
����������
�������

Citation: Kirkpatrick, A.; Onyeze, C.;

Kartchner, D.; Allegri, S.; Nakajima

An, D.; McCoy, K.; Davalbhakta, E.;

Mitchell, C.S. Optimizations for

Computing Relatedness in

Biomedical Heterogeneous

Information Networks: SemNet 2.0.

Big Data Cogn. Comput. 2022, 6, 27.

https://doi.org/10.3390/

bdcc6010027

Academic Editors: Vincenzo Moscato,

Giancarlo Sperlì and Moulay A.

Akhloufi

Received: 12 January 2022

Accepted: 21 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Optimizations for Computing Relatedness in Biomedical
Heterogeneous Information Networks: SemNet 2.0
Anna Kirkpatrick 1,2, Chidozie Onyeze 1,2, David Kartchner 1,3, Stephen Allegri 1,4, Davi Nakajima An 1,3,
Kevin McCoy 1,4 , Evie Davalbhakta 1 and Cassie S. Mitchell 1,4,5,*

1 Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University,
Atlanta, GA 30332, USA; annaek47@gmail.com (A.K.); chidozieonyeze@gmail.com (C.O.);
david.kartchner@gatech.edu (D.K.); sallegri3@gatech.edu (S.A.); dna@gatech.edu (D.N.A.);
kmccoy8@gatech.edu (K.M.); edavalbhakta@gatech.edu (E.D.)

2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
3 School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA
4 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,

Atlanta, GA 30332, USA
5 Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
* Correspondence: cassie.mitchell@bme.gatech.edu or csmitch@emory.edu

Abstract: Literature-based discovery (LBD) summarizes information and generates insight from
large text corpuses. The SemNet framework utilizes a large heterogeneous information network or
“knowledge graph” of nodes and edges to compute relatedness and rank concepts pertinent to a
user-specified target. SemNet provides a way to perform multi-factorial and multi-scalar analysis of
complex disease etiology and therapeutic identification using the 33+ million articles in PubMed. The
present work improves the efficacy and efficiency of LBD for end users by augmenting SemNet to
create SemNet 2.0. A custom Python data structure replaced reliance on Neo4j to improve knowledge
graph query times by several orders of magnitude. Additionally, two randomized algorithms were
built to optimize the HeteSim metric calculation for computing metapath similarity. The unsupervised
learning algorithm for rank aggregation (ULARA), which ranks concepts with respect to the user-
specified target, was reconstructed using derived mathematical proofs of correctness and probabilistic
performance guarantees for optimization. The upgraded ULARA is generalizable to other rank
aggregation problems outside of SemNet. In summary, SemNet 2.0 is a comprehensive open-source
software for significantly faster, more effective, and user-friendly means of automated biomedical
LBD. An example case is performed to rank relationships between Alzheimer’s disease and metabolic
co-morbidities.

Keywords: HeteSim; ULARA; SemNet; Alzheimer’s disease; natural language processing; machine
learning; text mining; biomedical knowledge graph; relatedness; rank aggregation

1. Introduction

Biomedical research, like the human body itself, is a complex network of interre-
lated concepts and relationships that make up a greater whole. There are more than
33 million abstracts and counting in PubMed, one of the largest and most widely used
databases and search engines for biomedical research [1]. Many researchers use PubMed,
or similar databases, to look up information using specific keywords. However, it is im-
possible to manually read and synthesize all articles across all related topics. The goal of
literature-based discovery (LBD), founded by Dr. Swanson in 1986 [2], is concentrating
and concatenating conclusions between disparate sources of information to both improve
existing insights as well as generate new insights. The field of LBD attempts to capture
knowledge from biomedical text and integrate it in a way that makes discovery of new
knowledge possible. In Henry et al. [3], LBD techniques were used to discover lecithin-
cholesterol acyltransferase (LCAT) as a proposed therapeutic target for cardiac arrest,
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a target that was later supported via in vivo studies. Additionally, LBD was used to identify
repurposed drugs for the COVID-19 pandemic [4]. While LBD has the potential to be truly
transformative, challenges remain to optimize the underlying text mining methodology as
well as to make LBD more accessible to domain specialists and clinicians. The presented
work optimizes LBD by improving the efficiency and efficacy of LBD in an interactive,
open-source Python-based framework called SemNet 2.0.

1.1. Automating the LBD Process

The first step in the LBD process is to model the connections between biomedical
concepts in a medium where both humans and computers can easily work with the data.
Heterogeneous information networks, or more specifically biomedical concept graphs,
provide an exceptional scaffold and starting point for LBD. Modeling biomedical relation-
ships using a graph structure is not ubiquitous in the LBD field, though it is common
and wrought with research potential. Various methods, including those described in
Cameron et al. [5], Crichton el al. [6], and Sang et al. [7], have used graph-based approaches
to perform LBD to great success (all of which vary in how the graphs are constructed
and analyzed). Simply put, a biomedical concept graph is the most intuitive and flexible
representation available to model semantic predications, especially given the heteroge-
neous nature of the data and overall direction the LBD field is currently moving. As a
brief aside, the terminology used to describe these graphs is borrowed from graph theory
and social network analysis; biomedical concepts are referred to as “nodes” and connec-
tions between concepts are referred to as “edges”. In the context of the present study,
this data representation is built as a directed graph in which each node corresponds to
a Unified Medical Language System (UMLS) biomedical concept (Alzheimer’s disease,
insulin, COVID-19, etc.) and each directed edge encodes a UMLS predication (inhibits,
treats, causes, etc.) between a source and target. Additionally, each node has an associated
UMLS semantic type (disease or syndrome, gene or genome, therapeutic or preventive
procedure, etc.). Each concept–predication–concept relationship within the graph has been
extracted from biomedical article abstracts within PubMed via SemRep and stored within
the MySQL-based Semantic Medline Database (SemMedDB) [8]. SemMedDB is essentially
a table of subject–predicate–object triples, which are manipulated to form an approximately
300,000 node and 20,000,000 edge knowledge graph that combines standardized biomedical
concepts and relationships.

The second major step in LBD is using natural language processing and machine
learning techniques to identify concepts of interest that are related to a user-specified
query. A user, such as a domain specialist, specifies one or more target nodes of interest,
which defines the topic upon which the user wishes to discover and ultimately rank related
concepts from the literature. The target is analogous to a user entering a keyword to
lookup an article in PubMed. Then, using a few other user inputs to constrain the queried
biomedical knowledge graph results, such as node type (pharmacologic substance; gene
or genome; disease or syndrome, etc.) and/or relation type (treats, affects, inhibits, etc.),
the algorithm finds all the related source nodes by examining metapaths in the graph.
A metapath is a series of sequential node and relationship types that tie the user-specified
target node to the related source nodes identified in the graph.

The third major step in LBD is using machine learning and mathematical optimization
to rank the importance of the identified source nodes to the target node. There are various
methods of ranking concepts in heterogeneous information networks, often stemming from
an assortment of domains [9–11]. The most common methods utilize the graph’s metapaths
to perform statistical analysis on one more more features of interest. Example features may
be simple node or path counts, or they may be more complex, such as the HeteSim metric,
which examines metapath similarities [12]. Finally, a ranking algorithm uses the feature
scores to provide a final ranking that can provide important context to a domain scientist.
That is, of all the identified related concepts of interest, which ones are most important to
the user-specified target?
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1.2. Overview of SemNet

SemNet was the first Python-based open-source software that enabled all three steps
of LBD to be performed using the 33 plus million biomedical abstracts in PubMed [13].
SemNet will be briefly introduced here and is fully described in the original published work
by Sedler and Mitchell [13]. First, SemNet had the initial task of building the knowledge
graph derived from SemMedDB’s semantic relationships and storing it, which it did via an
interactive graph database management system called Neo4j. Second, SemNet used py2neo
to query the biomedical concept graph constructed in Neo4j to compute metapaths. Third,
SemNet adopted a version of the unsupervised learning algorithm for rank aggregation,
ULARA, published by Klementiev and colleagues [14] to perform the calculations for
feature rankings, including the computation of the HeteSim score. In summary, SemNet en-
abled a user to easily input a few targets and subsequently retrieve source node importance
rankings using machine learning to process millions of biomedical concepts.

1.3. Improving LBD Efficiency and Efficacy with SemNet 2.0

SemNet laid an important foundation for making LBD accessible and usable for
domain researchers. However, SemNet simulations were extremely slow, even when
performed on high-end servers. The slowness and amount of required computation also
limited the amount of detail that could be studied in SemNet. Namely, it limited the
length of metapaths that could be ranked (e.g., maximum possible path length for ranking
calculation was equal to two); this limit was problematic for a domain researcher wishing
to examine more nuanced related concepts that would likely have a longer path length.
The present study was largely motivated by the need to enhance SemNet to improve its
computation speed, usability and utility. From this point forward, the original SemNet
will be referred to as SemNet version 1. The present study performs a full evaluation of
speed bottlenecks in SemNet version 1 and proposes and evaluates alternative solutions.
The research process to improve speed led to additional mathematical scrutiny of the
utilized HeteSim metric and ULARA algorithms in SemNet version 1. Thus, the present
study includes both a presentation of optimized mathematical solutions as well as changes
to algorithmic and data handling frameworks to increase overall speed. Three major
technical improvements were made to create SemNet version 2 (also known as SemNet
2.0): (1) a randomized approximation algorithm for estimating HeteSim scores to improve
HeteSim calculation speed; (2) a re-engineered knowledge graph framework that removed
reliance on Neo4j to improve metapath and feature computation speed; (3) an improved
implementation of the adopted ULARA ranking algorithm.

The first major improvement focused on the efficiency of algorithms utilizing the
HeteSim metric. HeteSim-based similarity scoring on heterogeneous information networks
has been successfully applied to multiple biomedical research problems [15–20]; there-
fore, the implementation of a faster HeteSim scoring algorithm will have the potential for
significant benefit to the biomedical research community. The main investigative line for
algorithm improvements involves approximation algorithms using randomness. An ap-
proximation algorithm is a unique algorithm which returns a value within a specified error
(generally additive or multiplicative) of the true answer, with some known or bounded
probability. The power of approximation algorithms lies in their ability, for some problems,
to provide a fast approximation to a solution even when computing the exact solution
requires exponential time (assuming (P 6= NP)). Though approximation algorithms have
existed in the literature for some time, Garey, Graham, and Ullman [21] and Johnson [22]
both introduced the idea formally in 1973 and 1974, respectively. Since then, the computer
science and combinatorics literature has featured many advancements in the field of ran-
domized approximation algorithms. For an overview of basic techniques and more recent
results, see [23–25].

The second major improvement focused on re-engineering the graph data structure
to remove query processing bottlenecks and improve overall performance via faster data
accessibility. SemNet version 1 uses Neo4j, an efficient graph database management system
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that employs a specialized declarative query language (Cypher) optimized for graphs,
to store and query the biomedical concept graph [26]. At first glance, the choice to use
Neo4j is intuitive. It is custom designed to deal with graphs akin to the one SemNet builds,
and it has been used before in similar projects to great success [9]. Nonetheless, constantly
querying an externally accessible database to run the HeteSim algorithm, even with the
use of multi-threading, proved much slower than desired. This outcome prompted an
investigation into alternatives to Neo4j. The evaluated alternative is a locally stored Python
nested dictionary graph representation, a data structure that lacks the appealing interfaces
of Neo4j but has greatly improved data handling speeds.

The third major improvement focused on the ULARA ranking algorithm. Careful
mathematical investigation of ULARA led to the identification of a pertinent flaw in the
originally published ULARA algorithm [14]. As noted above, SemNet version 1 had
adopted ULARA for aggregating HeteSim scores over multiple metapaths. Fortunately,
the specific implementation of ULARA to SemNet version 1 minimized the impact of the
identified ULARA flaw on SemNet version 1 results. Nonetheless, a full and precise solution
was necessary to correctly fix ULARA and improve the produced rankings. Section 2.1
explains the flaw in the original ULARA [14] and proposes an alternative, which was
implemented in SemNet version 2.

The mathematics of the SemNet version 2 improvements are derived in full in subse-
quent sections. Beyond the mathematics, real-world examples and user studies are used to
showcase the improvements and power of SemNet version 2.

1.4. Use Case Example: Alzheimer’s Disease and Metabolism

SemNet version 2 was primarily developed for interactive, multi-factorial and multi-
scalar relationship exploration in biomedical science and health care. For this study, the pri-
mary target node, Alzheimer’s disease (AD), was chosen to compare performance of the
original SemNet (i.e., SemNet version 1) to the developed SemNet version 2. AD was
chosen due to its large degree of connectivity, multi-factorial and heterogeneous nature,
and growing relevance in health care—a byproduct of increasing AD deaths and an aging
global population [27,28]. AD is traditionally characterized by its tau and amyloid beta pro-
tein deposition in neurofibrillary tangles, brain atrophy, and eventual cognitive decline [3].
As researchers delved deeper into the disease, the breadth of risk factors across various
domains, such as pharmaceuticals, antecedent disease, psychological profile, and lifestyle,
has further increased overall complexity of AD investigation [27,29,30]. This complexity is
exacerbated by the difficulty of defining AD sub-populations, a problem that impacts clini-
cal trial patient selection and therapeutic evaluation [31]. Given AD’s heterogeneous nature,
traditional bioinformatics solutions struggle where the SemNet framework thrives. SemNet
version 2 is optimized to work with heterogeneous data, drawing from literature across all
biomedical domains to provide concept rankings. The flexibility, efficacy, and efficiency of
SemNet version 2 is evaluated using AD as a case study. Thus, Alzheimer’s disease (CUI:
C0002395) is chosen as the primary target to three diverse sources: insulin (CUI: C0021641),
hypothyroidism (CUI: C0020676), and amyloid (CUI: C0002716). Amyloid was chosen as
a known “control”, where the relationship between amyloid and Alzheimer’s disease is
well known and validated; therefore, amyloid has many paths and metapaths connecting
it to AD [32]. Insulin and hypothyroidism were chosen to assess a newer hypothesis that
metabolic syndromes may play a significant role in the onset risk or outcome of AD [31,33].
The nodes of insulin and hypothyroidism have sufficient connections to AD to be consid-
ered relevant but are distant enough, domain wise, to showcase SemNet’s flexibility in
exploring more nuanced, and lesser cited multi-factorial disease etiology [34,35].

1.5. Definitions and Mathematical Preliminaries

In this section, we will formally define a schema and a knowledge graph/heterogeneous
information network. A schema tells us which node and edge types may be present in our
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knowledge graph, while the knowledge graph tells us which relations apply to specific
concepts nodes.

Definition 1. A schema S = (A,R) is a set A of node types and a set R of relations. Each
relation R ∈ R has a source type A ∈ A and a target type B ∈ A.

Definition 2. Let S = (A,R) be a schema with |A| > 1. Then, a heterogeneous information
network (also called a knowledge graph) is a directed graph G = (V, E) with an object type mapping
function ϕ : V → A and a link type mapping function ψ : E → R. If e = (u, v) ∈ E, then the
source type of ψ(e) must be ϕ(u) and similarly the target type of ψ(e) must be ϕ(v).

Relations are a key concept in understanding knowledge graphs. We may understand
both individual edges and entire metapaths as relations. We start by defining the simplest
relation, the self relation.

Definition 3. The relation I is the self-relation. So, a I−→ b if and only if a = b. We also define the
function δ by δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

We now define our primary object of study: the metapath. Note that the metapath may
be viewed as a list of node and edge types or as the relation equivalent to the composition
of all individual relations in the metapath.

Definition 4. Let S = (A,R) be a schema. Then, a metapath P is a sequence of node and edge

types, denoted A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, with Ai ∈ A and Ri ∈ R. The length of P is l. Note

that a metapath may also be understood as the composition of the relations given by its metaedges:
R = R1 ◦ R2 ◦ · · · ◦ Rl . Let p = a1a2 . . . al+1 with ai ∈ V and (ai, ai+1) ∈ E be a path in G. Then,
p is a path instance of the metapath P if ϕ(ai) = Ai∀i ≤ l + 1 and ψ((ai, ai+1)) = Ri∀i ≤ l. We
denote the fact that p is a path instance of P by p ∈ P .

Given these definitions, we are nearly ready to define the function of interest: HeteSim,
which was defined by Shi et al. [12]. We start by defining a function h which is a non-
normalized version of HeteSim.

Definition 5. Let l > 0. Let P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1. Let ϕ(s) = A1 and

ϕ(t) = Rl+1. Then the non-normalized HeteSim score between s and t with respect to the relevance
path P is defined recursively as follows. When R1 ◦ R2 ◦ . . . Rl 6= I,

h(s, t|R1 ◦ R2 ◦ · · · ◦ Rl)

=
1

|O(s|R1)||I(t|Rl)| ∑
a∈O(s|R1)

∑
b∈I(t|Rl)

h(a, b|R2 ◦ R3 ◦ · · · ◦ Rl−1),

where O(s|R1) is the set of out-neighbors of node s based on relation R1, and I(t|Rl) is the set of
in-neighbors of node t based on the relation Rl . In the base case, we define

h(a, b|I) = δ(a, b).

Note that this definition only works for relevance paths of even length. We will need an
extension for paths of odd length.

We briefly explain the definition of HeteSim for odd paths here. For more detail, see Shi et al. [12].

The basic idea to define h for paths of odd length is to transform those paths into paths

of even length. Suppose we have a relevance path of odd length P = A1
R1−→ A2

R2−→ . . .
Rl−→

Al+1. We now modify P by adding a new object type E and two new relation types RE and
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RF. We then define P ′ = A1
R1−→ A2

R2−→ . . .
R l+1

2 −1
−−−−→ A l+1

2

RE−→ E
RF−→ A l+1

2 +1

R l+1
2 +1

−−−−→ . . .
Rl−→

Al+1. Additionally, in the underlying graph G, for any edge g = (u, v) with ψ(g) = R l+1
2

,

we add a new node, Eg and 2 new edges: e1 = (u, Eg) and e2 = (Eg, v). We additionally
assign ϕ(Eg) = E, ψ(e1) = RE, and ψ(e2) = RF. This procedure allows us to transform any
odd path into an even path, giving a definition for the non-normalized HeteSim score h for
odd length paths.

As a final step, HeteSim is normalized so that the normalized score for any two
nodes lies in the interval [0, 1]. To do so, we will cast the problem in the language of
transition matrices.

Definition 6. Given a relation A R−→ B, let WAB be an adjacency matrix between type A and type B.
Let UAB be WAB normalized along each row vector. That is, UAB is the transition probability matrix
A −→ B based on relation R where each allowed transition is given equal probability. Similarly, let
VAB be a normalized form of the matrix WAB, this time normalized along its column vectors. So,
VAB is the transition probability matrix for B −→ A based on relation R−1. Note that UAB = VT

BA.

Definition 7. Given a metapath P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, the reachable probability

matrix PM for that metapath is given by

PMP = UA1 A2UA2 A3 . . . UAl Al+1 .

Note that PMP (i, j) gives us the probability of object i ∈ A1 reaching object j ∈ Al+1 under
the path P , under the assumption that at each step all valid transitions have equal probability.

The following lemma is implicit in [12], but it is stated here for clarity.

Lemma 1. Let s ∈ A1, t ∈ Al+1. Let P = (A1 A2 . . . Al+1) be a metapath. Then,

h(s, t|P) = PMPL(s, :)(PMP−1
R
(t, :))T ,

where PMPL(a, :) is used to denote the ath row of the matrix PMP , and P = PLPR is the
decomposition of P into two paths of equal length.

Proof. First, we only need to prove this result for even values of l. We proceed by induction.
In the base case, we have l = 0. This is the trivial metapath, and its corresponding relation
is the self relation. We have

h(s, s) = δ(s, s) = 1,

and

PMPL(s, :)(PMP−1
R
(s, :))T = 1× 1 = 1.

Therefore, the base case holds.
For the induction step, let k ≥ 2 be an even integer. Assume that the lemma holds for

all metapaths of length k. We will prove the lemma for paths of length k + 2. Beginning
with the definition of h, we have

h(s, t|R1 ◦ R2 ◦ · · · ◦ Rk+2)

=
1

|O(s|R1)||I(t|Rk+2)| ∑
a∈O(s|R1)

∑
b∈I(t|Rk+2)

h(a, b|R2 ◦ · · · ◦ Rk+1)

=
1

|O(s|R1)||I(t|Rk+2)| ∑
a∈O(s|R1)

∑
b∈I(t|Rk+2)

PMP ′L(a, :)
(

PM
(P ′)−1

R
(b, :)

)T
,
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where P ′ = R2 ◦ · · · ◦ Rk+1, and the second equality follows from the induction hypothesis.
Recalling the interpretation of PMP as the product of transition matrices, we see

1
|O(s|R1)||I(t|Rk+2)| ∑

a∈O(s|R1)
∑

b∈I(t|Rk+2)

PMP ′L(a, :)
(

PM
(P ′)−1

R
(b, :)

)T

= ∑
a∈O(s|R1)

1
|O(s|R1)|

PMP ′L(a, :) ∑
b∈I(t|Rk+2)

1
|I(t|Rk+2)|

(
PM

(P ′)−1
R
(b, :)

)T

=
(

UA1 A2 PMP ′L(s, :)
)(

VAk+1 Ak+2 PM
(P ′)−1

R
(t, :)

)T

= PMPL(s, :)
(

PMP−1
R
(t, :)

)T
,

which establishes the result.

Finally, the HeteSim score is given by the cosine of the angle θ defined by vectors
PMPL(s, :) and PMP−1

R
(t, :).

Definition 8. The normalized HeteSim score between two objects a and b based on the relevance
path P is

HS(s, t|P) = cos(θ) =
PMPL(s, :)(PMP−1

R
(t, :))T∣∣∣PMPL(s, :)

∣∣∣∣∣∣(PMP−1
R
(t, :))T

∣∣∣ .
The above definition uses the multiplication of transition matrices to obtain reachable

probability matrices, which in turn give the HeteSim score with respect to a given metapath.
We can recast this matrix multiplication in the language of random walks. Consider
the example graph and metapath given in Figure 1. Beginning with node s, we assign
the probability value 1, since this is the specified source node. Next, we distribute that
probability among all neighbors of s with type A2 joined by an edge of type R1. These
neighbors are a, b and c, and each of these three nodes gets labeled with the probability 1/3.
We repeat the same process with the neighbors of a, b, c having type A3 and joined by an
edge of type R2. The probability 1/3 assigned to node a is split between its neighbors d and
f , with each neighbor receiving 1/6. Node b has no eligible neighbors, and so its probability
mass does not propagate to the next layer of the graph. Node c splits its probability mass
of 1/3 between d and e. Therefore, d is labeled with probability mass 1/3, with 1/6 coming
from a and 1/6 from c. Node e only receives probability mass from c and is therefore labeled
with 1/6. Similarly, node f receives probability mass only from a, and therefore has total
probability mass 1/6. This computation, which is equivalent to the matrix multiplication
described above, gives

PMPL(s, :) =

1/3
1/6
1/6

.

To obtain PMP−1
R
(t :), we repeat the same procedure on the second half of the metapath,

this time working backwards towards A3 from t. To start, t gets probability mass label 1.
That probability is split among its 2 neighbors in A4, giving g and h each probability mass
1/2. The mass of g is split evenly among d and e, so both of these nodes have probability
mass 1/4. All of the probability mass of h goes to f , giving f a probability mass 1/2. Note
that we have now labeled nodes d, e and f twice, once from the left and once from the right.
While the labels from the left gave us PMPL(s :), the labels from the right give
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PMP−1
R
(t, :) =

1/4
1/4
1/2

.

Finally, we can compute

HS(s, t|P) =
PMPL(s, :)(PMP−1

R
(t, :))T∣∣∣PMPL(s, :)

∣∣∣∣∣∣(PMP−1
R
(t, :))T

∣∣∣ = 1/4
1/2 ·

√
6/4

=

√
6

3
.

Figure 1. Example graph, metapath, and HeteSim computation.

1.6. Overview of SemNet’s Existing HeteSim Implementation

The implementation of HeteSim in SemNet version 1 includes more than just the
single-metapath HeteSim computation described in Section 1.5. In SemNet, HeteSim is
not just used to give a score of the relatedness of two specific nodes with respect to a fixed
metapath. Instead, it is used as a tool to rank a set of candidate source nodes based on their
relatedness to a fixed target node.

Figure 2 gives an overview of this ranking algorithm as it exists in SemNet version 1.
As input, the algorithm accepts a set of candidate source nodes S and a single target node
t. In step 1, the set of all metapathsMP which have an instance joining some element of
S to t is enumerated. This enumeration depends upon the underlying knowledge graph,
which is stored in Neo4j. Step 2 is the computation of HeteSim scores for each triple (s, t, m)
for s ∈ S, m ∈ MP . For any fixed metapath m ∈ MP , the results from step 2 induce a
ranking on the source nodes S by HeteSim score. Step 3 takes these |MP| rankings and
combines them to form a single ranking using a technique called ULARA (see [14]). Finally,
this combined ranking is returned to the user and is used as an indication of which nodes
from S are most closely related to t.

In this work, we will keep the overall structure of the HeteSim algorithm outlined
in Figure 2, but will make several substantial changes to the various subroutines. First,
we will replace the knowledge graph data structure using Neo4j with one based solely on
Python dictionaries. Second, we will explore algorithms using randomization as candidate
replacements for Step 2. Finally, we will discuss a flaw in ULARA and will replace Step 3
with the generation of a ranking based on mean HeteSim score over all metapaths. We
will also explore an approximate version of Step 3 where only a subset of metapaths are
selected for inclusion in the mean.
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Input: S, t

Step 1: Enumerate
MP , the set of all

metapaths from S to t

Step 2: Compute
HeteSim for all

triples (s, t, m) for
s ∈ S, m ∈ MP

Step 3: Aggregate
source node rank-

ings using ULARA

Output: ranking
of elements of S

Knowledge graph
datastructure (neo4j)

Speed ratio

Step 1: 68

Step 2:
4.7 × 108

Step 3: 9600

queries

queries

Figure 2. Overview of SemNet version 1 HeteSim implementation. Speed ratio is computed as
(SemNet 1 time)/(SemNet 2 time) and is given for source node insulin and target node Alzheimer’s
disease. In SemNet 2, the approximate mean HeteSim algorithm is used with approximation parame-
ters ε = 0.1 and r = 0.9.

2. Methods
2.1. A New Method for Combining HeteSim Scores from Multiple Metapaths

SemNet version 1 outputs a ranking of many candidate source nodes with respect to a
fixed target node. This ranking is intended to reflect the overall relatedness of each source
node to the target node. SemNet version 1 computes the HeteSim scores for all requested
source nodes and for all possible metapaths (up to some length bound) joining those source
nodes to the target node. Each metapath induces a ranking of the source nodes according
to HeteSim score. In order to combine these many rankings into a single ranking, SemNet
version 1 uses a technique called ULARA (Unsupervised Learning Algorithm for Rank
Aggregation) [14]. Due to a flaw in ULARA, this work replaces ULARA with a ranking
based on mean HeteSim scores.

2.1.1. Background on ULARA

ULARA (Unsupervised Learning Algorithm for Rank Aggregation) [14] was devel-
oped by Klevmetiev et al. to solve the problem of rank aggregation. Rank aggregation
considers the question of how to combine multiple rankings of a set of objects. Consider,
for example, the problem of combining the results of multiple search engines into a single
“best” ranking. Each search engine gives a different ordering of results. When the search
engines disagree on which items are more relevant than other items, it is not immediately
clear how to resolve this discrepancy and output a “best” ordered list of search results.
ULARA proposes one solution to this problem based on an optimization problem. Con-
ceptually, ULARA computes with mean rank of each object. The algorithm then finds a
linear combination of the input ranking functions, giving more weight to functions that
agree more closely with the mean ranking.

We now move to a formal mathematical exposition of ULARA. Note that we explain
ULARA in the full generality with which it is presented in [14], but SemNet version 1 does
not require the full generality of ULARA and may be thought of as using a special case.

Let X be a set of objects to be ranked, and let Q be a set of valid queries. Let x, x′ ∈ X,
q ∈ Q. Let r : Q× X → N be a ranking function, so that r(q, x) < r(q, x′) means that x has
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a higher ranking than x′ with respect to the query q. Let N ∈ N. Given a set of ranking
functions {ri}N

i=1, ULARA produces a ranking function of the form

R(q, x) =
N

∑
i=1

wiri(q, x),

for some real numbers {wi}N
i=1 satisfying 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ N and ∑N

i=1 wi = 1.
The value of each wi is determined by an optimization problem. Let

µ(q, x) =
∑i:ri(q,x)≤κi

ri(q, i)
|{i : ri(q, x) ≤ κi}|

,

where κi is a threshold which allows for the possibility that not every ranking function
returns a rank for every x ∈ X. The function µ(q, x) is intended to represent the mean
ranking of element x with respect to query q over all ranking functions ri. Let

σi = (ri(q, x)− µ(q, x))2.

This variance-like function is used to measure the agreement of ranking functions
with each other, with the goal of giving ranking functions that agree with the mean a higher
weight. Let

δi(q, x) = wiσi(q, x).

We can now finally state the optimization problem at the center of ULARA:

arg min
w1,...,wN

∑
q∈Q

∑
x∈X

N

∑
i=1

δi(q, x),

subject to the constraints

n

∑
i=1

wi = 1 and ∀i, wi > 0.

Note that this optimization problem is intended assign more weight to the ranking
functions that agree most closely with the average ranking. ULARA solves the optimization
problem using gradient descent. The details of the gradient descent algorithm are not
relevant to the conceptual flaw in ULARA and are not presented here.

2.1.2. A Flaw in ULARA

The flaw in ULARA can be seen simply by examining the optimization problem itself.
Let

ai = ∑
q∈Q

∑
x∈X

σi(q, x).

Then, the optimization problem becomes

arg min
w1,...,wN

N

∑
i=1

wiai,

subject to the constraints

N

∑
i=1

wi = 1 and ∀i, wi > 0.
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Let j be such that aj = mini ai. Then, an optimal solution is given by

wi =

{
1 if i = j
0 if i 6= j

.

Further, the solution is unique if aj is the unique minimum of the set A = {a1, . . . , aN}.
The case where the optimization problem does not have a unique solution is not mentioned
in [14], and it seems this case should be rare in practice. Therefore, any unique optimal
solution of the ULARA optimization problem places all of the available weight on a single
ranking function. That is, ULARA does not give an aggregation of ranking functions; it
simply selects a single raking function which shows most agreement with the others. In the
language of SemNet, this should mean that only one metapath is used to give the final
ranking of source nodes.

2.1.3. Implications for SemNet

Despite the fact that the math shows that only one metapath should have been used
to generate rankings in SemNet version 1, this is not what actually happened. If only 1
metapath had actually been used to compute the rankings for SemNet version 1, it would be
seemingly impossible that the produced ranking results would make sense. Yet, in multiple
cases examined by domain experts in various fields (Alzheimer’s disease, amyotrophic
lateral sclerosis, leukemia, SARS coronavirus, and many more), the SemNet version 1
ranking results were quite intuitive. Thus, it was necessary to reconcile how the produced
SemNet version 1 rankings would appear generally accurate despite the identified flaw
in the original ULARA algorithm published by Klementiev and colleagues [14]. As such,
a line by line examination of the adopted implementation of ULARA in the actual Sem-
Net version 1 code [13] was performed and compared to the original published ULARA
implementation [14]. The careful evaluation of the adopted ULARA implementation in
SemNet version 1 identified a previously unseen but helpful coding bug that partially fixed
the issue with the original ULARA. Specifically, the code in SemNet version 1 resulted in
the ULARA algorithm terminating before the gradient descent had converged. As a result,
a linear combination of multiple ranking functions (with nonzero coefficients) was actually
returned, and multiple metapaths therefore are reflected in the rankings given by SemNet.
Thus, unlike the original and above described ULARA, which would have only used 1
metapath to perform the ranking, the helpful bug in the ULARA implementation within
SemNet version 1 used a partially averaged ranking that contained multiple metapaths.
As such, SemNet version 1 was still able to be used by domain scientists to produce helpful
and seemingly sensible rankings. While the serendipitous bug rendered SemNet version 1
useful, a fundamentally correct replacement for the ULARA algorithm is necessary.

As a replacement for ULARA, in SemNet version 2, the mean HeteSim score of a
source node with respect to all metapaths is used to generate a ranking of source nodes.

2.2. Computational Analysis of HeteSim Runtimes: SemNet Version 1

To better understand the runtime of the HeteSim computation, the Python module
time [36] was used to record the time required to compute HeteSim for each of the metapaths
from the studied source nodes to Alzheimer’s disease. Additionally, the total time spent
on the required Neo4j queries was recorded for each metapath. This allows separate
analysis of the time required to query the graph and the time required to perform the
HeteSim computations.

2.3. Development, Implementation, and Testing of Algorithms

The core development work for this project can be divided into three general cat-
egories: re-implementation of the knowledge graph data structure, development and
implementation of algorithms, and testing.
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2.3.1. Knowledge Graph Data Structure

SemNet version 1 used Neo4j to store the knowledge graph. After preliminary testing
showed that Neo4j was likely a significant bottleneck, the knowledge graph data structure
was re-implemented using nested Python dictionaries. Because these dictionaries use
hashing for lookup, they have average lookup time O(1) (see, e.g., [37]). As a result,
dictionaries allow for quickly examining the neighborhood of a node in the knowledge
graph, restricted to edge and node types of interest. Consequently, it is also efficient to
traverse paths within the graph.

After testing on artificial examples, a knowledge graph object was built using an edge
set derived from SemMedDB. This is an updated version of the edge set, and is not identical
to the edge set from SemNet version 1.

2.3.2. Development of Approximation Algorithms

In addition to the data structure improvements, approximation algorithms based on
randomization were explored as a way of further increasing performance. In particular,
approximation algorithms were investigated as possible replacements for the computation
of HeteSim on a single metapath (step 2 in Figure 2) and aggregation of rankings (step 3
in Figure 2).

2.3.3. Implementation and Testing

All code were implemented in Python 3. Testing was performed using Jupyter Note-
book 5.5.0 [38] and Python 3.6.10 [39]. All code were run on a server with 1 NVIDIA TESLA
v100 GPU with 32 GB RAM and a 48 core CPU with 320 GB RAM.

For all code not involving randomization, the correctness of implementation was
assessed using unit tests, which may be found in the source code repository. The one
randomized function of significant complexity, randomized pruned HeteSim, was assessed
on artificially-constructed example knowledge graphs. These examples were constructed
by hand by the authors, and the full examples may be found in the source code repository.
The algorithm was run on each graph 100 times with parameters ε = 0.05 and r = 0.95.
As with the SemNet version 1 implementation, the speed of the new implementation was
assessed using the Python time module [36].

2.3.4. User Study Methods

A small user study was performed to quantify the significant differences between
two groups of users: a group of naive SemNet version 1 users (n = 11) and a group of
naive SemNet version 2 users (n = 10) to determine how many users were comfortable in
running a simulation after a short standardized training session that also included reading
the user documentation. To ensure degree of previous Python experience was not biasing
the analysis, groups were selected to ensure equivalent distributions of prior Python user
experience. Additionally, a third group of users (n = 7) trained in both SemNet version 1
and SemNet version 2 was used to compare the user friendliness of SemNet version 1 and
version 2. A simple categorical standardized electronic survey was used to quantify comfort
in using SemNet version 2 and its user friendliness. Details are provided in the Results in
Section 3.4. Fisher’s exact test was used to perform statistical analysis in Microsoft Excel.

3. Results
3.1. Computational Analysis of HeteSim Runtimes: SemNet Version 1

For each of the three source nodes, the runtime of the HeteSim computation on each
metapath from the source node to Alzheimer’s disease was recorded. The computation
time results are given in Table 1, and the distribution of runtimes is depicted graphically
in Figure 3. Note that SemNet version 1 incorporated parallelization, allowing multi-
ple HeteSim computations for different metapaths to occur simultaneously. Therefore,
the computation time per metapath times the number of metapaths does not equal the total
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computation time. Time required for the neo4j graph queries was also measured and is
displayed in Figure 4.

Table 1. SemNet version 1 HeteSim computation times for all metapaths between each of the three
source nodes and Alzheimer’s disease.

Source Node Insulin Hypothyroidism Amyloid

Number of metapaths 4873 2148 3095
Total computation time (min) 93.7 39.7 55.4
Computation time per metapath (s) (±std) 46.0± 6.1 44.2± 3.8 42.8± 4.2
Neo4j query time, per metapath (s) (±std) 44.9± 4.6 43.2± 2.8 42.1± 3.5
Time per metapath, excluding query time (s) (±std) 1.1± 3.1 1.0± 2.3 0.8± 1.9

(a) (b) (c)

Figure 3. Distribution of SemNet version 1 HeteSim computation times for all metapaths joining the
given source node and Alzheimer’s disease. (a) Insulin; (b) Hypothyroidism; (c) Amyloid.

(a) (b) (c)

Figure 4. Distribution of Neo4j query times in SemNet version 1 HeteSim computation for all
metapaths joining the given source node and Alzheimer’s disease. (a) Insulin; (b) Hypothyroidism;
(c) Amyloid.

3.2. Algorithms

In this section, we present several algorithms for computing HeteSim and variants.
Proofs of correctness are also given where appropriate.

We consider two main algorithms for computing HeteSim on a single metapath and
two algorithms for aggregating HeteSim scores across multiple metapaths. For computing
HeteSim on a single metapath, we consider the deterministic HeteSim algorithm used in
SemNet version 1 and a new algorithm, randomized pruned HeteSim. For aggregating
HeteSim scores over multiple metapaths, we consider computing the exact mean over all
metapaths and also an algorithm which approximates the mean by taking the mean over
a random subset of metapaths. We also combine these algorithms to obtain three distinct
algorithms for computing (an approximation to) the mean HeteSim score: deterministic
HeteSim with exact mean, deterministic HeteSim with approximate mean, and randomized
pruned HeteSim with approximate mean. Using approximate mean HeteSim as an example,
an overview of the new algorithm structure, emphasizing changes, is shown in Figure 5.
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Input: S, t

Step 1a: Enumerate
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metapaths from S to t
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Figure 5. Overview of SemNet version 2 approximate mean HeteSim implementation. Speed ratio is
(SemNet 1 time)/(SemNet 2 time) and is given for source node insulin and target node Alzheimer’s
disease. SemNet version 2 used approximation parameters ε = 0.1 and r = 0.9.

3.2.1. Deterministic HeteSim

For completeness, we summarize the deterministic algorithm for computing HeteSim.
While this same algorithm is used in SemNet version 1, SemNet version 2 significantly
improves the implementation by changing the underlying data structure for the knowledge
graph. Where version 1 used Neo4j, version 2 uses a knowledge graph object built from
Python dictionaries.

Given a source node s, a target node t, and a metapath P , the deterministic HeteSim
algorithm begins by splitting P into two halves: PL and PR. If P has odd length, the con-
struction described in Section 1.5 is applied before constructing PL and PR. An identical
subroutine is now applied to both PL and P−1

R . The following exposition will consider
only PL.

Recall that the algorithm must compute PMPL(s, :), which may be understood as the
probability that a random walk along the given metapath starting from s arrives at a given
node in Al/2. The algorithm iteratively computes the probability of arriving at each node
in Ai for step i of the metapath for 1 ≤ i ≤ l/2.

Let vi(x) be the probability of arriving at node x of type Ai at step i of the metapath.
To compute vi for i > 1, note that it is sufficient to know vi−1, as

vi(x) = ∑
y∈δ−Ri−1

(x)

1
δ+Ri−1

(y)
vi−1(y).
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Therefore, beginning with v1(s) = 1, the algorithm iteratively computes v2, . . . , vl/2
and PMPL = vl/2. After completing the analogous computation for P−1

R , the algorithm
returns

PMPL(a, :)(PMP−1
R
(b, :))T∣∣∣PMPL(a, :)

∣∣∣∣∣∣(PMP−1
R
(b, :))T

∣∣∣ .
Pseudocode is given in Algorithms 1 and 2.

Algorithm 1: HeteSim.
Input: start node s, end node t, metapath P of even length {odd relevance paths

must be preprocessed}
Output: HeteSim score

Construct PL, PA
vL ← oneSidedHS(s,PL)
vR ← oneSidedHS(t,P−1

R
return (vL · vR)/(|vL||vR|)

Algorithm 2: oneSidedHS subroutine.
Input: start node s, metapath P
Output: vector vlength(P), the one-sided HeteSim vector

for i = 1 to length(P)/2 do
vi ← [0]‖Ai‖ {Vector of zeros, indexed by elements of Ai}

end for
v1[s] = 1
for i = 2 to length(P) do

for x ∈ Ai do
vi[x]← ∑y∈δ−Ri−1

1
δ+Ri−1

[y]
vi−1[y]

end for
end for
return vlength(P)

3.2.2. Pruning the Graph

Given a metapath PL = A1
R1−→ A2

R2−→ . . .
R l

2−1
−−−→ A l

2
, a random walk starting from

s ∈ A1 may arrive at node u ∈ Ai such that the out degree of u along edges of type Ri is
0. Informally speaking, the random walk has reached a dead end. As an example, node
b in Figure 1 is a dead end. The presence of these dead ends reduces the probability that
a random walk starting from s actually reaches any node of type A l

2
. In fact, we can

construct graphs that make this probability arbitrarily small. Therefore, a basic random
walk algorithm may have arbitrarily long runtime. We will address this limitation by
defining a new but closely related quantity: pruned HeteSim.

Before proceeding, we provide two additional examples to explore the effect of dead
ends on HeteSim scores. In Figure 6, a simple knowledge graph is shown, organized
according to one metapath. The nodes are organized into columns by type, and the
columns are given in the order that those types appear in the metapath. The only edges
shown are those which appear in some instance of the metapath. This graph has m1 − 1
dead-end nodes on the left-hand side and m2 − 1 dead-end nodes on the right-hand side.
We can compute its HeteSim score as follows.

HS(s, t|P) = 1 · 1
1 · 1 = 1.
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Note that this score does not change with m1 or m2. In particular, the HeteSim score
with the given graph is identical to the HeteSim score when all dead ends are removed
from the graph. As we will later see, this result generalizes to all metapaths of length less
than or equal to 4.

Figure 6. An example knowledge graph. Here, we use the convention that nodes are organized by
type into vertical columns in the order that they appear in the metapath. We also only show edges
that may appear in some metapath instance. This example has m1 − 1 dead-end nodes on the left and
m2 − 1 dead-end nodes on the right. The HeteSim score of s and t with respect to the metapath is 1
for all values of m1 and m2.

In contrast, the metapath and knowledge graph depicted in Figure 7 create a situation
where the removal of dead ends does change the HeteSim score. If we take m = 2, then we
have removed all dead-end nodes. In this case, the HeteSim score is

HS(s, t|P) =
[
3/4 1/4

]([
1/2 1/2

])T∣∣[3/4 1/4
]∣∣∣∣[1/2 1/2

]∣∣ = 1/2√
5/8
√

1/2
=

2
√

5
5

.

If we instead take m = 3, then the HeteSim score is 5
√

34
34 , and, in the limit as m→ ∞,

the HeteSim score approaches
√

2
2 .

Figure 7. An example metapath and knowledge graph, drawn with the same conventions as in
Figure 6. Note that, in this example, the removal of dead ends does change the HeteSim score.

We now introduce a new score: Pruned HeteSim. This new score is identical to
HeteSim on relevance paths of length at most 4. To rigorously define Pruned HeteSim, we
must first formally define a dead-end node at step i of a given metapath and with respect
to nodes s and t.



Big Data Cogn. Comput. 2022, 6, 27 17 of 42

Let G = (V, E) be a heterogeneous information network, and let P = A1
R1−→ A2

R2−→
. . .

Rl−→ Al+1 be a metapath in G. Let s ∈ V with ψ(s) = A1 and t ∈ V with ψ(t) = Al . Let
C1 be the set of nodes of type Al/2 reachable from s along metapath PL. Similarly, let C2
be the set of nodes of type Al/2 reachable from t along metapath P−1

R . Let C = C1 ∩ C2,
and label the elements of C so that C =

{
c1, c2, . . . , cj

}
. For i ≤ j, let Xi be the event that

a random walk starting at s along PL ends at node ci. Similarly, let Yi be the event that a
random walk starting at t along P−1

R ends at node ci. Let xi = Pr(Xi) and yi = Pr(Yi). Let
x = (x1, x2, . . . , xj) and let y = (y1, y2, . . . , yj).

Let Z be the event that a random walk starting from s along PL reaches some node in
C. Similarly, let W be the event that a random walk starting from t along P−1

R reaches some
node in C.

Definition 9. For a node v belonging to any of A1, A2, . . . , Al/2, we define a dead end as follows.
Let metapath P and source node s be fixed. Let A be the event that a random walk beginning from
s and following metapath PL contains node v at step i (so that the type of v is Ai). Then, v is a
dead end at step i of metapath P and with respect to source node s if and only if Pr(Z|A) = 0.
For a node w belonging to any of Al/2+1, . . . , Al+1, the definition is analogous. Let metapath P
and target node t be fixed. Let B be the event that a random walk starting from t and following
metapath P−1

R contains node w at step i. Then, w is a dead end with respect to step i of metapath,
P and target node t if and only if Pr(W|B) = 0. For fixed nodes s, t and fixed metapath P , let Di
be the set of dead-end nodes at step i of metapath P with respect to source node s and target node t.

Informally, this definition means that a node v is a dead end at step i of a metapath if
no random walk which reaches the set of central nodes C has v as its ith node. Recall that
non-normalized HeteSim is defined by

h(s, t|R1 ◦ R2 ◦ · · · ◦ Rl)

=
1

|O(s|R1)||I(t|Rl)| ∑
a∈O(s|R1)

∑
b∈I(t|Rl)

h(a, b|R2 ◦ R3 ◦ · · · ◦ Rl−1),

where O(s|R1) is the set of out-neighbors of node s based on relation R1, and I(t|Rl) is the
set of in-neighbors of node t based on the relation Rl . To define the non-normalized version
of pruned, we simply exclude dead-end nodes from the sets of neighbors.

Definition 10. Let P = R1 ◦ R2 ◦ · · · ◦ Rl be a metapath in some graph G. Let s, t belong
to the vertex set of G, and let Di be the set of dead-end nodes at step i of metapath P . Then,
the non-normalized pruned HeteSim score is given by

g(s, t|R1 ◦ R2 ◦ · · · ◦ Rl)

=
1

|O(s|R1) \ D1||I(t|Rl) \ Dl | ∑
a∈O(s|R1)\D1

∑
b∈I(t|Rl)\Dl

h(a, b|R2 ◦ R3 ◦ · · · ◦ Rl−1),

where O(s|R1) is the set of out-neighbors of node s based on relation R1, and I(t|Rl) is the set of
in-neighbors of node t based on the relation Rl .

The normalization of pruned HeteSim proceeds exactly like that for HeteSim. We

obtain a restricted adjacency matrix W ′AB,i for the relation A
Ri−→ B by removing any 1s

in WAB corresponding to a dead-end node in B at step i of the metapath. As before, we
normalize W ′AB,i along its row vectors to obtain U′AB,i. As before, we can obtain a reachable
probability matrix by multiplying the normalized restricted adjacency matrices:

PM′P = U′A1 A2,2U′A2 A3,3 . . . U′Al Al+1,l+1.
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Definition 11. The normalized pruned HeteSim score is given by

PHS(a, b|P) =
PM′PL

(a, :)(PM′P−1
R
(b, :))T√∣∣∣PM′PL

(a, :)
∣∣∣∣∣∣(PM′

P−1
R
(b, :))T

∣∣∣ .
Note that, for metapaths with no repeated node types, pruned HeteSim may be

computed by simply removing all dead-end nodes from the graph and then computing
HeteSim on this pruned graph. Importantly, pruned HeteSim has value equal to plain
HeteSim for metapaths of length at most 4. Since these shorter paths are often the ones of
most interest in small-diameter knowledge graphs, pruned HeteSim may be thought of as
a replacement for HeteSim in these circumstances.

Additionally, note that Definition 11 gives rise to a deterministic algorithm for com-
puting pruned HeteSim, much like the deterministic algorithm for HeteSim. The algorithm
now requires 2 passes over the data structure. In the first pass over the data, dead ends are
identified. In a second pass, Definition 11 allows for the computation of the non-normalized
pruned HeteSim score. Normalization is applied as the final step. Because our compu-
tational focus in this manuscript is on short paths of length at most four, and because
HeteSim and pruned HeteSim have the same values for paths of length at most four, we
do not pursue the deterministic algorithm for pruned HeteSim further. For these short
paths, a deterministic computation of HeteSim is faster than a deterministic computation
of pruned HeteSim.

Theorem 1. Let P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1 be a metapath with length l ≤ 4. Then,

PHS(s, t|G,P) = HS(s, t|G,P).

Proof. First, note that we only need to consider metapaths with even length, as odd meta-
paths will simply be transformed to even length metapaths before HeteSim is computed.
Next, note that the result is trivial for metapaths with length 2, as these can have no dead
ends. We may therefore focus only on the case where the metapath has length 4.

Let P = A1
R1−→ A2

R2−→ A3
R3−→ A4

R4−→ A5 be a metapath in G. Note that there can be
no dead ends of type A3. Additionally, if s or t is a dead end, then HS(s, t|G,P) = 0 =
PHS(s, t|G,P). Therefore, we may assume that all dead ends are of type A2 or A4.

Recall that Xi is the event that a random walk in G from s reaches node ci, and similarly
Yi is the event that a random walk in G starting at t arrives at node ci. Let X′i be the event
that a random walk in G′ along metapath PL starting from s arrives at node ci. Similarly
let Y′i be the event that a random walk in G′ along metapath P−1

R arrives at node ci. Let
pL be the probability that a random walk starting from s arrives at a dead-end node in A2.
Similarly, let pR be the probability that a random walk beginning at t will arrive at a dead
end in A4. Note that, once a random walk has reached a non-dead-end node of type A2 or
A4, that random walk must reach some node of type A3. Therefore,

Pr(Xi) = (1− pL)Pr
(
X′i
)

and

Pr(Yi) = (1− pR)Pr
(
Y′i
)
.

Letting xi = Pr(Xi), yi = Pr(Yi), x′i = Pr
(
X′i
)
, and y′i = Pr

(
Y′i
)
, observe
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HS(s, t|G,P) = ∑k
i=1 xiyi√

∑k
i=1 x2

i ∑k
i=1 y2

i

=
∑k

i=1(1− pL)x′i(1− pR)y′i√
∑k

i=1(1− pL)2(x′i)
2 ∑k

i=1(1− pR)2(y′i)
2

=
∑k

i=1 x′iy
′
i√

∑k
i=1(x′i)

2 ∑k
i=1(y

′
i)

2

= PHS(s, t|G,P).

3.2.3. Pruned HeteSim

We now present an alternate algorithm for computing a variant of the HeteSim score.
This algorithm is much more computationally tractable, and we have shown that the
HeteSim and pruned HeteSim scores are identical for relevance paths of length at most 4.

Let P be a metapath, and let s and t be source and target notes, respectively. Let N
be a positive integer, the required value of which will be determined later. Starting from
s the algorithm takes N random walks along PR, never visiting any node that has been
marked as a dead end for the current step of the metapath. At any point, if the algorithm
encounters a dead end, it marks the current node as a dead end for the current step of the
metapath and then retraces its steps until a non-dead-end node is reached, marking dead
ends along the way as necessary. Note that any dead end at a given step in the metapath
will only need to be marked once, and the algorithm will avoid it for all future random
walks. The same algorithm is repeated along metapath P−1

L starting from t.
The frequency vectors of the terminal nodes of the random walks give an approxi-

mation for PM′PL
and PM′P−1

R
, which are used to approximate the pruned HeteSim score.

Psuedocode is given in Algorithms 3–5. Analysis of the algorithm, determination of N,
and a formal proof of correctness are given in Section 3.2.4.

Algorithm 3: Randomized Pruned HeteSim.
Input: start node s, end node t, relevance path P of even length, error tolerance ε,

success probability r {odd relevance paths must be preprocessed}
Output: approximate HeteSim score

S← breadthFirstSearch(s, PL)
T ← breadthFirstSearch(t, P−1

R )
k← |S ∪ T|
c← (5 + 4

√
2)/4

C ← 2(c +
√

c2 + 2ε)2 + ε(c +
√

c2 + 2ε)
N ← d C

ε2 ek ln(4k/(1− r))
return RandomizedPrunedHeteSimGivenN(s, t, P , N)
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Algorithm 4: RandomizedPrunedHeteSimGivenN subroutine.
Input: start node s, end node t, relevance path P of even length, number of

iterations N
Output: approximate HeteSim score

for i = 0 to length(PL)) do
B[i]← ∅

end for
vL ← [0]k {array of 0s indexed by elements of K}
vR ← [0]k

{random walks from s}
for n = 1 to N do
(B, x)← restrictedRandomWalkOnMetapath(s, PL, B)
vL[x] = vL[x] + 1

end for
{random walks from t}
for i = 0 to length(PL)) do

B← ∅
end for
for n = 1 to N do
(C, x)← restrictedRandomWalkOnMetapath(t, P−1

R , B)
vR[x]← vR[x] + 1

end for
{compute approximate probability vectors and approximate pruned HeteSim}
v′L ← vL/N
v′R ← vR/N
return (v′L · v′R)/(|v′L||v′R|)

Algorithm 5: restrictedRandomWalkOnMetapath subroutine.
Input: start node s, metapath P , badNodes B
Output: (B, node), where node is the final node reached, and B is the updated list of

dead-end nodes
i← 1
nodeStack← [ ]
x ← s
while i > 0 do

Y ← neighbors(x, Ri) \B[i]
if Y 6= ∅ then

{pick a neighbor with probability proportional to edge weight}
w← ∑y∈Y edgeweight(x, y)
z← SelectWithProbability( [(y, edgeWeight(x, y)/w) for y ∈ Y] )
nodeStack.push(x)
x ← z
i← i + 1

else
{x is a dead end}
B[i-1]← B[i-1] ∪{x}
x ← nodeStack.pop()
i← i− 1

end if
end while
return (B, x)
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3.2.4. Runtime Analysis of the Pruned HeteSim Algorithm

We now provide guarantee on the number of random walks required to approximate
pruned HeteSim with a given error tolerance ε and success probability r.

Let Sk = {v ∈ Rk : ∑i vi = 1 and vi ≥ 0}. We consider arbitrary v, w ∈ Sk for fixed
k, where v = PM′PL

(s, :) and w = PM′P−1
R
(t, :). We will show that if all the entries in the

vectors are sufficiently close to their true value, then the cosine will be sufficiently close to
the true value. We consider v̂, a random approximation of v after some number of steps.
Notice that v̂ = v + λ, where λ ∈ Rk such that ∑k

i=1 λi = 0 and vi + λi ≥ 0 (since v̂ is
always a probability vector). Let

Ek(v, δ, α, β)

= {w ∈ Rk : ∑
i

wi = 0, vi + wi ≥ 0, vi ≥ α⇒ |wi| ≤ δ|vi|, and vi < α⇒ |wi| ≤ βδ}.

We now consider λ ∈ Ek(v, δ, α, β). Note that the bound imposed by Ek(v, δ, α, β)
treats small entries and large entries in v differently. This will be important to achieve an
O(k log k) bound on the number of required random walks N later in the section.

We start by giving sufficient conditions for a bound on |cos θ′ − cos θ|, where θ′ is the
angle between v̂ and ŵ and θ is the angle between v and w.

Theorem 2. Fix ε > 0. Let 0 ≤ β, β ≤ 1. Let α, α ≥ 0. Let v, w ∈ Sk. Let

b =
2 + kβ2

2|v|2

1 + 1
|v|
√

k

+

√
kβ2

|v|2 + 1

and

a =

kβ2

|v|2 + 1

1 + 1
|v|
√

k

and

b =
2 + kβ

2

2|w|2

1 + 1
|w|
√

k

+

√
kβ

2

|w|2 + 1

and

a =

kβ
2

|w|2 + 1

1 + 1
|w|
√

k

.

Let δ = ε
b+
√

b2+2aε
and δ = ε

b+
√

b
2
+2aε

. If λ ∈ Ek(v, δ, α, β) and λ ∈ Ek(w, δ, α, β) then

∣∣∣∣∣ (v + λ) · (w + λ)

|v + λ||w + λ|
− v · w
|v||w|

∣∣∣∣∣ ≤ ε.

Proof. Follows from Lemma A5 in Appendix A and the triangle inequality.

We now need to understand the probability that any given entry of v̂ (or ŵ) is close to
the corresponding entry of v (or w). Since the number of walks arriving at a given node
is binomial, we apply a Chernoff bound (Lemma 2) to the binomial distribution to obtain
Corollary 1.
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Lemma 2 (Chernoff Bound [40]). Let X ∼ Binom(n, p). Let µ = E(X) = np. For δ > 0,

Pr(X ≤ (1− δ)µ) ≤ exp
(
− δ2µ

2

)
and

Pr(X ≥ (1 + δ)µ) ≤ exp
(
− δ2µ

2 + δ

)
.

Corollary 1. Let X ∼ Binom(n, p). For δ > 0,

Pr
(∣∣∣∣Xn − p

∣∣∣∣ > δp
)
≤ 2 · exp

(
− nδ2 p

2 + δ

)
and

Pr
(∣∣∣∣Xn − p

∣∣∣∣ > δ

)
≤ 2 · exp

(
− nδ2

2p + δ

)
.

Having bounded the probability of any one vector entry having small error, we now
use a union bound to bound the probability that all entries have small error.

Lemma 3. Fix n, k ∈ N. Fix δ ≥ 0 and 0 ≤ α, β ≤ 1. Let v = (v1, · · · , vk) such that
vi ≥ 0 and ∑i vi = 1. Let Xi ∼ Binom(n, vi) such that ∑i Xi = n. Let λi =

Xi
n − vi and let

λ = (λ1, · · · , λk). We have that

Pr(λ 6∈ Ek(v, δ, α, β)) ≤ 2k exp
(
−nδ2 ·min

{
β2

2α + δβ
,

α

2 + δ

})
Proof. Since Xi ≥ 0, vi + λi ≥ 0. We now apply the Chernoff bound. For vi ≥ α, we
see that

Pr(|λi| ≥ δvi) = Pr
(∣∣∣∣Xi

n
− vi

∣∣∣∣ ≥ δvi

)
≤ 2 · exp

(
−nδ2vi

2 + δ

)
≤ 2 · exp

(
− nδ2α

2 + δ

)
For vi < α, we see that

Pr(|λi| ≥ βδ) = Pr
(∣∣∣∣Xi

n
− vi

∣∣∣∣ ≥ βδ

)
≤ 2 · exp

(
− nβ2δ2

2vi + βδ

)
≤ 2 · exp

(
− nβ2δ2

2α + βδ

)
.

The result then follows by the union bound.

Finally, we can combine the previous results to bound the required number of random
walks, given error tolerance ε and success probability r.

Lemma 4. Let ε > 0 and 0 < r < 1. For c(ε) = 2(c +
√

c2 + 2ε)2 + ε(c +
√

c2 + 2ε)) and
c = 5+4

√
2

4 . Let δ as in Theorem 2. After making n (non-dead-end) walks in the randomized pruned
HeteSim algorithm,

Pr
(

λ 6∈ Ek

(
v, δ,
|v|√

k
,
|v|√

k

))
≤ 2k exp

(
−n

k
· ε2

c(ε)

)
.

Proof. We apply Lemma 3 and Theorem 2. We set α = β = |v|√
k
≤ 1 and δ = ε

b+
√

b2+2aε
. Thus,

Pr(λ 6∈ Ek(v, δ, α, β)) ≤ 2k exp

(
−n · |v|√

k
· ε2

2(b +
√

b2 + 2aε)2 + ε(b +
√

b2 + 2aε)

)
.
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We notice that the content of the exponent is a decreasing function in |v| (for |v| > 0). Thus,

Pr(λ 6∈ Ek(v, δ, α, β)) ≤ 2k exp

−n
k
· ε2

2
(

c +
√

c2 + 2ε
)2

+ ε(c +
√

c2 + 2ε)

.

Corollary 2. Under the same assumptions as Lemma 4, let n > c(ε)
ε2 · k ln( 4k

1−r ), after making n
(non-dead-end) walks in the randomized pruned HeteSim algorithm (on both sides of the computation),

Pr
(∣∣∣PHS(a, b|P)− P̃HS(a, b|P)

∣∣∣ < ε
)
> r.

Proof. Follows from Lemma 4 (applied to both sides of the computation), Theorem 2 and
the union bound.

Remark 1. The exact number of walks required may differ due to the existence of walks that lead to
dead end not counting. In Appendix B, we have provided some analysis of the probabilistic effects
of this.

3.2.5. Deterministic Aggregation

In order to rank the overall relatedness of source nodes to a fixed target node, SemNet
version 2 uses the mean HeteSim score between the source and target node, averaged over
all metapaths which exist for any source node in the set under study.

For completeness, pseudocode for computing exact mean HeteSim scores is given in
Algorithm 6.

Algorithm 6: Exact Mean HeteSim score.
Input: set of start nodes S, end node t, path length p
Output: vector of mean HeteSim scores h, indexed by elements of S

Construct M, the set of all metapaths between any element of S and t
for s ∈ S do

HSscores = []
for m ∈ M do

HSscores.append(HeteSim(s, t, m))
end for
h[s] = mean(HSscores)

end for
return h

3.2.6. Randomized Aggregation

As an alternative to taking the exact mean HeteSim score over all metapaths, we
also consider an approximation to the mean given by the mean over a random subset of
metapaths. Let S be a set of source nodes in the graph and T be a set of target nodes. Let
MPST be the set of all metapaths in the knowledge graph with at least one instance between

some node in S and some node in T.Let (s, t) ∈ S× T. Let P = A1
R1−→ A2

R2−→ . . .
Rl−→ A+1

by a metapath. Recall that HS(s, t|P) is the HeteSim score between s and t relative to
the metapath P . Similarly, let PHS(s, t|P) be the Pruned HeteSim score between s and t
relative to the metapath P .

The aggregated HeteSim score of a source–target pair(s, t) is defined to be

Q(s, t) =
1

|MPST | ∑
P∈MP

HS(s, t|P)
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and the aggregated Pruned HeteSim Score is defined to be

R(s, t) =
1

|MP| ∑
P∈MP

PHS(s, t|P).

Notice that if we select a metapath from MP uniformly at random and took the
HeteSim score relative to that metapath, the expected value of the score is precisely Q(s, t).
Thus, we may approximate Q(s, t) by taking m independent and uniformly chosen math-
paths, P1, · · · ,Pm, and taking the mean of the HeteSim scores relative to these metapaths.
Let

Q̂(s, t) =
1
m

m

∑
i=1

HS(s, t|Pi).

Hence, E(R̃(s, t)) = R(s, t).
Let P̃HS(s, t|P) be the approximation of PHS(s, t|P) derived from our randomized

algorithm after taking n(s, t|P) random walks. Let k(s, t|P) be the number of reachable
nodes of type Al/2+1 when considering source s, target t and metapath P . Let kmax =
max{k(s, t|P1), · · · , k(s, t|Pm)}, for MPST = {P1, . . . ,Pm}. By the construction of the
algorithm, E(P̃HS(s, t|P)) = PHS(s, t|P) for a fixed P . Let

R̃(s, t) =
1
m

m

∑
i=1

PHS(s, t|Pi)

and

R̂(s, t) =
1
m

m

∑
i=1

P̃HS(s, t|Pi).

Similarly to the above, E(R̃(s, t)) = R(s, t). We now see that

E(R̂(s, t))

=
1
m

m

∑
i=1

E(E(P̃HS(s, t|Pi)|Pi)) = E
(

1
m

m

∑
i=1

PHS(s, t|Pi)

)
= E(R̃(s, t)) = R(s, t).

We now provide bounds on the number of random metapaths (m) we require to have
Q̂(s, t) and R̂(s, t) be within some error of Q(s, t) and R(s, t), respectively, with at least
some probability.

Lemma 5 (Bounded differences inequality [41]). Let Z1, · · · , Zk be independent random vari-
ables such that Zi ∈ Λi. Let f : Λ1 × · · · ×Λk → R. Assume there exist c1, · · · , ck ∈ R such
that, for all i,∣∣ f (a1, · · · , ai−1, ai, ai+1, · · · ak)− f (a1, · · · , ai−1, a′i, ai+1, · · · ak)

∣∣ ≤ ci

for all aj ∈ Λj and a′i ∈ Λi. Let X = f (Z1, · · · , Zk). We have that

Pr(|X−E(X)| ≥ t) ≤ 2 exp

(
− 2t2

∑k
i=1 c2

i

)
.

Lemma 6. For all (s, t) ∈ S× T,

Pr
(∣∣Q̂(s, t)−Q(s, t)

∣∣ ≥ ε
)
≤ 2e−2mε2
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and

Pr
(∣∣R̃(s, t)− R(s, t)

∣∣ ≥ ε
)
≤ 2e−2mε2

for all (s, t) ∈ S× T.

Proof. Fix (s, t) ∈ S×T. We utilize the bounded differences inequality. We takeP1, · · · ,Pm
to be our independent random variables. Let

Q̂(P1, · · · Pk · · · ,Pm)(s, t) =
1
m

m

∑
i=1

HS(s, t|Pi).

Notice that for any k ∈ [m],∣∣Q̂(P1, · · · Pk · · · ,Pm)(s, t)− Q̂(P1, · · · P ′k · · · ,Pm)(s, t)
∣∣

=

∣∣∣∣∣HS(s, t|Pk)−HS
(
s, t|P ′k

)
m

∣∣∣∣∣
≤ 1

m
.

Thus, ci =
1
m is sufficient to apply the bounded differences inequality. Hence,

Pr
(
|Q̂(s, t)−E(Q̂(s, t))| ≥ ε

)
≤ 2 exp

(
− 2ε2

∑m
i=1 c2

i

)
= 2e−2mε2

.

Similar argument holds for R̃(s, t).

Corollary 3. For m = 1
2ε2 ln

(
2|S||T|

r

)
, with probability at least 1− r,∣∣Q̂(s, t)−Q(s, t)

∣∣ < ε

for all (s, t) ∈ S× T.

Proof. Applying Lemma 6, we see that

Pr

 ⋃
(s,t)∈S×T

|Q̂(s, t)−Q(s, t)| ≥ ε


≤ ∑

(s,t)∈S×T
Pr
(
|Q̂(s, t)−Q(s, t))| ≥ ε

)
≤ 2|S||T|e−2mε2

.

Thus, the probability that
∣∣R̃(s, t)− R(s, t)

∣∣ < ε for all (s, t) ∈ S × T is at least 1 −
2|S||T|e−2mε2

. To have this probability at least 1− r, it is hence sufficient to have 2|S||T|e−2mε2
=

r, proving the result.

Theorem 3. Fix 0 < ε, r < 1. For

n(s, t|Pi) =
4c
(

ε
2
)
· k(s, t|Pi)

ε2 ln
(

4m|S||T|kmax

r1

)
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and

m =
2
ε2 ln

(
2|S||T|
r− r1

)
,

where r1 = r ·
4 ln
(

2|S||T|
r

)
kmax

4 ln
(

2|S||T|
r

)
kmax+ε2

, with probability at least 1− r,

|R̂(s, t)− R(s, t)| < ε

for all (s, t) ∈ S× T.

The proof of this result is deferred to Appendix A.
The results from this section give rise to 2 algorithms for computing approximations

to mean HeteSim scores. First, Corollary 3 gives an algorithm for approximating the
mean HeteSim score using the deterministic HeteSim algorithm given in Algorithm 1.
Pseudocode for this approximate mean HeteSim computation is given in Algorithm 7.
Second, Theorem 3 shows how to compute an approximation to the mean pruned HeteSim
score, and pseudocode for this computation is given in Algorithm 8.

Algorithm 7: Approximate Mean HeteSim score.
Input: set of start nodes S, end node t, path length p, approximation parameters ε

and r
Output: vector of approximate mean HeteSim scores h, indexed by elements of S,

with error bounds as in Corollary 3
m← 1

2ε2 ln
(

2|S|
r

)
Construct M, the set of all metapaths of length p between any element of S and t
if m < M then

select M′ ⊆ M with |M′| = m uniformly at random
else

M′ ← M
end if
for s ∈ S do

HSscores = []
for m ∈ M′ do

HSscores.append(HeteSim(s, t, m))
end for
h[s] = mean(HSscores)

end for
return h

3.3. Algorithm Runtimes: SemNet Version 2

Having given algorithms and proofs of correctness, we now turn to a computational
investigation of actual algorithm performance. Our emphasis is on comparing the three dif-
ferent algorithms enumerated above.

3.3.1. Verification of Randomized Algorithm Performance

For each of the three test graphs and corresponding metapaths, the randomized
pruned HeteSim algorithm was run 100 times, with ε = 0.05 and r = 0.95. For each of
the three test graphs, an error less than ε was observed in all 100 iterations. Histograms
showing the distribution of computed values are given in Figure 8.
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Algorithm 8: Approximate Mean Pruned HeteSim score.
Input: set of start nodes S, end node t, path length p, approximation parameters ε

and r
Output: vector of approximate mean HeteSim scores h, indexed by elements of S,

with error bounds as in Theorem 3

r1 ← r ·
4 ln
(

2|S||T|
r

)
kmax

4 ln
(

2|S||T|
r

)
kmax+ε2

m← 2
ε2 ln

(
2|S|
r−r1

)
N ← 4c( ε

2 )·k(s,t|Pi)

ε2 ln
(

4m|S||T|kmax
r1

)
Construct M, the set of all metapaths of length p between any element of S and t
if m < M then

select M′ ⊆ M with |M′| = m uniformly at random
else

M′ ← M
end if
for s ∈ S do

PHSscores = []
for m ∈ M′ do

PHSscores.append(RandomizedPrunedHeteSimGivenN(s, t, m, N))
end for
h[s] = mean(PHSscores)

end for
return h

(a) (b) (c)

Figure 8. Computed randomized pruned HeteSim (RPH) scores for each of the three test graphs.
(a) Test graph 1; (b) Test graph 2; (c) Test graph 3.

3.3.2. Comparison of Algorithm Runtimes

For two of the three main algorithm variants, runtime on length 2 metapaths was
measured, using Alzheimer’s disease as a target node and a set of three source nodes:
insulin, hypothyroidism, and amyloid. Each of these source nodes has some amount of
real-world domain significance; all three have, at some point, acted as a source node to the
target node Alzheimer’s disease in other ongoing research in the authors’ lab. This ongoing
work aims to investigate and discover causes and treatments (re-purposed or otherwise)
within the active body of biomedical academic literature. As a more specific example,
SemNet version 1 was used to investigate how hypothyroidism and Alzheimer’s disease
are related via the combined rankings of shared source nodes. This is a slightly different
application than what is being investigated in this manuscript, but the results definitively
show that hypothyroidism and Alzheimer’s disease are closely related. These previous
runs have historically been extremely slow while utilizing SemNet version 1, taking up to
an hour to complete (see Table 2). Decreasing runtime is the main motivation for the new
algorithms and implementations.
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Table 2. Mean and standard deviation of runtimes for both SemNet version 1 and the approximate
mean HeteSim algorithm from SemNet version 2, broken down by step as in Figure 5.

Source Node Insulin Hypothyroidism Amyloid

Num metapaths (SemNet 1) 4873 2148 3095

SemNet 1: Step 1 (s) 81± 5.3 35± 2.4 84± 5.3
SemNet 1: Step 2 (s) 220,000 ± 2300 96,000 ± 270 220,000 ± 2700
SemNet 1: Step 3 (s) 0.80± 0.0021 0.39± 0.0093 0.80± 0.014

Num metapaths (SemNet 2) 4521 2130 3060

SemNet 2: Step 1 (s) 1.2± 0.0093 0.19± 0.0015 0.41± 0.0024
SemNet 2: Step 2 (s) 0.0047± 0.00097 0.0026± 0.00060 0.0027± 0.00061
SemNet 2: Step 3 (s) 8.3× 10−5 ± 1.4× 10−6 8.3× 10−5 ± 1.9× 10−6 8.3× 10−5 ± 1.2× 10−6

Runtime ratio: Step 1 68 184 200
Runtime ratio: Step 2 4.7× 108 3.6× 107 8.1× 107

Runtime ratio: Step 3 9600 470 9600

For the two main chosen algorithms associated with SemNet version 2, mean exact
HeteSim and approximate mean HeteSim, test runs were conducted using the previously
defined source–target combinations. These test runs were repeated 10 times per combina-
tion for both algorithms respectively, and the comprehensive runtime results can be seen in
Table 3. For approximate mean HeteSim, the realistic parameters ε = 0.1 and r = 0.9 were
used. The third algorithm variant, approximate mean pruned HeteSim, was not run on the
actual knowledge graph, due to excessive runtime when using realistic values for ε and r.

Table 3. Mean and standard deviation of runtimes for the mean exact HeteSim and approximate
mean HeteSim algorithms.

Algorithm Runtime (s)

Mean exact HeteSim 4.1± 0.060
Approximate mean HeteSim 3.9± 0.015

For the fastest algorithm, approximate mean HeteSim, time spent on each of the three
steps described in Figure 5 was also recorded. To further accentuate the speed differences
between SemNet versions 1 and 2 (specifically approximate mean HeteSim), Table 2 shows
the three step breakdown for both SemNet versions side by side. For both versions, the same
target (Alzheimer’s disease) and sources (insulin, hypothyroidism, and amyloid) were used,
and each source–target combination, like in Table 3, was run 10 times each. The runtime
ratio between SemNet version 1 and SemNet version 2 is also shown in Table 2. For these
three step breakdown tests, the approximate mean HeteSim algorithm used the parameters
ε = 0.1 and r = 0.9 once again.

Additionally, the time to compute HeteSim using the new data structure for a single
metapath was analyzed. Due to the HeteSim algorithms being run on single metapaths,
aggregation (Step 3) was not used and therefore not represented in timing results. For com-
parison, the top 20 unique metapaths, based on the metapaths with the highest number of
unique paths (each metapath between a source and target node can potentially encompass
many different paths), were used as inputs to the respective algorithms. Both the determin-
istic HeteSim and randomized pruned HeteSim algorithms were run on these metapaths,
with approximation parameters ε = 0.1 and r = 0.9 applied to the latter. Randomized
pruned HeteSim was not run on all metapaths due to excessive runtime, and, therefore,
deterministic HeteSim was also not run over all metapaths, for comparison sake. Results
of this comparison are given in Table 4. Further detail on the randomized pruned Het-
eSim results, including the maximum and minimum values for the number of iterations,
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runtimes, and metapath instances (the number of paths within a metapath), is given in
Table 5. Figure 9 shows the breakdown of deterministic HeteSim computation time for
each metapath between the described sources and target, with no limit on the number
of metapaths.

Table 4. Mean and standard deviation of runtimes for both the deterministic HeteSim and randomized
pruned HeteSim algorithms on the top 20 individual length 2 metapaths.

Source Node Deterministic HeteSim Randomized Pruned HeteSim

Insulin 2.0× 10−3 ± 1.2× 10−3 3500± 3400
Hypothyroidism 7.2× 10−4 ± 3.4× 10−4 440± 650

Amyloid 9.9× 10−4 ± 6.4× 10−4 1200± 1200

Table 5. Computation details for the randomized pruned HeteSim algorithm on the top 20 individual
length 2 metapaths.

Source Node Insulin Hypothyroidism Amyloid

Max iterations (N) 28,019,926 8,547,987 12,790,378
Min iterations (N) 5,308,942 1,666,564 3,229,242

Mean iterations (N) 10,068,473 2,632,969 5,206,723

Max runtime (s) 14,588 3138 5052
Min runtime (s) 420 99 247

Mean runtime (s) 3491 438 1193

Max metapath instances 488 167 240
Min metapath instances 109 39 70

(a) (b) (c)

Figure 9. HeteSim computation times per metapath for all metapaths of length 2 from the given
source node to Alzheimer’s disease, using the deterministic HeteSim implementation from SemNet
version 2. (a) Insulin; (b) Hypothyroidism; (c) Amyloid.

As a final timing comparison, the top 20 length 4 metapaths (again determined by the
metapaths comprised of the highest number of unique paths) were generated for each of the
three testing target-source node pairs, and the deterministic HeteSim algorithm was run on
all 60 metapaths. The 20 length 4 metapaths were taken out of a subset of the first 100,000 to-
tal length 4 metapaths shared between each respective source node and AD. Metapath
computation is the greatest bottleneck, and retrieving any more than 100,000 metapaths
per source node is simply too time consuming as of right now. The maximum, minimum,
and mean runtimes for this final test are shown in Table 6. As a final side note, different
runs of both SemNet versions 1 and 2 might vary in computational time due to changes in
concurrent computational load and random, extrinsic factors. This slight variation does
not change the ultimate goal or conclusion of this study.
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Table 6. Maximum, minimum, and mean runtimes (with standard deviation) for the SemNet version
2 deterministic HeteSim algorithm on the top 20 individual length 4 metapaths.

Source Node Insulin Hypothyroidism Amyloid

Max runtime (s) 0.21 0.022 0.033
Min runtime (s) 0.032 0.0029 0.0070

Mean runtime (s) (±std) 0.11± 0.039 0.011± 0.0056 0.015± 0.0075

3.4. Study Assessing User Friendliness of SemNet Version 2

SemNet version SemNet version 1 had extensive Sphinx documentation and readme
files, but there was no detailed example Jupyter interface for users with limited computer
science or Python background to easily run the software. User friendliness was primarily
assessed with a standardized survey of two distinct groups of naive or first-time SemNet
software users who were trained in either SemNet version 1 or SemNet version 2. “Training”
included a general introduction or background on the purpose and utility of the SemNet
framework (same content for each group), along with publicly available user documen-
tation (documentation to either SemNet version 1 or SemNet version 2, depending on
user group assignment). The SemNet version 1 user group had 11 users (n = 11), whereas
the SemNet version 2 user group had 10 users (n = 10). All participants were students at
Georgia Institute of Technology.

To ensure that differences in prior experience with Python or Jupyter notebooks
would not bias the user study results, each participant was asked to self-classify their
prior experience using Python and/or Jupyter notebooks to ensure each user group had a
balanced distribution of prior Python/Jupyter user experiences. The Python experience
classifications were: novice user (no to minimal Python experience); proficient user (had
taken a basic Python class or had previously independently used Python for an elemen-
tary project); or expert Python user (very confident and capable of teaching a class on
Python/Jupyter). The SemNet version 1 group included 3 participants who self-identified
as novice Python users, 7 that self-identified as proficient Python users, and 1 that self-
identified as an expert Python user. The SemNet version 2 group included 3 participants
who self-identified as novice Python users, 6 that self-identified as proficient Python users,
and 1 that self-identified as an expert Python user.

After completing a standardized training protocol, each user took an electronic survey
asking a simple question: “Are you comfortable in running a [SemNet] simulation on your
own?”. The SemNet version 1 group had 2 of 11 users who answered they were comfortable
in running a SemNet version 1 simulation after minimal training. The SemNet version 2
group had 8 of 10 users that answered they were comfortable in running a SemNet version
2 simulation after minimal training. Fisher’s exact test compared these two user groups;
the SemNet version 2 user group was significantly (p < 0.05) more comfortable performing
a simulation compared to users in the SemNet version 1 group. This result quantitatively
affirms that the SemNet version 2 framework is more user friendly and intuitive than
SemNet version 1.

Finally, a random subset of users (n = 7) were eventually trained in both SemNet
version 1 and SemNet version 2. These users were asked a simple question via an electronic
survey: “Is the user friendliness of SemNet version 2 equal, somewhat better, or much
better than SemNet version 1?” All 7 users said SemNet version 2 was “much better” than
SemNet version 1. While the sample size is small, the probability that all 7 users select
“much better” is significant (p < 0.05). SemNet version 2’s interface and greatly enhanced
speed were the volunteered reasons stated for it being voted “much better” by users for its
user friendliness.

3.5. Assessing Highly Ranked Metabolic Nodes to Alzheimer’s Disease

Recent literature has identified relationships shared between metabolic co-morbidities
and AD [33,42,43]. The scope of the present article focuses on the mathematics, computa-
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tional optimizations, performance improvements, and user friendliness of SemNet version
2. An entirely different manuscript could be dedicated to sifting through interesting results
on the Alzheimer’s case study used to perform SemNet version 2 performance evaluations.
Due to space constraints and article scope, we only briefly touch on some of the interesting
nodes identified and ranked in SemNet version 2 using Alzheimer’s disease (AD) as the
target node and hypothyroidism and insulin as source nodes of interest.

One of the key advantages of SemNet is examining multi-factorial relationships that
are not as obvious. A small subset of lesser discussed source nodes involving metabolic
co-morbidities and AD ranked as relatively important by SemNet version 2 include the
following: metformin (a drug used to treat type 2 or adult-onset diabetes), dexamethasone
(a glucocorticoid use to treat inflammation, autoimmune disease, or adrenal insufficiency),
carbonic anhydrase (a family of enzymes that catalyze the interconversion between carbon
dioxide and water), and nitric oxide synthase 3 (generates NO in blood vessels and is
involved with regulating vascular function). These specific source nodes are identified by
finding all intersecting source nodes shared between AD and multiple targets (metabolic
co-morbidities, in this example) and ranking all shared sources with respect to each AD-
metabolic co-morbidity pairing. In this example, the chosen metabolic co-morbidities
associated with AD are obesity, hypothyroidism, and type 2 diabetes [34,35,44]. The four
example source node results mentioned above (metformin, dexamethasone, carbonic anhyr-
drase, and nitric oxicde 3) scored very highly in each run of SemNet version 2, consistently
placing in the top 25% of ranked nodes based on HeteSim score. More specific explanations
for why or how these identified source nodes are tied to AD are discussed in studies
contributing to the knowledge graph connectivity, some of which are cited here [45–48].

4. Discussion

The results presented in this manuscript show that the main objective, reducing
SemNet’s overall runtime, has been achieved. This increase in speed is attributable to
both algorithmic improvements (best seen with the approximate mean HeteSim algorithm)
and, most substantially, data structure changes. The secondary objective, fixing the error
presented in the SemNet version 1 rank aggregation algorithm ULARA, was also met
with the introduction of two new aggregation algorithms: exact mean aggregation and
approximate mean aggregation. The success presented in this work will provoke a quick
adoption of SemNet version 2. Computational challenges still remain, specifically in
metapath enumeration and computation. The need to compute all metapaths between
the specified source–target nodes is still a relatively major computational bottleneck to be
addressed in future work.

4.1. Computational Improvements

Both the mean HeteSim score and approximate mean HeteSim score show runtime
reductions compared to SemNet version 1. These improvements are evident both in the
overall algorithm runtimes (Tables 1 and 3) and in the speed of the deterministic HeteSim
subroutine (Tables 1 and 4). Note that, though the number of metapaths decreased in the
graph used to test SemNet version 2 and this reduction must account for some speedup,
computation time per metapath decreased. Table 2 shows that the largest improvement
happened in step 2, likely because the implementation of step 2 in SemNet version 1 used
many Neo4j queries. Since it has already been shown that Neo4j queries made up most of
the runtime in SemNet version 1 (see Table 1), it is likely that the substitution of the Python
dictionary-based data structure for the knowledge graph was the largest source of runtime
reduction for step 2. Similarly, step 1 involves querying the knowledge graph, and the
replacement of Neo4j with a custom dictionary-based data structure is likely the largest
source of improvement here as well.

Step 3 is a bit different because the changes here were motivated by the replacement of
a flawed rank aggregation technique, rather than runtime considerations. As a ratio, we do
see an improved reduction in runtime of over 1000, but the absolute runtime values for step
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3 are quite small in relation to the entire algorithm. The most important result regarding
step 3 is the replacement ULARA with a sensible alternative (mean HeteSim score) that
is also is amenable to approximation based on randomization. In the length 2 metapath
tests reported in Table 3, the approximate mean HeteSim algorithm achieves a 20% runtime
reduction compared to the exact mean HeteSim score computation. This reduction is
mostly attributable to the need to run the HeteSim subroutine on fewer metapaths. Since
the bound on the number of metapaths for which HeteSim must be computed depends
only on the number of candidate source nodes and the approximation parameters ε and r
(see Corollary 3), the performance advantage of the approximate mean computation should
be even more substantial in situations involving more metapaths. This performance advan-
tage will only become more pronounced when running the approximate mean HeteSim
algorithm on longer metapaths because, generally, the longer the metapath the greater the
instances of that metapath within the graph. As a final note, the use of approximation
algorithms, or more tangibly the tradeoff of some accuracy for a large performance boost,
is appropriate in this context. This conclusion is drawn from two generalizations: the
knowledge graph is inherently noisy, as it is generated using natural language processing
techniques on biomedical paper abstracts, and the primary use of SemNet is in hypothesis
generation. Both factors make the accuracy/speed tradeoff an allowable, and generally
preferable, possibility that might not be available in different contexts.

4.2. Mathematical Limitations

In Corollary 2, we provide a bound that demonstrated that it is sufficient to make
O
(

1
ε2 k ln

(
k

1−r

))
random walks in the randomized Pruned HeteSim algorithm. As illus-

trated by Table 5, the bound we achieved may, at times, result in a large number of required
walks, when considering realistic knowledge graphs and modest values for ε and r. We
acknowledged that the bound we achieved may be crude, especially in our frequent use
of the, generally loose, union bound. Hence, we leave open the possibility of substantial
improvement to both the constant we achieve (c(ε) ≤ 71) and the order with respect to the
various variables.

One possible area of improvement is in the order with respect to k. We conjecture that
the required number of walks is at least order k, thus leaving room for the possibility of the
true value to be between order k and k log k (inclusive). Considering the order with respect
to ε, we note that most standard general concentration inequalities necessitate O

(
1
ε2

)
. This

being said, the distribution we are considering is binomial. While the authors are not aware
of any stronger results for the binomial distribution, we are also not aware of any reason
why such a result could not exist.

We also note that to achieve Lemma 4, we utilize an error allocation scheme that
bounds large entries with error proportional to the value of the entry but bounds small
entries with a fixed bound. This is just one possible scheme which leaves open the possibility
of achieving tighter results using another, possibly more individualized, scheme.

4.3. Limitations and Future Directions

The knowledge graph used to test SemNet version 2 has substantially fewer edges
than the knowledge graph used in SemNet version 1, as seen by the reduced number
of metapaths between vertices of interest (see Tables 1 and 2). The new graph was built
to reduce the number of overly generic edges and redundant conclusions occasionally
seen in SemNet version 1; the new graph is, overall, both better performing and more
useful for hypothesis generation compared to the old graph. Future work will address this
limitation and give more accurate runtime comparisons by building a knowledge graph of
comparable size to that used in SemNet version 1, though this endeavor would mostly just
be a confirmatory effort to give more precise runtime improvements.

Though the new implementation has significantly reduced the runtime required to
enumerate metapaths, metapath enumeration remains a computational bottleneck. This
bottleneck is a barrier to HeteSim computations on longer metapaths; this work has made
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length 4 metapath analysis feasible, though anything greater is potentially still unattainable.
Since counting the number of paths between two specified nodes in a directed graph is
#P-complete [49], metapath enumeration is likely also a computationally hard problem.
To make further progress, future work will need to address this metapath enumeration
problem. One possible approach is to devise an algorithm for sampling metapaths under a
uniform (or other useful) probability distribution, perhaps using a Markov chain Monte
Carlo technique similar to the approach employed in [50]. If such an algorithm could be
devised, it could be used directly with the randomized aggregation scheme described in
Algorithm 7.

4.4. Related Work

In this section, SemNet version 2 (i.e., SemNet 2.0) is compared and contrasted to other
existing automated LBD tools.

4.4.1. Biomedical Knowledge Graphs

While a number of companies boast commercial biomedical knowledge bases, most
publicly available KBs are limited in scope and diversity of node types. Many of these
are created by aggregating specific, high-quality databases together. Databases in this
category include Hetio [51], a KG built for drug re-purposing containing 48 K, 2.2 M edges,
and 22 node types; OGB-BioKG from Open Graph Benchmark [52], a general-purpose
biomedical KG containing 93 K nodes, 5 M edges, 5 node types, and 51 edge types (most
of which are specific drug-drug interactions); DRKG [53] is a drug repositioning knowl-
edge graph for COVID-19 that combines entities/relations from 6 existing databases with
additional entity and relationship data extracted from open-source biomedical literature
on COVID-19.

Other biomedical KGs have been created by using natural language processing to
extract information from biomedical text. PubMed Knowledge Graph [54], which creates
a paper-centric knowledge graph by linking authors, entities, institutions, and funding
sources to research articles and connecting articles via citations. SemMedDB [8] contains
a approximately 100 M (subject, object, predicate) triples extracted from PubMed articles
from 124 node types and 58 relation types, each of which is linked to the article from
which it was taken. SemNet 2.0’s knowledge graph is derived from a processed version of
SemMedDB which removes links to papers and aggregates relation triples to more directly
identify the relationships between biological entities.

4.4.2. Related Algorithms

At its core, SemNet 2.0 is a framework for identifying relatedness among nodes in a
knowledge graph. This is similar to other knowledge base completion (KBC) algorithms,
which seek to identify missing edges between knowledge graph nodes. A large family of
knowledge base completion algorithms seek to infer missing edges by modeling entity
and relation representations as latent embeddings and learning these by encourage them
to satisfy certain geometric properties. For example, TransE treats each entity as a point
in Euclidean space and assumes that relations can be effectively modeled as translations
between entity embeddings, i.e., s + r ≈ t for source node s, target node t, and relation r.
A wide variety of other models operate on some variant of this assumption, substituting
translation by element-wise scaling [55], rotation in complex space [56], rotation in Quater-
nary space [57], or rotation and reflection in hyperbolic space [58]. An smaller, alternative
family of knowledge base completion literature focuses instead on inferring missing re-
lations by aggregating information either explicitly [59] or implicitly [60,61] encoded in
the (meta)paths between them. This approach is more desirable for biomedical KBs due
to the fact that relevant nodes and paths can be extracted from the graph to provide an
understandable explanation of the predictions. SemNet 2.0 is most similar to this family
of path-based KBC models but differs in that SemNet 2.0 computes a general measure of
relatedness instead of predicting the specific type of relation between KB entities.
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5. Conclusions

In conclusion, with novel biomedical research constantly being generated and com-
putational power ever increasing, literature-based discovery is here to stay. LBD is a field
that will only become more relevant as time goes on, but for it to achieve user adoption
at a large scale, tools and methods must be created that allow for efficient LBD to take
place. SemNet, a tool that was first developed in 2019, is a novel attempt at performing
LBD with an approach that, up to this point, has rarely been observed. SemNet departs
from existing attempts by being both domain agnostic and simple to use, two features
uncommon in current LBD systems. These features enable users of SemNet to quickly
navigate the comprehensive biomedical concept graph and begin generating ranked lists
of concepts that will ultimately facilitate new hypothesis generation. SemNet version 1
was the first iteration of SemNet, and it largely succeeded at being both an LBD tool and
a general-purpose starting point for essentially any biomedical investigation that relies,
in some capacity, on literature-based data. Through widespread, practical adoption, poten-
tial improvements for SemNet version 1 became apparent, particularly regarding runtime
and HeteSim score aggregation for source nodes. SemNet version 2 (i.e., SemNet 2.0)
addresses these problems in three predominant ways: an improved graph data structure,
improved HeteSim implementations, and improved HeteSim score aggregation. With these
advancements, SemNet 2.0 is a major step forward in improving the efficiency and efficacy
of interactive automated LBD tools.

SemNet 2.0 has been compiled into a Python package. This package, along with the
SemMedDB data required to build the biomedical concept graph, is open source. Detailed
documentation has been included with the package, all of which can be downloaded
on GitHub.
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Appendix A

Appendix A.1. Technical Lemmas

Lemma A1. For v ∈ Sk, 1√
k
≤ |v| ≤ 1.

https://github.com/pathology-dynamics/semnet-2
https://github.com/pathology-dynamics/semnet-2
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR.html
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Proof. By method of Lagrange Multipliers.

Lemma A2. Let δ > 0, α > 0 and 0 < β ≤ 1. Let v, w ∈ Sk and λ ∈ Ek(v, δ, α, β). We have that

|λ · v| ≤ δ

(
|v|2 + kβ2

4

)
and

∣∣∣∣λ · w
|w|

∣∣∣∣ ≤ |λ| ≤ δ
√

kβ2 + |v|2.

Proof. Assume vi has m entries less than α and these are the first m entries. Clearly, m ≤ k.
We see that

λ · v ≤
k

∑
i=1

λi · vi

≤
m

∑
i=1

βδ · vi +
k

∑
i=m+1

δ · v2
i

≤ δ
m

∑
i=1

vi(β− vi) + δ
k

∑
i=1
·v2

i

≤ δ|v|2 + δ
kβ2

4
.

We obtain the lower bound similarly. Clearly, m ≤ k. Thus, we also see that∣∣∣∣λ · w
|w|

∣∣∣∣ ≤ ∣∣∣∣|λ| · λ

|λ| ·
w
|w|

∣∣∣∣ ≤ |λ|
≤

√√√√ m

∑
i=1

(βδ)2 + δ2
k

∑
i=m+1

v2
i

≤ δ
√

kβ2 + |v|2.

Lemma A3. For v, λ ∈ Rk such that v, v + λ ∈ Sk,

||v + λ| − |v|| ≤ 2|λ · v|+ |λ|2

|v|+ 1√
k

.

Proof. We first see that

||v + λ| − |v|| = ||v + λ|+ |v|| · ||v + λ| − |v||
||v + λ|+ |v||

=

∣∣|v + λ|2 − |v|2
∣∣

||v + λ|+ |v||

≤
∣∣|v + λ|2 − |v|2

∣∣
|v|+ 1√

k

.

We now see that

|v + λ|2 = (v + λ) · (v + λ) = v · v + 2λ · v + λ · λ
= |v|2 + 2λ · v + |λ|2

|v + λ|2 − |v|2 ≤ 2|λ · v|+ |λ|2.
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Similarly, we get that |v|2 − |v + λ|2 ≤ 2|λ · v| + |λ|2. The desired result then fol-
lows.

Lemma A4. Let β ≤ 1. Let 0 < δ and α, β ≥ 0. For v ∈ Sk and λ ∈ Ek(v, δ, α, β),∣∣∣∣ (v + λ) · w
|v + λ||w| −

v · w
|v||w|

∣∣∣∣ ≤ δ

(
2 +

kβ2

2|v|2 +

√
k
|v|2 β2 + 1

)
+ δ2

(
kβ2

|v|2 + 1
)

.

Proof. We see that

(v + λ) · w
|v + λ||w| −

v · w
|v||w| =

(v + λ) · w
|v + λ||w| −

(v + λ) · w
|v||w| − λ · w

|v||w|

=
(v + λ) · w
|w|

(
1

|v + λ| −
1
|v|

)
− λ · w
|v||w|

=
(v + λ) · w
|v + λ||w| ·

|v| − |v + λ|
|v| − 1

|v| ·
(

λ · w
|w|

)
∣∣∣∣ (v + λ) · w
|v + λ||w| −

v · w
|v||w|

∣∣∣∣ ≤ 1
|v|

(
||v| − |v + λ||+

∣∣∣∣λ · w
|w|

∣∣∣∣)

≤
2δ
(
|v|2 + kβ2

4

)
+ δ2(kβ2 + |v|2

)
|v|2 + |v|√

k

+ δ

√
kβ2

|v|2 + 1

≤
δ
(

2 + kβ2

2|v|2
)
+ δ2

(
kβ2

|v|2 + 1
)

1 + 1
|v|
√

k

+ δ

√
kβ2

|v|2 + 1.

The above inequality follows from
∣∣∣ v·w
|w||v|

∣∣∣ ≤ 1, Lemmas A2 and A3.

Lemma A5. Fix ε. Let β ≤ 1 and α ≥ 0. For v ∈ Sk and λ ∈ Ek(v, α, δ, δ′). Let

b =
2 + kβ2

2|v|2

1 + 1
|v|
√

k

+

√
kβ2

|v|2 + 1 and a =

kβ2

|v|2 + 1

1 + 1
|v|
√

k

.

For δ ≤ ε
b+
√

b2+2aε
, ∣∣∣∣ (v + λ) · w

|v + λ||w| −
v · w
|v||w|

∣∣∣∣ ≤ ε

2
.

Proof. The result follows from Lemma A4.

Appendix A.2. Proofs and Theorems

Proof. For ε1, ε2 > 0 such that ε1 + ε2 = ε, we see that

Pr
(
|R̂(s, t)− R(s, t)| ≥ ε

)
≤ Pr

(∣∣R̂(s, t)− R̃(s, t)
∣∣+ ∣∣R̃(s, t)− R(s, t)

∣∣ ≥ ε
)

Pr
(
|R̂(s, t)− R(s, t)| ≤ ε

)
≥ Pr

(∣∣R̂(s, t)− R̃(s, t)
∣∣+ ∣∣R̃(s, t)− R(s, t)

∣∣ ≤ ε
)

≥ Pr
(∣∣R̂(s, t)− R̃(s, t)

∣∣ ≤ ε1
⋂∣∣R̃(s, t)− R(s, t)

∣∣ ≤ ε2

)
Pr
(
|R̂(s, t)− R(s, t)| ≥ ε

)
≤ Pr

(∣∣R̂(s, t)− R̃(s, t)
∣∣ ≥ ε1

⋃∣∣R̃(s, t)− R(s, t)
∣∣ ≥ ε2

)
≤ Pr

(∣∣R̂(s, t)− R̃(s, t)
∣∣ ≥ ε1

)
+ Pr

(∣∣R̃(s, t)− R(s, t)
∣∣ ≥ ε2

)
.
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Recall from Lemma 6 that

Pr
(∣∣R(s, t)− R̃(s, t)

∣∣ ≥ ε2
)
≤ 2 exp

(
−2m · ε2

2

)
.

Furthermore, from Lemma 4,

Pr
(∣∣R̂(s, t)− R̃(s, t)

∣∣ ≥ ε1
)
= Pr

(∣∣∣∣∣ 1
m

m

∑
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PHS(s, t|Pi)−
1
m

m
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(
1
m

m

∑
i=1

∣∣∣PHS(s, t|Pi)− P̃HS(s, t|Pi)
∣∣∣ ≥ ε1

)

Pr
(∣∣R̂(s, t)− R̃(s, t)

∣∣ ≤ ε1
)
≥ Pr

(
1
m

m

∑
i=1

∣∣∣PHS(s, t|Pi)− P̃HS(s, t|Pi)
∣∣∣ ≤ ε1

)

≥ Pr

(
m⋂

i=1

∣∣∣PHS(s, t|Pi)− P̃HS(s, t|Pi)
∣∣∣ ≤ ε1

)

Pr
(∣∣R̂(s, t)− R̃(s, t)

∣∣ ≥ ε1
)
≤ Pr

(
m⋃

i=1

∣∣∣PHS(s, t|Pi)− P̃HS(s, t|Pi)
∣∣∣ ≥ ε1

)

≤
m

∑
i=1

Pr
(∣∣∣PHS(s, t|Pi)− P̃HS(s, t|Pi)

∣∣∣ ≥ ε1

)
≤

m

∑
i=1

4k(s, t|Pi) exp

(
−n(s, t|Pi)

k(s, t|Pi)
·

ε2
1

c(ε1)

)
.

Hence, for all (s, t) ∈ S× T,

Pr
(
|R̂(s, t)− R(s, t)| ≥ ε

)
≤ 2 exp

(
−2mε2

2

)
+

m

∑
i=1

4k(s, t|Pi) exp

(
−n(s, t|Pi)

k(s, t|Pi)
·

ε2
1

c(ε1)

)

Pr

 ⋃
(s,t)∈S×T

|R̂(s, t)− R(s, t)| ≥ ε

 ≤ ∑
(s,t)∈S×T

Pr
(
|R̂(s, t)− R(s, t)| ≥ ε

)
≤ 2|S||T| exp

(
−2m · ε2

2

)
+ ∑

(s,t)∈S×T

m

∑
i=1

4k(s, t|Pi) exp

(
−n(s, t|Pi)

k(s, t|Pi)
·

ε2
1

c(ε1)

)
.

Fix r1, r2 > 0 such that r1 + r2 = r. We now see that for

n(s, t|Pi)

=
c(ε1) · k(s, t|Pi)

ε2
1

ln

 1
r1

∑
(s,t)∈S×T

m

∑
i=1

4k(s, t|Pi)


≤ c(ε1) · k(s, t|Pi)

ε2
1

ln
(

4m|S||T|kmax

r1

)
and

m =
1

2ε2
2

ln
(

2|S||T|
r2

)
,
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we have

Pr

 ⋃
(s,t)∈S×T

|R(s, t)− R̃(s, t)| ≥ ε

 ≤ r.

We now notice that the total number of walks taken to run the algorithm (ignoring
dead ends) is at most m ·max{n(s, t|Pi)} = mn, where n = c(ε1)·kmax

ε2
1

ln
(

4m|S||T|kmax
r1

)
.

We optimize to minimize nm by setting ε1 = ε
2 and r1 = r · 2m0kmax

2m0kmax+1 , where m0 =

1
2ε2

2
ln
(

2|S||T|
r

)
is some approximation for m. (We do not claim that these choices are

optimal.)

Appendix B

Appendix B.1. Analysis of Just-in-Time (JIT) Dead-End Removal

In our given Pruned HeteSim algorithm, whenever a dead-end node is found, it is
removed from the graph for all future walks. We model this as follows. Assume there are
m ∈ N dead-end nodes. Let w ∈ R≥0 be the maximum probability of reaching any single
dead end. Thus, the probability of reaching a dead end is at most mw. Let α ∈ R≥0 be the
probability of any given walk not ending in a dead end and let β = mw + α.

We now analyse the number of non-dead-end walks we expect to take by the time we
hit some fixed number of dead ends and the number of dead ends we expect to take by the
time we hit some fixed number of non-dead ends.

In the JIT algorithm, whenever we hit a dead end, the probability of hitting a dead
end in the future is affect as follows. Let X1, · · · ∈ {0, 1}, where Xi = 1 if the ith walk is not
a dead end and Xi = 0 otherwise. For all i,

Pr(Xi = 1) =
α

β− wYi
,

where Yi is the number of Xj = 0 for j < i. (Thus, treating w as the weight of each dead
end and α as the weight on non-dead ends, each time we hit a dead end, the weight of the
dead end hit is lost as we can no longer get to that dead end. This means that overtime the
probability of hitting a dead end decreases.)

Let Si be the number of Xj = 1 before the i-th Xj = 0. Let Ti be the number of Xj = 0
before the i-th Xj = 1.

Theorem A1. For all i ∈ N,

Si =
i−1

∑
j=0

Zj − i,

where Zj is geometrically distributed with parameter (m−j)w
β−wj .

Proof. Notice that after the kth Xj = 0, the probability of Xj = 1 is (m−k)w
β−wk (the probability

of Xj = 0 after that point). Between the k-th Xj = 0 and (k + 1)-th Xj = 0, this probability
is fixed. Thus, the number of Xj = 1 between the k-th Xj = 0 and (k + 1)-th Xj = 0 is geo-

metrically distributed with parameter (m−k)w
β−wk . (We subtract i to not count the Xj = 0).

Theorem A2.

E(Si) =
α

w

i−1

∑
j=0

1
m− j
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and

Var(Si) =
α

w2

i−1

∑
j=0

α + w(m− j)
(m− j)2 .

Proof. Follows from linearity of expectation and standard results about the geometric
distribution.

Remark A1. We can obtain a bound of the deviation from the mean using Chebyshev’s inequality.

Lemma A6. For i ≥ 2 and ki−1 ≤ ki ≤ m,

Pr(Ti = ki|Ti−1 = ki−1) =
α

β− wki
·

ki−1

∏
t=ki−1

(m− t)w
β− tw

and

Pr(T1 = k1) =
α

β− wk1
·

k1−1

∏
t=0

(m− t)w
β− tw

.

Proof. The distribution is similar to a geometric distribution with the change that for each
failure the probability of success changes.

We now see that

Pr(Tn = kn, · · · , T1 = k1) = Pr(T1 = k1)
n

∏
i=2

Pr(Ti = ki|Ti−1 = ki−1)

= αn

(
n

∏
i=1

1
β− wki

)
·
(

kn−1

∏
t=0

(m− t)w
β− tw

)

Pr(Tn = kn) =

(
α

β

)n
(

kn−1

∏
t=0

(m− t)w
β− tw

)
kn

∑
kn−1=0

· · ·
k2

∑
k1=0

(
n

∏
i=1

1
1− w

β ki

)
.

Lemma A7. For all n ≥ 1,

kn

∑
kn−1=0

· · ·
k2

∑
k1=0

(
n

∏
i=1

1
1− w

β ki

)
≤ (−1)n−1

(n− 1)!

(
β

w

)n−1 ln
(

1− w
β (kn + n− 1)

)n−1

1− w
β kn

.

Proof. We note that for increasing f ,

∫ b

a−1
f (x) dx ≤

b

∑
k=a

f (k) ≤
∫ b+1

a
f (x) dx.

We prove this result inductively. Assume the result holds for n = m. For the upper
bound, we now see that
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km+1

∑
kn−1=0

· · ·
k2

∑
k1=0

(
m+1

∏
i=1

1
1− w

β ki

)

=
1

1− w
β km+1

km+1

∑
km=0

(
km

∑
km−1=0

· · ·
k2

∑
k1=0

(
m

∏
i=1

1
1− w

β ki

))

≤ 1
1− w

β km+1
· 1
(m− 1)!

(
β

w

)m−1 km+1

∑
km=0

(−1)m−1 ln
(

1− w
β (km + m− 1)

)m−1

1− w
β km

.

We note that [
− ln

(
1− w

β (km + m− 1)
)]m−1

1− w
β km

is increasing as a function in km and positive for km ≥ 0 for all m ∈ N. Hence,

km+1

∑
kn−1=0

· · ·
k2

∑
k1=0

(
m+1

∏
i=1

1
1− w

β ki

)

≤ 1
1− w

β km+1
· (−1)m−1

(m− 1)!

(
β

w

)m−1 ∫ km+1+1

0

ln
(

1− w
β (x + m− 1)

)m−1

1− w
β x

dx

≤ 1
1− w

β km+1
· (−1)m−1

(m− 1)!

(
β

w

)m−1 ∫ km+1+1

0

ln
(

1− w
β (x + m− 1)

)m−1

1− w
β (x + m− 1)

dx

≤ (−1)m

m!

(
β

w

)m
[
ln
(

1− w
β (km+1 + m)

)m
− ln

(
1− w

β (m− 1)
)m]

1− w
β km+1

≤ (−1)m

m!

(
β

w

)m ln
(

1− w
β (km+1 + m)

)m

1− w
β km+1

.

Theorem A3.

Pr(Tn = kn) ≤
( α

w

)n
(

kn−1

∏
t=0

(m− t)w
β− tw

)
(−1)n−1

(n− 1)!
·

ln
(

1− w
β (kn + n− 1)

)n−1

β
w − kn

.

Proof. Follows from Lemma A7.
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