple linking number μ123 is nonzero,

then dQ(S3
1,1,1(L)) � −2. If the triple linking number μ123 is odd, then the analogous

inequality holds with Z2-coefficients.

In Theorem 1.11, we use d-invariants for Heegaard Floer homology with coeffi-

cients in Q and in Z2. Although it is customary for Heegaard Floer homology literature

to work over Z2, we use a comparison with monopole Floer homology to obtain a

separate result over Q. Surprisingly enough, we do not know if dQ and d coincide.

However, note that a Z2-L-space is necessarily a Q-L-space. See Section 2.4 for a

discussion about coefficients.

Remark 1.12. The same proof applies if we work with coefficients in an arbitrary field

k and the characteristic of k is coprime to μ123(L).

The L-space link assumption in Theorem 1.11 will be shown to be necessary

in Example 5.23. As an immediate application of Theorem 1.11, notice that when

L = L1 ∪ L2 ∪ L3 is an algebraically split link such that all two-component sublinks

are L-space links and has non-vanishing triple linking number μ123, then S3
1,1,1(L) has

infinite order in the homology cobordism group, and, for example, does not bound a

rational homology ball.

Remark 1.13. It is easy to see that Theorem 1.11 holds for algebraically split links

L with n components, which contains a three-component sublink Lijk satisfying the

assumption of the theorem.

In Section 5 we establish some d-invariant inequalities for surgeries on links

over an arbitrary field k, which may be of independent interest to the reader. Since
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6 E. Gorsky et al.

link Floer homology is only defined over Z2 at the moment, for arbitrary coefficients,

we cannot make use of it or various formulas relating link Floer homology with the

Heegaard Floer homology of surgery. Nonetheless, we obtain the following results

(which are known to experts over Z2):

Proposition 1.14. Assume that L is a nontrivial k-L-space link of any number of

components and pairwise linking zero. Then dk(S3
1,··· ,1(L)) � −2. The same inequality is

true for any (1/m1, . . . , 1/m�)–surgery along L where m1, . . . , m� > 0.

Corollary 1.15. Let L be an algebraically split k-L-space link such that S3
1,··· ,1(L) is S3.

Then L is the unlink.

Organization

In Section 2, we review certain numerical invariants extracted from the link Floer

complex, including (and defining) the h-function. In Section 3, we relate these numerical

invariants to the Milnor invariants and prove Theorem 1.2. In Section 4 we establish

the detection results for the Whitehead link and Borromean rings: Theorems 1.5, 1.6

and 1.7. Finally, in Section 5, we establish Theorem 1.11 on the d-invariants of surgeries

on three-component algebraically split links.

2 Background

In this section, we review the relevant aspects of Heegaard Floer homology, especially

properties of the link Floer complex and L-space links. A multi-component link is

denoted by scripted L, and its components are denoted Li. We denote multi-framings

and vectors in an n-dimensional lattice by bold letters (e.g., p = (p1, · · · , pn)–surgery

or s = (s1, · · · , sn)), and we let e i denote a vector in Zn where the i-th entry is 1 and

other entries are 0. For any subset B ⊂ {1, · · · , n}, we let eB = ∑
i∈B e i. Given two vectors

u = (u1, u2, · · · , un) and v = (v1, · · · , vn) in Zn, we write u � v if ui � vi for each

1 � i � n, and u ≺ v if u � v and u �= v.

Definition 2.1. A link L = L1 ∪· · ·∪Ln is algebraically split if for all i �= j, �k(Li, Lj) = 0.

Throughout this article, all links will be assumed to be algebraically split,

unless otherwise stated. However, we include a slightly more general discussion below

for the benefit of the reader.
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Triple Linking Numbers and Heegaard Floer Homology 7

Definition 2.2. For an oriented link L = L1 ∪ · · · ∪ Ln ⊂ S3, define H(L) to be the affine

lattice over Zn,

H(L) = ⊕n
i=1Hi(L), Hi(L) = Z+ �k(Li,L \ Li)

2
.

If L is algebraically split then H(L) = Zn.

2.1 d-invariants

We assume familiarity with Heegaard Floer homology, and refer the reader to [34, 41]

for details. With the exception of Section 5, we work over the field F = Z2, as is typical

in Heegaard Floer homology. Recall the d-invariant d(Y, t) of a rational homology sphere

Y equipped with a Spinc structure t is defined to be the maximal degree of a non-

torsion class x ∈ HF−(Y, t). Here, our grading conventions for HF− differ by a shift

of two from what appears in Ozsváth–Szabó [41]. For example, we write HF−(S3) ∼= F[U]

where deg(1) = 0 rather than −2. With this convention, we still have d(S3) = 0. For

three-manifolds with b1(Y) > 0, the definition of the d-invariant is more complicated,

see Section 5.1.

2.2 The h-function and L-space links

We review the definition of the h-function for oriented links L ⊂ S3, as defined by the

first author and Némethi [15]. We will quote without proof several technical lemmas

regarding its properties; proofs of these statements can be found in either [2], [14],

or both.

An oriented link L = L1 ∪ · · · ∪ Ln in S3 defines a filtration on the Floer

complex CF−(S3). This filtration is indexed by elements s = (s1, · · · , sn) ∈ H(L) (see

Definition 2.2). The generalized Heegaard Floer complex A−(L, s) ⊂ CF−(S3) is the

F[U]-module defined to be the subcomplex of CF−(S3) corresponding to the filtration

indexed by the lattice point s [34]. The large surgery theorem of [34, Theorem 12.1]

implies that the homology of A−(L, s) is isomorphic to the Heegaard Floer homology

of a sufficiently large surgery on the link L equipped with some Spinc-structure as an

F[U]-module. Therefore, there is a non-canonical isomorphism between the homology

of A−(L, s) and a direct sum of one copy of F[U] and a U-torsion submodule. Thus the

following is well-defined:
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8 E. Gorsky et al.

Definition 2.3. [2, Definition 3.9] For an oriented link L ⊆ S3, we define the H-function

HL(s) by saying that −2HL(s) is the maximal homological degree of a nonzero element

in the free part of H∗(A−(L, s)) where s ∈ H(L).

Remark 2.4. We will write HL(s) as H(s) for brevity if the context is clear. The notation

HI(s) refers to the H-function of the sublink determined by indices I ⊆ {1, · · · , n}.

By definition −2HL(s) is equivalent to the d-invariant of large surgery on L,

following a degree shift that depends only on the linking matrix and s (this is explained

in [34, Section 10] and [2, Theorem 4.10] ). In particular, the H-function is a well-defined

topological invariant of links. For a knot K, the H-function satisfies HK(s) = Vs, where Vs

are the similarly defined integer-valued concordance invariants coming from the knot

Floer complex [40, 50].

We will work with a normalized version of the H-function, denoted h, as well as

a “state sum,” denoted h′, that is taken over sublinks of L.

Definition 2.5. Let L be an n-component algebraically split link, n � 1. We define

h(s) = H(s) − HO(s1) − . . . − HO(sn)

h′(s) =
∑

I⊆{1,...,n}
(−1)n−|I|hI(s)

where HO(s) = max(−s, 0) is the H-function for the unknot and h(∅) = 0.

Example 2.6. Assume that L is a Brunnian link, that is, all proper sublinks are unlinks.

Then hI(s) = 0 for all proper subsets I and h′(s) = h(s).

We now list several properties of the H-function.

Lemma 2.7. For an oriented link L ⊆ S3,

1. The H-function HL(s) takes nonnegative values.

2. HL(s − e i) = HL(s) or HL(s − e i) = HL(s) + 1 where s ∈ H.

3. H(−s) = H(s) + ∑n
i=1 si where s = (s1, · · · , sn).

4. If L is algebraically split and N is sufficiently large, then

HL(s1, · · · , si−1, N, si+1, · · · , sn) = HL\Li
(s1, · · · , si−1, si+1, · · · , sn),

for all i and sj.
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Triple Linking Numbers and Heegaard Floer Homology 9

5. The functions h and h′ have the following symmetry property:

h(−s) = h(s), h′(−s) = h′(s).

6. The function h is non-decreasing towards the origin. That is, h(s −e i) � h(s)

if si > 0 and h(s − e i) � h(s) if si � 0.

7. For all s one has h(s) � 0.

Proof. Items (1) and (2) are proved in [2, Proposition 3.10] and (3) is proved in

[33, Lemma 5.5]. Item (4) is [2, Proposition 3.12]. For (5), the first equation follows from

(3) and the second follows from the first. Item (6) and Item (7) are proved in [14, Lemma

2.16, Corollary 2.17]. �

Lemma 2.8. Let L be an algebraically split link. Then the function h′
L(s) is finitely

supported.

Proof. By Lemma 2.7(4), when si > N for some N, we have hI�{i}(s) = hI(s). By Lemma

2.7(5), it is therefore sufficient to prove for all i that when si → +∞ we have h′(s) = 0.

Fix any index i and observe that we can write

h′(s) =
∑
i/∈I

(−1)n−|I|(hI(s) − hI�{i}(s)).

�

Lemma 2.9. Suppose that L is a split union of n knots with n > 1. Then h′(s) = 0 for

all s .

Proof. Since L is split, we have hI(s) = ∑
i∈I hi(si) for all I, and

h′(s) =
∑

I

(−1)n−|I| ∑
i∈I

hi(si) =
∑

i

hi(si)
∑
i∈I

(−1)n−|I| = 0

for n > 1. �

Corollary 2.10. Let L be an algebraically split link with n > 1 components. Then

h′(s1, . . . , sn) =
∑

I⊆{1,...,n}
(−1)n−|I|HI(s).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab368/6514785 by Serials R

ecords Section user on 04 June 2022



10 E. Gorsky et al.

Proof. If L is an unlink, then similarly to Lemma 2.9 the right hand side vanishes, and

then the statement follows by Definition 2.5. �

Lemma 2.11. Let L be an algebraically split link with n > 1 components. Then for all

s one has

∑
J⊂{1,...,n}

(−1)|J|h′
L(s − eJ) =

∑
J⊂{1,...,n}

(−1)|J|HL(s − eJ).

Proof. By Corollary 2.10 we get

∑
J⊂{1,...,n}

(−1)|J|h′(s − eJ) =
∑

I,J⊂{1,...,n}
(−1)n−|I|+|J|HI(s − eJ).

If I is a proper subset of {1 . . . , n} then HI(s − eJ) = HI(s − e I∩J) and we can write

J = J ′ � J ′′ where J ′ = I ∩ J and J ′′ = J \ I. Then for this I,

∑
J⊂{1,...,n}

(−1)n−|I|+|J|HI(s − eJ) =
∑
J ′⊂I

(−1)n−|I|+|J ′|HI(s − eJ ′)
∑

J ′′⊂({1,...,n}\I)

(−1)|J ′′| = 0,

so the only surviving terms are from I = {1, . . . , n}. �

2.3 L-spaces

Recall from [44] that a rational homology sphere Y is an L-space if it has the simplest

possible Heegaard Floer homology. More precisely, for any Spinc-structure s, HF−(Y, s)

is a free F[U]-module of rank one.

Definition 2.12. [15, 33] An oriented n-component link L ⊂ S3 is an L-space link

if there exists 0 ≺ p ∈ Zn such that the surgered manifold S3
q (L) is an L-space for

any q � p .

Recall that if a knot K ⊂ S3 admits any positive surgery to an L-space, then

S3
p/q(K) is also an L-space for all p/q � 2g(K) − 1 [44] [47, Proposition 9.5]. For links

though, it is not necessarily the case that the existence of a single p–surgery yielding

an L-space guarantees that all large surgeries are also L-spaces. However, the following

criterion of Y. Liu can determine when this is the case.
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Triple Linking Numbers and Heegaard Floer Homology 11

Theorem 2.13. [33]

1. Every sublink of an L-space link is an L-space link.

2. A link is an L-space link if and only if for all s one has H∗(A−(L, s)) = F[U].

3. Assume that for some p the surgery S3
p (L) is an L-space. In addition, assume

that for all sublinks L′ ⊂ L the surgeries S3
p|L′ (L′) are L-spaces too, and the

framing matrix �|L′ is positive definite. Then for all q � p the surgered

manifolds S3
q (L) are L-spaces, and so L is an L-space link.

Example 2.14. If L is algebraically split, then � is positive definite if and only if

all pi > 0. In this case, the existence of any p with all pi > 0 such that S3
p ′(L′) is an

L-space for all sublinks L′ is sufficient to conclude L is an L-space link. In particular,

any Brunnian link admitting a single positive L-space surgery (e.g., (+1, +1, +1)-surgery

along the Borromean rings) is an L-space link.

The link Floer homology HFL− is defined as the homology of the associated

graded complex:

HFL−(L, s) = H∗(A−(L, s)/
∑
v≺s

A−(L, v)).

By [45], the Euler characteristic χ(HFL−(L, s)) is the multivariable Alexander

polynomial,

�̃L(t1, · · · , tn) =
∑

s∈H(L)

χ(HFL−(L, s))ts1
1 · · · tsn

n (1)

where s = (s1, · · · , sn), and

�̃L(t1, · · · , tn) :=
{

(t1 · · · tn)1/2�L(t1, · · · , tn) if n > 1,

�L(t)/(1 − t−1) if n = 1.
(2)

For L-space links, the H-function can be computed from the multi-variable Alexander

polynomial. Indeed, by Theorem 2.13 (2) and the inclusion–exclusion formula, one can

write

χ(HFL−(L, s)) =
∑

B⊂{1,··· ,n}
(−1)|B|−1HL(s − eB), (3)
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12 E. Gorsky et al.

as in [2, (3.14)].

Example 2.15. The (symmetric) Alexander polynomial of the Whitehead link equals

�(t1, t2) = −(t1/2
1 − t−1/2

1 )(t1/2
2 − t−1/2

2 ),

and the H-function has the following values.

The H-function of the two-component unlink agrees everywhere with the

H-function of the Whitehead link except at s = (0, 0), where HO (0) = 0. Therefore, for

the Whitehead link,

hL(s1, s2) =
⎧⎨⎩1 if s1 = s2 = 0

0 otherwise.
(4)

Lastly, we observe:

Lemma 2.16. If for an L-space link L one has h(0) = 0, then L is the unlink.

Proof. If h(0) = 0 then by Lemma 2.7 (6) we have h(s) = 0 for all s ∈ H(L). The rest of

the proof follows from [30, Theorem 1.3]. �

We will also make use of the following well-known fact without reference. If K

is an L-space knot, then

g(K) = max{s | h(s) > 0} + 1.
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Triple Linking Numbers and Heegaard Floer Homology 13

2.4 Coefficients

As stated above, for most of the paper, we use F = Z2 as the field of coefficients.

However, in Section 5, we will use rational coefficients, so we need to discuss the

dependence of the results on the field of coefficients.

First of all, the Heegaard Floer complexes ĈF, CF−, CF∞ for knots and three-

manifolds are defined over Z [41]. In particular, CF− is a complex of finitely generated

free Z[U] modules. Its decomposition into Spinc structures is well defined over Z[U].

Let k be an arbitrary field. We will write CF−
k

= CF− ⊗Z k, and define ĈFk, CF∞
k

and ĤFk, HF−
k

, HF∞
k

similarly. Since k[U] is a principal ideal domain, any finitely

generated graded k[U] module (in particular, HF−
k

) can be decomposed as a direct sum

of several copies of k[U] and k[U]/Udi for various di.

If Y is a rational homology sphere, then for any Spinc structure t on Y and any

field k the homology HF−
k

(Y, t) contains exactly one copy of k[U] [43]. We define dk(Y, t),

the d-invariant with coefficients in k, as the homological degree of the generator of this

copy of k[U]. When k = F = Z2, we simply write d(Y, t) = dF(Y, t), as above.

The following two examples show that d-invariants with coefficients in F

and in Q could be potentially very different. It would be very interesting (but rather

challenging) to find such examples in actual Heegaard Floer homology. In both examples

we consider complexes of free Z[U]-modules with three generators a, b, c.

Example 2.17. Suppose that that ∂(c) = Uka − 2b. The homology over Z can be

identified with the submodule of Z[U] generated by 2 (corresponding to a) and Uk

(corresponding to b). In particular, the homology is free as Z-module and has no torsion.

On the other hand, if we consider this complex over F, then ∂(c) = Uka and the

homology is isomorphic to F[U]/(Uk) ⊕F[U] as a graded F[U]-module, its F[U] free part

is generated by b. If we consider the same complex over Q, then it is isomorphic to Q[U]

generated by a.

In conclusion, dF = dQ − 2k.

Example 2.18. Suppose that ∂(a) = Ukc and ∂(b) = 2c. In this case the homology has

Z2 torsion of rank k, spanned by c, Uc, . . . , Uk−1c.

If we consider this complex over F, then the homology is isomorphic to

F[U]/(Uk)⊕F[U] as a graded F[U]-module, and its F[U] free part is generated by b. If we

consider the same complex over Q, then it is isomorphic to Q[U] generated by 2a − Ukb.

In conclusion, dF = dQ + 2k.
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14 E. Gorsky et al.

Note that the above examples show that the difference between dF and dQ
could be either positive or negative, and arbitrarily large in absolute value.

It is also important to point out that that the notion of L-space (and hence of

L-space link) depends on the coefficients, so a pedantically inclined reader is invited to

use the terms F-L-space and F-L-space link.

At present, link Floer homology (for links with more than one component) is only

defined over F, so the H-function and its cousins are only defined over F.

3 Milnor Invariants and the Casson Invariant

In this section, we show how to extract the Milnor triple linking invariant from the link

Floer complex. This will be in terms of the invariant h′ defined in the previous section

and another invariant χ ′ from the torsion part of H∗(A−(L, s)).

3.1 The invariant χ ′

For non L-space links, the h-function does not determine the Alexander polynomial.

However, we can obtain this from the collection of H∗(A−(L, s)) for all s , which we now

explain. Recall that for any link we have a non-canonical splitting

H∗(A−(L, s)) = F[U][−2H(s)] ⊕ A
−
tor(L, s),

where A
−
tor(L, s) is finite-dimensional over F and hence a torsion module over F[U].

We begin by analyzing the modules A
−
tor, as they will feature in our formula for the

Alexander polynomial, and ultimately the Milnor invariants.

Lemma 3.1. For an algebraically split link L, we have

H∗(A
−
tor(L, −s)) ∼= H∗(A

−
tor(L, s))[−2|s|],

where |s| = ∑
i si.

Proof. By the large surgery theorem [34] we have (up to a grading shift)

H∗(A−(L, s)) ∼= HF−(S3
p (L), s), for p 0.

By [43, Theorem 2.4] we have

HF−(S3
p (L), −s) ∼= HF−(S3

p (L), s).
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Triple Linking Numbers and Heegaard Floer Homology 15

Therefore up to a grading shift we have

H∗(A−(L, −s)) ∼= H∗(A−(L, s)).

To figure out the shift, we can look at the F[U]-free part and use the identity

H(−s) = H(s) + |s|.
�

Corollary 3.2. For an algebraically split link L, we have

χ(A−
tor(L, −s)) = χ(A−

tor(L, s)). (5)

We are ready to define the analogue of the function h′ for the torsion parts

of A−.

Definition 3.3. Let L be an algebraically split link with n components. We define

χ ′
L(s) = χ ′(s) =

∑
I⊂{1,...,n}

(−1)n−|I|χ(A−
tor(LI , s I)).

Lemma 3.4. The function χ ′(s) is finitely supported and enjoys the symmetry

χ ′(−s) = χ ′(s).

Proof. The symmetry for χ ′(s) immediately follows from (5). Let us prove that it

is finitely supported. For si � 0 and any subset I not containing si we have from

[34, Lemma 10.1]

H∗(A−(LI , s I))
∼= H∗(A−(LI∪{i}, s I∪{i}))

and, in particular,

χ(A−
tor(s I)) = χ(A−

tor(s I∪{i})).

Then similarly to Lemma 2.8 we have χ ′(s) = 0 for si � 0. By symmetry, we also have

χ ′(s) = 0 for si � 0, and therefore χ ′(s) is finitely supported. �
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16 E. Gorsky et al.

Finally, equation (3) can be generalized in the presence of torsion as follows:

χ(HFL−(L, s)) =
∑

B⊂{1,··· ,n}
(−1)|B|(χ(A−

tor(s − eB)) − HL(s − eB)). (6)

Let L be an algebraically split link with n > 1 components. Then the Torres

condition [58] implies that �L is divisible by (ti − 1) for all i. Hence, we can write

�L(t1, . . . , tn) =
∏

i

(t1/2
i − t−1/2

i )�̃′
L(t1, · · · , tn), (7)

where �L is normalized as in equation (2) above.

Theorem 3.5. Assume that L is an algebraically split link with n > 1 components.

Then

�̃′
L(t) = (−1)n

∑
s

(χ ′(s) − h′(s))ts ,

where ts = ts1
1 · · · tsn

n .

Proof. Let �̃′
L(t) = ∑

q(s)ts and �̃L(t) = ∏
i(ti − 1)�̃′

L(t) = ∑
a(s)ts . Then

a(s) =
∑

J⊂{1,...,n}
(−1)n−|J|q(s − eJ). (8)

By Lemma 2.11 we get

∑
J⊂{1,...,n}

(−1)|J|h′
L(s − eJ) =

∑
J⊂{1,...,n}

(−1)|J|HL(s − eJ).

Similarly,

∑
J⊂{1,...,n}

(−1)|J|χ ′(s − eJ) =
∑

J⊂{1,...,n}
(−1)|J|χ(A−

tor(s − eJ)).

Therefore (6) implies

a(s) =
∑

J⊂{1,...,n}
(−1)|J|(χ ′(s − eJ) − h′(s − eJ)). (9)
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Triple Linking Numbers and Heegaard Floer Homology 17

Equations (8) and (9) imply that (−1)nq(s) and χ ′(s) − h′(s) satisfy the same recursion

relations, and by Lemmas 2.8 and 3.4 both vanish for sufficiently large s . Therefore,

�̃′
L(t) = (−1)n

∑
s

(χ ′(s) − h′(s))ts .

�

Corollary 3.6. Assume that L is a Brunnian L-space link with n > 1 components. Then

�̃′
L(t) = (−1)n+1

∑
s

h(s)ts .

Proof. For Brunnian links h′(s) = h(s), and since L is an L-space link, χ ′(s) = 0 for

all s . �

3.2 Milnor triple linking invariant

To associate the Milnor triple linking invariant to the Alexander polynomial, we must

pass through the Conway polynomial. The Conway polynomial of L = L1 ∪ . . . ∪ Ln can

be written as

∇L(z) = zn−1(a0 + a2z2 + a4z4 + · · · ), ai ∈ Z,

and

∇L(t1/2 − t−1/2) = (−1)n+1(t1/2 − t−1/2)�L(t, . . . , t),

where �L(t1, . . . , tn) denotes the multi-variable Alexander polynomial of L. Note that

a0 depends only on the linking numbers of L, see [17, Theorem 1]. For an algebraically

split link with n > 1 components, a0 = 0 and we can write its multivariable Alexander

polynomial as in (7):

�L(t1, . . . , tn) =
∏

i

(t1/2
i − t−1/2

i )�̃′
L(t1, · · · , tn).

Then we can set all ti = t and apply the change of variable z = t1/2 − t−1/2:

∇L(z) = (−1)n+1(t1/2 − t−1/2)�L(t, . . . , t) = (−1)n+1(t1/2 − t−1/2)n+1�̃′
L(t, . . . , t).
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18 E. Gorsky et al.

We define ∇̃L(z) as ∇L(z)/zn+1. With this, the coefficient a2 of the Conway polynomial

can be written as

a2(L) = ∇̃L(0) = (−1)n+1�̃′
L(1, . . . , 1).

It is an important invariant of the link. By Theorem 3.5 we get

a2(L) = −
∑

s

(χ ′(s) − h′(s)). (10)

Example 3.7. For two-component algebraically split links the invariant a2(L) agrees

with the Sato–Levine invariant β(L) up to sign [14, 54]. Equation (10) now gives an

explicit formula for β(L) in terms of the link Floer complex for L. Moreover, if L is a two-

component algebraically split L-space link with unknotted components, then β(L) = 0

implies L is the unlink (see [14, Corollary 6.4]).

Remark 3.8. For two-component links, other Milnor invariants of the form μ[1p2q]

may be written in terms of the link Floer complex as follows. (For example, the linking

number corresponds with μ[12] and the Sato–Levine invariant with μ[1122].) One first

writes the multivariable Alexander polynomial as in Theorem 3.5. Then passing to

the Taylor expansion at (1, 1) of this two variable polynomial, a result of Murasugi

[37, Theorem 4.1] shows that the coefficients of the Taylor expansion determine these

Milnor invariants.

Example 3.9. If L is an algebraically split link with n � 4 components then by [4]

a2(L) = 0.

Proof. (Proof of Theorem 1.2) For three-component links, by [4, Theorem 5.1], a2(L)

relates to the square of the Milnor triple linking number

a2(L) = μ2
123(L). (11)

Equation (10) now establishes an explicit formula for |μ123| in terms of the link Floer

complex. �
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Triple Linking Numbers and Heegaard Floer Homology 19

Corollary 3.10. Assume that L is an algebraically split link with three components.

Then

μ2
123(L) = −

∑
s

(χ ′(s) − h′(s)).

In particular, −∑
s (χ ′(s) − h′(s)) is a link homotopy invariant.

For Brunnian L-space links we can get even more information.

Theorem 3.11. Assume that L is a Brunnian L-space link with three components. Then

the following statements hold:

(a) μ2
123(L) = ∑

s h(s).

(b) If μ123(L) = 0 then L is the unlink.

(c) μ123(L) has the same parity as h(0, 0, 0) = H(0, 0, 0).

(d) μ123(L) cannot equal ±2.

Proof. (a) By Corollary 3.10, and the assumption that L is a Brunnian L-space link, we

have

μ2
123(L) =

∑
s

h(s).

(b) If μ123(L) = 0 then by (a) we have h(s) = 0 for all s . By the proof of

[30, Theorem 1.3], which relies only on the assumption of having a vanishing h-function,

the link L is the unlink.

(c) By Lemma 2.7(5), we have h(−s) = h(s) for all s . Note that s = −s if and only

if s = (0, 0, 0). Therefore
∑

s h(s) has the same parity as h(0, 0, 0).

(d) Assume that μ123(L) = 2, then by (c) h(0, 0, 0) is even as well. If h(0, 0, 0) = 0

then h(s) = 0 for all s by Lemma 2.7(6), which is a contradiction. Therefore h(0, 0, 0) � 2,

hence

h(1, 0, 0), h(0, 1, 0), h(0, 0, 1) � 1

by Lemma 2.7. This implies μ2
123 = ∑

s h(s) � 2+3 = 5, contradicting to the assumption.

�
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20 E. Gorsky et al.

Note that Theorem 3.11(a) and (b) provide the statement of Theorem 1.3 and

Corollary 1.4 in the introduction. We mention here an open problem suggested by the

discussion above:

Problem 3.12. Do there exist examples of Brunnian L-space links with three compo-

nents and large μ123?

Let L = L1 ∪ L2 · · · ∪ Ln be an oriented link in an integer homology sphere Y with

all pairwise linking numbers equal zero, and with framing 1/qi on component Li, for

qi ∈ Z. Hoste [18] proved that the Casson invariant λ of the integer homology sphere

Y1/q1,··· ,1/qn
(L) satisfies a state sum formula,

λ(Y1/q1,··· ,1/qn
(L)) = λ(Y) +

∑
L′⊂L

(∏
i∈L′

qi

)
a2(L′; Y), (12)

where the sum is taken over all sublinks L′ of L.

For example, let L = L1 ∪ L2 ∪ L3 be a three-component algebraically split link in

S3 with framings qi = 1. Formula (12) simplifies to

λ(S3
1,1,1(L)) = a2(L) + a2(L12) + a2(L13) + a2(L23) + a2(L1) + a2(L2) + a2(L3),

where Lij = Li ∪ Lj. Theorem 3.11(a) immediately implies

Corollary 3.13. Assume that L is a Brunnian L-space link with three components. Then

λ(S3
1,1,1(L)) = μ2

123(L) =
∑

s

hL(s).

Example 3.14. Let L denote the Borromean rings, which are easily checked to form an

L-space link. Since S3
1,1,1(L) is the Poincaré homology sphere, we see that λ(S3

1,1,1(L)) = 1.

This confirms the well-known calculation that |μ123(L)| = 1. From this, we also deduce

that the h-function satisfies h(0, 0, 0) = 1 and vanishes elsewhere.

4 Detection results

In this section, we will apply the statements from the section above to show that

for Brunnian links or algebraically split L-space links, sometimes information about

surgery or Milnor invariants is sufficient for link detection. In Section 4.1, we focus

on Whitehead link characterizations, in Section 4.2, we focus on Borromean ring
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Triple Linking Numbers and Heegaard Floer Homology 21

detections, and finally, in Section 4.3, we discuss analogous results for links with more

components. Combining the results in these sections, we obtain proofs of Theorem 1.5,

Theorem 1.6, and Theorem 1.7.

Before we move to these statements, as a warm-up, we first determine which

Brunnian links admit a rational surgery that is the three-sphere S3.

Proposition 4.1. Let L = L1 ∪ · · · ∪ L� be an �-component Brunnian link, and suppose

that some surgery S3
1/m1,··· ,1/m�

(L) is the three sphere S3, where all mi �= 0. Then L is the

unlink.

Proof. We first prove that S3
1,··· ,1(L) = S3. Let L′

� be the image of L� in S3
1/m1,··· ,1/m�−1

,

which is S3 since L is Brunnian. Then L′
� is the unknot by Gordon–Luecke [13]. It is easy

to see that

S3
1/m1,··· ,1/m�−1,1(L) = S3

1(L′
�) = S3.

By repeating this argument, one can easily prove that S3
1,··· ,1(L) = S3. By Example 2.14,

L is an L-space link. Because the Casson invariant of S3 is zero, equation 12 implies

that the sum
∑

L′ a2(L′) over all all sublinks L′ of L is zero, and because L is Brunnian,

a2(L) = 0. By Example 2.6, h′ = h, and because L is an L-space link, χ ′ ≡ 0. By Lemma

2.7, the h-function is non-negative. Therefore by equation 10,
∑

s h(s) = 0, and so

h(0) = 0. By Lemma 2.16 we have that L is the unlink. �

In the following sections, we will generalize to the case when (1/m1, · · · , 1/m�)-

framed Dehn surgery yields the Poincaré homology sphere. We will use the notation

PHS = 	(2, 3, 5) for the Poincaré homology sphere, oriented as the boundary of the

positive-definite E8 plumbing, and Wh and B for the positive Whitehead and Borromean

links, respectively.

4.1 Whitehead link detection

This subsection is devoted to the detection of the Whitehead link. Proposition 4.2

informs and precedes the more general Proposition 4.5, which gives the statement

of Theorem 1.5(1) in the introduction. Corollary 4.7 will give the statement of

Theorem 1.6(1), and following this we prove Theorem 1.7.

Proposition 4.2. Let L be a two-component Brunnian link. If S3
1,1(L) is the Poincaré

homology sphere, then L is the positive Whitehead link Wh.
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22 E. Gorsky et al.

Proof. First, since S3
1,1(L) bounds a positive definite four-manifold, the Poincaré

homology sphere under consideration is +PHS. Since L is Brunnian, each of the

components L1 and L2 are unknotted. Therefore, S3
n(Li) = L(n, 1) for all integers n.

For notation, let EL denote the exterior of L, and let T1 and T2 denote the boundary

components corresponding to L1 and L2, respectively. Let L2,(n) denote the image of L2

in S3
n(L1) and ML

(n) the exterior of L2,(n) in S3
n(L1). Note that ML

(n) has one torus boundary

component, obtained by Dehn filling EL along T1. We also will study ML
(∞), which is just

a solid torus, since L2,(∞) is unknotted. Since S3
1,1(L) is the Poincaré homology sphere,

L2,(1) is the trefoil by [12]. Therefore, ML
(1) is the exterior of the trefoil in S3, and hence is

a fibered three-manifold.

We first claim that for all n �= ∞, L2,(n) is a genus one fibered knot. From the

above discussion, we see that there are two slopes α, β on the boundary component T1 in

EL such that Dehn filling along α results in a fibered three-manifold and filling along

β lowers the Thurston norm. (Here, with respect to the canonical meridian-longitude

coordinates on T1, α = +1 and β = ∞.) By [39, Theorem 1.4], we see that the core J

of the α-filling sits on the fiber surface F of the trefoil in ML
(1) and that the framing β

corresponds to the surface framing of F. It follows that any surgery on J that is distance

one from β is also a genus one fibered three-manifold. Indeed, one cuts along F and

reglues by some number of Dehn twists along J. In meridian-longitude coordinates, J

is the core of +1-surgery on L1 in the exterior of L2, β corresponds to the ∞-filling of

T1, and integral n-filling along L1 for any n is distance one from β. Therefore, each

ML
(n) is a fibered three-manifold with fiber having genus one and a single boundary

component. Since L2,(n) is nullhomologous, we see that it is a genus one fibered knot

in L(n, 1).

By [1, Theorem 4.3], for n �= 4, ∞, we see that L2,(n) belongs to one of exactly two

isotopy classes of knots. These must be either Wh2,(n) or Wh2,(n) because the arguments

above imply that integral surgery on a single component of Wh and Wh gives genus one

fibered knots. To see these are distinct, note that +1-surgery on Wh2,(n) gives S3
n(T2,3)

whereas +1-surgery on Wh2,(n) gives S3
n(41).

In other words, ML
(n) = MWh

(n) or MWh
(n) for infinitely many n. By Lemma 4.3 below,

EL = EWh or EWh. In principle, this does not yet imply that L is a Whitehead link, since

such links are not determined by their exteriors. However, Lemma 4.4 shows that the

additional condition that S3
1,1(L) being the Poincaré homology sphere implies L is in

fact Wh. �

Lemma 4.3. If ML
(n) = MWh

(n) for infinitely many n, then EL = EWh and similarly for Wh.
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Triple Linking Numbers and Heegaard Floer Homology 23

Proof. We do the case of Wh. The mirror is the same.

Suppose EL is hyperbolic with two cusps. Then by Thurston’s hyperbolic Dehn

surgery theorem [57], ML
(n) is hyperbolic for all but finitely many n with one cusp. In

addition, EL is the geometric limit of the sequence of complete hyperbolic manifolds

ML
(n), which is the same as MWh

(n) . Hence, in the limit EL = EWh.

We next prove that EL is hyperbolic. Suppose instead that EL is not hyperbolic. If

EL is reducible, then L is split, and so L is an unlink, and so ML
(n) �= MWh

(n) , contradiction.

Note that EL is not Seifert, since otherwise ML
(n) would not be hyperbolic for any n. It

follows that there is a non-boundary parallel incompressible torus (i.e., essential torus)

in EL. By [19, Proposition 10.6.2] (see also [38, Proposition 4.1]), the JSJ decomposition of

EL may be assumed to consist of only of tori. Consider the piece X of this decomposition

that contains T1. Let T ′ denote a boundary component of X, which is not T1 or T2 and

essential in EL. Then, T ′ remains incompressible and non-boundary parallel in all but

finitely many fillings of X along T1, unless X is a cable space (i.e., a Seifert fibered

space with base orbifold an annulus and exactly one cone point) [9, Theorem 2.4.4]. If X

is not a cable space, then generically ML
(n) has a non-boundary parallel incompressible

torus. However, MWh
(n) is hyperbolic for infinitely many n, and hence does not have a non-

boundary parallel incompressible torus, contradiction. If instead X is a cable space, and

infinitely many of the n-fillings of T1 are not those that cause T ′ to compress in ML
(n),

then again ML
(n) has a non-boundary parallel incompressible torus for infinitely many

n, while MWh
(n) does not, contradiction.

Lastly, suppose that X is a cable space, and that infinitely many integral

n-slopes on L1 are slopes on X, which cause T ′ to compress. The fiber slope on a

boundary component of a cable space is uniquely characterized by the slope that is

distance one from at least 3 different compressing slopes [9, Theorem 2.4.3]. This means

that the ∞-slope on L1 corresponds to the fiber slope φ on X. Recall that for a cable

space, filling one boundary component along the fiber slope results in the connected

sum of a solid torus and a non-trivial lens space. Let X(φ) denote the Dehn filling of T1

with the fiber slope φ. Therefore, ML
(∞) contains X(φ) as a codimension zero submanifold

that has a lens space summand, but ML
(∞) is a solid torus, so this is a contradiction. �

Lemma 4.4. If L is a two-component link in S3 with EL = EWh or EWh and S3+1,+1(L) is

the Poincaré homology sphere, then L = Wh.

To explain why this lemma is necessary, notice that doing 1/n-surgery on a

single component of Wh yields S3, and that the image of the other component is a
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24 E. Gorsky et al.

Fig. 1. The generalized twist knot K[2n, −2m] is a two-bridge knot described by numerator closure

of the rational tangle with continued fraction [2n, −2m]). For example, K[2, −2] is the right-handed

trefoil.

twist knot K[2n, −2]. The core of that surgery, together with this twist knot, is a two-

component link in S3 with the same exterior as Wh.

Proof. We begin with the case that EL = EWh. Since Wh has linking number 0, any L
in S3 with the same exterior can be described by the core of (1/m, 1/n)-surgery on Wh,

where that surgery results in S3. Note that S3
1
m , 1

n
(Wh) is 1/m-surgery on the twist knot

K[2n, −2] (see Figure 1), and thus either 1/m = ∞ or 1/n = ∞. Without loss of generality,

1/n = ∞. Therefore,

PHS = S3
1,1(L) = S3

1
m+1 ,1

(Wh) = S3
1

m+1
(K[2, −2]) = S3

1(K[2(m + 1), −2]).

It follows that K[2(m + 1), −2] is the right-handed trefoil, and hence m = 0.

We can repeat a similar argument with Wh. In this case, we see that

PHS = S3
1,1(L) = S3

1
m+1 ,1

(Wh) = S3
1

m+1
(41) = S3

1(41),

which is a contradiction. �

By an argument similar to the one in Proposition 4.2, we now can characterize

which rational surgeries on a Brunnian two-component link are the Poincaré homology

sphere.

Proposition 4.5. Suppose that L is a two-component Brunnian link. Then S3
1/m,1/n(L)

is the Poincaré homology sphere with either orientation if and only if mn = 1 and L is

the Whitehead link or its mirror.
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Triple Linking Numbers and Heegaard Floer Homology 25

Proof. The if part is easy. For the only if part, we first claim that if S3
1/m,1/n(L) is the

Poincaré homology sphere, then m = ±1 and n = ±1. Suppose L = L1 ∪ L2, and let L′
1

denote the image of L1 in S3 after blowing down L2. Then S3
1/m,1/n(L) = S3

1/m(L′
1) = ±PHS,

which implies that m = ±1, since only a trefoil has a surgery to the Poincaré homology

sphere, and the surgery coefficient is integral [12]. A similar argument applies for n. If

m = n = 1, by Proposition 4.2, L must be the Whitehead link. If m = n = −1, we have

S3−1,−1(L) = −S3
1,1(L̄) where L̄ is the mirror of L. Then L̄ must be the Whitehead link, and

hence, L is the mirror of the Whitehead link.

Without loss of generality, we assume that m = 1, n = −1. By a similar argument

as the one in Proposition 4.2, the exterior of the link EL = EWh or EWh. However, this is

impossible by applying the same argument as in Lemma 4.4. �

We now transition to characterizing the Whitehead link among two-component

algebraically split L-space links.

Lemma 4.6. Let L = L1 ∪ L2 be an algebraically split L-space link with the following

h-function:

hL(s1, s2) =
⎧⎨⎩1 if s1 = s2 = 0

0 otherwise.
(13)

Then L is the Whitehead link.

Proof. By Lemma 2.7, H(0, ∞) = H1(0) = 0. Since L1 is an L-space knot, it is the unknot.

Similarly, L2 is also the unknot. Let us prove that S3
1,1(L) is the Poincaré homology

sphere. Let L′
2 be the image of L2 in S3

1(L1), so that S3
1,1(L) = S3

1(L′
2).

Since the h-function of L is given by (13), the link surgery complex for S3
1,1(L) can

be truncated so that it contains only A
−
00(L) [14]. Therefore, S3

1(L′
2) = S3

1,1(L) is an L-space

with d-invariant equal to −2H(0, 0) = −2. The knot L′
2 is an L-space knot and the L-space

surgery coefficient of +1 satisfies 1 � 2g(L′
2) − 1. Because the surgery S3

1(L′
2) is not S3,

we must have the genus of L′
2 is exactly 1, and so L′

2 is the right-handed trefoil. This also

shows S3
1,1(L) is the Poincaré homology sphere. Finally, since the unknot is determined

by its h-function among L-space knots, Lemma 2.7(4) implies that the components of L
are unknotted. Now the statement follows from Proposition 4.2. �

Corollary 4.7. Suppose that L is a two-component L-space link with unknotted

components and β(L) = ±1. Then L is the Whitehead link.
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26 E. Gorsky et al.

Proof. Since L is an L-space link with unknotted components, we have
∑

s h(s) =
±β(L) = ±1. Since h(s) � 0 and h(−s) = h(s), the only possible h-function is given by

(13). Hence, L is the Whitehead link by Lemma 4.6. �

The following is a restatement of Theorem 1.7.

Theorem 4.8. Let L = L1 ∪ L2 be an algebraically split L-space link such that S3
1,1(L) is

the Poincaré homology sphere. Then L is either the Whitehead link or the split union of

T(2, 3) and the unknot.

Proof. By [14, Proposition 5.6] we have that either S3
1(L1) or S3

1(L2) is an L-space.

Without loss of generality, in the remainder of the proof, we assume that S3
1(L1) is an

L-space. Then L1 is an L-space knot of genus 0 or 1, so it is either unknotted or the

right-handed trefoil.

Case 1: L1 is an unknot. In this case we can blow it down and obtain a knot L′
2

such that S3
1,1(L) = S3

1(L′
2). This means that S3

1(L′
2) is the Poincaré homology sphere. So

L′
2 is T(2, 3).

By [14, Theorem 4.8] the H-function for L′
2 equals HL(0, s2), so

hL(0, s2) = hT(2,3)(s2) =
⎧⎨⎩1 if s2 = 0

0 otherwise.

By Lemma 2.7(6) we get hL(N, s2) = 0 for all N � 0 and s2 �= 0, and hence h2(s2) = 0 for

s2 �= 0. Since L2 is an L-space knot, this implies the genus is at most one, and hence it is

either unknotted or T(2, 3).

If L2 is unknotted, then L is the Whitehead link by Proposition 4.2.

If L2 is T(2, 3), then h2(0) = hL(N, 0) = 1 for all N > 0, and Lemma 2.7(5)

implies that hL(s1, s2) coincides with the h-function of the disjoint union of O � T(2, 3)

(see Figure 2). By the main result of [31] the Thurston polytope of L is the same as the

Thurston polytope of O � T(2, 3). In particular, L1 bounds a disk not intersecting L2, and

hence L = O � T(2, 3).

Case 2: L1 is the trefoil. Let L′
2 be the knot corresponding to L2 in S3

1(L1) =
PHS. Since +1-framed surgery along L′

2 ⊂ PHS yields PHS, by the Dehn surgery

characterization of the unknot in an integer homology sphere L-space [11, 21], L′
2 is

an unknot.
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Triple Linking Numbers and Heegaard Floer Homology 27

Fig. 2. The h-function for O � T(2, 3)

Fig. 3. Hypothetical h-function for Case 2.

Now for all d we have S3
1,d(L) = PHSd(L′

2) = S3
1,d(T(2, 3) � O). Similarly to

[14, Theorem 4.8] we conclude that

hL(0, s2) = hT(2,3)�O(0, s2) = 1

as in Figure 3.
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28 E. Gorsky et al.

Now we claim that L2 is the unknot. Otherwise, suppose that g(L2) � 1. By

Lemma 2.7(6), h2(s2) = hL(N, s2) � hL(0, s2) = 1. More precisely, h2(s2) = 0 for all

|s2| � g(L2) and h2(s2) = 1 otherwise as in Figure 3.

Recall that h′(s1, s2) = hL(s1, s2)−h1(s1)−h2(s2). Since L1 is the trefoil, h1(s1) = 0

for all s1 �= 0. By a similar argument to the one in Lemma 2.7(6), one can prove that

h′(s − e1) � h′(s) for all s1 > 1. Note that h′(∞, s2) = 0 for all s2 ∈ Z. Then h′(s1, s2) � 0

for all s1 � 1. By Lemma 2.7(5), h′(s1, s2) � 0 for all |s1| � 1.

By (12),

1 = λ(S3
1,1(L)) = a2(L) + a2(L1) + a2(L2).

Note that a2(L1) = ∑
h1(s1) = 1, a2(L2) = ∑

h2(s2) = 2g(L2) − 1. Then a2(L) =∑
h′
L(s) = 1 − 2g(L2) < 0. Observe that (see Figure 3)

∑
s2∈Z

h′
L(0, s2) = 1 − 2g(L2) =

∑
s∈H(L)

h′
L(s1, s2),

and h′
L(s1, s2) � 0 for all |s1| � 1. Hence h′

L(s1, s2) = 0 for all s1 �= 0, indicating that

hL(s1, s2) = h1(s1) + h2(s2) for all s1 �= 0. Note that h1(s1) = 0 for all s1 �= 0. This implies

that hL(s1, s2) = h2(s2) for all s1 � 1, and the h-function has the form as in Figure 3.

As in [14, Section 5] we may define

b1 = min{s1 − 1 | HL(s1, s2) = H2(s2) for all s2}.

Clearly, from Figure 3, we have b1 = 0. It is proved in [32, Proposition 4.7] that (under

some assumptions on the h-function that are satisfied in this case) if S3
d1,d2

(L) is an

L-space for d1 > 2b1 and d2 � 0 then L2 is the unknot. Since (1, d)-surgery on L yields

PHS#L(d, 1), which is an L-space for any nonzero integer d, L2 is the unknot. Hence,

by the same argument as the one in Case 1, L is the disjoint union of the unknot and

T(2, 3). �

4.2 Borromean link detection

In this subsection, Proposition 4.9 will inform the more general Proposition 4.11, which

corresponds with Theorem 1.5(2) in the introduction. Proposition 4.12 will give the

statement of Theorem 1.6(2).

Proposition 4.9. Let L be a three-component Brunnian link. Then if S3
1,1,1(L) is the

Poincaré homology sphere, then L is the Borromean rings B.
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Triple Linking Numbers and Heegaard Floer Homology 29

Proof. Because L1 ∪ L2 ∪ L3 is Brunnian, all proper two-component sublinks Li ∪ Lj

are unlinks and S3
m,n(Li ∪ Lj) = L(m, 1)#L(n, 1) for all integers m, n. We will use notation

similar to that of Proposition 4.2. Let EL denote the exterior of L, and Ti the boundary

component corresponding to Li. We write L3,(m),(n) to denote the image of L3 in S3
m,n(L1 ∪

L2) = L(m, 1)#L(n, 1), and write ML
(m),(n) for the exterior of L3,(m),(n) in L(m, 1)#L(n, 1). We

also write L2,3,(n) to denote the image of L2 ∪L3 in S3
n(L1). We similarly have that ML

(∞),(∞)

is a solid torus. Because S3
1,1,1(L) is the (positive) Poincaré homology sphere, L3,(1),(1) is

the trefoil knot and ML
(1),(1) is the exterior of the trefoil in S3, a fibered three-manifold.

We will invoke [39, Theorem 1.4] to argue that for all pairs of integers n, m �= ∞,

L3,(n),(m) is a genus one fibered knot. The argument is analogous to that of Proposition

4.2. There are two slopes α1, β1 on the boundary component T1 in EL such that Dehn

filling along α1 results in a fibered three-manifold and filling along β1 lowers the

Thurston norm. With respect to the canonical meridian-longitude coordinates on T1,

α1 = +1 and β1 = ∞. Indeed, we claim that filling along α1 results in the complement of

Whitehead link in S3. Since L is Brunnian, then L2,3,(1) is also Brunnian and S3
1,1(L2,3,(1)) =

S3
1,1,1(L) is the Poincaré homology sphere. By Proposition 4.2, L2,3,(1) is the Whitehead

link. Filling along β1 results in the complement of two-component unlink in S3, which

lowers the Thurston norm. By [39, Theorem 1.4], the core J1 of the α1-filling of T1 sits on

the fiber surface F of the Whitehead link complement ML
(1). The framing β1 corresponds

to the surface framing of F. Now we repeat this argument. In particular, ML
(1) has two

boundary components T2 and T3. We consider two fillings α2 and β2 along T2 similarly

(i.e., α2 = +1, β2 = ∞). By the argument given above, the α2 filling ML
(1),(1) yields a

fibered three-manifold, which is the exterior of the right-handed trefoil and is obtained

by capping off one boundary of the fiber surface of the Whitehead link. The β2 filling

ML
(∞),(1) that results in the complement of the unknot in S3 reduces the Thurston norm.

By a second application of [39, Theorem 1.4], we have that the core J2 of the α2-filling of

T2 sits on the fiber surface F3 in ML
(1),(1) and any surgery that is distance one from β2 will

produce a fibered three-manifold. In fact, any fillings along T1, T2 that are distance one

from β1, β2 will extend the monodromy of the fibration. We now have for any integers

m, n that ML
(m),(n) is fibered and that the fiber is genus one. So L3,(m),(n) is a genus one

fibered knot in L(m, 1)#L(n, 1).

Having established that L3,(m),(n) is genus one fibered knot, we turn again to

Baker’s classification of genus one fibered knots in lens spaces [1]. By [1, Lemma 2.2],

the isotopy classes (M, K) of genus one fibered knots K in M are in a one-to-one

correspondence with isotopy classes (N, A) where N is a link in S3 whose branched

double cover is M, and with a braid axis A that yields a closed 3-braid presentation
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30 E. Gorsky et al.

of N. Fix m, n odd and distinct. Applying this here, we must have that N is the

connected sum of torus knots T(2, m)#T(2, n). Indeed, T(2, m) is the unique knot

whose branched double cover is the lens space L(m, 1) by Hodgson and Rubin-

stein [16]. By the equivariant sphere theorem for involutions [20], T(2, m)#T(2, n)

is the unique knot with branched double cover L(m, 1)#L(n, 1). Thus, we seek to

identify the braid axes A yielding closed 3-braid presentations for T(2, m)#T(2, n).

We claim that there is a unique braid axis for closed 3-braid presentations of the

knot T(2, m)#T(2, n) with odd integers satisfying |m|, |n| > 1. Note that the torus

knots T(2, m) and T(2, n) are strongly invertible, so T(2, m)#T(2, n) is invertible.

There is no distinction between the orientations of the knot. By [1, Lemma 3.6],

there is at most one equivalence class of braid axes giving 3-braid representatives for

the oriented knot and its inverse.

Similarly to the argument used for the Whitehead link, we have that ML
(m),(n) =

MB
(m),(n) for infinitely many m, n. An argument completely analogous to that of Lemma

4.3 implies that the geometric limit EL of the hyperbolic manifolds ML
(m),(n) agrees

with the limit EB of the sequence MB
(m),(n), meaning the exterior EL is the same as the

Borromean exterior EB. The result now follows from Lemma 4.10 below. �

Lemma 4.10. If L is a three-component Brunnian link in S3 with EL = EB and S3
1,1,1(L)

is the Poincaré homology sphere, then L = B.

Proof. Any link L in S3 with the same exterior as B can be described by the core of

(1/m, 1/n, 1/p)-surgery on B, where this surgery results in S3. By Proposition 4.1, at

least one of m, n, p is zero. Without loss of generality, we assume p = 0. Then

PHS = S3
1,1,1(L) = S3

1
m+1 , 1

n+1 ,1
(B) = S3

1
m+1 , 1

n+1
(Wh).

By Proposition 4.5, m = n = 0. Therefore, L = B. �

Based on the argument for the detection of the Borromean rings, we now

characterize which rational surgeries on a Brunnian three-component link are the

Poincaré homology sphere.

Proposition 4.11. Suppose that L is a three-component Brunnian link. Then

S3
1/p,1/q,1/r(L) is the Poincaré homology sphere if and only if the link L is the Borromean

rings, and |p| = |q| = |r| = 1 with the same sign.
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Triple Linking Numbers and Heegaard Floer Homology 31

Proof. The if part is easy. For the only if part, we first claim that p, q, r = ±1. Suppose

that L = L1 ∪ L2 ∪ L3, and let L′
1 denote the image of L1 in S3 after blowing down L2, L3.

Then S3
1/p,1/q,1/r(L) = S3

1/p(L′
1), which implies that 1/p = ±1. Hence, p = ±1. Further, the

sign of p is determined by the definiteness of the plumbing that the surgered Poincaré

homology sphere bounds. A similar argument can be used to prove that q, r = ±1, and

that their signs must agree with that of p. If p = q = r = 1, by Proposition 4.9, L is the

Borromean rings. If p = q = r = −1, then the mirror of L is the Borromean rings, which

implies that L is also the Borromean rings. �

Proposition 4.12. Assume that L is a Brunnian L-space link with three components

and μ123(L) = ±1. Then L is the Borromean rings.

Proof. By Theorem 3.11(a),
∑

s h(s) = 1. Recall that h(s) � 0, and takes the maximal

value at h(0, 0, 0). So

h(s) =
⎧⎨⎩1 if s = (0, 0, 0)

0 otherwise.

Let us prove that S3
1,1,1(L) is the Poincaré homology sphere. Because L is

Brunnian and the h-function agrees with that of the Borromean rings, the link surgery

complex can be truncated so that it contains only A
−
000(L). Just as with the proof of

Lemma 4.6, because S3
1,1,1(L) is an L-space with d-invariant −2H(0, 0, 0) = −2 we again

have that S3
1,1,1(L) is the Poincaré sphere. That is, by doing +1-surgery along the link

components L1 and L2, we have a knot L′′
3 ⊂ S3 with a +1-surgery to an L-space with

d = −2. Thus L′′
3 is the trefoil and S3

1,1,1(L) is the Poincaré sphere. By Proposition 4.9, L
is isotopic to the Borromean rings. �

4.3 Links with four or more components

In this subsection we show that the above results have no analogues for links with

more than three components. Proposition 4.13 gives Theorem 1.6(3) and Proposition 4.14

gives Theorem 1.5(3) in the introduction.

Proposition 4.13. Assume that L is a Brunnian L-space link with four or more

components. Then L is the unlink.
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32 E. Gorsky et al.

Proof. By Example 3.9 we have a2(L) = �̃′(1, . . . , 1) = 0. Therefore by Corollary 3.6

we have
∑

s h(s) = 0 and h(s) vanishes for all s . Then by [30, Theorem 1.3] L is the

unlink. �

Now we consider whether rational surgery on a Brunnian link with at least four

components is the Poincaré homology sphere. Note that if L is a Brunnian link and

S3
1,...,1(L) is an L-space, then by Theorem 2.13 it is an L-space link. By Proposition 4.13, L

is the unlink, and (1, · · · , 1)-surgery cannot be the Poincaré homology sphere. For general

rational surgeries, we have the similar result.

Proposition 4.14. Let L be an n-component Brunnian link with n � 4. Then

S3
1/m1,...,1/mn

(L) is not the Poincaré homology sphere.

Proof. Suppose S3
1/m1,...,1/mn

(L) is the Poincaré homology sphere. By the same argu-

ment as in Proposition 4.11, mi = ±1 where i = 1, · · · , n. Since S3
1/m1,...,1/mn

(L) =
S3

1/m2,...,1/mn
(L′

2 ∪ . . . ∪ L′
n) and the latter is still a Brunnian link, it suffices to consider

the case that L has four components. By repeating the arguments and notation from

Proposition 4.2 and Proposition 4.9, we see that L4,(l),(p),(q) is a genus 1 fibered knot in

(l, p, q)-surgery on the three-component unlink whenever l, p, q are integers. However,

L(l, 1)#L(p, 1)#L(q, 1) does not contain a genus 1 fibered knot since its Heegaard genus is

3 when |l|, |p|, |q| > 1, which is a contradiction. Hence, S3
1/m1,...,1/mn

(L) is not the Poincaré

homology sphere. �

5 From Triple Linking to d-Invariants

In this section, unlike the rest of the paper, we will use d-invariants for Heegaard Floer

homology with a variety of coefficients. See Section 2.4 for more details on subtleties of

coefficient fields. Some of the results hold over an arbitrary field k, and we will denote

the corresponding d-invariants by dk.

Let us also introduce some additional notation required in this section. Given

a nullhomologous link L = L1 ∪ · · · ∪ L� in a rational homology sphere Y and integers

m = (m1, · · · , m�), let Wm denote the four-dimensional two-handle cobordism from Y to

Ym (L), which is the surgery manifold specified by the m-framed link L. The notation s, t

and w, z will generally be used to denote Spinc-structures on three-manifolds and four-

manifolds, respectively. In particular, let w denote a Spinc-structure on Wm = Wm(K)

which extends s in Spinc(Y), where K is a knot in Y. Recall from [46, Theorem 4.2] that
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Triple Linking Numbers and Heegaard Floer Homology 33

w induces a Spinc-structure si on Ym(K) indexed by

〈c1(w), [F]〉 + m = 2i,

where [F] is the surface in Wm(K) coming from capping off a Seifert surface for K. We

can similarly define si = si1,··· ,i� as the restriction of Spinc-structures induced by surgery

along links of � components by a similar formula.

We will denote by δ(W,w) the quantity

δ(W,w) = c1(w)2 − 3σ(W) − 2χ(W)

4
,

which describes the shift in absolute grading induced by the Spinc-cobordism map on

the Floer homology associated to (W,w).

5.1 d-invariants for standard three-manifolds

In this subsection we review the definition of d-invariants for standard three-

manifolds from [41, Section 9]. An additional reference for this material can be found

in [28].

Let H be a finitely generated, free abelian group and let �∗(H) denote the exterior

algebra of H. If Y is a three-manifold, we denote

�∗H1 := �∗H1(Y;Z), �∗H1 := �∗ (
H1(Y;Z)/Tors

)
.

The module HF∞
k

(Y) is called standard if for each torsion Spinc structure t,

HF∞
k

(Y, t) ∼= �∗H1 ⊗Z k[U, U−1]

as �∗H1 ⊗Z k[U]-modules. The group �∗H1 is graded by setting gr(�b1(Y)H1(Y;Z)) =
b1(Y)/2 and by letting the action of H1(Y;Z)/Tors by contraction drop gradings by one.

Let M be any �∗(H) ⊗ k-module. The kernel of the action of �∗(H) ⊗ k on M is

KM := {x ∈ M | v · x = 0 ∀ v ∈ H ⊗ k}.

The quotient of M by this action is defined by

QM := M/(I · M).
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34 E. Gorsky et al.

where I is the two-sided ideal in �∗(H) ⊗ k generated by H. For a standard three-

manifold Y, there are then induced maps:

K(π) : KHF∞
k

(Y, t) → KHF+
k

(Y, t)

Q(π) : QHF∞
k

(Y, t) → QHF+
k

(Y, t).

We may now define the bottom and top correction terms of (Y, t) to be the

minimal grading of any nonzero element in the image of K(π) and Q(π), denoted by

dbot,k and dtop,k, respectively.

Proposition 5.1 (Ozsváth–Szabó, [41]). Let K ⊂ Y be a nullhomologous knot in a three-

manifold Y with b1(Y) � 1. Then

dtop,k(Y0) − 1

2
� dtop,k(Y1).

Further, if HFred,k(Y) = 0, then dtop,k(Y0) − 1

2
= dtop,k(Y1).

Note that if b1(Y) � 1, then b1(Y0) � 2 and b1(Y1) � 1 and hence these manifolds

both have standard HF∞ [43]. Therefore, our use of dbot and dtop is justified.

It is natural to ask about three-manifolds that have non-standard HF∞. Links

with μ123 �= 0 produce a supply of three-manifolds that are not standard.

Theorem 5.2. Let L be an algebraically split link with three components. Suppose

that μ123(L) �= 0. Then HF∞
Q(S3

0,0,0(L), s0) is free of rank 6 over Q[U, U−1], where s0 is the

unique torsion Spinc structure.

Proof. Recall that since L has pairwise linking number zero, there exists a basis

a1, a2, a3 for H1(S3
0,0,0(L);Z) such that the multiplicity of the triple cup product on

cohomology is given by μ123. It now follows immediately from [22, Proposition 35.3.2]

that HMQ(S3
0,0,0(L), s0) is free of rank 6 over Q[U, U−1]. Since Heegaard and monopole

Floer homology are isomorphic over Z by [23–27] or [6–8, 56], we have the same result

for HF∞. �

Remark 5.3. The same proof shows that if k is an arbitrary field and μ123(L) is

coprime to the characteristic of k then HF∞
k

(S3
0,0,0(L), s0) is free of rank 6 over k[U, U−1].
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Triple Linking Numbers and Heegaard Floer Homology 35

5.2 d-invariant inequalities

In this subsection we collect some inequalities for d-invariants of surgeries of links

over an arbitrary field k. The key result is Proposition 1.14, which shows that the

dk-invariant of S3
1(L) detects the unlink when L is an L-space link.

We recall from [41] that if (W, z) is a negative-definite Spinc-cobordism from

(Y, s) to (Y ′, s′), two rational homology spheres, then

d(Y ′, s′) − d(Y, s) � δ(W, z). (14)

The following three results are well-known consequences of (14) and the

formulas for the d-invariants of lens spaces from [41]. (Recall that a positive surgery

on a nullhomologous knot induces a positive-definite two-handle cobordism; reversing

orientation produces a negative-definite cobordism.)

Lemma 5.4. Let L be an �-component algebraically split nullhomologous link in a

rational homology sphere Y. Fix a Spinc-structure s on Y. For any m = (m1, . . . , m�) with

mi > 0 we have

dk(Ym (L), si ) � dk(Y, s) +
�∑

k=1

d(L(mk, 1), ik). (15)

where i = (i1, · · · , i�).

Corollary 5.5. Let L be an algebraically split link in S3 with � components. Then for

any integers p1, . . . , p� > 0 we have

dk(S3
1/p1,...,1/p�

(L)) � dk(S3
1(L)).

Corollary 5.6. Let L′ be a sublink in L. Then

dk(S3
1(L)) � dk(S3

1(L′)).

In what follows, it will be important to be able to relate the d-invariants of

+1-surgery and large surgery. The key lemma we need is the following.
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36 E. Gorsky et al.

Lemma 5.7. Let K be a nullhomologous knot in a rational homology sphere Y with

Spinc structure s. Then, for n � 0, we have

dk(Y1(K), s0) � dk(Yn(K), s0) − d(L(n, 1), 0). (16)

Proof. For n > 0, consider the cobordism W : Y → Y1(K) given by W1(K)#n−1CP2. Of

course, this is a positive-definite four-manifold with diagonalizable intersection form

n〈1〉. We will work with −W. Choose a basis α1, . . . , αn for H2(W), where α1 = [F1] and

the other αi are given by the exceptional spheres Si in the CP2’s. Here, F1 is a capped

off Seifert surface for K. To pin down the signs more carefully, consider the obvious

Kirby diagram for −W and handleslide the n − 1 many −1-framed unknots onto the −1-

framed copy of −K. We now choose the signs on [F1] and [Si] so that [Fn] = ∑n
i=1 αi, which

corresponds to the Seifert surface of the knot K with framing n. (This is pinned down

up to an overall sign by the class of [Fn], which will not matter.)

Next, let z denote the Spinc structure on −W, which evaluates to one on each of

the basis elements. This is the Spinc structure for which c1(z)2 is maximized, that is,

c1(z)2 = −n. Note that we can break −W up into two cobordisms X1 : −Y → −Yn(K)

and X2 : −Yn(K) → −Y1(K). Of course, each Xi is still negative definite. Let zi denote the

restriction of z to Xi.

Therefore, we have from (14):

dk(Y1(K), s0) � dk(Yn(K), z |Yn(K)) − δ(X2, z2). (17)

The result will then be complete if we can establish two results. First, we want

to see that z |Yn(K)= s0. Second, we want to compute that δ(X2, z2) = d(L(n, 1), 0). Since

Fn is supported in X1 and [Fn] = ∑
i αi, we see that

〈c1(z1), [Fn]〉 = 〈c1(z), [Fn]〉 = n.

The last equality follows since c1(z) evaluates to 1 on each αi. Since H2(X1) = Z, z1 is

determined by the evaluation of the first Chern class on [Fn]. Therefore, it follows that

z1 |−Yn(K)= s0. (Recall that Spinc structures do not require an orientation to define, so

we can equate the Spinc structures on Yn(K) and −Yn(K).)

Therefore, it remains to compute δ(X2, z2). By our choice of z,

4δ(−W, z) = c1(z)2 − 3σ(−W) − 2χ(−W) = 0.
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Triple Linking Numbers and Heegaard Floer Homology 37

Next, note that c1(z1)2 − 3σ(X1) − 2χ(X1) = −c1(z2)2 + 3σ(X2) + 2χ(X2), since each of

these terms is additive over gluing along rational homology spheres. Therefore, we will

compute c1(z1)2−3σ(X1)−2χ(X1) instead. This is easy to compute, since the intersection

form of X1 is 〈−n〉. Since c1(z1) is n times the generator of H2(X1), we have c1(z1)2 =
−n2

n = −n. Therefore, we see that

δ(X1, z1) = c1(z1)2 − 3σ(X1) − 2χ(X1)

4
= 1 − n

4
,

which is exactly −d(L(n, 1), 0) and we are now done by (17). �

Corollary 5.8. For any algebraically split link L in S3 we have

dk(S3
1(L)) � dk(S3

n (L), s0) −
�∑

i=1

d(L(ni, 1), 0), (18)

where n = (n1, . . . , n�) is chosen to be a sufficiently large surgery, and where s0 denotes

the trivial Spinc structure, that is, the unique class corresponding to the trivial element

in H2(S3
n (L)).

The following lemma is a straightforward analogue of [40, Theorem 2.5].

Lemma 5.9. Let K be a nullhomologous knot in a rational homology sphere Y. Choose

m a large positive integer and fix a Spinc structure s on Y. Suppose that dk(Ym(K), s0) =
dk(Y, s) + d(L(m, 1), 0). Then dk(Ym(K), si) = dk(Y, s) + d(L(m, 1), i) for each i.

Note that si = s−i.

Proof. First, we assume that 0 � i � m
2 . By the large surgery formula from [42]

and absolute gradings on the mapping cone formula [47, Section 7.2], dk(Ym(K), si) =
dk(Y, s)+d(L(m, 1), i)−2Hs(i), where Hs(i) is defined as follows. The map v+

s,i : H∗(A
+
s,i) →

HF+(Y, s) defined in [46] is given by multiplication by a power of U when restricted to

the image of large powers of U in H∗(A
+
s,i). This exponent is Hs(i). Rasmussen shows

Hs(i) � Hs(i + 1) � 0 in [50, Proposition 7.6] and the result follows.

If i � 0 we use the conjugation symmetry between si and s−i. �

In fact, we can generalize Lemma 5.9 to links by an induction argument.
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38 E. Gorsky et al.

Fig. 4. Two different decompositions of the two-handle cobordism Wm1,...,m�+1 from Y to Ym (L)

used in Lemma 5.10. The left cobordism consists of first attaching the two-handle to L�+1 and

then attaching the remaining two-handles. The right cobordism consists of first attaching the

two-handles along all components other than L�+1 and then attaching a two-handle along L�+1.

Lemma 5.10. Let L be a nullhomologous algebraically split �-component link in

a rational homology sphere Y. Choose an �-tuple of large positive integers m =
(m1, . . . , m�) and fix a Spinc structure s on Y. Suppose

dk(Ym (L), s0) = dk(Y, s) +
�∑

k=1

d(L(mk, 1), 0).

Then, dk(Ym (L), si ) = dk(Y, s) + ∑�
k=1 d(L(mk, 1), ik) for any tuple i = (i1, . . . , i�).

Proof. We prove this by induction on the number of components in a link in an

arbitrary rational homology sphere. If L is a knot, this is simply Lemma 5.9.

Next, suppose that we have established the result for �-component links in an

arbitrary rational homology sphere, and let L be an (�+1)-component link in Y. Let L′ =
L − L�+1. We will consider two decompositions of the two-handle cobordism Wm1,...,m�+1

from Y to Ym (L),

Wm�+1
∪ Xm1,··· ,m�

: Y → Z → Ym (L),

Wm1,··· ,m�
∪ Xm�+1

: Y → Z′ → Ym (L)

both shown in Figure 4. Here Z = Ym�+1
(L�+1) and Z′ = Ym ′(L′). Again, the subscripts of

the W- and X-labeled cobordisms indicate the components and framings for which the

two-handles are attached, as in the notation of the beginning of the section. Let L′ be

the image of L′ in Z, and L�+1 be the image of L�+1 in Z′. The Spinc structures on Y, Z, Z′,
and Ym (L) are denoted as in Figure 4 where si ′ = si1,··· ,i� and si = si1,··· ,i�+1

.
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Triple Linking Numbers and Heegaard Floer Homology 39

We have

dk(Y, s) +
�+1∑
k=1

d(L(mk, 1), 0) = dk(Ym (L), s0)

� dk(Z′, s0′) + d(L(m�+1, 1), 0) (19)

� dk(Y, s) +
�+1∑
k=1

d(L(mk, 1), 0).

Similarly,

dk(Y, s) +
�+1∑
k=1

d(L(mk, 1), 0) = dk(Ym (L), s0)

� dk(Z, s0) +
�∑

k=1

d(L(mk, 1), 0) (20)

� dk(Y, s) +
�+1∑
k=1

d(L(mk, 1), 0).

Combining (19) and (20), we conclude

dk(Z′, s0′) = dk(Y, s) +
�∑

k=1

d(L(mk, 1), 0) (21)

dk(Ym (L), s0) = dk(Z, s0) +
�∑

k=1

d(L(mk, 1), 0). (22)

By (20) we get dk(Z, s0) = dk(Y, s) + d(L(m�+1, 1), 0). By applying Lemma 5.9 to the knot

L�+1, we also have

dk(Z, si) = dk(Y, s) + d(L(m�+1, 1), i). (23)

Now, using (21), by our induction assumption applied to L′ in Y,

dk(Z′, si ′) = dk(Y, s) +
�∑

k=1

d(L(mk, 1), ik). (24)
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40 E. Gorsky et al.

Similarly, by (22), our induction assumption applied to L′ in Z implies that

dk(Ym (L), si ′,0) = dk(Z, s0) +
�∑

k=1

d(L(mk, 1), ik). (25)

Using (23) and (25), we have

dk(Y, s)+
�∑

k=1

d(L(mk, 1), ik)+d(L(m�+1, 1), 0)
(23)= dk(Z, s0) +

�∑
k=1

d(L(mk, 1), ik)

(25)= dk(Ym (L), si ′,0)

= dk(Z′
m�+1

(L�+1), si ′,0)

(15)
� dk(Z′, si ′) + d(L(m�+1, 1), 0)

(24)= dk(Y, s)+
�∑

k=1

d(L(mk, 1), ik)

+ d(L(m�+1, 1), 0),

hence

dk(Z′
m�+1

(L�+1), si ′,0) = dk(Z′, si ′) + d(L(m�+1, 1), 0).

By Lemma 5.9 applied to L�+1 in Z′, we have

dk(Z′
m�+1

(L�+1), si ′,i�+1
) = dk(Z′, si ′) + d(L(m�+1, 1), i�+1).

Since Z′
m�+1

(L�+1) = Ym (L), (24) now completes the proof. �

We are now ready to prove the unlink detection theorem for L-space links.

Proof. (Proof of Proposition 1.14) We prove this by induction on the number of

components. First, suppose that L is a knot. Then, it is well known that dk(S3
1(L)) = 0 if

and only if L is unknotted.

Next, suppose that the result holds for �-component L-space links and let L have

� + 1 components. Suppose that dk(S3
1(L)) = 0. Given m 0, by (18) one has

0 = dk(S3
1(L)) � dk(S3

m (L), s0) −
�+1∑
k=1

d(L(mk, 1), 0) � d(S3) = 0.
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Triple Linking Numbers and Heegaard Floer Homology 41

The last inequality follows from Lemma 5.4.

By Lemma 5.10, we have that

dk(S3
m (L), si ) =

�+1∑
k=1

d(L(mk, 1), ik)

for all tuples (i1, . . . , i�+1). Note that if dk(S3
1(L)) = 0, then by Corollary 5.6 the same

is true for L′ = L1 ∪ . . . ∪ L�. Therefore, we have that L′ is an �-component unlink

by the assumption. Hence we have that S3
m ′(L′) is #�

k=1L(mk, 1), which is an L-space.

Since m 0, we have that S3
m (L) is an L-space. Therefore, the image of L�+1 in S3

m ′(L′)
is a knot for which m�+1-surgery yields a three-manifold with the same absolutely

graded Heegaard Floer homology as S3
m ′(L′)#L(m�+1, 1). By Gainullin’s Dehn surgery

characterization of the unknot in L-spaces [11, Theorem 8.2], we have that L�+1 is

unknotted in S3
m ′(L′). (His paper is only written over F, but the arguments work over

an arbitrary field.) By varying the values of m ′, we may apply [10, Corollary 2.4] to

conclude that L�+1 is actually unknotted in the exterior of L′. Since L′ is also an unlink,

we see that L is an unlink. The second part directly follows from Corollary 5.5. �

Remark 5.11. There is a very elementary proof in the case that k = F. One simply uses

(18) to see

dF(S3
1(L)) � dF(S3

m (L), s0) −
�∑

k=1

d(L(mk, 1), 0) = −2hL(0) � −2. (26)

Recall that −2HL(0) equals dF(S3
m (L), s0) up to grading shift, which does not depend

on the link. Hence one can use the unlink to cancel the grading shift, obtaining the

equality in (26). The last inequality follows from the fact that a nontrivial link L has

hL(0) > 0 [30].

5.3 A bound from non-vanishing triple linking

In order to constrain the d-invariants of S3
1(L) in the case that L is a three-component

link with non-trivial Milnor triple linking, we will connect this with the Floer homology

of S3
0(L), which we know is not standard by Theorem 5.2. To do this, we will use the

d-invariant inequalities (and equalities) that come from the surgery triangle for surgery

on nullhomologous knots in three-manifolds that do have standard HF∞. For n = 0, ∞
or odd, let tn denote the unique self-conjugate torsion Spinc structure on S3

0,0,n(L).
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42 E. Gorsky et al.

Lemma 5.12. Assume that L is a Brunnian link with μ123 �= 0. Then

dtop,Q(S3
0,0,1(L), t1) � dbot,Q(S3

0,0,∞(L), t∞).

Proof. The first step of the proof is to relate the d-invariants of S3
0,0,∞(L) with

S3
0,0,n(L). Choose odd n � 0. We begin by considering the surgery exact triangle from

[43, Theorem 9.19]:

In the above exact triangle, F3 is a sum of two Spinc cobordism maps, and by our choice

of tn, these have the same absolute grading shift, given by −d(L(n, 1), 0) (See for instance

[46, Section 4.8]). Furthermore, F3 preserves the absolute Z/2-grading defined in [43].

Since L is Brunnian, S3
0,0,∞(L) is #2(S1 × S2). Furthermore, for Y = S3

0,0,n(L) or

S3
0,0,∞(L), since b1(Y) � 2, the module

HF∞
Q(Y, s) ∼= �∗H1(Y;Z) ⊗Z Q[U, U−1] (27)

is standard for any torsion Spinc structure s. The elements of H1(Y;Z)/Tors act by

contraction on �∗H1(Y;Z), hence on HF∞
Q(Y, s).

Choose generators x, y of H1(S3
0,0,n(L);Z)/Tors. Let us choose a Q[U, U−1]-

basis for HF∞
Q(S3

0,0,n(L), tn), denoted α, β, γ , δ, which correspond to x∗ ∧ y∗, x∗, y∗, 1

respectively under the isomorphism in (27). Likewise, choose generators x′, y′ for

H1(S3
0,0,∞(L);Z)/Tors that are bordant to x, y in the surgery cobordism from S3

0,0,n(L)

to S3
0,0,∞(L); define the analogous generators of HF∞

Q(S3
0,0,∞(L), t∞) by α′, β ′, γ ′, δ′. Then

F3 may be expressed as follows:
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Triple Linking Numbers and Heegaard Floer Homology 43

By Theorem 5.2 HF∞
Q(S3

0,0,0(L), t0) is of rank 6. Exactness implies that

HF∞
Q(S3

0,0,0(L), t0) ∼= coker F3 ⊕ ker F3,

and so each of ker F3 and coker F3 is rank 3. Recall that the map F3 is equivariant with

respect to the action of the exterior algebra, being a sum of cobordism maps. Hence,

the image of α determines the map F3. We claim that F3(α) has a component that is a

non-zero multiple of δ′. Before proving the claim, let us see why this will complete the

proof. Assuming the claim, it follows from the long exact sequence relating HF−
Q, HF∞

Q
and HF+

Q that

dtop,Q(S3
0,0,n(L), tn) − d(L(n, 1), 0) � dbot,Q(S3

0,0,∞(L), t∞).

The arguments of Lemma 5.7 establish

dtop,Q(S3
0,0,1(L), t1) � dtop,Q(S3

0,0,n(L), tn) − d(L(n, 1), 0),

which completes the proof.

Therefore, it remains to prove that F3(α) contains a non-zero multiple of δ′.
Suppose instead that F3(α) is a linear combination of α′, β ′ and γ ′.

First, since F3 is equivariant with respect to the action of the exterior algebra,

if F3(α) = 0, then F3 is identically 0. Thus ker F3 has rank 4, a contradiction. Since F3

respects the Z/2-grading, β ′ and γ ′ cannot be components of F3. Therefore, it remains

to assume F3(α) = cα′ for a unit c (which might involve a nonzero rational factor and

a power of U). Again, since F3 is equivariant with respect to the action the exterior

algebra, contraction by y implies that

F3(β) = F3(x∗ ⊗ 1) = −F3 ◦ ιy(x∗ ∧ y∗ ⊗ 1)

= −ιy′ ◦ F3(x∗ ∧ y∗ ⊗ 1) = −c · ιy′(x′ ∗ ∧y′ ∗ ⊗1) = cx′ ∗ ⊗1 = cβ ′.

Similarly, F3(γ ) = cγ ′ and F3(δ) = cδ′. Thus, rank ker(F3) = 0, which is again a

contradiction. �

Remark 5.13. By Remark 5.3, the above proof works over an arbitrary field k if μ123(L)

is coprime to the characteristic of k.
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Now we can prove the following restatement of Theorem 1.11:

Theorem 5.14. Let L = L1 ∪ L2 ∪ L3 be an algebraically split link such that all two-

component sublinks are Q-L-space links. If the triple linking number μ123 is nonzero,

then dQ(S3
1,1,1(L)) � −2. If the triple linking number μ123 is odd, then the analogous

statement holds with Z2-coefficients.

Proof. Let L be an algebraically split three-component link such that all two-

component sublinks are L-space links. If one of these sublinks is nontrivial, then the

result follows from Corollary 5.6 and Proposition 1.14. Therefore from now on we can

assume that all two-component sublinks are trivial, so L is a Brunnian link.

Since S3
0,0,∞(L) = S3

0,0(L1 ∪ L2) = #2(S1 × S2), we have dbot,Q(S3
0,0,∞(L)) = −1. By

Lemma 5.12 we get

dtop,Q(S3
0,0,1(L)) � dbot,Q(S3

0,0,∞(L)) = −1.

On the other hand, S3
0,∞,1(L) = S2 × S1 and S3∞,1,1(L) = S3, so by Proposition 5.1 we get

dtop,Q(S3
0,0,1(L)) = dtop,Q(S3

0,1,1(L)) + 1

2
= dQ(S3

1,1,1(L)) + 1

2
+ 1

2
,

and we conclude dQ(S3
1,1,1(L)) � −2. A similar argument applies for the case of Z2

coefficients by Remark 5.13. (Alternatively, see Corollary 5.22 below.) �

5.4 0-surgery on links

In this subsection we describe a different approach to the computation of d-invariants

of S3
000(L) building on the work of the second author in [29](As the article appears on

arXiv and in thesis form, there is a gap in the argument for b1 � 5. This does not affect

the arguments used here.). Since it uses the link surgery formula of [34], we have to

restrict ourselves to the coefficients in F = Z2.

Recall that the complex CF−(S3
000(L)) in the unique torsion Spinc-structure can

be written as in Figure 5 using the surgery formula of [34].

Theorem 5.15 ([34]). The complex CF−(S3
000(L)) in the unique torsion Spinc-structure

is quasi-isomorphic (as a complex of free F[U]-modules) to the complex in Figure 5. The

cube filtration on this complex induces a spectral sequence where all pages are link

invariants.
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Triple Linking Numbers and Heegaard Floer Homology 45

Fig. 5. Surgery complex quasi-isomorphic to CF−(S3
000(L)).

Remark 5.16. Theorem 5.15 is not stated in this form in [34]. Instead, the surgery

complex constructed in [34] for a three-component framed link is equivalent to that

of Figure 5, but with the A− complexes replaced with F[[U1, U2, U3]]-modules. These

modules can be chosen to be free by [34, Section 3]. The homology of the complex

is ultimately a module over F[[U]] by setting U = U1 and represents the so-called

U-completed Heegaard Floer homology. (For comparison, for an n-pointed Heegaard

diagram of a three-manifold, the Heegaard Floer homology can be defined as the

homology of a complex of F[U1, . . . , Un]- or F[[U1, . . . , Un]]-modules. All variables Ui will

act the same on homology and so this becomes an F[U]- or F[[U]]-module by taking U

to be any Ui [45, Proposition 6.5].) For a torsion Spinc-structure t, this completed Floer

homology is the same as HF−(S3
000(L), t)⊗F[U]F[[U]], which is isomorphic to HF−, except

that the free F[U] parts are replaced by F[[U]] [34, Section 2]. Consequently, in this case,

the completed and uncompleted homologies determine each other.

In the case that the linking matrix is the zero matrix, then the Manolescu–

Ozsváth surgery complex can be obtained by instead working over F[U1, U2, U3] and

completing with respect to the maximal ideal (U1, U2, U3). Due to direct product

constructions in the surgery formula, this does not apply if the linking or framings

are non-zero. Since F[U1, U2, U3] is Noetherian, F[[U1, U2, U3]] is flat over F[U1, U2, U3],

and therefore we can compute the homology of the (non-completed) link surgery

complex over F[U1, U2, U3] and tensor with F[[U1, U2, U3]] to recover the homology of

the (completed) link surgery complex. By setting U = U1, and using that all Ui act
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46 E. Gorsky et al.

Fig. 6. Surgery complex for computing HF∞(S3
000(L), t0).

identically on homology [34, Theorem 12.1] and [45, Proposition 6.5], we see that we can

recover HF−(S3
000(L)) ⊗F[U] F[[U]] by taking the homology of the the complex in Figure 5

and tensoring with F[[U]]. Note that the A−-complexes are free over F[U], but not

finitely generated. Again, for torsion Spinc structures, the completed and uncompleted

homologies determine each other, and so the surgery complex in Figure 5 has isomorphic

homology as that of CF−. Isomorphic homology is the same as quasi-isomorphic for

complexes of (possibly infinitely-generated) free modules over a PID, and so we have

Theorem 5.15.

After tensoring the surgery complex with F[U, U−1] over F[U] and using the fact

that A−(L, 0)⊗F[U]F[U, U−1] is homotopy equivalent to F[U, U−1] with trivial differential

for any link L, we can simplify the surgery complex for CF∞(S3
000(L)). In fact, we can

simplify it even further.

Theorem 5.17 ([29]). The surgery complex for CF∞(S3
000(L), t0) is quasi-isomorphic to

the complex in Figure 6. The differentials d1 and d2 in the associated spectral sequence

vanish, while the relevant d3 differential is given (up to a unit) by multiplication by the

triple linking number μ123(L) modulo 2.

Corollary 5.18. HF∞(S3
000(L), t0) has rank 8 if μ123(L) is even and rank 6 if μ123(L)

is odd.
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Recall that the homology of each A−(L, s) is non-canonically isomorphic to

F[U] ⊕ M, where M is annihilated by some power of U. Since U-torsion dies after

tensoring with F[U, U−1], we obtain the following result.

Corollary 5.19. Consider the spectral sequence from Theorem 5.15. The components

of the differentials d1 and d2 that go between free parts vanish. Up to a power of U, the

relevant component of the d3 differential between free parts is multiplication by μ123(L)

mod 2.

Remark 5.20. Although the differentials d1 and d2 between the free parts vanish,

the differentials from the free parts to the torsion are still possible, see Example 5.25.

Because H∗(A−(∅)) ∼= F[U], there is no torsion piece to which the d3 differential

may map.

We can use these results to give an alternative proof of Theorem 1.11 if the triple

linking number is odd and k = F.

Theorem 5.21. Suppose that μ123(L) is odd and all two-component sublinks of L are

L-space links. Then HL(0, 0, 0) > 0.

Proof. Let us compute the spectral sequence for CF−(S3
000(L)). Since all two-component

sublinks Lij are L-space links, the components Li are L-space knots, and

H∗(A−(Lij, 0)) ∼= H∗(A−(Li), 0) ∼= F[U].

Note that the homology of A−(L, 0) might have torsion, since we do not assume L is an

L-space link. By Corollary 5.19 the differentials d1 and d2 vanish on the free part of

H∗(A−(A, 0)) and have trivial image in H∗(A−(∅)). The differential d3 from the free part

of H∗(A−(L, 0)) to H∗(A−(∅)) ∼= F[U] is nontrivial.

On the other hand, d3 lowers the homological degree by 1. Further, up to an

absolute shift, the generator of the free part of H∗(A−(L, 0)) has homological degree

−2H(0, 0, 0) while the generator of the free part of H∗(A−(∅)) has homological degree −3,

so −2H(0, 0, 0) − 1 � −3 and H(0, 0, 0) � 1. �

Corollary 5.22. Suppose that μ123(L) is odd and all two-component sublinks of L are

L-space links. Then d(S3
1,1,1(L)) � −2.
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Fig. 7. The link on the left is L1 from Example 5.23. The link on the right is the result of applying

n-twisted Bing doubling to K in L1, yielding L(n) = B(K, n) ∪ U.

Proof. Similar to Remark 5.11, one simply uses (18) to see that for m � 0

d(S3
1(L)) � d(S3

m (L), s0) −
3∑

k=1

d(L(mk, 1), 0) = −2hL(0) = −2HL(0) � −2. (28)

The last inequality follows from Theorem 5.21. �

5.5 Example: generalized Borromean link

The assumption that all 2-component sublinks are L-space links is important in

Theorem 1.11. We will show that there exist three-component algebraically split links

L with nonzero triple linking number and d(S3
1,1,1(L)) = 0. Here, we resume working

exclusively over F and omit the coefficients from the notation.

Example 5.23. Start with the two-component link L1 = K ∪ U in the left image of

Figure 7 where U is the unknot and K is arbitrary. We can assume the linking number of

L1 is −1. Let L(n) = B(K, n) ∪ U denote the new link obtained by applying an n-twisted

Bing-double to K, which is the right image in Figure 7. We order B(K, n) so that the first

component is the one “induced” by K. Note that L(n) is a three-component algebraically

split link and μ123(L(n)) = (−1)�k(L1) = 1 [5, Theorem 8.1].

We claim that d(S3
1,1,1(L(n))) = 0 for sufficiently large n. Note that S3

1,1,1(L(n))

is diffeomorphic to S3
1(D+(K, n − 1) where D+(K, n − 1) is the (n − 1)-twisted positively

clasped Whitehead double. The d-invariant for this manifold is computed in [55] to be

d(S3
1(D+(K, n))) =

{
0 n � 2τ(K)

−2 n < 2τ(K).

Hence, for sufficiently large n, we have μ123(L(n)) = 1, but d(S3
1,1,1(L(n))) = 0.
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Remark 5.24. In the above example,

− λ(S3
1,1,1(L)) = −μ2

123(L) + β(B(K, n)) = n − 1.

We also have the alternate computation

β(B(K, n)) = −λ(S3
1,1(B(K, n)) = −λ(S3

1(D+(K, n)) = n.

Example 5.25. For a specific example, let K be the unknot. In our conventions D+(K, 0)

is the unknot, D+(K, −1) = T(2, 3) and D+(K, 1) is the figure eight knot. In particular, for

n = 0, we get L(0) is the Borromean rings and

d(S3
1,1,1(L(0))) = d(S3

1(D+(K, −1))) = −2.

The above computation shows that for n � 1 we have d(S3
1,1,1(L(n))) = 0. By a sequence

of inequalities similar to (28), we get HL(n)(0, 0, 0) = 0 for n � 1.

For n = 1 we can also compute all differentials in the spectral sequence of

Theorem 5.15. Indeed, all components of L = L(1) are unknots and two of three two-

component sublinks are unlinks. The only interesting two-component sublink is B(K, 1)

and in order to apply Theorem 5.15 we need to describe A−(B(K, 1), 0). Observe that the

component of B(K, 1) labeled by K, n in Figure 7 has genus one in the complement of the

other component. This means that for p � 1 the (p, 1) surgery is large for B(K, 1) and

A−(B(K, 1), 0) � CF−(S3
p,1(B(K, 1), s0) � CF−(S3

p(D+(K, 1), s0)) � A−(D+(K, 1), 0).

Here the first and last equations follow from the large surgery formula, and the middle

equation is clear.

Since D+(K, 1) is the figure eight knot, it is well known that H∗(A−(D+(K, 1), 0)) ∼=
F[U](0)⊕F. Therefore, the E1 page of the spectral sequence in Theorem 5.15 has the form

shown in Figure 8. Let z be a generator of some free summand of H∗(A−(L, 0)). Then,

since HL(0, 0, 0) = 0, we see z has degree 3 higher than the generator of H∗(A−(∅)). We

claim that d1(z) is the unique non-trivial element in the kernel of U. (This description

is independent of the choice of splitting.) Indeed, suppose that instead d1(z) = 0. By

Corollary 5.19, d1(z) = d2(z) = 0, and the d3 differential should map z nontrivially to

the homology of A−(∅), which is not possible by degree reasons.

Therefore, d1(z) is determined and the d1 differential vanishes elsewhere by

Corollary 5.19. On the E2 page we get a free F[U] module generated by Uz together with
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50 E. Gorsky et al.

Fig. 8. Spectral sequence in Example 5.25 for computing HF−(S3
0,0,0(L(1))). The solid arrow

indicates d1 while the dashed arrow indicates d3. These are the only non-trivial differentials

in the spectral sequence after the E1 page.

the torsion at the top, and F[U] everywhere else, so by Corollary 5.19 the differential d2

vanishes. Now the differential d3 sends Uz to a power of U times the generator of the

homology of A−(∅). For degree reasons, d3(Uz) is in fact the generator of H∗(A−(∅)), and

hence this pair of free modules is cancelled by the d3 differential. The d3 differential

vanishes elsewhere, and all other differentials vanish identically. From the algebra, we

cannot seem to determine from the spectral sequence what the torsion coming from

H∗(A−(L, 0)) is and whether it contributes to HFred(S3
0,0,0(L)) or the free part. We will

use some topological input to complete the spectral sequence computation.

It is an easy Kirby calculus exercise to see that S3
0,0,0(L) = T3, and hence

HFred(S3
0,0,0(L)) = 0. Thus, the torsion term contributes to the free part. Further,

ignoring this torsion part, the E∞ page of the spectral sequence has six towers. Three

towers come from the second-to-top filtration level and are all supported in the same

gradings. This relies on the fact that d(S3
p,1(B(K, 1)), s0)) = 0 and that the other two

two-component sublinks are trivial. It is also not hard to deduce that this topmost

absolute grading is in fact 1/2. The remaining three towers come from the second-

to-bottom filtration level and are all supported in the same gradings; their topmost

relative grading is one lower than that of the other towers, and hence have topmost

grading −1/2. Note that this agrees with the relative-gradings on HF−(T3), and hence

the torsion term cannot contribute to the free part of the Floer homology. Consequently,
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Triple Linking Numbers and Heegaard Floer Homology 51

the torsion term of H∗(A−(L, 0)) is trivial, and we have completed the computation of

the spectral sequence.
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Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976): 189–203, 209–10. Studies in topology, II.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab368/6514785 by Serials R

ecords Section user on 04 June 2022


	Triple Linking Numbers and Heegaard Floer Homology
	1 Introduction
	2 Background
	3 Milnor Invariants and the Casson Invariant
	4 Detection results
	5 From Triple Linking to d-Invariants


