THE LARGE TIME PROFILE FOR HAMILTON-JACOBI-BELLMAN
EQUATIONS

DIOGO A. GOMES, HIROYOSHI MITAKE, AND HUNG V. TRAN

ABSTRACT. Here, we study the large-time limit of viscosity solutions of the Cauchy
problem for second-order Hamilton—Jacobi-Bellman equations with convex Hamilto-
nians in the torus. This large-time limit solves the corresponding stationary problem,
sometimes called the ergodic problem. This problem, however, has multiple viscosity
solutions and, thus, a key question is which of these solutions is selected by the limit.
Here, we provide a representation for the viscosity solution to the Cauchy problem
in terms of generalized holonomic measures. Then, we use this representation to
characterize the large-time limit in terms of the initial data and generalized Mather
measures. In addition, we establish various results on generalized Mather measures
and duality theorems that are of independent interest.

1. INTRODUCTION

Under a broad range of conditions, as time goes to infinity, viscosity solutions of the
Cauchy problem for Hamilton—Jacobi—Bellman equations with convex Hamiltonians
converge to stationary solutions. In the last two decades, this matter was investigated
in detail. For first-order Hamilton—Jacobi equations, see, for example, [3, 13, 16, 24, 33]
and references therein. For second-order Hamilton—Jacobi-Bellman equations, the
large-time convergence was studied in the non-degenerate case in [4], and in the general
(possibly degenerate) case in [7, 28]. However, the stationary problem may have multi-
ple viscosity solutions and, thus, a natural question is which of these viscosity solutions
is selected. Here, in Theorem 1.2, we answer this question by giving a characterization
of the limit in terms of generalized Mather measures.

More precisely, we study the large time behavior of the solutions of the following
problem.

Problem 1. Let T" = R™/Z" be the flat n-dimensional torus. Consider a possibly
degenerate diffusion coefficient, a : T" — [0, 00). Fiz a Hamiltonian H : T" x R" — R,
and continuous initial data, ug : T" — R. Find a (viscosity) solution, u : T" x [0, 00) —
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R, to the Hamilton—Jacobi—Bellman equation
u — a(z)Au+ H(z,Du) =0 in T" x (0, 00), (1.1)

where Du and Au, respectively, denote the spatial gradient and Laplacian of u, and
with the initial data

u(z,0) = ug(x) on T".

Here, we always work with viscosity solutions, and, thus, the term “viscosity” is
omitted henceforth.

Our goal is to study the large-time behavior of the solution of Problem 1 and provide
a characterization of the asymptotic profile of u(z,t) as t — oo. For that, we work
under the following assumptions.

Assumption 1. The functions ug, a, and H are of class C?.
Assumption 2. For every x € T, D2 H(x,p) > 0 for all (x,p) € T" x R".

Assumption 3. There exist m > 1 and Cy > 0 such that, for all (z,p) € T" x R",

1" _ ¢y < Hiz,p) < Collpm + 1),

Co
|D.H(x,p)| < Co(1+ |p|™),
|DpH (z,p)| < Co(1+ [p|™).

Because of the strict convexity in Assumption 2 and the growth conditions in As-
sumption 3, the Lagrangian,

L(x,q) = sup (p- ¢ — H(z,p)), (1.2)

peER™
is finite for all (z,q) € T™ x R™. Moreover, by increasing Cj, if necessary, we have
% — Cy < L(z,9) < Co(lg)™ +1) for all (z,q) € T" x R",
0
where
1 1

—+—=1 (1.3)

Under Assumptions 1-3, Problem 1 has a unique Lipschitz solution (see [2, 33] and
the references therein). Furthermore, as established in [7, Theorem 1.1], if Assumptions
1-3 hold, there exist (ux,c) € Lip (T™) x R such that

u(+,t) + et = uy  uniformly on T" as t — oo. (1.4)
Moreover, (u, ¢) solves (in the viscosity sense) the following ergodic problem.
Problem 2. Under the setting of Problem 1, find (v,c) € Lip (T™) x R such that
—a(z)Av+ H(z,Dv)=c inT". (1.5)
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The constant ¢ in Problem 2, the ergodic constant, is uniquely determined by H
and a under Assumptions 1-3 (see [33, Theorem 4.5, Proposition 4.8] for instance).
However, because the operator on the left-hand side of (1.5) is not strictly monotone in
v, Problem 2 may have multiple solutions even up to additive constants as the examples
in [33, Chapter 6] illustrate. Thus, a key question is which solution is selected by the
large-time limit. Here, we answer this question and give a representation formula for
the limit function u., that highlights the dependence on the initial data w,.

Remark 1. By adding a constant to H, we can assume that the ergodic constant in
Problem 2 vanishes, that is, ¢ = 0. Therefore, we always assume that ¢ = 0 henceforth.

The selection problem, that is, to characterize which of the solutions of Problem
2 is selected by the limit t — oo, was first addressed for first-order Hamilton—Jacobi
equations in [13, Theorem 3.1]. Moreover, the last two authors of the present paper
gave an elementary proof of that selection result in [35, Theorem 1.3]. These results
characterize u,, in the first-order case. If @ > 0 on T", Problem 2 has a unique
solution (up to additive constants), see, for example, [4, 20]. Thus, in this case, the
selection problem is simple since only the additive constant needs to be determined.
However, prior to this work, there was no characterization of the limit for the general
case where a can degenerate. In this case, uniqueness for Problem 2 may not hold
and the techniques for first-order equations that use deterministic trajectories do not
apply. The present paper closes a key gap in the understanding of the large-time limit
of solutions of Problem 1 by establishing a representation result for u., in terms of
generalized Mather measures and the initial data.

1.1. Main results on representation formulas and limiting profiles. A holo-
nomic measure on T" x R™ is a probability measure, u € P(T™ x R™), that satisfies

/ q-Do(z)du(z,q) =0
T xR"

for any ¢ € C'(T"). In Aubry-Mather theory, the set of holonomic measures is of
paramount importance as these measures generalize closed curves. These measures
play a critical role in understanding Lagrangian dynamics and viscosity solutions of
first-order Hamilton-Jacobi equations.

Generalized Mather measures were introduced in the setting of the stochastic Mather
problem in [20] and then further studied for fully nonlinear elliptic equations in [21].
Later, these measures were studied in different contexts and used to study asymptotic
problems in [8, 22, 34, 35] and [25].

Here, we define a class of generalized holonomic measures that are suitable for the
study of time-dependent problems. Let m be the exponent in Assumption 3 and m/ its
conjugate exponent as in (1.3). Fix ¢ with 1 < { < m’. Let to,t; € R with 0 < ¢y < ¢;.
Let R(T™ x R™ X [to, t1]) be the set of all Radon measures on T™ x R™ x [ty,#;], and
RT(T" xR™ X [ty, t1]) be the set of all non-negative Radon measures on T" xR" X [to, t1].
Let P(T™) and P(T"™ x R™) be the set of probability measures on T" and T" x R™,
respectively.
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For vy, 11 € P(T™), H(vo, v1; to, t1) is the set of all v € RT(T" xR™ X [to, t1]) satisfying

/ lg|° dvy(z,q, s) < 00
TnXR"X[to,tﬂ

and

/ ((25) — al)Ap(205) + 0 Dl 5)) dh(.0.5)
T™ xXR™ X [t0,t1]

= [ eemin) - [ et dn)
for all ¢ € C?(T™ X [tg,t1]). Moreover, we set

H(Vl;t(),tl) = U H(Vo,l/l;to,tl).
voEP(T™)

Fix any v; € P(T"). It is worth emphasizing that while we do not know that
H (v, vi5to,t1) # O for each vy € P(T™), the set H(vy;to,t1) is always non-empty
as shown in Corollary 2.3. For v € H(vy;to,t1), we denote by v? the unique element
in P(T") such that v € H (v, vy;to, t1).

In Section 2, we use the measures in H(v1; o, t1) to obtain the representation formula
for the solutions of Problem 1. This formula generalizes the optimal control represen-
tation for first-order Hamilton—Jacobi equations and the stochastic optimal control
representation for second-order Hamilton-Jacobi equations (see [14, 31] for example).

Theorem 1.1. Let u solve Problem 1. Suppose that Assumptions 1-3 hold. Then, for
any v € P(T") and t > 0, we have

[ it = ne ] e Ko + [ o).

YEH(;0,0)

We believe Theorem 1.1 is new in the literature for possibly degenerate second-order
equations. To understand the possible limits as ¢t — oo of the solutions of Problem 1,
we rely on a characterization of the solutions of Problem 2 established in [35]. This
characterization uses generalized Mather measures. As in the time-dependent case, we
begin by defining the set of stationary generalized holonomic measures. Let

H = {u € P(T" xR") : / lql° du(z, q) < o0,

T™ xR™
/ (—a(2)Ap(z) +q- Dp(z)) du(z,q) =0 for all p € 02('11'”)}.
T xR™
We consider the variational problem
inf L(z,q) du(z, q). (1.6)
HEH JnxRr
A generalized Mather measure is a solution of the minimization problem in (1.6). We

denote by M the set of all generalized Mather measures. Moreover, the set of all
generalized projected Mather measures, M, is the set of all measures in T" which are
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the projections to T™ of generalized Mather measures; that is, v € M if there exists

p € M such that for all ¢ € C(T™),
/ p(x)dv(z) = / p(x)dp(z, q).

Remark 2. Since we normalize that the ergodic constant is 0 as noted in Remark 1,
we have

in / Lz, q) du(z.q) =0, (L.7)
T xR™

HEH
as shown in [34, Propositions 2.2 and 2.3]. See also Proposition B.2 in Appendix B for
the general diffusion matrix case.

Before stating our main results, we recall a uniqueness result for Problem 2. Let v,
and vy be two solutions to Problem 2 with

/Ul(fﬂ)dl/:/ vo(x)drv  for all v € M.

Then, according to [35, Theorem 1.1], we have
V1 = V2 on T".

Therefore, to characterize us, uniquely, it is enough to specify the integral of u., with
respect to generalized projected Mather measures. This characterization is given in
Theorem 1.2 below. The corresponding proof is presented in Section 4.

Theorem 1.2. Suppose that Assumptions 1-3 hold. Let u solve Problem 1 and us, be
the large time limit of u as in (1.4). Then, for any v € M, we have

/nuoo(z)dl/(z): inf [d(yo,y)+ /nug(z)duo(z)}, (1.8)

V()E'P(']T”)
where for vy, vy € P(T™), d(vo, 1) is the generalized Mané critical potential from vy to
vy given by

d(vy, 1) == inf / L(x,q)dy(x,q,s). (1.9)
T xR"™ x[0,t]

YEH (vo,v1;0,t)
t>0

We also notice that Theorem 1.2 answers the open question addressed in [33, Section
5.7, (iv)]. We refer to [7, 33, 34, 35] for earlier developments.

Remark 3. The assumption that the initial data, ug, is C? is not critical as by
approximation, we can solve Problem 1 with continuous initial data, and prove the
large time convergence in (1.4). The regularity of @ and H is more delicate as several
estimates require quantitative bounds for their derivatives.

Remark 4. We choose to consider (1.1) with a specific diffusion matrix A(z) = a(z)I,
for x € T", where [, in the identity matrix of size n, to simplify the presentation.
However, the results in Theorems 1.1-1.2 can be generalized for more general diffusion
matrices. The precise statements and proofs are more delicate and are discussed in
Theorems B.1 and B.3 in Appendix B.
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1.2. Duality results. For ¢t > 0, let S; : C(T™) — C(T") be the solution operator for
Problem 1; that is, Syug(-) = u(-,t), where u solves Problem 1 with initial data ug. We
assume the following compactness property for S;.

Assumption 4. Let Xy := {up € C(T™) : mintn ug = 0}. For any t > 0, Sy(Xy) is
compact in C(T™).

The map S; often enjoys the compactness in the preceding assumption. Two im-
portant cases are examined in Theorem 1.6 below. Under Assumption 4, we have the

following remarkable uniform convergence property that is proved at the end of Section
4.

Proposition 1.3. Consider the setting of Problem 1 and suppose that Assumptions
1-4 hold. Given ¢ > 0, there exists T > 0 such that for any initial data vy € C*(T"),
the corresponding solution, u, to Problem 1 satisfies

for allt > T, where
Uso(T) = tlggo w(z,t)  forx € T".

The study of Hamilton—Jacobi-Bellman equations using duality theory can be traced
back to [17, 18, 27]. In the context of Aubry-Mather theory, the elliptic case was con-
sidered in [20], the fully nonlinear case in [21], and the parabolic case in [23]. In a
sequence of works [29, 30, 32|, various duality theorems associated with Hamilton—
Jacobi-Bellman equations (1.1) were studied in the non-degenerate case. The connec-
tion between Aubry-Mather theory and optimal transport was explored in [6]. We also
refer to [14, 31] for recent work concerning stochastic optimal transport.

For t > 0, let hy : P(T") x P(T") = RU {+o0} be

inf / L(z,q)dy if H(vg,v1;0,t) # 10,
T xR" % [0,t]

ht(Vo, Vl) = yEH (vo,v1;0,t)
+00 if H(vg,v1;0,t) =10

for vy, 1 € P(T™). In Section 5, we apply the Legendre-Fenchel-Rockafellar theorem
to obtain representation formulas for h; and d.

Theorem 1.4. Consider the setting of Problem 1 and suppose that Assumptions 1-3
hold. Suppose that hy(vg, 1) < 400 for given t > 0 and vy, 1, € P(T"). Then,

ha(vo, 1) = sup M w(z,t) din(2) — / w(=,0) dyo(z)] | (1.10)

we€
where
E :={w € Lip(T" x [0,t]) : w is a viscosity solution to (1.1)}.

The preceding result extends the duality formula derived in [36] for the represen-
tation of the 2-Wasserstein distance using the Benamou-Brenier dynamic formulation
of optimal transport [5]. In the non-degenerate setting, a version of Theorem 1.4 was



THE LARGE TIME PROFILE 7

proven in [29, 30, 32]. For first-order equations, see [6]. The degenerate setting ad-
dressed here is substantially more complex, as the proof of Theorem 1.4 requires a
delicate approximation argument.

Under the compactness assumption, Assumption 4, we obtain the following duality
result for d restricted to the projected Mather set, M.

Theorem 1.5. Consider the setting of Problem 1 and suppose that Assumptions 1-4
hold. Let vy,vy € M and suppose that d(vy, 1) < co. Then,

d(vo, 1) = sup UT w(z) dn (2) — / w(2) duo(z)] ,

weS
where
S :={w € Lip (T") : w is a viscosity solution to (1.5)}. (1.11)

Finally, we discuss the compactness assumption, Assumption 4.

Theorem 1.6. Consider the setting of Problem 1 and suppose that Assumptions 1-3
hold. Then Assumption 4 holds if a =0 or m > 2.

It is still an open problem in the literature of whether Assumption 4 holds or not in
case m € (1,2].

The paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.1. In Section 3, we discuss the properties of generalized holonomic measures. Next,
in Section 4, we introduce the generalized Peierls barrier and Aubry set and prove
Theorem 1.2. Section 5 is devoted to the proof of Theorems 1.4 and 1.5. In Section 6,
we discuss Assumption 4, and give the proof of Theorem 1.6. In Appendix A, we discuss
the approximation of viscosity solutions of (1.1) by C%-subsolutions of an approximate
equation. Finally, in Appendix B, we consider the Hamilton—Jacobi-Bellman equation
with a general diffusion matrix, and generalize Theorems 1.1 and 1.2 for this case.

Acknowledgements. We would like to thank Hitoshi Ishii for his suggestions on
the approximations of viscosity solutions and subsolutions in Appendix B. We are
grateful to Toshio Mikami for the discussions on Theorem 1.1 and for giving us relevant
references on the duality result in Theorem 1.4.

2. REPRESENTATION FORMULA FOR SOLUTIONS

In this section, we prove Theorem 1.1, which gives a variational representation for-
mula for solutions to Problem 1 in terms of generalized holonomic measures. We begin
by establishing a lower bound for this variational formula.

Lemma 2.1. Suppose that Assumptions 1-8 hold. Let u solve Problem 1. Then, for
allvy € P(T") and t > 0,

[ aGane < e ey KB )+ [ w0ar ).

YEH(v1;0,t)
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Proof. Let u solve Problem 1. Because Assumptions 1-3 hold, u is globally Lipschitz
continuous on T” x [0, 00) (see [2, Proposition 3.5], [33, Proposition 4.15] for instance).

Fix smooth symmetric standard mollifiers, § € C2°(R", [0, 00)) and p € C°(R, [0, c0)).
More precisely, suppf C B(0,1) C R™, suppp C [~1,1] C R, 8(z) = 0(—x), p(s) =
p(—s), and [|0]|L1@ny = ||pllor®) = 1. For a > 0, let 0%(z) = o "0(a 'x) for x € R,
and p®(t) = a 'p(a~'t) for t € R. Let u® be the function given by (A.1); that is,

u*(z,t) = /000 p(s) /n 0“(y)u(z —y,t — s)dyds for (z,t) € T" X [, 0).

Set
(z,t) :=u*(z,t +a) forall (z,t) € T" x [0,00).
We notice @ is a C*(T" x [0, 00)) subsolution to (A.2); that is,

iy — a(x)Ai 4+ H(x, Di) < Ca'?  on T" x [0, 00)
as stated in Proposition A.1 in Appendix A.
Fix any v € H(v1;0,t). By the definition of H(v4;0,t),

/T" R [0,1] (@(2, 5) — a(2)Au(z, 3) + ¢~ Du(z, 5)) dy(z,4, 5)

- / (2, 1) din () — / ii(=,0) dv(2).
Because of the Legendre transform definition in (1.2),
q- Da<za 8) < L(Z7 Q) + H(Za D&(Z’, 8))

Accordingly, we have
/ u(z,t) dvy — / u(z,0) dv(z)
= [ - a@)u+ g Di) dyfzg.)
T xR™ X [0,t]
< / (ﬂt—(I(Z)ATE—FH(Z,DQNL)—FL(Z,(])) d7(27qu>
T xR™ x[0,¢]

<[ L(z,q)dy(2,q,5) + Call?t.
T xR™ X [0,t]
Sending o — 0, we obtain
/ u(z,t) dyy < / L(z,q)dvy(z,q,s) +/ u(z,0) dv(z).
n T xR™ X [0,t] n

Because v € H(vy;0,t) is arbitrary, the statement follows. O

Remark 5. If a > 0 on T", that is (1.1) is uniformly parabolic, the solution to
Problem 1, u, is in C*(T™ x [0,00)). In this case, in the preceding proof, we do not
need to use u®, the smoothed version of u. However, if a degenerates, we expect only
Lipschitz regularity for u. Therefore, we need to build C? approximate subsolutions.
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This construction is rather technical and is described in Proposition A.1 in Appendix
A. The general diffusion case, is examined in Proposition B.12 in Appendix B.

To prove the opposite bound, we consider the following regularized version of Prob-
lem 1.

Problem 3. In the setting of Problem 1 and for e > 0, find u® : T" x [0,00) — R
solving

{uf — (a(x) +e)Au® + H(x, Du®) =0 in T™ x (0, 00), 2.1)

u(z,0) = up(x) on T™.

If Assumptions 1-3 hold, Problem 3 has a unique solution, u® € C%(T" x [0, +00)) due
to the added viscous term (see [1, 19]). Moreover, u° is Lipschitz continuous uniformly
in e € (0,1). Further, by standard viscosity solution theory, u — w locally uniformly
on T" x [0,00), as € — 0, where u solves Problem 1.

Now, we use the nonlinear adjoint method, see [15, 37|, to construct measures that
satisfy an approximated holonomy condition.

Lemma 2.2. Fore > 0, let u® solve Problem 3. Then, for any vy € P(T™), there exist
a Radon measure v¢ € R(T™ x R"™ x (tg,t1)) and a probability measure v§ € P(T™) such
that

/ (l2:5) — a(DAp(205) = eBpl2,5) + 4+ Dplz.s)) o (2.0.9)
T xXR"™ X [to,t1]

_ / o ty) din(2) — / o=, o) dve(2) (2.2)

for all p € C*(T™ X [to, t1]), and v°-almost everywhere, ¢ = Dy H (z, Du).
Proof. For ¢ € C%(T" X [ty, t1]), the linearization of (2.1) around u¢ is
Lo[g] = ¢ + DpH(z, Du’) - Dy — (a(z) + ) Ap.

Accordingly, the corresponding adjoint equation is the Fokker-Planck equation

(2.3)

of(x,t1) = 1y on T".

{—Uf — A(a(x)o®) — div(D,H(z, Du®)o®) = eAo*® in T x (to, 1),

By standard properties of the Fokker-Planck equation (see [19]),
o°>0onT" X [ty,t;) and / o (z,t)de =1 for all t € [tg, t1].

Next, for each ¢ > 0 and t € [to, 1], let 55 € P(T™ x R") be the probability measure
determined by

| vpwyr e = [ wlepdsites
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for all ¢ € C.(T™ x R™). For t € [ty, t1], let vf € P(T™ x R™) be the pullback of 55 by
the map ®(x,q) = (x, D,L(x,q)), that is,

/ (e, p) B (x,p) = / (e, DyL(z, ) dri (2, 0)
T xR™ T xR"

for all ¢ € C.(T* x R"). Note that ® is invertible as D L > 0. Hence, 7; is well
defined.
Define the measures 3°,7° € R(T™ x R™ x [to,t1]) by

/ fdpe = / [ steodsa,

T xR"™ X [to,t1] nxR”

/ faye = / [ seoai
T xR™ X [to,t1] " x R"

for any f € C.(T™ x R™ x [to, t1]).
Multiplying the first equation in (2.3) by an arbitrary function, ¢ € C?(T™ X [to, t1]),
and integrating on T", by using the integration by parts, we gather

5/ o Apdr = — / oy dx +/ (—a(z)Ap + D,H(x, Du®) - Dp)o® dx

and

B ‘/ (p0%)s da + / (0 — a(x)Ap + D,H(z, D) - D)o da.

Next, integrating on [to, t1], we deduce the identity

t1
8/ / UEAQOdSL’dt:éT/ Apdy(z,q,t)
to n T XR"™ X [to,t1]
t1 t1
= - / / (po®)e dadt + / / (1 — a(x)Ap + D,H(z, Duf) - Dp)o® dudt
n to n

to

- _ (-, t1)0 (- t) dr — [ (-, t)o (-, ty) da
. /. |
+/t:1 ARXRn(wt—a(x)AsoquDso) dv; (z,q)

= ([ etman— [ ot

+ / (pr —a(x)Ap + q - Do) dy*(z,q,1),
TnXR"X[tQ tﬂ

where dv§ := 0°(z,t9) dx, which implies the desired result. In the above, we used the
fact that D, H(x, D,L(z,q)) = q. O

Corollary 2.3. Under Assumptions 1-3, for all 0 < ty < t; and v, € P(T"),
%(Vl;to,tl) 7é @ (24)
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Proof. Let v§ € P(T") and v € R(T™ x R™ x [to, t1]) be the measures given by Lemma
2.2. Because u® is Lipschitz in x, there exists C' > 0, which is independent of €, such
that

| Duf (-, t) || poo(rmy < C

for all ¢ € [to,t;]. Therefore, there exists a sequence {¢;} — 0, 1y, € P(T"), and
v € R(T" x R™ X [to, t1]) such that

vy) =1 and 49—~ as j— oo, (2.5)

weakly in P(T") and R(T"™ x R™ X [tg, t1]), respectively. Thus, using (2.2), we conclude
that v € H(vo, v1;to, t1), which implies (2.4). O

Finally, we use Lemma 2.2 to establish the opposite inequality to the one in Lemma
2.1.

Lemma 2.4. For any v € P(T") and t > 0, we have

RCIZCE { / L)) + | uo<z>dw<z>}.
n YEH(V0,8) [ J1nxRrx[0,4] ”

Proof. For s € [0,1], let ¢ be the measure constructed in the proof of Lemma 2.2 for
to = 0 and t; = t. By the definition of Legendre transform in (1.2), we have

L(z,q) = DpH(z, DyL(z,q)) Dy L(z, q) — H(z, Dy L(z, q)).

Therefore,
| Leadia)
T xR"™

— /T Rn(DpH(z, DyL(z,q)) - DyL(z,q) — H(z, DyL(z,q))) dv:(2, q)

/]1‘" Rn(D”H(Z’p) -p— H(z,p)) dBi(z,p)
= /n(DpH<:E,Du€) - Dut — H(l‘,Due))as(x,s) dr

for all s € [0,t]. Moreover, integrating by parts and using the adjoint equation, (2.3),
and (2.1), we obtain

/ (D,H(x, Du®) - Du® — H(z, Du®))o® dx
—div(DyH (z, Du)o®)u® — H(z, Du)o® dx

(uo®)y dz.

/

= / (0] + eAo® + Aac®))u® + (u; — eAu® — aAu®)o® dx
T
/
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Integrating on [0, ¢] yields

/ L(z,q) dv*(z,q, s / / L(z, q) dv;(z, q)ds
T7 xR"™ X [0,t] n yR™

_ / (2, 8) dy — / uo() duv.

Taking subsequences {75} and {;’} as in (2.5) yields

/n u(z,t)dv(z) = /’H‘”xR"x[O,t] L(z,q)dy(z,q,s)+ /n up(2) dg(2).

Because v € H(vp, v;0,t), we obtain the inequality claimed in the statement. 0
Proof of Theorem 1.1. The statement follows directly by combining Lemma 2.2 with
Lemma 2.4. 0

3. PROPERTIES OF GENERALIZED HOLONOMIC MEASURES

Here, we discuss two properties of generalized holonomic measures in Lemmas 3.1 and
3.2. Before proceeding, we recall that the results in [34, Proposition 2.3], [35, Lemma
2.1] (see also the proof of Proposition B.2 in Appendix B) imply that the Mather set
and the projected Mather set are not empty; that is,

M#£0D, and M #0.

Lemma 3.1. Lett > 0, p € .//\/lv, and set v := proj u € M. Define dy(z,q,s) :=
du(x,q)ds for all s € [0,t]; that is,

/ f(x,q,8)dy(z.q,s / / f(x,q,8)dp(x,q) ds (3.1)
T xR™x[0,¢] nxRP
for all f € Co(T™ x R™ x [0,t]). Then,

v € H(v,v;0,t).
Proof. For all ¢ € C*(T™ x [0,t]), we have

/ (¢t +q- Dy —a(x)Ay) dy
Tn xR™ X [0,t]

t t
:// wtdud8+// (q- Do —a(x)Ayp) dpds
0 T xR™ 0 Tn xR"™
t
:/ (/ sotds) duz/ s@(x,t)dv—/ ¢(x,0)dv,
T’leRn 0 n n

which implies the conclusion. 0

Next, we show how to concatenate holonomic measures.
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Lemma 3.2. Let vy,15,v3 € P(T"), and a,b > 0 be such that H(v1,19;0,a) # 0,
H(va,v3;0,0) # (0. For any v1 € H(vi,10;0,a) and vy € H(ve, v3;0,b), set

L 71(377 Q75> s € [O,CL],
(2, ¢,5) _{ Yo(z,q,8 — a) s € la,a+0b)].

Then, v € H(vy,v3;0,a +b).

Proof. By the definition of H (v, 15;0,a) and H(vs, v3;0,b), for any test function ¢ €
C?*(T™ x [0, +00)), we have

/ w(»a)dw—/ ©(+,0) dm:/ (¢ —a(x)Ap 4+ q - De) dm,
n n T xR™ % [0,a]

/ (b dus / o, 0) dvy = / (¢t — a(@)Ag + - D) dra.
n n T xR" % [0,b]

Thus,

/ (o1 — a(z)Ap +q- Dyp) dy
T7 X R™ X [0,a+-b]

=/ [ ](cpt—a(x)AsoJrq-DsO) dv+/ (o1 — a(x)Ap + q - Dyp) dy
T xR" x[0,a

T xR"™ X [a,a+b]

= / (o1 —a(x)Ap +q- Do) dvi(z,q,s)
T" xR" % [0,a]

+ / (o1 — a(x)Ap + q - Dp) dys(z,q,s — a)
T™ xR"” X [a,a+b]

— [ ety [ ot0)dn

S (alms )~ a@)plws+ o)+ g Dpls+a)) e,
T xR™ X [0,b]

:/ngo(-,a)dug—/ngp(-,O)dul—f—/ngo(-,a—l—b)dyg—/ncp(-,a)dl/g
:/ngp(-,a—l—b)dug—/ngo(-,O)dyl,

which implies
v € H(vi,vs;0,a +b). O

4. PEIERLS BARRIER AND THE GENERALIZED AUBRY SET

Suppose that Assumptions 1-3 hold. Let u solve Problem 1. As shown in [7], there
exists a large-time limit, us, given by (1.4). This limit function solves Problem 2.
As explained in the Introduction, by the results in [35], to characterize a solution of
Problem 2, it is enough to determine the value

/ Uso(2)dv(z)  for all v € M.
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In this section, we provide this characterization and prove Theorem 1.2. Moreover,
we examine two constructions from Aubry-Mather theory, the Peirls barrier and the
projected Aubry set, and extend them in a way suitable for the study of degenerate
diffusions.

Recall that, for t > 0, we set

inf L(z,q)d if H(vo,v1:0,t) # 0,
ht(VO) Vl) = 'YEH(VO7V1;0,t) /’]I"”)(Rnx[o’t] ( q) ,7 ( 0 1 ) #
+00 if 7—[(1/0,1/1;0,25) - ®7

for vy, v, € P(T"). Also,

d(vy, 1) = %I;g hi(vo, vy). (4.1)
Lemma 4.1. Consider the setting of Problem 1 and suppose that Assumptions 1-3
hold. Fizt >0 and vy € P(T™). Then, the map

v hy(v, 1)

18 convex.

Proof. Fix t > 0 and vy € P(T"). Take vy, € P(T"). We must show that for
0< AL,

he(Avg + (1 — N g, 1) < May(vo, 1) + (1 — N hy(Dg, v4).
If any of the terms in the right-hand side is 400, the result is trivial. Thus, we may
assume that hy (v, v1) < 400 and hy(Dg, 1) < +00. Accordingly, H (v, v1;0,t) # 0 and
H (Do, 11;0,t) # 0. For vy € H(vg,v1;0,t) and o € H(Dy, v1;0, 1), let v := Ay +(1—=X)72
for A € [0, 1]. We claim that

v € H(Avg + (1 — Ny, 1150, 1). (4.2)
To establish the claim, we fix o € C%(T" x [0,¢]). Then

/ (pr —aldp +q- Do) d(Ay1 + (1 — A)y2)
T xR" X [0,t]

ZA(/ (or —alAp +q-Dy) d%)
T xR" X [0,t]

+(1—A)(/ (sot—aAs0+q-D<p)d72)
T xR"™ X [0,t]

—\ (/ o(2,t) dvi(2) — / 0(2,0) dyo(z))

H-0 ([ eenane) - [ oe0ane)
— [ eetyan) - [ ez0)d0m+ (1= Nm)),
thus (4.2) holds. Accordingly, we have

ht()\l/o + (1 — )\)DQ,Vl) S )\/

T xR" X [0,t]

Ld’yl+(1—)\)/ L dvs.

T" xR"™ X [0,t]
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Taking the infimum on v, € H(vp,v1;0,t) and v, € H(pp, 11;0,t), we obtain
ht<)\V0 —+ (1 — /\)170, V1) S )\ht(l/o, I/1> -+ (1 — )\)ht(ljo, I/1>. O

Next, we define the generalized Peierls barrier, h : P(T") x P(T™) — RU {+o0}, by

h(vo, 1) = li{n inf hy(vp, 1)  for vy, 1y € P(T").
—00

In weak KAM theory, the Peierls barrier is a function h : T" x T" — R. However,
in our context, points in T" are replaced by probability measures in P(T"); thus, h
becomes a function on P(T") x P(T"). We believe that this is a natural framework for
second-order equations.

Now, we introduce an auxiliary function, m : P(T") x P(T") — R, given by

(v, 1) i= sup UT wdin (z) — / w dz/o(x)] ,

where S is the set of all Lipschitz viscosity solutions to (1.5) given by (1.11). The
classical result for the existence of a solution of the ergodic problem implies that S # ()
(see [33], for instance). Besides, by [2, Theorem 3.1], there exists C' > 0 depending only
on H,a such that || Dw||pee(rny < C. Thus, m(vp, 1) is finite for all vy, 1 € P(T").

Lemma 4.2. Consider the setting of Problem 2 and suppose that Assumptions 1-3
hold. Then,

m(vo, 1) < d(vo,v1)  for all vy, vy € P(T"). (4.3)

Proof. 1f d(vy, 1) = oo, then (4.3) is trivial. Therefore, we only need to address the case
where d(vg, 1) < oo. In this case, there exists ¢ > 0 such that H (v, v1;0,t) # (). Let w
be any Lipschitz viscosity solution to (1.5), and let w®* € C°°(T™) be the approximation
of w given by (A.1) for a > 0; that is,

w(x) = / 0“(y)w(x —y)dy for x € T,
since w is time-independent here. Then, w* € C*°(T") satisfies
H(z, Dw®) — a(z)Aw® < Ca’?  in T

For any v € H(vg,1;0,t), we have

| wr@ i) = [ wt @) dnta)

/n R7x[0,1] (¢ Dw*(z) — a(z)Aw(z)) dy(z,q,5)

IN

/Tn . t] L(xz,q) + H(x, Dw*(z)) — a(x)Aw*(z)) dy(z,q, s)

IN

/ L(x,q) dr(z,q,5) + Ca'Pt.
xR™x[0,t]
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Send a — 0 to yield

[w@ane — [ wwanm < [ reodee)

Thus, taking the supremum with respect to w € §, and then, the infimum with respect
to v gives the claim in the statement. U

Corollary 4.3. Consider the setting of Problem 2 and suppose that Assumptions 1-3
hold. Then, for all vy, v, € P(T"),

m(vo, 1) < d(vo, 1) < h(vg, 1y). (4.4)
Moreover, h(v,v) = 0 for all v € P(T™).

Proof. Because of the definition of d(vy, v1) in (1.9) (or (4.1)), it is clear that d(vp,v1) <
h(vo, v1). Lemma 4.2 gives m(vg, 1) < d(vp, v1). Hence, we have (4.4). Finally, because
m(v,v) = 0, we conclude that h(v,v) > 0. O

The generalized projected Aubry set is the set
A:={veP(T") : h(v,v) =0}.

As in standard Aubry-Mather theory, the generalized projected Aubry set contains the
generalized projected Mather set, as we establish next.

Proposition 4.4. Consider the setting of Problem 2 and suppose that Assumptions
1-3 hold. Then,

M C A

In particular,

A £ (.
Proof. By Corollary 4.3,
0 <h(v,v) forallveP(T").

Let u be any generalized Mather measure, and set v := proj u. Let dy(x,q,s) :=
du(x,q) ds for all s € [0,t]. By Lemma 3.1, 4 € H(v,v;0,t) for all ¢ > 0. Thus,

h(v,v) = liminf hy(v,v) = liminf  inf / L(z,q)dvy(x,q,s)
T xR™ % [0,t]

t—o0 t—oo  yeH(v,v;0,t)

< liminf L(z,q)dy(x,q,s) —hmmf/ / L(z,q)dupds
t=00 JnxRr (0,4 t=o0 n xRN

= 07

in light of (1.7), which finishes the proof. Because of the results in [34, 35] (see also
the proof of Proposition B.2), we have M # (). Thus, A # (. O

Now, we prove a stronger version of Theorem 1.2; that is, (1.8) holds for all measures

in A.
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Theorem 4.5. Suppose that Assumptions 1-3 hold. Let u solve Problem 1 and us be
the large time limit of u in (1.4). Then,

/ () dv(z) = inf [d(uo, V) + / () dyo(z)]
for all v € A.

Proof. We rewrite the representation formula in Theorem 1.1 as

[ it = e ] Lo (o9 + [ unz) ()]

n ’YGH(Z/Q,V;O,t) T"XR”X[O,t} n
voEP(T™)
Accordingly, we have
,t)d > inf d(vo, dvg| = inf |d(v,v)+ d
/n U(Z ) V(Z) o ’yEH(ll{(l),u;O,t) |: (VO V) +/n to VO:| l/oGl’lgl(’IF") |: (VO V) /n Ho UO:|
v €P(T™)

for all v € P(T™). Thus, by letting ¢t — oo, we get

/ U2 dv(2) > inf ld(yo, V) + / () duo(z)} |

Let v € A. Fix e > 0, and take vy € P(T"), T' > 0, and vy, € H (v, v;0,T) such that

inf {d(yo, V) + / uo(2) dyo(z)l +e

voeP(T™)
>/ L@mmw@@+/uwmmw>/u@ﬂW@.
T xR™ % [0,T] n n

Because v € A, there exists a sequence {tj}ren such that ¢, — oo and
he, (v, v) — li{g(i)gf hi(v,v) = h(v,v) =0 as k — oc.
Accordingly, there exists ky € N such that for all k£ > kg,
e > hy (v, v).
Moreover, there exists a corresponding measure, v € H(v,v;0, 1), such that
2e > hy (v,v)+e> / L(z,q) dyi(x,q, s).
Tn xR X [0,t]

We note that u(-,- + T') solves (1.1) with initial data u(-,7"). By the representation
formula in Theorem 1.1, for k > ko,

inf {d(yo,y)—k/ uodl/[):| +52/ L(z,q) dyi(z,q, s)—l—/ uo dvg
voEP(T™) n T xR? % [0,T] n

u(z, T)dv(z / L(z,q) dy(x,q,s) — 2¢
T xR™ [Otk]

n

u(x, T + tg) dv — 2e.

n

%\%\
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Letting £k — oo and then € — 0 gives

/ U dv < Inf [d(uo,y)—l—/ uodyo},
n VoEP(T") n

which finishes the proof. 0
Theorem 1.2 follows from the preceding result, as we point out next.

Proof of Theorem 1.2. According to Proposition 4.4, M C A. Thus, the statement
follows directly from Theorem 4.5. O

Next, we record a convexity property for the generalized Mané critical potential. We
notice that we do not know if the maps v — d(v,7) and v — d(7,v) are convex for all
v € P(T"). We can only prove that the maps v — d(v,7) and v +— d(v,v) are convex
for all v € M.

Lemma 4.6. Consider the setting of Problem 1 and suppose that Assumptions 1-3
hold. Then, for any projected Mather measure v € M, the maps
vi—dv,v), v—dv,v)
are convex for v € P(T").
Proof. We only prove that the map v — d(7,v) is convex. Since the proof is similar

for the other map, we omit it here.
Take vy, v, € P(T"). We claim that for 0 < A < 1,

A, n + (1= Nws) < A7, 1) + (1 — Nd(@, ).

It is enough to consider the case where both terms in the right-hand side of the pre-
ceding expression are finite. Hence, let ¢, s > 0 with ¢ < s so that H (7, 11;0,t) # 0 and
H(7,12;0,8) # . Let v € H(D,v1;0,t) and 5 € H(D, 11; 0, 5).

Since v is a projected Mather measure, we can extend v, to y; € H(v,v1;0,5s) by a
similar argument to the proof of Lemma 3.1. Indeed, let 1 be a Mather measure such
that 7 = projnp. Let
du(z, q)dr for r € [0, s — ],
dyi(z,q,m — (s —1)) for r € [s — ¢, s].

dy(z,q,7) == {

By abuse of notation, we identify ¥, as v;. Let v := Ay + (1 — M), for A € [0, 1]. As
we show next,

v € HD, vy + (1 — N 0, 8).
To verify the preceding claim, fix ¢ € C%(T" x [0, s]),

/ (01 — a(2)Ap + q- D) dOy1 + (1 — A)y2)
T xR™ x[0,3]

) ( / (61 — ale)Ap + q- D) d%)
T xR" X [0,s]

TN ( / (61 — a(@)Ag +q- D) d’m)
T xR" X [0,s]
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\ </ oz, 5) din (2) — / (2, 0) da@))

(1= (/ oz, 5) din(z) — / (2, 0) dﬁ(z))
:/ngo(z,s)d()\l/l+(1—)\)1/2)(z)—/ o(2,0) di(2).

n

Thus, we have

(5, + (1= M) < )\/

T xR"x[0,s]

_ )\/ Ldu+)\/ Ld71+(1—/\)/ Ly,
T" xR™x[0,5s—t] T7 XR"™ X [s—t,s] T xR" X [0,s]

:)\/ Ld71+(1—)\)/ Ldy,
T™ xR™ x[0,t] T7 xR™ X [0,s]

because of (1.7). Taking the infima on v, € H(v,v1;0,t) fort > 0 and 72 € H(D, 11; 0, 5)
for s > 0, respectively, we obtain

A, + (1= Nws) < A7, 1) + (1 — Nd(7, ). 0

Ld'yl+(1—)\)/ Ldvys

T7 xR™ X [0,s]

We end this section by establishing the improved convergence result in Proposition
1.3. This result, which is of independent interest, is crucial for the proof of the duality
formula for the Mané critical potential.

Proof of Proposition 1.3. We establish the claim by contradiction. Accordingly, we
assume that there exists a sequence {uf} C C?*(T") with min. uf = 0 and a positive
number, ¢ > 0, such that for all £ € N there exists t;, > k with

[ (-, t1) = ul || pooqrny > €.

Because of Assumption 4, extracting a subsequence if necessary, we may assume that
uk(-,1) = u(-, 1) uniformly on T" as k — oo, for some function u(-,1) € C(T"). Let
Us be the large time limit of the solution to (1.1) with initial data u(-, 1).

Because u*(-,1) — u(+, 1) uniformly on T", we have u* — wu,, uniformly on T" by
the maximum principle (see [33]). By choosing k large enough, we have ||u®(-,t) —
U+, )| peeermy < § for all ¢ > 1, and |Juf, — || oo (rny < 5. Then,

|u(-, tk) — Usol|Loo(Tm)

> = [lul, ti) = u" (ot lzoomny + 6* (s t) = wgllzoe(ny — llule — too| ooy
€
2 57
which contradicts the uniform convergence of u(-,t) to us in T" as t — oco. O

5. DUALITY FORMULAS

In this section, we use the Legendre-Fenchel-Rockafellar theorem to give dual repre-
sentations for h; and d.
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5.1. Duality. To use the Legendre-Fenchel-Rockafellar theorem, we need to recall the
definition of Legendre transform on a locally convex topological vector space. Let E
be a locally convex topological vector space with dual E’ and duality pairing (-, ).
Consider a convex function, f : E — (—o00,+0o0]. The Legendre-Fenchel transform,
f*: B — [—o00,+00], of fis

f*y) = sup((a,y) — f(a))  fory € E"

Let 2 = T" x R” x [0,¢] for ¢ > 0 fixed. Let m be as in Assumption 3 and choose (
with 1 < ¢ <m’. Let U be the set

U= {u R : [+l il < oo}.

Q

The set U is the dual of
Cu(@) = {6.€.C(@) + ol = sup|

gl o0 1+ gl

L{lz{ueu:u20, /du:t}.
Q

Next, for ¢ € R", define the following linear operator on C?(T" x [0, ¢])

¢<x7 q7 S)
1+ gl

< 00,

=0 uniformly for (z,s) € T" x [O,t]}.

Let

Al = ¢, —a(r)Ap + q- Dep.

Note that A? can be regarded as a bounded linear mapping from C?*(T™ x [0,¢]) to
Ce(€2). Let B : C(T" x [0,¢]) — R be a bounded linear operator. Define

Uy = cl {u eU: / Alpdu(z, q,5) = By, Vo € C*(T" x [O,t])} :
Q

where the closure, cl, is taken with respect to the weak topology in U. Moreover, we
assume that there exists i € Us; that is, Us is non-empty.
For ¢ € C¢(2), let

f(@) =t sup (é(x,q,8) — L(x,q)). (5.1)

(z,q,5)€Q

Because f is the supremum of convex functions, it is also a convex function. Moreover,

because
L
o L@
lal=oe 14 g
for all x € T, f is also continuous with respect to the uniform convergence in C¢(€2).
Let

C=cl {(b € Ci(Q) : ¢(x,q,8) = Alp(x, s) for some p € C*(T" x [O,t])} ,

where cl denotes the closure in C;. Because A? is a bounded linear mapping from
C*(T™ x [0,1]) to C¢(9), C is a closed convex set.
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Fix i € Uy and let g : C(Q2) - RU {+o0} be
— [y o dp ifpedC,
= 5.2
9(9) { +00 otherwise. (5:2)

Because C is a closed convex set, g is convex and lower semicontinuous. Furthermore,
for ¢ = A%p, we have fQ ¢ dpin = By, according to the definition of Us.
Next, we address the Legendre transform of f. We recall that

i o, (o)

We first give two elementary results on f*.

Lemma 5.1. Suppose that Assumptions 1-3 hold. Let f be as in (5.1). Let p € U. If
w20 then f*(u) = +o00.

Proof. If ;1 # 0, there exists a sequence of functions ¢,, € C¢(£2) with ¢,, < 0 such that
[ ondn > +x.
Q

Therefore, because

f(gn) =t sup [¢n(7,q,5) — L(z,q)] < —tmin L(x,q) < C,

(z,q,5)EQ (z,9)
we have
£ > in [ Gudu5(6,) =t [ ondn-C =t 0
n—oo Jo n—oo Jo

Next, we give a lower bound for f*(u) for non-negative .

Lemma 5.2. Suppose that Assumptions 1-8 hold. Let f be as in (5.1). Let p € U. If

=0 then
f*(u)>/Ldu+ sup </¢du—tsup¢)
Q ’l[)EC{

Proof. Let L, be an increasing sequence of functions in C¢(€2) such that L, — L
pointwise. Any ¢ in C¢(£2) can be written as ¢ = ¢ + L, for some ¢ in C¢(€2).
Therefore,

d = d dp — —L)).
¢€scgtp (/925 = f(¢ ) wescl}f()ﬂ) (/ﬂLn u+/ﬂ¢ f tsgp(Lnﬂ/J L))

Because L, < L, we have

sup (/deﬂ f(o >/ sup (/Lndu%—/@/}du—tsup;/))
peCc (22 $eC(Q) Q Q Q
Z/Lnd,u+ sup (/wdu—tsupw)
Q PeCc(Q2) Q Q
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By the monotone convergence theorem,

/Lnd,u—>/Ld,u as n — 0o.
Q Q

Thus,

fH(u) =¢§? </¢du f(o ) /ldu+¢§? (/ddu—twp¢)

as required. O
Using the two preceding lemmas, we now compute the Legendre transform of f.
Proposition 5.3. Suppose that Assumptions 1-3 hold. Let f be asin (5.1). Let p € U.

Then,
£ = 4 Jo ‘ (5:3)
+00 otherwise.

Proof. By Lemma 5.1, if u is not non-negative then f*(u) = co. Moreover, by Lemma
5.2, if [, Ldu =400 then f*(u) = +o0. Furthermore, if [, du # t then

sup (/wd,u—tsupgb) sup « (/ du—t) = +00,
Yelc () \JQ a€R Q

by choosing ¢ = a for a € R. Therefore, in this case, using also Lemma 5.2, we have

fH(p) = Fo0.
When g > 0 and [, du = t, Lemma 5.2 implies

fWO>ALw,

by choosing ¥ = 0.
Additionally, for any ¢ € C¢(€2),

[ 6= Dyau < vswpto— 1) = 0)
Q
Therefore,
= sw ([oam-se) < [La

¢ECC(Q) Q Q
Accordingly, we obtain (5.3). O
Proposition 5.4. Suppose that Us # 0. Let g be as in (5.2). Let p € U. Then

*< ) B 0 if — €U

g +00  otherwise.

Proof. Let i1 € Us; that is, i satisfies

/A%WZB%
Q
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for all ¢ € C?(T" x [0,t]). Given a measure pu with —pu € Us, decompose p = —ji + i
with i € R(Q2) satisfying

/ Alpdp =0 for all p € C*(T" x [0,1]). (5.4)
Q

By continuity, we obtain

/mm:o for all ¢ € C;
Q

/qudqu/Q(bd/j—O

for all ¢ € C. Furthermore, if —u & Us, then there exists p € C*(T™ x [0,t]) such that
Jo A%pd(—p) # By, and by (5.4),

| v 20

that is,

which implies

/gzgd(qu,u) +£0 for some ¢ € C.
0

X ~ 0 it —pel
gmwww(/¢w+/¢w)={ c
peC \JQ Q +o0 otherwise.
Theorem 5.5. Suppose that Assumptions 1-3 hold. Suppose that Uy # (). Then,

max (—/Ldﬂ) = inf
pneULNU2 Q ¢€C2(T"X[0,t])

Proof. Let f and g be as in (5.1) and (5.2). We have that f,g : C¢(Q) — (—o0, +0]
are convex functions. The set g < 400 is non-empty, and, in this set, f is a continuous
function. Therefore, by the Fenchel-Legendre-Rockafellar theorem [38],

max [—f*(u) — g"(—p)] = inf [f(®) + g(0)].

peu $eC,(Q)

Thus

O

—Bp+t sup (¢ —a(x)Ap+ H(z, Dgp))] .
(z,5)€T™x[0,t]

By Propositions 5.3 and 5.4, we have

max [—f"(u) —g"(—p)] = max (—/QLdu) :
Therefore,

il [7(6) + g(0)] = inf {t sup(o— 1) - [ qsdn}

#€Cc ()

= inf —B t Alp — [
ot o B sl - 1)

= inf
peC?2(T2x[0,t])

—Bp+1t sup (gpt —a(z)Ap + sup (q Dy — L(x, C])))]
Tn x[0,1] g€Rn
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= inf

—Byp+t — a(z)Ap + H(z, D
peon oy |TBE T sup (o alz)Ag + Hiz, Dp))

(z,5)€T™ Xx[0,t]

Y

which implies the conclusion. O

5.2. Convex duality for h;. We begin by applying Theorem 5.5 to obtain a prelim-
inary dual formula for A,.

Proposition 5.6. Consider the setting of Problem 1. Suppose that Assumptions 1-3
hold. Fiz vy, 11 € P(T™), t > 0, and assume that H(vy,v1;0,t) # (0. Then,

he(vo, 1) = — inf sup [/ ©(x,0) dl/o—/ o(x,t) dv+

PEC(T"X[0,t]) (z,5)€T™ x[0,¢]
13 (QOt(I, S) - CL(I)AQO(ZL’, S) + H([L‘, DQO(ZL’, 8))) :

Proof. Given 1y and vy, we set

By = / o(x,t) dvy — / o(x,0) duy.
Because H (v, 11;0,t) # (0, we have Uy # (). Then

hi(vo,v1) = inf /Ld,u,
Q

peUINU2

where U; and U, are defined in Section 5.1. The identity in the claim follows from
Theorem 5.5. ]

As stated in Theorem 1.4, the preceding result can be further refined; it is enough
to use as test functions viscosity solutions to the Hamilton—-Jacobi-Bellman equation
in (1.1). This theorem is proved as follows.

Proof of Theorem 1.4. We denote by my(vg,v1) the right-hand side of (1.10).
Let w be a viscosity solution to (1.1) and consider the approximation w® defined in
(A.1). Then,

inf sup [/ o(x,0) duo—/ oz, s) dr

PEC(T"X[0,]) (1,5)

(il 5) — al@)Ap(a,5) + H(z, Do, 5))) |

< sup [/ w*(z,0) dyy — / w*(z,t) dvy + t (w — a(x)Aw® + H(z, Dw®)) ]
($7S) n m

< [/ w*(z,0) dy —/ w*(z,t) dyl} + Cat/?t.
Thus, letting o — 0, we conclude that

inf sup [/ o(x,0) dyo—/ oz, s)dv

PEC2(T™X[0,]) (1,s)

+1(pi(r,s) — a(x)Ap(z,5) + H(z, Dp(, 5)))
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g/ w(a:,O)dVO—/ w(w,t) dvy,

which implies h(vo, v1) > my(vo, v1).
Now take ¢ € C?(T" x [0,t]). By subtracting Ct to ¢ with some C' € R, we can
assume that

max  (py(z,s) — a(x)Ap(z, s) + H(z, Dp(z, s))) = 0;
(z,s)€T™ x]0,t]

that is, ¢ is a classical subsolution of (1.1). Next, let w? be the solution of the
Hamilton—Jacobi-Bellman equation (1.1) with initial data w?(z,0) = ¢(x,0). Then,
by the comparison, ¢(z,t) < w?(z,t). Accordingly,

/ w‘p(x,())dljo—/ w‘p(x,t)dylg/ gp(x,O)duo—/ o(x,t) dvy.

Therefore,

—hy(vo, 1) = inf sup [/ o(x,0) dig —/ o(x,t) d+
']Tn n

PECZ(T™X[0,t]) (z,5)€T™ x[0,1]

+t (0 — alz)Ap + H(x, Dp)) |

> inf ?(z,0) dvy — P(z,t)d

goGCQ(l’ﬁ‘lnx[O,t]) </an (,0) dvg /nw (z,0) Vl)

> inf‘g </ w(z,0) dyy —/ w(x,t) dyl) = —my(vo, 1),
we T n

which implies hy (v, 1) < my(vg, v1). O

5.3. Convex duality for d on M. Now, we examine the function d in light of duality
methods and prove Theorem 1.5.

Proposition 5.7. Consider the setting of Problem 1 and suppose that Assumptions
1-3 hold. Let vy,v; € P(T™). Then

d(vg, 1) = sup [/ w dvy —/ wdl/o] : (5.5)
wES Tn n

where S is the set of all Lipschitz viscosity solutions w € C(T™) of (1.5) defined by

(1.11).

Proof. Recall that

d(vo, 1) = glg he(vo, v1).

Let w € C(T™) solve (1.5). Then, w € Lip (T"). Because of our convention that ¢ = 0,
w solves (1.1). Therefore

ht(Vo,Vl) 2 |:/ wd1/1 —/ wdl/():| .

Consequently, we obtain (5.5). O
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Lemma 5.8. Consider the setting of Problem 1 and suppose that Assumptions 1-3
hold. Let vy € M. Given ¢ € C(T"), let w? be the solution of (1.1) with initial
condition w¥(x,0) = @(x). Then, the map

t— w?(z, t) dvy
Tn
1S NON-INCreasing.

Proof. Let uy be a Mather measure such that vy = proj =g, and 1 be a measure such
that

dn(z, q,s) = duo(z, q) for all s > 0.
By the representation formula for w?, we have

/ w“"(az,t)duog/ goduo—i-/ L(x,q) dn(m,q,s):/ @ duy.
n n T xR™ % [0,¢] n

We hence see that for ¢ > 0

/w“"(m,t)duog/ w?(x,0) dvy.

Thus, by the semigroup property of the solution operator of the Hamilton—Jacobi—
Bellman equation (see [33]), we get the claim in the statement. O

Proposition 5.9. Consider the setting of Problem 1 and suppose that Assumptions
1-4 hold. Let vy, v1 € M and suppose that d(vy,v1) < +oo. Then

d(vo, 1) < sup [/ wdvy —/ wdl/o] )
weS Tn n

Proof. Fix vy, v, € P(T™).
Fix e > 0 and let T" be as in the statement of Proposition 1.3. Let {t;} be a sequence
with ¢; — oo and hy, (19, v1) — d(vp,v1) as j — oo. Select t; > T such that

|d(vo, v1) — hy; (v0,1)] < €.

Next, by Theorem 1.4, for every € > 0 there exists a Lipschitz viscosity solution u to
(1.1) such that

htj(l/o,ul)g/ u(-,tj)dyl—/ u(+,0)dyy + €

Let too(x) = limy_y o u(x, t) for z € T". According to Lemma 5.8,

/u(-,O)dV()}/ Uso dVg.

Moreover, due to the convergence result in Proposition 1.3, we have

/u(-,t)dl/lg/ U dvy +€ forall t > T.

Therefore,
d(vp, 1) < / U AV — / Uso Vg + 38 < m(1g, 1) + 3e.
mn TTL

Because ¢ is arbitrary and u., solves (1.5), we obtain the desired inequality. 0
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Proof of Theorem 1.5. Theorem 1.5 is a straightforward result of Propositions 5.7 and
5.9. O

6. PROOF OF THEOREM 1.6

In this section, we prove Theorem 1.6 in case that m > 2. If a(x) = 0, the compact-
ness of Sy follows from the coercivity of the Hamiltonian.

Proof of Theorem 1.6. It is enough to show the compactness of S;; that is, to prove

that {S1v},ex, is uniformly bounded and equicontinuous. The main difficulty here is
that Xy = {up € C(T™) : ming up = 0} is not bounded in C(T").
Take uy € Xy. Without loss of generality, assume that

up(0) = H%iln up = 0.

It is clear that for any C' > max,er |H(x,0)|, ¢(z,t) = —Ct is a subsolution to (1.1).
Therefore,

u(z,t) > —Ct in T" x [0, 00).

We need to construct a supersolution to bound w from above. For this, the su-
perquadratic growth of H is crucial. Here, we borrow some ideas from [11]. For
any C' > 0 and A > 0 to be chosen later, let

Y(x,t) = M m- T (|z]* + At) & +Ct for all (z,t) € R" x (0, 00).

Note that m' = - € (1,2) because m > 2. We compute that

: w (m M 1
= (Ja M) - C
Vi (l2f* + At) <2|x|2+/\t m—1>+ ’

Py, = At~ m—1 (]a:\z—l—)\t)%* m'x;,
m!_ "= 2)xx;
ims = t m—1 2 )\t 2 1 / 51 (,rn—l] .
Vpio; = (’-75“" ) m(J—i- || + At

Therefore, for (z,t) € R™ x (0,00), noting that mm’ = m + m/,

m
2

m/ 2

and
a(@)AG (e, 1) < O™ (jaf +A)F — L
’ |22 4+ Mt
Combining the above computations, for (z,t) € R™ x (0,00), we gather

-+ Hiz, DY) — (@) > v + Do

/ m! m/ t 1 Al |:E|2 3
> M Z4Nt)2 - — .
(I + A1) (( 2 C> TPt N m—1 C (|x|2+/\t>

—C —a(z)Ay
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Because m > 2,
" om 1 1

[\3|§

I2m—-1 m-1

Accordingly, let 6 = % (m?, -1 ) > 0. Then, for A > 0 sufficiently large,

m —C>A(L+9).

3

>

2 m—1

Let z = —2_ € [0,1]. Then,

|z|2+ At
Am/ _c t 1 N Al |z)?
2 |z]2+ At m—1 C \|z|2+ Mt

1 1 A=,

> (——+0|(1—-2)— 2

(m—1+ )( ?) m—1+ o -
Ao, 1
m_

for A > 0 sufficiently large depending only on C,n,m.

Thus, 9 is a classical strict supersolution to (1.1) in R™ x (0,00), and #(0,0) = 0,
(z,0) = +oo for x # 0. In particular, ¢ (x,0) > ug(x) for all z € R™. The viscosity
subsolution test implies that u — ¢ cannot have a maximum point at (zq,t5) € R™ x
(0,00). Therefore, u < ¥ in R™ x (0,00) by the comparison principle. In particular,
for z € [0,1]" and ¢ = 1,

C 1 1 N\ C
_E <U<SL’,§) S)\mel (’$|2+—) +§ gCg,

where Cj depends only on C,n, m. Thus, we see that, for any uy € C(T™) such that
min» ug = 0,
1S 11| ooy < Co. (6.1)

We now use (6.1) together with [11, Theorem 1.2] to conclude that Sjuy € CO%(T"),
where a € (0,1) and |[Siug||co.e(rny depend only on C,Cy,m,n. The proof is hence
complete. O

For further Holder regularity results with respect to superquadratic Hamiltonians,
we refer the readers to [2, 9, 10] and the references therein.

A. APPROXIMATIONS OF SOLUTIONS TO PROBLEM 1

Let 6 € C*(R",[0,00)) and p € CX(R,[0,00)) be symmetric standard mollifiers;
that is, suppf C B(0,1) C R*, suppp C B(0,1) C R, 0(z) = (=), p(s) = p(—s),
and |01 wny = [|pllr@®) = 1. For a > 0, set %(z) := a "0(o 'z) for z € R, and
p*(t) = a tp(at) for t € R. For w € C(T™ x [0,00)), let w* € C*°(T" X [a, o0)) be

w*(z,t) = /Ooo pt(s) [ 0%(y)w(z —y,t —s)dyds for (z,t) € T" X [, 0). (A.1)

Rn
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Proposition A.1. Let w be a Lipschitz solution to (1.1). For 0 < a < 1, let w* be as
in (A.1). Then, there exists C' > 0 depending on H,a, and the Lipschitz constant of w
such that

w® — a(x)Aw® + H(z, Du®) < Ca’?  on T" x |a, 00). (A.2)

We give only a brief outline of the proof. For a detailed proof, see [33, 34].

Proof outline. To obtain the inequality in (A.2), we seek to rewrite its left-hand side in
terms of the convolution of the left-hand side in (1.1) with p*6¢. We will handle each
of the terms separately. The first term, w{ is trivial. For the last term, H(z, Dw®),
we observe that Jensen’s inequality gives, for (z,t) € T" X [, ),

o Du o) = H (o [ 5(6) [ 020Dt~y 5) dys
< [ o) [ e Dt = gt = s) dys

< /000 p(s) /n 0“(y)H(x —y, Dw(x — y,t — s)) dyds + Cav.

Thus, the term H(z, Dw®(x,t)) is controlled by the corresponding term in (1.1) con-
volved with p®0“ and an error term bounded by Ca.

The second term, a(z)Aw®, is where the main difficulty of the estimate lies. Because
w is Lipschitz, using equation (1.1), we have

—C<alzx)Aw <C onT" x [0,00) (A.3)

in viscosity sense.

Because of the simple structure of a, we see further that ||aAw||ge(rnxp,00)) < C,
and w is a subsolution to (1.1) and (A.3) in the distributional sense. We need to control
the commutation term,

/000 p*(s) /n 0“(y)a(z — y)Aw(x — y,t — s) dyds — a(x) Aw(x, t)
= Moo ([ ewtate - - andute -t s dy) i
= /000 p*(s)R*(z,t — s) ds,

where

Rt —s) = [ 6°()ale —y) — ole))Dula .t~ 5)dy.
To complete the proof, we show that |R%(x,t)| < Cal/? for all (z,t) € T™ x [0, 00). We
consider two cases

(i) min a(y) <o, or (ii) min a(y) > a.
yEB(z,a) yEB(z,a)

In case (i), there exists Z € B(z, «) such that a(Z) < a. Then, there exists a constant
C > 0 such that,
|Da(z)| < Ca(z)Y? < Ca*/?,
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See [7, Lemma 2.6] for example. For any z € B(z, @),
|Da(2)| < |Da(z) — Da(z)| + |Da(z)| < Ca + Cal’? < Cal/?,
Moreover, by using Taylor’s expansion,
|a(2) = a(@)| < la(z) = a(2)] + |a(z) — a(7)]
< |Da(@)|(|z — 2|+ |z — |) + O]z — 2> + |z — 2[*) < Ca®? + Ca® < Ca®/2.

We use the two above inequalities to control R*(x,t) as

R0l =| [ (ale =) - ate)duts — 1000 )

. Dw(x —y,t) - Da(z — y)0*(y) dy — . Dw(z —y,t) - DO%(y)(a(r —y) — a(x)) dy

< C/ (a1/290‘(y) + a3/2|D6°‘(y)|) dy < Cal’?,

Now, we consider case (ii); that is, mingg oy a > o. A direct computation shows
that

|R*(x,1)] < . (a(z —y) —a(x))] - [Aw(z -y, 1)[ 6% (y) dy

(e — ) — (), Dotz —y)l Iyl o
<c [ Mgy < c [ PE e )y Co

‘y’ o ’y| o 1/2

Combining these estimates yields the conclusion. U

B. THE GENERAL DIFFUSION MATRIX CASE

Now, we consider the case of a general diffusion matrix A. Let S™ be the space of nxn
real symmetric matrices. Let A : T" — S™ be a nonnegative definite diffusion matrix;
that is, ETA(x)¢ > 0 for all £ € R™ and z € T". Assume further that A € C?(T™,S").
We suppose that Assumptions 1-3 always hold in this section and replace (1.1) in
Problem 1 by the following general Hamilton—Jacobi-Bellman equation

uy — tr(A(x)D?*u) + H(z, Du) =0 in T" x (0, c0), (B.1)

where Du and D?u, respectively, denote the spatial gradient and Hessian of u, and
with initial data
uw(z,0) = ug(x) on T".

We now extend the results in Theorems 1.1-1.2 for this setting. While the state-
ments are similar, there are several technical points that must be addressed. The main
difficulty is that the analog of the approximation result in Proposition A.1 is substan-
tially more involved. This approximation result is examined in Proposition B.12 and
requires the approximate equation to be uniformly parabolic. Thus, further approxi-
mation arguments are needed in various places, including in the definition of holonomic
measures.
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B.1. Representation formulas for the general case of diffusion matrices. For
vo,v1 € P(T™), n > 0, let H"(vp, v1;to,t1) be the set of all v € RT(T™ x R™ X [to, t1])
satisfying

/ 4 dr(zrq, ) < oo
Tn xR™ x [to,t1]

and

/Tn N (got(z,s) —nAp(z,s) — tr(A(z)D*p(2,5)) + q - Dy(z, 5)) dy(z,q,5)

= [ eetydn) - [ ot dale)
for all ¢ € C?(T"™ X [to,t1]). Moreover, we set

HM(vy;t0,11) := U H"(vo, v1; to, t1).
vo€P(T™)

Fix any v; € P(T"). It is worth emphasizing that while we do not know that
H" (v, v1;to, t1) # B for each vy € P(T™), the set H"(v;to,t1) is always non-empty
as shown in the proof of Lemma B.5.

We define ﬁ(ul;to,tl) as follows. We say that v € 7:2(1/1;150,151) if v € RY(T" x
R™ X [to,t1]), and there exist C' > 0, a sequence {n;}jen — 0, {1}" }jen C P(T"), and
{Y"}jen € RT(T™ x R™ X [to, t1]) such that

A€ HY (v} t, 1), and / lq|dy" (z,q,8) < C  for each j € N,

T xXR"™ X [to,t1]
v” — v, weakly in the sense of measures in R(T"),

4" — ~  weakly in the sense of measures in R(T" x R™ x [tg,t1]) as j — oo.

We also note that H(1; o, t1) is non-empty for any v, € P(T™) as stated in Corollary
B.6. For v € H(vy;t0,t1), let v be the unique element in P(T") such that

/Tn - (pi(2,5) — nAp(2, ) — tr(A(2) D*p(2, 5)) + ¢ - Dp(2,5)) dy(z,q,5)

— /n o(z,t1) dvi(2) — /n p(z,t0) dv'(z)

for all ¢ € C2(T™ X [to, t1]). Accordingly, v € H (7, v1;to, t1).
We now use the measures in H(vq;to,t1) to obtain a representation formula for
solutions of (B.1), which can be viewed as a generalization of Theorem 1.1.

Theorem B.1. Let u solve (B.1). Suppose that Assumptions 1-3 hold. Then, for any
v e P(T") and t > 0, we have

/ﬂmmmziﬁ{éwwgmmmwwﬁwww@]

YEH(v;0,t)
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This theorem is proved in the next subsection.
The ergodic problem here is

—tr(A(z)D*v) + H(z,Dv) = ¢ in T" (B.2)

As previously (cf Remark 1), we add a constant to H, if necessary, so that ¢ = 0. As
in the time-dependent case, we begin by defining the sets of approximated stationary
generalized holonomic measures. For each n > 0, we denote by

H = {u € P(T" xR") : / lql° du(z, q) < o0,

/Tn . (—nAp(2) = tr(A(2) D*p(2)) + ¢ - Dp(2)) dp(z,q9) =0 for allp € CQ(T”)}.

In a similar manner to the time-dependent case, H is the set of all € P(T" x R™)
for which there exist C' > 0, {n;};en — 0, and {u" } ey C P(T™ x R") such that

wh e H", and / 1q|¢ dp™ (z,q) < C forall j € N,
Tn xR™

p" — o weakly in the sense of measures in P(T" x R") as j — oc.

We consider the variational problem

inf / L) du(e.a). (B.3)

HEH

A generalized Mather measure is a solution of the minimization problem in (B.3) and
M is the set of all generalized Mather measures. Moreover, M is the set of all gener-
alized projected Mather measures; that is, the projections to T" of generalized Mather
measures.

Proposition B.2. Suppose that Assumptions 1-3 hold. Assume that the ergodic con-
stant ¢ for (B.2) is 0. We have

wt [ Lg)duteg) =0
nEH JTnxR?

This proposition is proved at the end of the paper.

Finally, we have the following representation result, which is a generalized version
of Theorem 1.2.

Theorem B.3. Suppose that Assumptions 1-3 hold. Let u solve (B.1) and uy be as
in (1.4). Then, for any v € M, we have

/ ) Uoo(2) dv(2) = Voeig(fm [d(Vo, V) + / ] uo(2) dz/g(z)} :

where for vy, v; € P(T"), d is the generalized Manié critical potential connecting vy to
vy given by

dnm)i= _int [ L(z,q)dy(z,,5).
’YGH(;’g,é/l?O,t) Tn xR™ x[0,1]
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The proof of the preceding theorem is similar to the one of Theorem 1.2, so we omit
it here.

B.2. Proof of Theorem B.1. We begin by proving Theorem B.1.

Lemma B.4. Suppose that Assumptions 1-3 hold. Let u solve (B.1). Then, for 1, €
P(T™) and t > 0,

/ u(z,t)dri(z) < inf {/ L(z,q)dvy(z,q,s) +/ u(z,0) dlﬂ(z)} .
n YEH(v1;0,t) LJTnxR7 x[0,t] "

Proof. Note that u is globally Lipschitz continuous on T™ x [0, 00) (see [2, Proposition
3.5, [33, Proposition 4.15] for instance) under Assumptions 1-3.
For a,¢,8 > 0, let u®*° be the function given by (B.9) in Section B.3 below, and set

i(x,t) == u(x,t +a) forall (z,t) € T" x [0,00).

We notice that @ € C*(T" x [0,00)) and it is an approximate subsolution to (B.1), as
stated in Proposition B.12.

Fix v € H(1;0,t). By the definition of #(r;0,t), there exist {n;}jen — 0,
{vf}jen € P(T™), and {4} C RT(T" x R™ x [0,¢]) such that v € H(1;";0,t)
for all j € N, and

V?j — ;1 weakly in the sense of measures in R(T"),

v — ~  weakly in the sense of measures in R(T" x R" x [tg,t1]) as j — oo.

Then,

/En . (ie(2, 8) — m;Aa(z, s) — tr(A(2) D%z, 5)) + q - Di(z, 5)) dy" (2, ¢, s)

= / iz, t) diy (z) — / i(z,0) dv"” (2).
Because of the definition of the Legendre transform in (1.2),
q- Da(zu 8) < L(’Z7 Q) + H<Zv Da(zv 8))

Accordingly, we have
/ iz, t) dvl — / i(z,0)dv" (2)
= / (@ — n; A — tr(A(2)D*@) + q - D) dy"(z,q, s)
T" xR"™ X [0,t]

< / (@ —n; At — tr(A(z)D*a) + H(z, Da) + L(z,q)) dv"(z,q,s)
T xR™ % [0,t]

< / L(z0) dy" (2 ¢, 8) + K, 1,6, ),
T" xR"™ X [0,t]

where r(a,n,0,¢) is defined by (B.11) in Section B.3 below. By taking a subsequence

if necessary, we have
nj

vt =7 as j — 0o
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for some v7 € P(T") weakly in the sense of measures.
Notice that if we send a — 0, j — oo, and € — 0 in this order, then we have
k(a,mj,6,e) = 0.

Thus, we obtain
/ u(x, t) diy é/ L(z,q) d’y(z,q,s)—i—/ u(z,0) dv(z).
n T xR™ X [0,t] n

Because v € ﬁ(yl; 0,t) is arbitrary, the statement follows. O

To prove the opposite bound, we regularized (B.1) as in Problem 3. That is, for
e > 0, we find u® : T" x [0,00) — R solving

{u§ — tr(A(z)D*u®) + H(z, Duf) = eAuf in T™ x (0, 00), (B.A)
u(z,0) = up(x) on T™.

If Assumptions 1-3 hold, (B.4) has a unique solution, u® € C?*(T" x [0, +00)). More-
over, u® is Lipschitz continuous uniformly in € € (0,1). Further, by the standard
viscosity solution theory, u® — u locally uniformly, as ¢ — 0, where u solves (B.1).

Now, we use the nonlinear adjoint method, see [15, 37], to construct measures that
satisfy an approximated holonomy condition.

Lemma B.5. Fore >0, let u® solve (B.4). For any v, € P(T™), there exist a proba-

bility measure v§ € P(T™) and v* € HE(v§, v1;to, t1). Moreover, ¢ = D,H(x, Du®(z,1))

~v&-almost everywhere.

Proof. For p € C?(T™ x [tg,t1]), the linearization of (B.4) around the solution, ¢, is
Lo[p] = @1 = a7 ¢pu 0, + DyH (2, Duf) - Do — lep,

where we use Einstein’s summation convention. Accordingly, the corresponding adjoint

equation is the Fokker-Planck equation
—0; — (a470°) 4,2, — div(DpH (z, Du®)0¢) = eAc® in T" x (to, 1),
of(z,t1) =14 on T".

(B.5)

By standard properties of the Fokker-Planck equation,
0°>0onT" x [ty,t;), and / o°(z,t)dr =1 for all t € [ty, t1).

Next, for each ¢ > 0 and t € [ty, 1], let 57 € P(T™ x R"™) be the probability measure
determined by

$(z, Duf)o* (z, 1) di = / W(a,p) dB(z,p)

T T" xR
for all ¢p € C.(T" x R™). For t € [ty,t1], let 45 € P(T"™ x R™) the pullback of 5§ by the
map ®(z,q) = (z, D,L(x,q)); that is,

| vlepsn = [ v D) dia)

’]I"!L X RTL
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for all ¢ € C.(T™ x R™).
Define the measures 5°,7° € R(T" x R"™ x [to, t1]) by

/ fdpe = / [ sevds
T"XR"X[tO t1 to T xR™
t1
/ f iy = / R
T xR™ X [to,t1] Tm xR™

for any f € C.(T™ x R™ x [to, t1]).
Multiplying the first equation in (B.5) by an arbitrary function, ¢ € C?*(T" X [to, t1]),
and integrating on T", we gather

6/ o Apdr = — / oy dx +/ (a7 (2) a0, + DpH (z, D) - Dp)o® dx

= [ eondot [ (o a¥(@)pns, + DH(w D) D)o do

Next, integrating on [tg, t1], we deduce the identity

5/ / oAy dxdt = 6/ Apdy(z,q,t)

to n T"anx[to,tl]
1 a1 ..

= — / / (po®)y dxdt + / / (01 — a"(2)pa,a; + DpH (2, Duf) - D)o dxdt
to Tn to n

_ [An¢(~,t1)as(-,t1)dx—/n (-1 t0) 0% (- o) dx}

t1
+ / / (1 — @ (@), + 4 D) ()
Tn xR"

- _ {/n o(- 1) dvy — /On gp(-,to)dug]

+ / (pr — a9 (2)puia; +q - Do) dy(z,q,t),
T"XR"X[tO tl]

where dv§ := 0°(x,to) dr, which implies v¢ € H (1§, v1; to, t1). O
Corollary B.6. Under Assumptions 1-3, for all 0 <ty < t; and v; € P(T"),
7:2(1/1; t(), tl) 7é @

Proof. Let v§5 € P(T") and +* € H*(v§, v1;to, t1) be measures given by Lemma B.5.
Because

| Duf (-, t)||Loe(rmy < € for some C' > 0, for all ¢ € [to, 1],
there exists a sequence {¢;} — 0 such that
vy =15 € P(T"), ~9 =€ R(T"xR" x [tg,t1]) as j — oo, (B.6)

weakly in terms of measures on T and T" x R™ X [tg, 1], respectively. Thus, v €
H (v, v1;to, t1), which implies the conclusion. O
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Finally, we use Lemma B.5 to establish the opposite inequality to the one in Lemma
B.4.

Lemma B.7. For any v € P(T") and t > 0, we have

/ u(z,t)dv(z) > inf {/ L(z,q)dvy(z,q, s)+/ up(2) du”(z)}.
n yeH;0,t) LJTnxR"x[0,t] n

Proof. For s € [0,1], let 4¢ be the measure constructed in the proof of Lemma B.5 for
to = 0 and t; = t. By the properties of the Legendre transform

L(z,q) = DyH (2, DyL(2,q)) - DyL(2,q) — H(z, DyL(z, q)).

Therefore,
/Tann L(z,q) dv;(2,9)
~ [ (DHEDLE) - DiL) ~ Hz. DL 0) dri(z:0)
~ [ (DHGD) p— Hp) 5 )
_ / (DyH (e, Du) - D~ H(z, D))o (i, 5) d

for all s € [0,¢]. Moreover, integrating by parts and using the adjoint equation and
(B.4), we obtain

/ (D,H(x, Du®) - Du® — H(z, Du®))o® dx
= / —div(D,H (z, Du)o®)u® — H(z, Du)o® dx

= / (07 + A" + (a70%) 4, )u° + (uf — eAu — aijuiixj)ae dx

_ / (o). d.

Integrating on [0, ¢] yields

t
/ Legdrmas) = [ [ Leqdiwad
Tn xR™ % [0,t] 0 JTnxRn®

_ / (e, t) dv — / wo() duf.

Taking subsequences {75} and {vy’} as in (B.6) yields
/ u(z,t)dv(z) = / L(z,q)dy(z,q, s) +/ uo(z) dvo(2).
n T" xR"™ X [0,t] n

Because v € 7—N[(V0, v;0,t), we obtain the inequality claimed in the statement. O
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Proof of Theorem B.1. The statement follows directly by combining Lemma B.5 with
Lemma B.7. U

B.3. Approximation and proof of Proposition B.2. We first construct an approx-
imation of viscosity solutions of (B.1) by C?-subsolutions of an approximate equation.
We begin by recalling the definition of the sup and inf-convolutions and some of their
basic properties.

Let w : T" x [0,7] — R be a continuous function. The sup-convolution, w®, and
inf-convolution, w,, of w with respect to x for € > 0 are defined by

|z — y|? : [z —yf?
“(z,t) = ) — 2 ,t) = inf )+ =2
w(z,t) sup {w(y ) 5 we(z,t) Jmf, w(y, t) + =

Proposition B.8. Let w € Lip (T" x [0,00)), and set L := ||Dw||roo(rrx(0,00))- We
have

w®(z,t) = max {w(y,t)—|$_y|2}, w-(z,t) = min {w(y,t)+|x_y|2}.

|lx—y|<2Le 2e |lx—y|<2Le 2e

Moreover, || Dw®|| Lo (mnx (0,00)) < 2L and || Dwe|| oo (rrx(0,00)) < 2L.

Proof. We only give a proof for w®. Take x,y € T" so that 2Le < |z — y|. Since
w(y,t) —w(x,t) < Lz —y| < %, we have w(y,t) — % < w(x,t), which implies
the first claim.

To get the Lipschitz estimate for w®, for a fixed x € T", take 2z, € B(x,2Le) so that

w (2, ) = w(zy, t) — 25=E Then,

2e 2e
_ Wor) @y —2z) e -yl — 2]+ ly — )
2e - 2e
4L +C
< —
< —5—lr -yl
if |z —y| < Ce for any C' > 0, which implies the conclusion. O

It is well known that the inf-sup convolution (w®*?); for €, > 0 gives a C'*! approx-
imation of w in = (see [26] for instance).

Proposition B.9. We have (w**°)s € Lip ([0, 00); CV1(T")), where we denote by
Lip ([0, 00); CY(T™)) the set of all functions which are Lipschitz on t € [0,00) and
CYt on x € T™. Moreover, for each t > 0,

1 1
—-I< D (w0 s(x,t) < 51 forae zeR" (B.7)

Proof. Tt is clear that (w®%); is (1/28)-semiconcave. Because the inf and sup convolu-
tions satisfy the semigroup property, that is, w** = (w®)°, w5 = (w.)s for £,8 > 0,
we have

(w™)5 = ((w)")s,



38 DIOGO A. GOMES, HIROYOSHI MITAKE, AND HUNG V. TRAN

(wt%); is (1/2¢)-semiconvex in light of [12, Proposition 4.5]. Therefore, (w?)s €
Lip ([0, 00); C11(T™)), and (B.7) follows. 0

Lemma B.10. Let w be a Lipschitz subsolution to (B.1). Then, there exists a modulus
of continuity w € C([0,00)), nondecreasing and with w(0) = 0, a function dy(e,n),
defined for e, > 0, such that for e,n > 0, §g = do(g,n) and any § € (0,50, and any
(z,t) € T" x (0, 00) where (w0); is twice differentiable in x and differentiable in t we
have at (z,t) the following inequaliy

(W) 5)s — nA(w )5 — tr(A(z)D*(w)s) + H(z, D(w+)s) < w(e) + ?

Proof. We first notice that by standard viscosity solution theory, w® satisfies
w§ — tr(A(z)D*w®) + H(x, Du®) < w(e)

in the sense of viscosity solutions for some nondecreasing function w € C([0, 00)) with
w(0) = 0. Furthermore, because w® + |z|*/(2¢) is convex, we see that —Aw® < n/e in
T™ x (0, 00) in the sense of viscosity solutions. Thus,

wE — nAw® — tr(A(x)D*w®) + H(x, Duw) < w(e) + 715_77
in the sense of viscosity solutions.

Let @ = (w®%);. Note that @ > w® on T". Now, let (&,1) € T" x (0,00) be a
point where w is twice differentiable in x and differentiable in t. Select a function,
@ € C*(T" x (0,00)), such that @ — ¢ has a maximum at (&,f). At this point either
(i, 1) = w(2,1) or w(Z,1) > w(#,1). In the first alternative, that is, when @ (2,1) =
w®(2,1), w® — ¢ has a maximum at (Z,7). Thus,

Wy (2, 1) — nAw (i, 1) — tr(A(2) D> (&, 1)) + H(z, D (1))
<u(@,1) = nAp(2,t) — tr(A(2) D*p(i, 1)) + H(w, Dp(2,1)) < w(e) + ?

In the second alternative, that is, if @(Z,) > w®(Z, %), by [12, Proposition 4.4], 1/4
is one of the eigenvalues of D1 (,%). Moreover, by using (B.7), we get
. 1 n-1
Aw(z,t) >n| = — .
aoteiyzo(1-121)

Letting A := max e eig (A(x)) > 0, where eig (A(z)) are the eigenvalues of A(x), we
similarly have

. — DA
tr(A(2) D20 (3, 1)) > — L= DA
£
Set L := ||wi]|poo(rn) + || Dw]| oo (), and C' = maxy,j<2r, H(x, p). Moreover, we set
£
dole,n) = . (B.5)

(n—1)(A+n)+(L+C)’
Combining the preceding estimates, for all 0 < 6 < dy = do(g,n), we get
(2, 1) — nAw(, 1) — tr(A(2) D> (i, 1)) + H(z, Di(, 1))

1 —1 —1DA = —1)(A L+C
SL—n(S—n )+0z A oo 1, DBk,
g g g
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by the choice of Jy in (B.8), which finishes the proof. O
Next, we regularize (w?);s further by using standard mollifiers to obtain a C? sub-
solution. Let § € C®(R",[0,00)) and p € CF(R,[0,00)) be symmetric standard
mollifiers; that is, suppf C B(0,1) C R™, suppp C B(0,1) C R, 0(z) = 0(—x),
p(s) = p(—s), and [|0]| 1 &ny = ||pll22r) = 1. For each a > 0, set 0%(x) := o "(o ')

for x € R", and p®(t) := a !p(a~'t) for t € R. We define the function w®? &
C>(T" x [, 00)) by

wet) = [0 [ @ e -t - dyds ()

for all (z,t) € T" x |o, 00).

Lemma B.11. Let w € Lip (T" x (0,00)) and w**° be given by (B.9). Then, there
exists a constant C > 0, independent of €, 9, such that for all (z,t) € T" X [a, 0),
we have

(i)
tr(A(z) D*w™° (x, 1))

/ /n tr (A(z — y) D> (w)s(x — y, t — 5)) dyds‘

<
C’amax{6 5}

(i)
H(x, Dw**°(z,t))

/ / H(z —y, D(w™)s(zx — y,t — 5)) dyds < Ca.

Proof. We denote, respectively, w®s? and (w®%); by w® and w for simplicity in the
proof. We begin by proving the first inequality. We have

tr(A(x) D*w*(x,t)) < / /n 2w(x —y,t — ) dyds)
[ [ reea (e -0t =) dyds
<[ / PO ((AG) — Al ) Dl ) duds

By Proposition B.9, we have, for each ¢ > 0,
11
|D*w(z,t)| < C max {—, 5} for a.e. z € T,
€

which implies (i).
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By the convexity of H, Jensen’s inequality implies

e Dt~ (o[ /n Duts - -5 s

/ / H(z, Dw(x —y,t — s)) dyds.
By Proposition B.8 and (A3),
|H($ —y,Dw(x -yt — S)) —H(JZ,DU)(I -yl — 5))| < Ca
for all y € B(x,«) and t — s > 0. Thus, we finish the proof. O

Proposition B.12. Let w be a Lipschitz subsolution to (B.1). For a,e,§ > 0, let
w° € C?(T™ x [, 00)) be the function defined by (B.9). Forn > 0, let g = do(e,n)
be the constant given by (B.8). Then, we have

(%), — nAw™® — tr(A(z) D*w**?) + H(z, Dw™*°) < k(a,n,6,¢) (B.10)
for all 6 € (0,00] and (z,t) € T" x |, 00). Here,

o | =
S| =

k(a,n,0,e) == w(e)%—%jt(]max{— }a (B.11)

where w € C([0,00)) is a nondecreasing function w € C([0,00)) with w(0) =0, and C
18 a positive constant.

Proof. Proposition B.12 is a straightforward result of Lemmas B.10, B.11. U

We finally apply this approximation procedure to give the characterization of the er-
godic constant for (B.2) in terms of generalized Mather measures stated in Proposition
B.2

Proof of Proposition B.2. Take i € H. By the definition of H, there exist {n;}jen — 0
and {u" };en C P(T™ x R™) such that p € H" and

p — - weakly in the sense of measures in P(T" x R").

Let v be a Lipschitz viscosity solution to (B.2). For «,¢,d > 0, denote by

@)= [ ) e ) dy

Then, v%%° € C%(T"). Let © := v®*°, to simplify the notation. Because of Proposition
B.12, we have

k(a,m,d,6) > /Tn . (—n;jAD — tr(A(2)D*®) + H(z, D0)) du" (2, q)
> /T" o (—TIjA@ — tr(A(z)D%j) +q-Dv— L(z, q)) d,unj(z7 q)

:_/ L(27Q)d/’bm(27Q)'
T xR™
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We let @« — 0, j — oo, and € — 0, in this order, to get
/ L(z,q)du(z,q) > 0 for all yu e H.
Tn xR™

For € > 0, let (v°,¢) € C%*(T") x R solve
— eAv® — tr(A(x)D*v°) + H(z, Dv°) = ¢ in T" (B.12)

The constant ¢ is unique. Besides, thanks to Assumptions 1-3, we have that v° is
Lipschitz continuous uniformly in e € (0,1). Because the ergodic constant ¢ for (1.5)
was normalized to be 0, we see that ¢ — 0 as ¢ — 0. Let 6° solve the associated
adjoint equation

—eAG° — (a60°),,,, — div(D,H(z, Dv?)6°) =0 in T",
0°(z)dx = 1.

T
Next, we define a measure, p° € P(T" x R"™), as follows

(z, Do) (z) de = / $(z, D,L(x. q)) dy(z,q)

T Tn xR™

for all ¢ € C.(T" x R™).
Multiplying (B.12) by 6°, integrating on T", and using the integration by parts, we
get

& = / n ( — eAv® — tr(A(z) D*) + H(x, Dm))ef dx

= /n (H(x, Dv®) — D,H (z, Dv°) - Dv£>9’3 dx = / L(z,q)dps.

T xR™

By a similar argument to the one in Lemma 2.2, we see that u® € H®. By extracting
a subsequence if necessary, there exists a sequence {¢;} — 0 such that

p — o weakly in the sense of measures in P(T" x R")

as j — oo for someuéﬁ, and

/ L(x,q)du = 0.
T xR™

This also shows that p € M , and finishes the proof. U
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