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Abstract We utilize Smoothed Particle Hydrodynamics (SPH), a Lagrangian
particle-based continuum method, to study the initiation and propagation of shear
bands or faults in geologic materials over large deformations. We show that SPH
is able to capture the formation of shear bands naturally without needing to intro-
duce a heterogeneity or “seed”. In an actively or passively loaded backfill behind a
moving retaining wall, we show that shear bands crossing the surface are inclined
at an orientation given by the Arthur angle, ©4 = 45° + (¢ + ¢)/4, with re-
spect to the principal stresses. Additionally, we conduct simulations to explore the
fault propagation problem, where a blind fault in rigid basement rock propagates
through an overlying weak layer to reach the surface. Our results demonstrate that
the resulting shear band rotates as the blind fault progressively accumulates more
slip, initially taking the orientation given by the Roscoe angle, O = 45° + /2,
then that of the Arthur angle, and lastly, that of the familiar Coulomb orientation,
O¢c = 45° £ ¢/2, in both extensional and contractional setups. Finally, we also
evaluate the validity of empirical solutions describing the shear band propagation
path and consider the effect of different material parameters on the geometry of
the resultant shear bands, as well as on displacement and deformation at the sur-
face. Our results show that SPH deals well with external loadings such as those
applied by a retaining wall, or those induced by tectonic movement like in the
fault propagation problem.
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1 Introduction

As geologic materials such as rock or soil are subjected to non-homogeneous defor-
mation, band-like zones of localized strain known as shear bands (also deformation
bands or shear zones) form [11,15]. Shear band formation also frequently accompa-
nies or precedes material rupture or faulting, and is generally a multiscale process
[30,52,53,61,95,102]. In the vicinity of a fault, zones of significant strain localiza-
tion accumulate surrounding the area where the material has ruptured, and thus
a kinematic discontinuity is present across the shear band. Strain localization is
an omnipresent and vital phenomenon in geomechanics and geotechnics as well as
in the geophysical sciences, particularly in structural geology. Comprehending the
patterns and shapes of strain localization is of utmost importance from scientific
and engineering perspectives in problems where the failure of geomaterials is in-
volved, such as in landslides, the slip surfaces in an earth or soil backfill behind
a retaining wall, or the propagation of a fault and its associated deformation in
a rock mass. For the geologist, knowledge of what boundary conditions produce
particular strain localization patterns is also necessary to help reconstruct the
tectonic history of a formation or, at a larger scale, a basin.

Strain localization phenomena have been mathematically explained and mod-
eled using either bifurcation theory [12,15,78,89] or fracture mechanics [9,49, 54,
55,57]. Much effort has been made in accurately capturing strain localization pat-
terns observed either experimentally in the laboratory or in the geological field
records with computational methods such as the Finite Element Method (FEM).
Nevertheless, some difficulties in modeling strain localization with FEM persist,
namely, ambiguities as to where shear bands should originate [13,15] and the fre-
quent need for the introduction of “seeds” or material heterogeneities into the
model to induce strain localization [17,18,83,84]. To simulate the large deforma-
tions associated with certain classes of problems such as slippage of a fault, FEM
and other mesh-based methods also require specialized frictional contact elements
and element enhancements to circumvent the limitations of conventional finite ele-
ment interpolation in capturing the development of localized deformation patterns
[56,80]. Even without any kinematic discontinuity, conventional FEM simulations
run the risk of mesh entanglement and distortion when modeling fault (or its proxy,
shear band) propagation over long distances, requiring re-meshing that comes with
a certain computational and accuracy penalty [47].

An alternative to FEM is Smoothed Particle Hydrodynamics (SPH), a mesh-
free, continuum-based, Lagrangian method, where particles represent pieces of a
continuum body and thus possess continuum level field variables and properties
such as mass, density, and velocity, among others. The values of these fields for
each particle are determined by an interpolation from neighboring particles using
a weighted sum and a kernel function. The meshfree nature of SPH allows it to
handle large deformation problems, while having improved scalability over non-
continuum meshfree methods such as the discrete element method (DEM) [63,
88,99,100,103]. Furthermore, strain localization arises internally in an SPH code
without the need for additional formulations or theory. In the case of faulting,
while SPH may not resolve the precise rupture path through the discrete material
points (or the exact length-scale of the strain localization), the meshfree nature
still accommodates some level of deformation, and because the material points are
Lagrangian, it can be argued, similar to what is done in DEM, that it is possible to
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trace a fault in the midst of the surrounding region of strain localization. Further-
more, as demonstrated in this paper, kinematic discontinuities between otherwise
continuous material layers can be achieved with SPH, suggesting that this method
can in fact capture many macroscale properties of faulting. For the sake of lexical
simplicity, zones of shear band development on the geological scale are henceforth
considered synonymous to faulting, and thus the terms fault propagation or shear
band propagation are used interchangeably.

SPH was initially developed by Lucy [60] and Gingold and Monaghan [39] for
astrophysical applications, but has also had significant traction in computational
fluid dynamics (CFD) applications [2] especially for free-surface flows [40], elastic
dynamics [41], and more recently, in modeling the elastoplastic deformation of
geomaterials [22,23,24,34,35,67,69]. In this paper we implement and use GEOSPH,
a parallel SPH code built on the open source Python-based framework PySPH [72],
extending current capabilities of the framework from primarily CFD applications,
to be able to simulate the deformation of geomaterials, based on the formulation
of Bui et al. [23] using elastoplasticity and the Drucker-Prager yield criterion.
In our study, we first consider the formation of shear bands in an elastoplastic
backfill behind a retaining wall, a classic problem in geotechnics, which we use
to help validate our numerical implementation, but which also has great practical
importance in geotechnics.

Next we consider the propagation of a blind fault in basement rock through an
overlying weak layer and the folding produced by the propagating fault, illustrat-
ing the capacity of SPH to accurately model both problems. The SPH models are
able to reproduce the expected geometry, kinematics, and strain localization pat-
terns of other analogue and numerical experiments, while providing useful stress,
strain, and strain rate data often absent from most non-continuum simulations. In
the fault propagation problem, we also consider how properties of the propagat-
ing shear band (or fault) such as its orientation or inclination, are controlled by
boundary conditions or by the material properties of the geomaterial host. Addi-
tionally, most previous applications of SPH for modeling geomaterials have focused
on gravity-driven deformational processes such as granular collapses, flows, slope
failures, or landslides [34,35,50,68,92,101]. Instead, in our retaining wall and fault
propagation problems we simulate the external loading of material either through
a retaining wall or a tectonic force, demonstrating SPH can handle these loadings
and boundary conditions well.

The structure of our paper is organized as follows: Section 2 reviews the fault
propagation problem and discusses previous studies in geotechnics and structural
geology covering this topic. Section 3.1 presents the mechanical initial boundary-
value problem and the necessary constitutive equations. Section 3.2 provides an
overview of the SPH method and a description of our implementation. Moreover,
Section 4 explores and validates the SPH code GEOSPH with the retaining wall
problem, while Section 5 focuses on the process of fault propagation, which we
simulate using GEOSPH. Lastly, Section 6 summarizes the results and findings of
this paper as well as discusses potential future work.
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2 Fault propagation and folding

The fault propagation problem refers to the propagation of a blind fault (a normal
or reverse fault located in rigid basement rock) through weak layers that lie above
it until it reaches the surface, in a process known as surface rupture. Fault propa-
gation experiments generally belong to one of two kinematic regimes: extensional
experiments under active loading conditions, where the blind fault is a normal
fault and the hanging wall is pulled downwards along the blind fault as a result of
the tectonic force, and contractional experiments under passive loading conditions
where the blind fault is a reverse fault and the hanging wall is pushed upwards
along the blind fault [70,71,85]. In the context of SPH, the propagating fault in
the overlying weak material layer is visualized as a shear band (or a set of shear
bands) emanating from the tip of the blind fault.

The fault propagation problem is closely associated to the topic of fault propa-
gation folding, studied in structural geology, where the sediment or rock overlying
the blind fault folds as a result of the fault propagation. More specifically, the
sediment layers bend in the vertical direction in the vicinity of the penetrating
fault forming a sequence of a monocline and syncline, with the exact kinematics
depending on whether the basement fault and the overall slip are contractional or
extensional. In the extensional case, the top surface undergoes a loss in height, so
the monocline forms on the foot wall and the syncline on the hanging wall, while
the reverse is true in the contractional case.

The monocline and syncline that form as a result of the propagated fault are
known to be gas and oil traps, making their modeling of relevance for hydrocarbon
exploration and exploitation [31,62]. Fault propagation folding in general is an
almost ubiquitous feature of most sedimentary petroleum basins, adding to their
relevance [36]. Furthermore, comprehending the mechanics of blind faults is of
value due to the prevalence of earthquakes originating in them, such as the 1994
Northridge Earthquake [3,82], and the proximity of some blind faults to large
urban areas such as the Wilmington blind thrust fault below Los Angeles [98].
The danger posed by blind faults is not limited to the elastic seismic waves, which
are radiated from the fault plane. The displacement at the surface caused by the
propagation of low-depth blind faults (a displacement often on the order of meters),
can also be highly destructive as seen in the 1999 Kocaeli and Diizce earthquakes
in Turkey, and the Chi-Chi earthquake in Taiwan [4,59]. The risk posed by fault
propagation is not only pertinent to surface structures, but also to underground
infrastructure such as tunnels, pipelines, and other utilities, which are vulnerable
to large amounts of lateral displacement between the foot wall and hanging wall
as the fault propagates [5,8].

Traditionally, in the geological sciences, fault propagation folding was studied
using trishear [32] or parallel kink [86] kinematic models, based purely on geomet-
ric considerations, without any mechanistic underpinning. Meanwhile, in modeling
studies, both analogue and numerical (primarily with DEM), the creation of re-
alistic folding patterns, which resemble those observed in the field has been the
main objective [36,37,43,79]. On the other hand, in the geotechnics community,
centrifuge experiments together with DEM and FEM simulations have been the
tools of choice, but research has focused on determining the propagation path
and surface rupture location of the blind fault, as well as on expected surface dis-
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placements, not on folding or the geological structures induced by the fault [6,45,
59].

While the fault propagation problem studied by both scholarly communities
is similar in many aspects, in addition to the aforementioned differences in the
objectives of the studies, the size of the problem and the amount of slip on the
blind fault varies significantly in both geotechnics and geology versions of the
problem. For example, normal faults resulting in fault propagation folding can
occur on the basin scale, with the weak material layer being up to thousands of
meters high, and surface displacements caused by fault propagation and surface
rupture on the scale of hundreds if not thousands of meters [36,44]. Meanwhile,
in the heavily studied 1999 Kocaeli earthquake, the blind faults were located at
tens to hundreds of meters depth with the average surface displacement caused by
surface rupture around 2.4 m [4]. In terms of the amounts of slippage of interest
along the blind fault, on the basin scale, slip on the blind fault accumulates over
geological time, resulting in vertical displacements of the blind fault of up to
20% or more of the total height (U > 20%H) of the overlying material layer. In
the geotechnics context, vertical displacements of up to U = 10%H are typically
considered, as this is generally sufficient slip for a shallow blind fault to propagate
to the surface in an earthquake.

In our study, we attempt to bridge the divide between the two disciplines. For
example, we consider slip distances characteristic to both geotechnics and geologi-
cal problems, and observe how empirical failure surface predictions (those of Cole
and Lade [27]) devised for geotechnics-scale experiments perform for geological-
scale slip amounts. For geotechnics applications, to help mitigate the risk of fault
propagation, it is important to predict the path of fault propagation, the location
of surface rupture s, the expected amount of surface displacement Ay, and the
amount of blind fault slip d¢r required for the fault to rupture at the surface,
among other quantities. We determine these properties and quantities and ex-
plore how they are affected by varying boundary conditions such as the blind fault
dip angle 0. In our study, we also determine the material properties of the weak
layer overlying the blind fault that could cause the greatest damage to overlying
structures and the built environment.

In addition to our novel framing of the fault propagation problem, linking
the geological with the geotechnics scales, our study also has the great advantage
that our simulations using SPH can easily handle large slippage amounts on the
blind fault characteristic of geological scale problems, which previously had been
primarily studied using DEM or analogue sandbox-style experiments due to the
large deformations involved. As mentioned before, another advantage of using SPH
is that it can handle these large deformation levels while providing continuum scale
stress, strain, and strain rate information, as is done routinely in geotechnics-scale
fault propagation simulations using FEM.

3 Governing equations and SPH implementation

3.1 Governing and constitutive equations

Focusing only on the mechanical response, the SPH implementation solves the
conservation of linear momentum with prescribed initial and boundary conditions.
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For a domain {2 with boundary I' such that 2 = QU I, I’ = I,UI}, and
@ = I, NI}, the strong form of the initial boundary-value problem (IBVP) is
written as follows: Given b: 2 — R3, 5: I, » R®, and h: I}, — R3, find u: 2 —
R3, such that:

V-o+b=pt Vxin 2xt, (1)
v=v only,Xxt, (2)
o-n=h onl}xt, (3)

subject to initial conditions w = wuo, v = v, and ¥ = o at time ¢t = 0. In the
previous IBVP, ¥ represents the material time derivative of the velocity field, b
is the body force vector, u is the displacement field vector, n is the unit normal
vector to boundary I}, and o is the Cauchy stress tensor; ¥ and h are prescribed
velocity and traction vectors, respectively.

Let v = v(x, t) and let the velocity gradient be defined as | = dv/dx. The rate
of deformation tensor d and spin tensor w are the symmetric and skew-symmetric

parts of 1, i.e.,
1

2
The rate of deformation tensor is assumed to be decomposed additively into elastic
and plastic parts as follows,

d=_(1+1"), w:%(l—lT). (4)

d=d°+d". (5)

A hypoelastoplastic model is defined by a direct relation between an objective
stress rate tensor and the rate of deformation tensor. Here, we consider the Jau-
mann rate as the objective stress rate [73],

C=6-w-o+0 w. (6)
The rate-constitutive equation then takes the form
; (7)

where € is the rank-four tensor of tangential moduli. Substituting Equation (7)
into (6) and solving for the Cauchy stress rate yields

v _
o=c¢c:d

c=¢c:dtw-oc—0c-w. (8)

The tensor ¢ is a material response tensor and typically depends on the stress
and deformation states along with some material parameters. For an elastic-
perfectly plastic material with yield function F and plastic potential function
Q, the expression for the material response tensor is € = ¢ in the elastic regime
and ¢ = ¢®? in the plastic regime, where

P = ¢ 1 e . aQ oOF e

_c—gc.a—o_@afa:c (9)
and
_O0F . 09

X
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For an isotropic material, the elastic material response tensor may be written in
terms of the elastic bulk and shear moduli K and p, respectively, and takes the
form

ce:K1®1+2M(I7%1®1>, (11)

where I is the rank-four symmetric identity tensor with components I;jx =
(0:1051 + 04105%)/2 and 1 is the second-order identity tensor consisting of the Kro-
necker delta.

In the plastic regime, yielding is assumed to be governed by the Drucker-Prager
yield criterion with yield function

F(I1,J2) =V2Ja + aplh — ke <0, (12)
where Jo = ||s||?> /2 is the second invariant of the deviatoric stress tensor, s, and

Iy = tr[o] is the first invariant of the Cauchy stress tensor. The parameters
and k. are related to the angle of internal friction ¢ and cohesion ¢ of the material,
and are given by

\/§tan¢ 3v2¢c
——— " and ke= —————.
V9 + 12tan? ¢ V9 + 12tan? ¢

Geologic materials typically follow a non-associative flow rule, which means that
Q # F. In this work, we take the plastic potential function as

g = (13)

Q =+/2J> +aw11 (].4)
where a;, is related to the dilation angle 1 via the equation
2
ay = _ V2tany (15)

V9+ 12tanZe)

The Drucker-Prager parameters given above are for plane strain analyses. For more
details about the Drucker-Prager model and its parameters for 3D conditions, the
reader is referred to [14].

Given the algorithmic format for dynamic analysis employed by the SPH tech-
nique, an explicit stress-point integration is herein employed to advance the solu-
tion over finite increments. From Equation (8), the Cauchy stress rate is integrated
over time as follows,

Ontl = 0n + Atey, : dn, (16)

where
6n=0n+R-0n—0n-R, R = Atw,, . (17)

Note that an explicit computation of the rotation tensor R is acceptable only
if the material undergoes small rotation within the time interval of interest. For
large rotations within a given time interval, an objective algorithm for integrating
the rate constitutive equations must be employed, such as the one proposed by
Hughes and Winget (1980) [48]. Furthermore, an explicit stress-point integration
algorithm is susceptible to drift that could lead to the stress point going outside of
the yield surface. Standard corrections may be employed in the present algorithm
to correct for stress drift [23].
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3.2 SPH implementation

In the SPH method, the continuous problem domain is discretized into an assem-
bly of particles, which possess continuum level properties such as mass, density,
velocity, etc. The value of each material property, denoted f(z), is found for a
particular particle using the following convolution integral over the domain (2.

f@) = [ @)W o (18)

Here, W : R® x RT™ — R is the kernel (or smoothing function) which serves as
a weighting function, and h is the smoothing length, which controls the size of
the integration domain 2. The kernel function W must satisfy (among others) the
three following conditions:

/ Wz — 2, h)da’ =1, (19)
7
lim W(z —z’,h) = 6(x — z'), (20)
h—0
W(x —z',h) = 0 when |z — 2’| > kyh, (21)

where ¢ is the Dirac-delta distribution and k., is a constant that helps define the
support domain of radius k. h for the particle. The smoothing length A is taken
to be h = kp A, where A is the initial inter-particle distance, and kj, is a constant
known as the smoothing length factor. Equation (19) is known as the normalization
condition, Equation (20) as the delta function property, and Equation (21) as the
compact support condition. In this study we use the Wendland Quintic C2 kernel,
which is written as

oa(l—q/2)*(2¢+1), for0<q<2,

(22)
0, for ¢ > 2,

W(g, h) = {

where g = |z — x| /h is the normalized distance between particles i and j, and the
constant ag takes the values of ooy = 7/47rh2 in two dimensions and ag = 21/167rh3
in three dimensions [96].

The derivative of a material property 0f(x)/0x is found by replacing f(x’)
with df(«’)/0x’ in Equation (18) and then using integration by parts and the
divergence theorem, which gives the expression

<8f(m) /f YW(x —x’,h) - ndS — /f( )Md (23)

where S represents the surface of the domain of integration {2 and n is the unit
normal to S. Note that the surface integral on the right hand side of the expression
equals zero for an internal particle in the domain since W has compact support.
Furthermore, writing the derivative with respect to x instead of ’ flips the sign of
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the last integral. Hence, the integral approximation of the derivative of a material
property is given by:
—x' h
af (w) / Fay W@ =" h) g0 (24)

The continuous integral for the material property f(x) for particle i at position
x can be approximated by the summation

N

(fl@)i=y %f(wj)W(wi —@;,h), (25)

j=1

over all particles j in the support domain of . Likewise, 0f(x)/0x for particle i
can be approximated by

=1 '

These relations are expressed using simplified notation as

N
flxi) = Z TZJJ flxi)Wij , (27)
af =
=) -3 e -° (25)
where W;; = W(x; — x;, h) and
8W1‘j _ T — X5 8Wij
8wi o ( T ) or (29)

with r = |&; — x;| the distance between particles ¢ and j.

There are many ways in which Equation (28) can be used to approximate the
gradient of a field function. For more details on this, the reader is referred elsewhere
[91]. In our work, the velocity gradient for each particle i, I; = 8v(w)/8m’i is
approximated as

N
_ m; o 3Wij
l; ; 0 (v; —vi) ® Bw; (30)
Conservation of mass needs to be explicitly solved in the standard SPH formula-
tion. Since the mass of any particle is kept constant throughout the simulations,
the density of particle i is updated over time. Hence, from the continuity equation,
we approximate the time rate of change of density as

N
. oW,
pi =y mj(vi —v,)- 3. (31)

Jj=1

Furthermore, the conservation of linear momentum, Equation (1), is expressed as

N
. 0'z'+0'j> oW
v; = mj|———|) - —w—=+g, 32
S () kg e
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where g is the gravitational acceleration vector. Finally, we discretize d; and w;
as well.

N

;)
N
Z p—; (vj —v;) ® 3;;13 + (Z %(Uj —vi) ® %)T} , (33)

j=1

B[ (0w 0 G - (w0 5] o0
j=1

Despite the many advantages of SPH over mesh-based methods such as FEM, like
any numerical method, SPH also exhibits some undesirable numerical features,
including non-physical oscillations in the stress field (zero-energy modes) and a
tendency for elastic shock waves to form within the simulated material [23,58].
To surmount the formation of shock waves and ameliorate stress oscillation, a
dissipative term known as the artificial viscosity [58], I1;; is introduced into the
conservation of momentum to stabilize the equation and reduce shock waves,

N
. o;+0o; 8Wij
b= my (T ) - +g, 35
i ; ]( pip; ij O, g (35)
where )
anCijbij — Brdi;
for v;; - x;; <0,
Iij = Pij v (36)
0 fOY vij~a:ij20,
with b
ijVij - Tij
= , 37
v |zi5]* 4+ n? (37

where for particles ¢ and j, ¢; = (¢ +¢5)/2, pij = (pi + p5)/2, hi; = (hi + hj)/2,
Tij = x; — Tj, Vi; = v; —vj, and n ~ 0.01h. The coefficients a.r and B are two
constants which usually assume values between 0 and 1, ¢ is the numerical speed
of sound for the particles, p is the particle density, and h is the smoothing length.
The numerical speed of sound for particle i is calculated as

¢; = max (@ \/é) . (38)

Another undesirable feature characteristic to SPH is the so-called tensile in-
stability, where particles tend to attract one another when the material is under
tension, leading to the formation of clumps or chains. To resolve this issue, Gray
and Monaghan [41] introduced a correction called artificial stress, where a small
hydrostatic compressive stress S;; is added to the balance of linear momentum.
This compressive stress generates a short-ranged repulsive force used when the
material is subject to tension to prevent clumping. Rather than using the original
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artificial stress implementation, a simplified version proposed by Peng et al. [67],
is used where
Sij = fij (Ri + Ry), (39)
and where the components of R; are given by:
6p—; for p; > 0,
Ri={ Pi (40)
0 for p; <0.

In the previous equations, € is a coefficient in the range 0 to 1, p; is the hydrostatic
stress for particle ¢, n ranges from 2 to 6, and f;; is given by:

Jij = W(Az) (41)

where Az is the initial interparticle distance. The term S;; is another stabilization
term and is introduced in the conservation of linear momentum in a similar fashion
to the artificial viscosity. Hence, the final SPH approximation for the conservation
of linear momentum is as follows

N
= m [UZ+UJ+(HM—SM)1 Wiy, (42)
= Pip; Ox;

Given that the SPH method is a continuum meshless and Lagrangian method,
the IBVP domain is discretized with a set of arbitrarily distributed particles that
serve not only as mathematical points to solve the balance equations, but also act
as physical points carrying all of the field variables of the problem. The solution is
evolved over time using any explicit time integration scheme such as the forward
Euler, Predictor-Corrector, or Leap-Frog. In our work, we chose a variation of the
forward Euler scheme, which has optimum conservation properties [91]. In this
scheme, given a field variable and its rate of change at the beginning of a time
step n, corresponding to a simulation time t,, the updated value of that field
variable at the beginning of the next time step, n + 1 at tn+1 is given by:

F@)nt1 = f(@)n + f(@)nAtL, (43)

where f is the material time derivative of the field variable, and At = tp11 — tn
is the time step.

The time step is determined using the CFL stability conditions. Hence, the
time step is then limited to

At<a®, (44)
(&

where a is the CFL parameter and was chosen to be 0.1 for the simulations in this
paper.

For geotechnical and geosciences applications, the initial state of stress and de-
formation of the geomaterials is very important. In all of our simulations we applied
gravity and a damping term that enabled particles to reach equilibrium positions
and a geostatic state of stress. After the equilibrium was obtained (minimum ki-
netic energy), the plastic deformations were set to zero, and the geostatic state
of stress and elastic deformation were used as initial conditions for the remainder
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of the simulations. The damping term used in the initialization simulations was
applied directly to the right-hand side of the balance of linear momentum and had
the form:

Di = *{’Ui 5 (45)

where ( is a coefficient determined following the work of Colagrossi et al. [26] as
c

=£— 46

(=¢, (46)

with £ between 0 and 1, and chosen to be 0.1 for our initialization simulations.
Note that the damping term was turned off after the initialization simulations
were over and the initial state of stress and strain defined.

Another important aspect of SPH is the treatment of Dirichlet boundary condi-
tions. In our work, we used the dynamic boundary condition formulation proposed
by Adami et al. [1]. In this approach, the solid boundaries are discretized using lay-
ers of particles that are fixed or move with a prescribed velocity, while their other
properties remain constant, with exception to stress. Following Adami’s work, the
stress of the boundary particles is updated with time by extrapolation of the state
of stress of the domain particles. Differently from the original work of Adami and
his co-authors, we do not update the density of the boundary particles.

In all of the simulations presented in this paper, we applied the artificial viscos-
ity term with parameters ar = 0.2 and B, = 0.4. Moreover, we assumed perfect
plasticity in the constitutive model. For simulations with cohesion, where tensile
stresses may occur, we also applied the artificial stress term with € = 0.2. Finally,
due to the so-called “particle inconsistency” of the SPH method, the kernel gra-
dient was corrected to guarantee first-order consistency of the SPH interpolation
operators. For further details on the kernel gradient correction, the reader is re-
ferred to the paper of Bonet and Lok [10]. For a complete overview of the SPH
method, details of implementation, and a listing of the code we developed, please
refer to the work of Févero Neto [33]. In the next section we present some of the
simulations used to validate GEOSPH.

4 Shear band formation behind a retaining wall

In the classic geotechnics problem involving a retaining wall holding back a granu-
lar backfill, yielding of the backfill can occur under two extreme conditions: active
condition when the soil is stretched horizontally, and passive condition when the
soil is compressed horizontally. In the Coulomb [28] and Rankine [74] limit equi-
librium theories of lateral earth pressure on retaining walls, the failure surface is
assumed to be straight and planar, and soil mass in the backfill is a rigid wedge
with the failure surface inclined with respect to the principal stress (acting hor-
izontally for a smooth wall) at © = 45° £ ¢/2, a value also commonly known
as the Coulomb angle O¢, with © = 45° + ¢/2 under active loading condition
and ©® = 45° — ¢/2 under passive condition. Similar analytical expressions for
the orientation of the failure planes were also given in later studies by Arthur [7]
and Roscoe [77], with the so-called Arthur angle ©4 = 45° £ (¢ + ¢)/4 and the
so-called Roscoe angle ©r = 45° + ¢ /2 with respect to the horizontal.

While today’s experimental observation and more sophisticated analytical and
numerical studies have indicated that the failure surface in passive and active
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loading cases is not a straight surface, but rather exhibits some amount of curva-
ture, the Coulomb, Arthur, and Roscoe predictions are still valuable references.
For non-smooth retaining walls, Caquot and Kerisel [25] provided a theoretical
limit-equilibrium solution for the passive and active states where the failure sur-
face is assumed to be a logarithmic spiral. At the top surface of the backfill, the
failure surface is oriented by the Coulomb angle with respect to the horizontal (see
Figure 1). Additionally, the location of the passive earth pressure force P, along
the face of the retaining wall is pre-selected to be at a height of H/3. According to
their solution, the normal component of the active force is P, = K7 cos (§)H?/2
and the vertical component is P, = K47y sin (6)H2/2, where § is the soil-to-wall
friction angle, v is the unit weight of the soil, and K, is the coefficient of active
earth pressure. In the passive state the active coefficient K, is replaced with the
passive coefficient K, in the expressions for P, and P,. The values of these coef-
ficient are tabulated in the NAVFAC Design Manual DM7.02 (1986) for different
values of the ratio §/¢ [29].

In this work, a series of validation tests are conducted to verify the performance
of our GEOSPH implementation against previous studies of the retaining wall prob-
lem. For the backfill, a 5 m high and 10 m long backfill is used for the active case,
with a mobile retaining wall located on the left side of the backfill and a static wall
located on the right side (see Figure 1). All the wall boundaries are modeled using
boundary particles. In the passive case the same setup is used with the exception
that the backfill length is doubled to 20 m to allow the failure surface to emerge
freely on the top surface without interference from the static wall. The backfill
is modeled as an elastic-perfectly plastic material with the material parameters
given in Table 1 and represented by 6,096 particles. The material parameters se-
lected for the backfill are chosen to be the same as those used by Borja and Lai
[16] to facilitate comparison, and are not meant to be representative of an actual
soil backfill. Instead, they are picked so that at Ko condition all points within the
backfill yield from imposing the gravity load alone.

For the purposes of a sensitivity analysis, simulations using finer and coarser
discretizations were performed by varying the particle spacing to A = 0.05 and
0.15 m with 24,384 and 2,710 particles respectively, but yield indistinguishable
results with respect to the original A = 0.1 m discretization in terms of the failure
mechanism, and shear band patterns. Sensitivity analyses carried out for the other
simulations shown in the paper achieved similar results, although some minor
variation in the shear band thickness was observed; i.e., the bands widened slightly
with coarser discretizations. However, due to the nonlocal nature of SPH stemming
from the smoothing length h, which is a numerical characteristic length scale, the
sensitivity of the shear band width to the spatial discretization can be eliminated
by selecting a value of kj that ensures the smoothing length is maintained fixed
as the discretization (or the inter-particle distance) changes [90]. Simulations of
varying discretization resolution while keeping h constant revealed that the shear
band thickness remained unchanged. Thus, if the shear band thickness is known
apriori, we can adjust the SPH resolution (and hence, the smoothing length) to
accommodate for this thickness.

In the simulations, the active loading case is enforced by pulling the retaining
wall from the backfill (—Az), while in the passive loading case the retaining wall is
pushed into the backfill (+Az). SPH is known to exhibit rate-dependent behavior
when external loading is applied to the boundaries if the sustained equivalent strain
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Fig. 1: Boundary value problem setup for the retaining wall problem, here showing
V pointing in the direction of passive loading. The theoretical logarithmic spiral
failure surface of Caquot and Kerisel [25] and the components of the passive pres-
sure P, are also displayed.

rate is greater than 0.1 s~' [94]. For strain rates below this threshold, quasi-static
solutions can be achieved that reduce the strain rate dependency. Thus, the wall
is moved with a velocity of V' = 0.01 m/s to yield equivalent strain rates below
the 0.1 s~* threshold.

Table 1: Simulation parameters for the retaining wall experiments.

Parameter Value
Density, p [kg/m?] 2000
Particle mass, m [kg] 20
Time step, At [s] 0.0001
Initial inter-particle distance, A [m] 0.1
Smoothing length factor, kp, 1.5
Poisson Ratio, v 0.3
Young’s Modulus, E [kPa] 26,000
Artificial viscosity parameters, ax and 8. | 0.2 and 0.4
Artificial stress parameter, € 0.2
Cohesion, ¢ [kPa] 0
Internal friction angle, ¢ [°] 23.1
Dilation angle, 1 [°] 10.6
Pushing or pulling velocity, V' [m/s] 0.01
Height, H [m] 5
Length, [ [m] 10 or 20

As the retaining wall is slowly pulled away from the backfill to simulate active
failure, the bottom left corner of the backfill undergoes plastic strain localization
after 0.01 m of wall displacement, as seen in the plots of the accumulated plas-
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tic strain €2, (calculated from time-integrating ||d?||) and volumetric strain €,4;
(calculated from time-integrating tr(d)) in columns (a) and (b) of Figure 2, re-
spectively. A shear band then propagates towards the top surface along a mostly
straight inclined trajectory with some slight curvature, resembling a log spiral and
is fully traced after Az = 0.08 m. After 0.16 m of wall displacement, vertical
subsidence of the top surface is visible in the area between the shear band and
the retaining wall. This subsidence and the shear band geometry are similar to
the results of a combination of centrifuge, FEM, and DEM results reported by
Widulinski et al. [97]. Comparing with the FEM analysis of Borja and Lai [16] for
a smooth wall, localization first occurred after 0.016 m wall displacement, and the
shear band was fully traced around 0.06 m wall displacement.

Because the retaining wall in our simulations was rough, with a frictional coeffi-
cient of 6 = 0.79¢, we also evaluate the normal (P,) and vertical (P,) components
of the active force over displacement against the theoretical limit equilibrium solu-
tions provided by NAVFAC Design Manual DM7.02 [29] in Figure 3. As expected
from the force-displacement curves, in panel (a) a rapid drop in normal force fol-
lows the initiation of wall movement, and the change in the normal active force
on the retaining wall with respect to wall displacement decreases around the time
when the shear band is fully traced. However, a complete plateau in the force-
displacement curve, which would be indicative of the residual state expected for
a wedge solution failure plane, or of the NAVFAC limit equilibrium solution, is
not reached, due to the evident curvature of the shear band. A similar situation
occurs with the vertical force P, in Figure 3, panel (b), although the decrease in
force is more resemblant of a plateau once the shear band is fully traced. This is
due to the evolving geometry of the wedge behind the wall whose height keeps on
decreasing as the wall moves away from it, causing the resultant active force to
decrease below the level predicted by the analytical solution that does not accom-
modate geometric effects. This underscores the advantage of the SPH technique
to accommodate geometric effects when the deformation becomes large.

In the passive loading case, the shear band patterns and propagation are more
complex than in the active case. From columns (c) and (d) of Figure 2, once again
showing b .. and &,,;, initial strain localization occurs around 0.02 m displacement
at the bottom left corner by the retaining wall. This initial development is shortly
followed by localization in the upper right and left of the backfill, and the initial
area of localization at the bottom left corner grows laterally along the bottom of
the backfill. After 0.4 m of wall displacement, the regions of strain localization
at the top right corner of the wedge extends downwards, and the larger area of
localization at the bottom likewise grows upwards. At 0.65 m wall displacement,
both areas of localization merge and the band is fully traced, and then by 0.8
m displacement the band thins to form a refined curved band ranging from the
bottom left to the top right band of the backfill. At the top left corner, a secondary
highly diffuse band begins to form, but never fully propagates downward to the
bottom. The geometry and the propagation mechanism of the shear bands from
the simulations performed in GEOSPH are again very similar to those documented
in other studies, although the secondary shear band originating in the top left
corner is generally more resolved [64,97]. For further comparison, in the results of
Borja and Lai [16], localization is first achieved after 0.05 m of wall displacement,
and the shear band was fully traced after 0.2 m of wall displacement.
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Fig. 2: Shear band development in the actively and passively loaded backfill behind
a retaining wall. In columns (a) and (c¢) the accumulated plastic strain 5. is
displayed, while in columns (b) and (d) the volumetric strain €,4; is shown.

In the passive force-displacement curves of Figure 4, the horizontal and vertical
forces on the wall rapidly increase as the wall compresses the backfill (panels (a)
and (b)), after which the rate decreases as the shear band is fully traced. Like in
the active case, however, a residual state and its associated plateau do not occur.
Instead, the normal passive force slightly overshoots the NAVFAC solution, while
the vertical component of the force undershoots it. Once again, this is due to
geometric effects as the effective height of the wedge now increases with increasing
horizontal compression, allowing the SPH solution to more realistically predict
the horizontal passive force. As for the vertical component of the force, we recall
that the NAVFAC solution assumes that the full wall-to-soil friction angle § has
developed behind the wall. This may not necessarily be the case at points close
to the base of the wall, where the vertical relative movement between the soil and
the wall is much smaller than near the top. It may therefore be argued that the
NAVFAC solution likely overpredicts the vertical component of the force, while the
SPH solution more realistically captures it. It is also evident that the amount of
wall movement necessary to fully trace the failure surface is larger for the passive
case than for the active active, which is in agreement with the results from the
Terzaghi and Princeton tests as reported by NAVFAC in their Figure 1 on page
7.2-60 [29].

Although the shear bands possess a considerable amount of curvature, resem-
bling a log spiral, and the residual state is never achieved, the orientation of
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Fig. 3: Force-displacement curves from the retaining wall problem for the active
loading case. Panel (a) shows the normal component of the active force P,, and
panel (b) the vertical component P, .

the shear band at the surface can still be compared with the Arthur, Roscoe,
and Coulomb predictions. When the band is fully traced, in the active case at
Az = 0.16 m, the orientation of the shear band is © = 53.1°, a value closest to
the Arthur angle ©4 = 53.43° for the material parameters of the backfill. In the
passive case at Az = 0.8 m, the band takes the orientation of @ = 36.2°, which
is also closest to the Arthur angle of © 4 = 36.58°. Similar agreement of the shear
band orientations with the Arthur angle was reported in the work of Borja and
Lai [16], which also treated the backfill as an elastoplastic material and made use
of the Drucker-Prager yield criterion. This result and the agreement of the shear
band patterns with other modeling efforts gives confidence in GEOSPH’s capacity to
accurately simulate important details of shear band formation in a backfill behind
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Fig. 4: Force-displacement curves from the retaining wall problem for the passive
loading case. Panel (a) shows the normal component of the passive force P,, and
panel (b) the vertical component P, .

a retaining wall, and motivates the application of the model for more complicated
loading scenarios such as the ones described in the next section.

5 Fault propagation problem
5.1 Overview of GEOSPH simulations
The model setup, boundary conditions, and parameters selected (see Table 2 and

Figure 5) for the fault propagation simulations performed with GEOSPH are based
on the studies of Egholm et al. [31], Finch et al. [37], and Loukidis et al. [59],
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among others. The model dimensions given in Table 2 and illustrated in Figure 5
in the extensional and contractional simulations are the same.

In Figure 5, a few important features of the fault propagation problem are
highlighted. The synthetic shear band is the primary band forming in the weak
overlying material as a result of slip along the blind fault, propagating from the
tip of the blind fault and pointing in the same direction. The antithetic band,
is conjugate to the synthetic band, and points in the direction opposite to the
synthetic band and the blind fault and propagates from the intersection of the
blind fault and the hanging wall base. Lastly, the angle of the blind fault in the
basement rock is given by 6. Because synthetic shear bands usually do not follow
a straight trajectory through the weak overlying sediment material, the angle of
orientation of the synthetic band will vary with depth. We consider the shear band
angle at the point of surface rupture ©, or, alternatively, measure the ratio s/p
where s is the distance from the fault axis (i.e., the vertical projection of the fault
trace) to the point where the synthetic band reaches the surface, and p is the
distance from the fault axis to the point where a straight projection of the blind
fault would have reached the surface. Thus, the ratio s/p quantifies the deviation
from the straight line projection of the shear band.

Table 2: Simulation parameters for the fault propagation experiments.

Parameter Value
Density, p [kg/m?] 1800
Particle mass, m [kg] 1800
Time step, At [s] 0.002
Final fault slip, d [m)] 12 or 24
Initial inter-particle distance, A [m)] 1
Smoothing length factor, kj 1.5
Poisson Ratio, v 0.3
Young’s Modulus, E [kPa] 20,160
Artificial viscosity parameters, ax and 8r | 0.2 and 0.4
Artificial stress parameter, € 0.2
Cohesion, ¢ [kPa] 0 and 100
Internal friction angle, ¢ [°] 30
Dilation angle, 9 [°] 0 and 11
Blind fault dip angle, 6 [°] 30, 45, 60
Pushing or pulling velocity, V' [m/s] 0.01
Height, H [m)] 40
Length, [ [m] 150

In total, 18 simulations are conducted (9 extensional and 9 contractional) using
GEOSPH where the dip angle of the blind fault 6 takes the values of 30, 45 and 60°,
the angle of internal friction of the weak overlying material is ¢ = 30°, cohesion is
either 0 or 100 kPa, and the angle of dilation ) is either 0 or 11°. For purposes of
clarity we divide our simulations into three groups. The cohesionless simulations,
i.e., those which have ¢ = 0 kPa and 9 = 0°, the cohesional simulations, those
which have ¢ = 100 kPa and v = 0°, and the dilational simulations, those with
¢ = 0 kPa and ¢ = 11°. With these three groups of simulations, we can isolate
the effects of cohesion and the dilation angle on the behavior of fault propagation
or surface rupture in our simulations. The material parameters summarized in
Table 2 are selected such that they represent a stiff clay or sand typical of the
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Fig. 5: Boundary value problem setup for the fault propagation problem, here
showing the extensional case (contractional one is similar, except V points in
the opposite direction). For the overlying weak rock or sediment layer, sediment
particles are used, while for the basement and side boundaries, boundary particles
are used. One side of the problem boundary (hanging wall) is pulled /pushed by a
velocity V, while the other half (foot wall) is fixed.

material overlying a blind fault, and are in line with most characterizations of
Mohr-Coulomb parameters for stiff clays at shallow depth [4,59,87].

5.2 Fault propagation mechanism

In all experiments, both extensional and contractional, and regardless of the dip
angle of the blind fault 8, strain localization occurs at the sharp corner of the
protruding base caused by the slip of the blind fault and then propagates upwards
with increasing slip, forming a shear band. In Figure 6, the propagation of the
shear band is shown at various intervals of fault slip for the cohesionless # = 30°
contractional case. In general, the synthetic band forms first, and is followed by
the antithetic band (if it forms). In the weak material layer above the basement
rock, the pressure field (Figure 7 (a)) increases with depth following the lithostatic
gradient, but the deviatoric stress ¢ (Figure 7 (b)) is highest in the area where the
shear band originates. In this region, a counterclockwise rotation of the maximum
principal stress is observed around the area of strain localization (see Figure 7).
A similar rotation is commonly observed in faults in the field, and was similarly
reported in the FEM modelling work of Nollet et al. [65]. The analytical solution
of Patton and Fletcher [66] based purely on elasticity, also describes a rotation
of orientations of the principal stresses depending on the direction of shear in the
blind fault, and the orientation of the blind fault itself.

The amount of slip required for the shear band to reach the surface, or, alter-
natively, for the fault to rupture at the surface, is known as the critical slip dc,.
From columns (b) and (c) of Figure 6 depicting the accumulated plastic strain
eP .. and the volumetric strain €,,.;, respectively, the shear band is seen to reach
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Fig. 6: Shear band initiation in the contractional § = 30° cohesionless simulations.
Column (a) shows colored material layers to highlight folding and deformation,
these otherwise carry no mechanical significance. Cole and Lade [27] failure sur-
faces are shown superimposed on the colored material layers as dashed red lines.
Columns (b) and (c) display €., and £,,; respectively.

the surface after der = 1.0 m slip. In Figure 8, the critical slips d., normalized
by the height of the overlying weak layer H, are plotted for the various blind
fault angles 6 in the contractional and extensional cases for series of simulations
varying cohesion and the angle of dilation. The contractional simulations require
a greater slip for the shear band to rupture at the surface, and the steeper 6, the
larger d.r, with this trend exaggerated for the contractional case. Our results are
compared against those of Loukidis et al. [59] and Thebian et al. [87], who used
the commercial finite difference (FLAC) and finite element (Abaqus) software for
their respective studies, an elastoplastic constitutive model, the Mohr-Coulomb
yield criterion, and similar parameters for the overlying weak material layer. The
SPH simulations of GEOSPH with ¢ = 100 kPa match closest to the dense and over-
consolidated (bottom of the gray envelope for Loukidis et al.) soil simulations of
Thebian et al. and Loukidis et al., which included greater density and cohesion,
whereas the ¢ = 0 kPa matched closer to the loose simulations (top of the gray
envelope for Loukidis et al.).

The orientation of shear bands in the fault propagation problem is a topic of
some uncertainty, as studies have demonstrated a degree of disagreement over the
shape of the shear bands in the overlying material layer, as well as what parameters
control the shape itself and its orientation. From a practical perspective in the



22 Enrique M. del Castillo et al.

N

N

0 0125 025 0375 05
EZCC

Fig. 7: In panel (a) the pressure field p and in panel (b) the deviatoric stress field

q are shown for the cohesionless § = 30° simulations at 7 m slip. In panel (c¢) the

directions of the maximum principal stress o1 are superimposed over contours of

eP .. for an augmented region around the shear band.

context of fault propagation, predicting the location of shear band surface rupture
in the weak material layer is useful as it is here that most damage occurs [4,
51]. Conversely, observed surface rupture points or scarps could be used to map
previously unidentified blind faults at shallow depth, which might otherwise be
undetectable using reflection seismic profiles or with other similar geophysics tools.

Similar to the retaining wall problem, under active (extensional) or passive
(contractional) conditions, a theoretical prediction for the orientation of the shear
band with respect to o1 can be found from the Coulomb 6¢, Arthur 6 4 or Roscoe
0r angles. In the fault propagation problem setup however, as seen from Figure 7
(c), the stress field and the directions of o1 are significantly distorted by the sharp
corners of the blind fault since the loading is not purely in the horizontal direc-
tion like in the retaining wall problem. Thus, the Coulomb, Arthur, and Roscoe
expressions can only be used to predict the orientation of the shear band at the
location of surface rupture, as it is here that o1 is parallel to the surface. Even
then, past work has found that the angle 6 of the blind fault plays a major role in
determining the angle of the shear band at the surface. The studies by Finch et al.
[36,37] for contractional and extensional simulations, respectively, arrived at this
same conclusion, but because their DEM method was only cohesional, and ignored
the effects of ¢, their results were challenged in other subsequent studies [31]. More
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Fig. 8: The normalized critical slip d../H required for the shear band ruptures at
the surface is plotted against the blind fault angle 6, for our GEOSPH simulations, as
well as for the Abaqus results of Thebian et al. [87] and FLAC results of Loukidis
et al. [59].

recent versions of the same DEM code now accounting for internal friction have
yielded similar results, however [42]. Other modeling efforts using the commercial
FEM software Eflen [76], for example, have indicated that the angle of the blind
fault plays a key role in the orientation of shear bands, especially as they mature
past their initial formation [65]. On the other hand, the work of Egholm et al.,
[31] found that regardless of the blind fault angle 8, the orientation of the propa-
gating shear bands was always within £5° of the Coulomb predictions, and thus
concluded that the angle of internal friction of the weak layer was the controlling
parameter.

Lastly, a number of studies have found the Roscoe angle to be the closest
match to the orientation of the emergent synthetic shear bands in both extensional
and contractional fault propagation experiments, using a combination of analogue
sandbox experiments, DEM simulations, and FEM simulations [27,45,51]. Con-
sidering the simulations performed with GEOSPH using ¢ = 0 kPa and ¢ = 0°,
the expected Coulomb, Roscoe, and Arthur angles are: ©¢c = 60°, Or = 45°,
and ©4 = 52.5° in extension, and O¢c = 30°, Or = 45°, and ©4 = 37.5° in
the contractional case. In Figure 9, these expressions for the shear band angle at
the surface rupture point are compared against our GEOSPH simulation results at
different slips of the blind fault (quantified as U = %H for comparison with values
reported in the literature, where U = dsin 6 is the vertical component of slip, see
Figure 5).

From Figure 9 we find that the shear band orientation angle is not fixed at a
specific value throughout the contraction or extension of the system, but rather
varies between all three angle predictions. When the shear band reaches the surface
and until U = 10%H, the band is closest to the Roscoe angle, but shortly after
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by U = 15%H, has achieved an orientation close to that of the Arthur angle. The
shear band spends the majority of time at this orientation until much larger slips
are achieved, and around a value of U = 60%H, values closer to slips observed in
geological structures such as fault propagation folds, synclines, etc., as opposed to
geotechnical scale fault propagation, the shear band reaches an orientation closest
to the Coulomb angle. Furthermore, the angle of the blind fault 8 evidently plays
a role in the final shear band angle sustained at the point of surface rupture. In
general, the shear band angle tends to increase with larger 6 in extension and
smaller € in contraction.

Given the variability in shear band angle during the temporal evolution of a
shear band, and along its length, another measure to quantify and help predict
the location of surface rupture or the entire shear band trajectory given a known
blind fault would be more valuable. Cole and Lade [27] determined an empirical
expression for the propagation path and location of fault surface rupture above
a blind fault, making use of the Roscoe angle and expressing the failure surface
as a log spiral curve. The propagation paths are always log spirals with their
center and orientation depending on the value of § with respect to the Roscoe
angle O = 45° 4+ /2, with the exception of the case where 6 = Og, where the
pole of the log spiral is at infinity, rendering a surface which is a straight line.
In contraction, and for § = 45°, the Roscoe angle Of is also 45° since ¥ = 0°.
Hence, the predicted failure surface is a straight line. Cole and Lade’s expression
also predicts the formation of antithetic bands or faults for 0 < 6 < 45 — /2 in
extension, which are a straight line and are oriented at 45° —1)/2 from the vertical.

Cole and Lade [27] evaluated their empirical failure surfaces against analogue
sandbox-style experiments after small slips d, specifically at U = 4%H, but did
not specify how their empirical failure surface changes with increasing slip on the
blind fault, or how the same log spiral failure surface performs against actual failure
surfaces from experiments at larger slips in the geological range of interest. Looking
at Figure 6 (a), the Cole and Lade failure surface does not capture the trajectory
of the shear band before surface rupture, or even once the initial surface rupture
is reached. It is not until 9.0 m slip is achieved, equivalent to U = 11.25%H, that
the Cole and Lade surface actually predicts the surface rupture point observed in
the GEOSPH simulation for §# = 30°. Looking at Figure 12 column (a) for § = 30°
at 12 m slip the Cole and Lade log spiral failure surface continues to be a quite
accurate prediction of the simulated shear band, but by 24 m slip, ceases to be so,
and is inclined too steeply with respect to the horizontal.

Overall, for the different basal angles 6 considered in our contractional simula-
tions (see Figure 12), we find that the Cole and Lade empirical log spiral surface
captures the location of fault surface rupture s quite accurately for moderate
amounts of slip (9 to 12 m slip). In the extensional case (see Figure 11) the Cole
and Lade surfaces again predict the location of surface rupture accurately for 9
to 12 m slip, but for greater slip, the shear bands curve away from the log spiral
surface. In general, the log spiral shape of the failure surfaces does not match the
curvature of the shear bands for some blind fault angles, most notably 6 = 30° in
the contractional simulations, and in the extensional simulations for the principal
synthetic band. Good agreement in the surface rupture locations, but discrepancies
in the fault curvature with respect to the empirical solutions, was also reported in
the DEM simulations of Garcia and Bray [38], and Hazeghian and Soroush [46].
Most notably, in both GEOSPH and DEM simulations, the shear bands have much
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straighter paths, experiencing a smaller amount of curvature between the point of
nucleation and of surface rupture than that predicted by the log spiral curves.

On the other hand, the antithetic shear bands which only reliably form in the
extensional case, have a less variable orientation angle @ at the surface than do
the synthetic bands, and have values close to the Arthur angle. Interestingly, the
angle of the blind fault # does not significantly affect the antithetic shear band
angle either, suggesting that the horizontal rather than vertical loading conditions
dominate in the hanging wall of the extensional normal fault setup, similar to
the retaining wall problem, thus also resulting in an Arthur angle shear band
orientation. The insensitivity of the orientation of the antithetic bands to the
blind fault angle was also observed by Egholm et al [31] and Nollet et al. [65].
Because the empirical relations of Cole and Lade [27] predict a straight band with
the orientation given by the Roscoe angle, they do not agree with the mostly
straight bands generated by GEOSPH at the Arthur angle.

GEOSPH, U = 10%H B
GEOSPH, U = 15%H
GEOSPH, U =30%H  |——————— = - o
GEOSPH, U = 60%H
25 |-|[__]Thebian et al. (2018) at U = 10%H E

Shear Band Orientation Angle, © [°]
o & 1 b

% ‘ ‘ 3 : ‘
30 45 60 30 45 60

Extensional Contractional
Blind Fault Angle, 6 [°]

Fig. 9: The shear band orientations with respect to the horizontal at the top
surface near the point of surface rupture © measured from our GEOSPH simulations
compared against the results of Thebian et al. [87] and against the Coulomb O¢,
Arthur @4, and Roscoe O angle predictions.

Because we see that the shear band propagation process is a dynamic one, and
a single angle or failure surface cannot capture the progression of fault surface
rupture with increasing slip along the blind fault, we propose using the s/p ratio
to quantify the deviation of the shear band from the straight line projection of
the blind fault. An s/p ratio of one indicates a shear band that propagates at
the same angle of the blind fault. Given an expected amount of slip d, the s/p
empirical relation can give the expected outcropping location of fault rupture
along the surface for different blind fault angles 6. In Figure 10, the s/p ratio is
displayed for the three different simulation groups, cohesionless, cohesional, and
dilational, at the three different basal angles for the extensional and contractional



26 Enrique M. del Castillo et al.

6 =30° 0 = 45°
15 2
(a) (b)
" 1.5 -7
1 7 T
p e - -
e == 22T -7
0.5 e ez
== 0.5
0 0
0 5 10 15 20 2 0 5 10 15 20 25
Slip, d [m] Slip, d [m]
i 0= 60°
25
(c)
2 e 1
. .
U - ¢ =100 kPa, 1) = 0° extensional
15 R R ¢ = 0 kPa, 9 = 0° extensional
= e e ¢ =0 kPa, ¢ = 11° extensional
@ P == .
1| -7 _e=FT T — — ¢ =100 kPa, ¥ = 0° contractional
% — — ¢ =0 kPa, ¢ = 0° contractional
0.5 1 — — ¢ =0 kPa, ¥ = 11° contractional
0
0 5 10 15 20 2%
Slip, d [m]

Fig. 10: The s/p ratio for the contractional and extensional cases for all three
simulation groups, cohesionless, cohesional, and dilational. In (a) for § = 30°, in
(b) for # = 45°, in (c) for 6 = 60°.

cases. In the extensional case for all three basal angles, the deviation from the
straight line projection is smallest (steeper than the straight line projection), and
of these, the simulations with ¢ = 11° have the least deviation, closely followed
by the cohesional simulations with ¢ = 100 kPa. In the contractional case, the
simulations with ¥ = 11° have the greatest deviation, and those with cohesion the
least.

5.3 Evaluation of structural styles

Considering our results for the cohesionless extensional case first, in Figure 11,
colored material layers or markers are plotted in column (a) at d = 6 m and
d = 12 m slip. In column (b), contours of the accumulated plastic strain €%, are
shown, and in column (c) contours of the magnitude of the vertical component
of the velocity vector v are displayed. In the § = 30° case, a set of conjugate
shear bands form with clear synthetic and antithetic bands, forming a graben-
horst complex structure. The conjugate bands and graben-horst structure develop
with time, becoming fully mature once 12 m slip is reached. For simulations with
steeper basement fault angle such as § = 60°, a graben-horst complex is no longer
produced, an antithetic shear band is no longer visible, and instead, a smoother
rolling monocline forms. In the §# = 45° simulations, a transitional state between
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Fig. 11: The cohesionless extensional simulations are shown for varying blind fault
angles at 6 and 12 m slip. In column (a) colored material layers are shown alongside
the Cole and Lade [27] failure surfaces in dashed red and blue lines. In column (b)
and (c), 5. and the vertical component v of velocity are shown, respectively.

a graben-horst complex and a monocline is observed, with a small but visible
antithetic shear band forming. After the graben-horst complex forms between 6
and 12 m slip, the graben tends to move upwards along with the foot wall as seen
from the vertical velocity plots in column (c) of Figure 11, and only the material
behind the antithetical band moves downwards as the system extends, and it is
here that the most vertical extension occurs in the overlying material layer. When
the graben does not form and there is no antithetic shear band, like in the § = 60°
case, the entire hanging wall moves vertically downwards, this causes the shear
band to rotate vertically, causing a very steep orientation © with respect to the
horizontal as seen in Figure 9.

In Figure 12 colored material layers are plotted for the contractional equivalent
cohesionless simulations, with varying 6 at 12 and 24 m slip. A monocline is the
dominant geological structure in all three simulations regardless of the blind fault
dip angle 6. Overall, for all three different 6 simulations, but especially markedly
in the § = 60° simulation, as slip increases, layer thinning is increasingly evident in
the vicinity of the synthetic shear band on the hanging wall while layer thickening
occurs close by on the foot wall, as also observed by Finch et al. [36]. Additionally,
convex drag folding is observed where the material layers bend away from the
direction of band propagation motion.
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Fig. 12: The cohesionless contractional simulations are shown for varying blind
fault angles at 12 and 24 m slip. In column (a) colored material layers are shown
alongside the Cole and Lade [27] failure surfaces in dashed red lines. In column
(b) and (c), €5, and the vertical component v of velocity are shown, respectively.

Drag folding is a common feature found in reverse faults in the field and has
been observed in multiple numerical studies of contractional reverse faults [36,
75]. In the colored material layers at 24 m slip, the bottom few layers deform
beyond drag folding and a kinematic discontinuity across the shear band or fault
plane is visible, as the previously connected yellow and magenta colored layers
are severed. This result shows how material rupture and kinematic discontinuities
arise in SPH given sufficiently large levels of deformation. From column (c) of
Figure 12, we see that the entirety of the hanging wall experiences upward vertical
motion, while the immediate foot wall is mostly stationary. At some distance from
the band along the top surface of the foot wall, a surface depression is recorded
with downward vertical motion (see also Figure 17) in most 6 cases. Our simulation
results produced by GEOSPH in both the extensional and contractional case closely
resemble reported results by similar studies using FEM, DEM, or analogue sandbox
experiments [6,31,36,37,45,59,65], especially in terms of the overall geological
structures produced at different blind fault dips 6.

In Figure 13, extensional and contractional simulations with either ¢ = 100
kPa (cohesional) or ¢ = 11° (dilational) are plotted to consider the effect of
cohesion or varying the dilation angle to our fault propagation simulations. In
extension, cohesion helps stabilize the steeper surface slopes associated with the
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Fig. 13: The accumulated plastic strain €f.. and colored material layers are shown
for all different simulation types with the cohesional (¢ = 100 kPa, 1 = 0°)
and dilational (¢ = 0 kPa, ¢ = 11°) materials at 12 m slip for the extensional
simulations and 24 m slip for the contractional simulations.

fold between the horst and graben, whereas increasing the angle of dilation leads
the horsts to collapse under gravity, smoothing out the topographic surface. Like
in the extensional case, the addition of cohesion in the contractional case serves
to steepen the overall monocline and reduces the degree to which the shear bands
bend away from the straight propagation line of the blind fault (this bending is
measured in Figure 10 with the s/p ratio). Increasing the dilation angle once again
has the opposite effect.

5.4 Deformed surface profiles

We have seen that qualitatively our results for the fault propagation problem match
the structural styles described in the modeling literature and in the field. However,
in order to more rigorously determine whether GEOSPH along with our elastoplastic
soil behavior was capable of replicating realistic fault propagation behavior and
associated surface uplift and deformation, we validate the amount of surface uplift
recorded from some of our simulations against that from the centrifuge experiments
of Bransby et al. [20,21]. Bransby et al. conducted fault propagation experiments
with a similar setup to those performed in this study for the contractional and
extensional cases, using dry cohesionless Fontainebleau sand, with density and
angle of friction similar to that selected in our simulation input parameters, and
a blind fault angle of 8 = 60°. In Figure 14 we compare the normalized surface
displacement Ay/H produced by GEOSPH against the contractional reverse faulting
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Fig. 14: Normalized surface displacement for the cohesionless, cohesional, and dila-
tional GEOSPH simulations compared against that from the centrifuge experiments
of Bransby et al. [21] in the contractional case.

experiments reported in [21], and in Figure 15 against the extensional normal
faulting reported in [20] at U = 14.7%H and U = 8.6%H , respectively. Specifically,
we consider the three different groups of simulations performed with GEOSPH: those
with ¢ = 0 kPa and ¥ = 0°, those with ¢ = 100 kPa and ¥ = 11°, and lastly, those
with ¢ = 0 kPa and ¢ = 11°.
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Fig. 15: Normalized surface displacement for the cohesionless, cohesional, and dila-
tional GEOSPH simulations compared against that from the centrifuge experiments
of Bransby et al. [20] in the extensional case.
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Fig. 16: Normalized surface displacement profiles for the cohesional and cohesion-
less simulations at different slips for the extensional simulations. In panel (a) the
6 = 30° case, in (b) the # = 45°, and in (c) the § = 60°.

There is strong agreement between the contractional experiments of Bransby
et al. and the cohesionless ¢ = 0 kPa and 1) = 0° and the cohesional ¢ = 100 kPa
and ¢ = 0° simulation results. The cohesional simulation captures the top profile
of the monocline remarkably well, as well as the steep slope, but the cohesionless
simulation predicts a reduced depression at the bottom of the monocline, which
is closer to that reported in the centrifuge experiments. The dilational ¢ = 0 kPa
and ¢ = 11° simulation does not fit the experimental centrifuge data particularly
well, its topographic slope is less steep, and the scarp has excessive height. In
the extensional case, the elevations or Ay/H for the monoclines are correctly
reproduced by GEOSPH, but the slope of the monocline is far greater in the centrifuge
experiments than in any simulations produced by GEOSPH. This fact is responsible
for the visible offset between the data sets. The shallower surface slopes of the
GEOSPH simulations may be due to the known tendency for SPH to over-smooth
material properties near boundaries and free surfaces [33]. From both contractional
and extensional cases, we note that the dilational simulations approximate the
centrifuge experiments of Bransby et al. the worst. Thus, having validated our fault
propagation surface profiles against the results of Bransby et al. with a considerable
degree of confidence, we proceed to consider the additional case of § = 30 and 45°,
in both extensional and contractional cases as well as the temporal evolution of
surface profiles solely for the cohesional and cohesionless simulation groups.
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Fig. 17: Normalized surface displacement profiles for the cohesional and cohesion-
less simulations at different slips for the contractional simulations. In panel (a) the
6 = 30° case, in (b) the # = 45°, and in (c) the § = 60°.

In Figure 16 the normalized surface displacement profiles are plotted against
the normalized length for the extensional case at different amounts of slip for the
cohesional and cohesionless simulation groups at the three different blind fault
angles. Similarly, in Figure 17 the same plots are recreated for the contractional
case. Simulations with # = 60° result in the greatest amount of vertical surface
displacement in both extensional and contractional simulations, with a total de-
pression in the extensional case of close to Ay = —45%H and a total elevation
gain of Ay = 39%H in the contractional case for slippage of d = 12 m. For low
slip, cohesional simulations have slightly less surface displacement change than
cohesionless ones, although this trend is reversed for greater slip (generally above
d = 6 m). In some of these cases for greater slip, cohesionless simulations will even-
tually reach the same maximum surface change as cohesional ones, but only after
some sufficient extra distance z, as the cohesionless surface slopes are shallower.
The steeper slopes resulting from surface elevation change caused by propagating
faults in cohesional soils as opposed to cohesionless soils clearly pose an increased
risk to any overlying structures.
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6 Closure

In this paper we implement GEOSPH, a meshfree fully Lagrangian smoothed particle
hydrodynamics (SPH) code, to handle the large deformation of elastoplastic geo-
materials, and study the patterns and geometry of strain localization phenomena
and faulting in two distinct set of problems: an actively and a passively loaded
backfill behind a retaining wall, and the propagation of a blind fault across a weak
overlying medium. To the best knowledge of the authors, this paper represents the
first time SPH has been used to study both of these problems. We show that in
GEOSPH, shear bands arise naturally without the need for a heterogeneity or seed
to trigger their formation, and that the SPH method can accurately model prob-
lems where external loadings are applied in addition to gravitational loads. Our
results show that shear band orientation varies according to boundary conditions
and the level of deformation. We find shear bands oriented at the Arthur angle
with respect to the horizontal at the top of the backfill, and in the fault propaga-
tion problem, for fault displacements between U = 15 to 60%H, the orientation of
the band at the surface is also given by the Arthur angle, and is preceded by the
Roscoe orientation and succeeded by the Coulomb orientation. We also observe
that the particular blind fault angle in both extensional and contractional cases
moderately affects the orientation of the propagating shear band, agreeing with
previous studies [36,37]. Furthermore, we find that the failure surfaces of Cole
and Lade [27] are accurate for small fault displacements close to the one used in
their original study, but for larges slips, especially for those observed in basins in
structural geology, the empirical surfaces are inaccurate.

In terms of the critical slip required for the shear band to propagate to the
surface d¢r, the contractional simulations require a larger amount of slip than the
extensional ones for the shear band to rupture at the surface, and the larger the
blind fault angle, the larger d.,.. Our simulations also capture a variety of geological
phenomena occurring in the vicinity of the propagating faults, most notably layer
thinning or thickening and drag folding, and even kinematic discontinuities across
the faults. In the extensional case, we observe that graben-horst complexes form
in systems with shallower blind fault angles, whereas those with steeper blind
fault angles do not form grabens. In the contractional simulations, no grabens are
produced, and a sole monocline forms. Regarding the effects of different material
parameters on our simulation results, we deduce that the dilation angle ¥ helps to
increase the curvature or the amount of offset from the straight line propagation of
the fault, while cohesion ¢ has the opposite effect. In fact cohesion helps produce
greater surface displacement and steeper surface slopes at the fault rupture point.

In our study we focused on shear band and fault propagation in elastic-perfectly
plastic geomaterials. Future work will include an exploration of the effects of strain
hardening or softening behavior on shear band patterns and propagation mech-
anisms, or how these properties vary with different features of the constitutive
models, such as anisotropy [81,104,105], viscoelasticity [93], or viscoplasticity [19].
An exploration of the factors controlling the width and intensity of shear bands,
not just their orientation and propagation direction, would also be worthwhile.
From a modeling perspective, considering the effects of foundations or tunnels in
the vicinity of a propagating fault would also be interesting problems worthy of
tackling with SPH going forward. Incorporation of some of these factors into our
models is currently being considered in our work.
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