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Abstract

We propose a globally convergent numerical method, called the convexification, to numerically
compute the viscosity solution to first-order Hamilton-Jacobi equations through the vanishing
viscosity process where the viscosity parameter is a fixed small number. By convexification,
we mean that we employ a suitable Carleman weight function to convexify the cost functional
defined directly from the form of the Hamilton-Jacobi equation under consideration. The strict
convexity of this functional is rigorously proved using a new Carleman estimate. We also prove
that the unique minimizer of the this strictly convex functional can be reached by the gradient
descent method. Moreover, we show that the minimizer well approximates the viscosity solution
of the Hamilton-Jacobi equation as the noise contained in the boundary data tends to zero. Some
interesting numerical illustrations are presented.
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1 Introduction

The aim of this paper is to compute viscosity solutions to a large class of Hamilton-Jacobi
equations possibly involving nonconvex Hamiltonians. The key ingredient for us to reach this
achievement is the use of a new Carleman estimate and the convexification method. This method is
only applicable when a viscosity term is added to the Hamilton-Jacobi equation under consideration.
The idea of adding the viscosity term and passing to the limit to obtain viscosity solutions is due
to the seminal works [15, 14]. Let R > 0 and Ω = (−R,R)d where d ≥ 1 is the spatial dimension.
Let F : Ω × R × Rd → R and f : Ω → R be functions of the class C2. In this paper, we propose a
globally convergent numerical method to solve the Hamilton-Jacobi equation

F (x, u(x),∇u(x)) = 0 for all x ∈ Ω (1.1)

with the Dirichlet boundary condition

u(x) = f(x) for all x ∈ ∂Ω. (1.2)
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The smoothness condition imposing on F and f is for the simplicity. We need it when analytically
establishing the convergence of the proposed method. However, this technical condition can be
relaxed in our numerical study. In this paper, we are interested in computing the viscosity solution
to (1.1)–(1.2). We only deal with the case that the Dirichlet boundary condition holds in the
classical sense in this paper. We refer the readers to [15, 14, 40, 5, 4, 56] and the references
therein for the theory of viscosity solutions to (1.1)–(1.2). It is worth mentioning that a number
of different extremely efficient and fast numerical approaches and techniques (many of which are of
high orders) have been developed for Hamilton-Jacobi equations. For finite difference monotone and
consistent schemes of first-order equations and applications, see [16, 53, 6, 50, 45] for details and
recent developments. If F = F (x, s,p) is convex in p and satisfies some appropriate conditions, it is
possible to construct some semi-Lagrangian approximations by the discretization of the Dynamical
Programming Principle associated to the problem, see [18, 19] and the references therein. For a
non-exhaustive list of results along these directions, see [46, 47, 58, 1, 2, 7, 51, 57, 23, 49, 11, 13, 10,
44, 39, 21]. Another approach to solve (1.1)–(1.2) is based on optimization [22, 54, 38, 17]. However,
due to the nonlinearity of the function F in (1.1), the least squares cost functional is nonconvex
and might have multiple local minima and ravines. Hence, the methods based on optimization only
provide reliable numerical solutions if good initial guesses of the true solutions are given.

Unlike the mentioned optimization approach, we propose to use the convexification method,
which does not rely on the above assumptions. This method is globally convergent in the sense that

1. it delivers good approximation of the true solution without knowing any advance knowledge
of the true solution even when the given data is noisy;

2. the claim in # 1 above is rigorously proved and numerically verified.

To the best of our knowledge, our method is new in the context of viscosity solutions to Hamilton-
Jacobi equations. It has two major advantages in solving (1.1)–(1.2) numerically. Firstly, it works
for some quite general F (x, u,∇u), which might be nonconvex in ∇u, and it does not require a lot of
specific structures on F . In particular, F might be dependent on u and ∇u in a rather complicated
way. Secondly, it is quite stable and robust even with some noise level on the boundary data, which
occurs naturally in applications.

The main idea of the convexification method is to employ a suitable Carleman weight function
to convexify the mismatch functional derived from the given boundary value problem. Several
versions of the convexification method have been developed since it was first introduced in [30] for a
coefficient inverse problem for a hyperbolic equation. We cite here [28, 26, 29, 27, 3, 25, 24, 52, 34]
and references therein for some important works in this area and their real-world applications
in bio-medical imaging, non-destructed testing, travel time tomography, identifying anti-personnel
explosive devices buried under the ground, etc. The crucial mathematical ingredients that guarantee
the strict convexity of this functional are the Carleman estimates. The original idea of applying
Carleman estimates to prove the uniqueness for a large class of important nonlinear mathematical
problems was first published in [8]. It was discovered later in [30, 33], that the idea of [8] can
be successfully modified to develop globally convergent numerical methods for coefficient inverse
problems using the convexification.

In this paper, it is the first time we use a Carleman weight function to numerically solve
Hamilton-Jacobi equations. One of the strengths of the convexification method is that it does
not require the convexity of F (x, s,p) with respect to p. Still, it has a drawback. The theory of the
convexification method requires an additional information about uz on a part of ∂Ω. In this paper,
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that part is

Γ+ =
{
x = (x1, x2, . . . , xd−1, z = R) : |xi| ≤ R, 1 ≤ i ≤ d− 1

}
⊂ ∂Ω. (1.3)

For x ∈ Rd, write x = (x1, x2, . . . , xd−1, z). More precisely, we impose the following condition.

Assumption 1.1. Write ∇u = (ux1 , . . . , uxd−1
, uz). We assume that uz on Γ+ is known.

In general, the additional knowledge of uz on Γ+ in Assumption 1.1 makes the problem of
computing solutions to Hamilton-Jacobi equations with the Dirichlet data on ∂Ω and the Neumann
data on Γ+ over-determined. However, in many real-world circumstances, we are able to compute
uz on Γ+ from the knowledge of u on Γ+ without further measurement. We provide here a classical
example arising from the traveling time problem. Denote by c(x), x ∈ Ω, the velocity of the light
at the point x. Here, c ∈ C(Ω, (0,∞)) is a given function. Let u(x) be the minimal time for the
light to travel from ∂Ω to x ∈ Ω. This function is governed by the boundary value problem for the
eikonal equation {

c(x)2|∇u(x)|2 = 1 x ∈ Ω,
u(x) = 0 x ∈ ∂Ω.

(1.4)

Since u = 0 on ∂Ω, in particular, u = 0 on Γ+. Hence uxi = 0 on Γ+ for all 1 ≤ i ≤ d − 1. The
function uz on Γ+ is given by

uz(x) = − 1

c(x)
for all x ∈ Γ+.

Above, the case uz(x) = 1
c(x) is negligible since in reality, u ≥ 0 on Ω and therefore, its partial

derivative with respect to z on Γ+ is non-positive.

Remark 1.1 (Reducing Assumption 1.1). We have the following points.

1. It follows from the example above that in general, since u, and; therefore, ux1 , . . . , uxd−1
on

Γ+ are known, to verify Assumption 1.1, we simply solve the equation

F (x, u, ux1 , . . . , uxd−1
, uz) = 0 (1.5)

for uz. So, a condition on F such that Assumption 1.1 holds true is that (1.5) is uniquely
solvable for uz. For example,

∂

∂z
F (x, u, ux1 , . . . , uxd−1

, uz) 6= 0 for all x ∈ Γ+.

2. In many important Hamilton-Jacobi equations; for e.g., the eikonal equation F (x, u,∇u) =
c(x)2|∇u|2 − 1 in (1.4) or F (x, u,∇u) = |ux1 | − |uz| − g (the case d = 2), for some function
g, equation (1.5) only provides |uz| rather than uz on Γ+. In this case, the sign of uz on Γ+

is required.

3. We provide here an example in which the sign of uz is known. Let d = 3 and x0 be a point in
R3 \ Ω. In travel time tomography, the Hamilton-Jacobi equation that describes the the travel
time of light traveling from the source x0 to a point x ∈ R3, has the form c2(x)|∇xu(x,x0)|2 =
1 for all x ∈ R3 \ {x0} with u(x0,x0) = 0. Here c(x) is the speed of the light at x. It was
proved in [29, Lemma 4.1] that if c(x), x ∈ Ω is an increasing function with respect to z and
the source x0 ∈ {z < −R} , then the function u(x, x0) is strictly increasing in the z−direction
for x ∈ Ω implying uz > 0 on Γ+. This result can be extended to all dimensions by repeating
the proof in [29, Lemma 4.1].
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4. In the case when Assumption 1.1 cannot be verified or even when it might not hold true, for
e.g.,

F (x, u,∇u) = 10u+ min{|∇u|, ||∇u| − 8|+ 6} − g

or
F (x, u,∇u) = u+ |∇u| − V · ∇u

for some function g and vector valued function V , the convexification method still provides
good numerical solutions, see Test 4 and Test 5 in Section 5. However, the rigorous theorem
that guarantees the efficiency of this method is missing in this paper.

Let us give a brief description of the main results in the paper. We consider the vanishing
viscosity process (equations (2.1) and (4.1)) and aim at computing uε0 for ε0 > 0 sufficiently small,
which is a good approximation of u, the viscosity solution to (1.1)–(1.2). The convexification is
developed to compute this uε0 . Firstly, we obtain a new Carleman inequality in Theorem 3.1:
For β > 1, r > R + 1, and b > R + r, we can find two numbers λ0 = λ0(β, r,R, b, d) > 0,
C = C(r,R, b, d) > 0 such that for all λ > λ0 and for all u ∈ C2(Ω) with u = 0 on ∂Ω and uz = 0
on Γ+, we have∫

Ω
e2λ( z+r

b
)β |∆u|2dx ≥ Cλ3β2(β − 1)b−3β(−R+ r)2β

∫
Ω
e2λ( z+r

b
)β |u|2dx

+ Cλ(β − 1)b−β
∫

Ω
e2λ( z+r

b
)β |∇u|2 dx.

We then use this Carleman estimate to show in Theorem 4.1 that the functional

Jλ,β,η(u) =

∫
Ω
e2λ( z+r

b
)β
∣∣− ε0∆u+ F (x, u,∇u)

∣∣2 dx + η‖u‖2Hp(Ω) (1.6)

is strictly convex for u ∈ H ∩B(M). Here, p > dd/2e+ 2 is such that Hp ↪→ C2(Ω), and

H = {u ∈ Hp(Ω) : u|∂Ω = f and uz|Γ+ = g}, B(M) = {u ∈ Hp(Ω) : ‖u‖Hp(Ω) < M}.

Then, we use a gradient descent method (Theorem 4.2) to compute the minimizer umin of this
functional. Assuming that umin ∈ H ∩ B(M/3), we can start the gradient descent method at
u(0) ∈ H ∩B(M/3) and iterate

u(k) = u(k−1) − κDJλ,β,η(u(k−1)) for k ∈ N.

Here, κ ∈ (0, κ0) where κ0 ∈ (0, 1) depends only on λ, β, R, r, b, d, M and ε0. We are able to obtain∥∥u(k) − umin

∥∥
Hp(Ω)

≤ θk/2
∥∥u(0) − umin

∥∥
Hp(Ω)

for k ∈ N,

for some θ ∈ (0, 1) depending only on κ, λ, β, R, r, b, d, M , F and ε0. Then, in Theorem 4.3, we
show that, even if there is a noise of size δ > 0, we still have a nice bound

‖uδmin − uε0‖2H1(Ω) ≤ C(η‖uε0‖2Hp(Ω) + δ2).
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Here, uδmin is the minimizer of Jλ,β,η(u) with noisy data u|∂Ω = f δ, uz|Γ+ = gδ. Here, by saying
that δ is the noise level, there exists an “error” function E satisfying ‖E‖Hp(Ω) ≤ δ, E|∂Ω = f δ − f ,

Ez|Γ+ = gδ − g. Combining Theorem 4.2 and Theorem 4.3, we have for each k ≥ 1,

‖u(k) − uε0‖H1(Ω) ≤ C(
√
η‖uε0‖Hp(Ω) + δ) + θk/2‖u(0) − uδmin‖Hp(Ω).

This inequality shows the stability of our method with respect to noise. If θk and η are O(δ2)
as δ tends to 0, then the convergence rate is Lipschitz. Finally, in Section 5, we implement the
convexification method based on the finite difference method and obtain interesting numerical results
in two dimensions.

We now address a bit further some state of the art numerical methods in solving (1.1)–(1.2)
in the literature. If F is generically convex in ∇u, there have been extremely powerful approaches
to compute the solutions such as monotone numerical Hamiltonian based finite difference methods
(see [46, 50, 51, 57, 49] and the references therein). When F is nonconvex in ∇u, the Lax–Friedrichs
schemes ([47, 1, 45]) and the Lax–Friedrichs sweeping algorithm ([23, 39]), in which numerical
viscosity terms appear naturally, are very efficient and accurate. Moreover, all the mentioned
methods have very quick running times with not too many iterations. Similar to the Lax–Friedrichs
schemes, the addition of a viscosity term is natural in our approach as we deal with general F ,
which is possibly nonconvex in ∇u.

The paper is organized as follows. In Section 2, we give some preliminaries about viscosity
solutions to Hamilton-Jacobi equations, which are rather well-known in the literature. We state
and prove a Carleman estimate in Theorem 3.1 in Section 3. Section 4 is devoted to the theoretical
results of the convexification (Theorems 4.1–4.3), which is our main focus in this current paper.
Then, in Section 5, we implement the convexification method based on the finite difference method
and obtain interesting numerical results in two dimensions.

2 Some preliminaries about viscosity solutions to Hamilton-Jacobi
equations

Definition 2.1 (Viscosity solutions of (1.1)–(1.2)). Let u ∈ C(Ω).

(a) We say that u is a viscosity subsolution to (1.1)–(1.2) if for any test function ϕ ∈ C1(Ω) such
that u− ϕ has a strict maximum at x0 ∈ Ω, then

F (x0, u(x0),∇ϕ(x0)) ≤ 0 if x0 ∈ Ω,

or
min {F (x0, u(x0),∇ϕ(x0)), u(x0)− f(x0)} ≤ 0 if x0 ∈ ∂Ω.

(b) We say that u is a viscosity supersolution to (1.1)–(1.2) if for any test function ϕ ∈ C1(Ω)
such that u− ϕ has a strict minimum at x0 ∈ Ω, then

F (x0, u(x0),∇ϕ(x0)) ≥ 0 if x0 ∈ Ω,

or
max {F (x0, u(x0),∇ϕ(x0)), u(x0)− f(x0)} ≥ 0 if x0 ∈ ∂Ω.
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(c) We say that u is a viscosity solution to (1.1)–(1.2) if it is both its viscosity subsolution and
its viscosity supersolution.

It is worth noting that the Dirichlet boundary condition might not hold in the classical sense for
viscosity solutions to (1.1)–(1.2) (see [56, Appendix E] for example). In the following, we impose
some compatibility conditions to make sure that u = f on ∂Ω classically.

We write F = F (x, s,p). Let ∇xF and ∇pF the gradient vector of F with respect to the first
and the third variables, respectively, and ∂sF = Fs the partial derivative of F with respect to the
second variable. Here is one set of conditions that often occurs in the literature.

Assumption 2.1. 1. There exists α > 0 such that

α ≤ Fs(x, s,p) ≤ 1

α
for all (x, s,p) ∈ Ω× R× Rd.

2. F is coercive in p in the sense that

lim
|p|→∞

inf
(x,s)∈Ω×R

(
F (x, s,p)2 + ∂sF (x, s,p)|p|2 +∇xF (x, s,p) · p

)
= +∞.

3. There exists φ ∈ C2(Ω) such that φ = f on ∂Ω, and

F (x, φ(x),∇φ(x)) < 0 in Ω.

Theorem 2.1. Suppose that Assumption 2.1 holds. Then, problem (1.1)–(1.2) has a unique viscosity
solution, denoted by u. Moreover, for ε > 0, the following problem{

−ε∆uε + F (x, uε,∇uε) = 0 x ∈ Ω,
uε = f x ∈ ∂Ω.

(2.1)

has a unique solution in uε ∈ C2(Ω) and

lim
ε→0+

‖uε − u‖L∞(Ω) = 0. (2.2)

Theorem 2.1 holds true under other appropriate sets of assumptions too. We here just give one
prototypical set of conditions, Assumption 2.1, for demonstration. See [15, 14, 40, 56] for its proof.
For other set of appropriate conditions on F , see references listed in Section 5 in each numerical
test.

Remark 2.1. In fact, under Assumption 2.1, we are able to quantify the rate of convergence of uε

to u in L∞(Ω). There exists C > 0 independent of ε ∈ (0, 1) such that

‖uε − u‖L∞(Ω) ≤ Cε1/2.

See [16, 9, 56] for more details.
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3 A Carleman estimate

We prove a Carleman estimate that plays an important role in our proof for the convergence of
the convexification method. In the proof of the Carleman estimate, we will need the notation

Γ− =
{
x = (x1, x2, . . . , xd−1, z = −R) : |xi| ≤ R, 1 ≤ i ≤ d− 1

}
⊂ ∂Ω. (3.1)

Theorem 3.1 (Carleman estimate). For β > 1, r > R + 1, and b > R + r, we can find a number
λ0 = λ0(β, r,R, b, d) such that for all λ > λ0 and for all u ∈ C2(Ω) with u = 0 on ∂Ω and uz = 0
on Γ+, we have∫

Ω
e2λ( z+r

b
)β |∆u|2dx ≥ Cλ3β2(β − 1)b−3β(−R+ r)2β

∫
Ω
e2λ( z+r

b
)β |u|2dx

+ Cλ(β − 1)b−β
∫

Ω
e2λ( z+r

b
)β |∇u|2 dx. (3.2)

where C = C(r,R, b, d) is a constant. Here, λ0 and C depend only on the listed parameters.

Proof. In the proof below, C1, C2 and C3 are constants depending only on r, R, b, and d. We split
the proof into several steps.
Step 1. Define the function

v = eλ( z+r
b

)βu. (3.3)

For x = (x1, . . . , xd−1, z), i = 1, . . . , d− 1, we have

u = e−λ( z+r
b

)βv, uxi = e−λ( z+r
b

)βvxi ,

uxixi = e−λ( z+r
b

)βvxixi , uz = e−λ( z+r
b

)β
(
− λβb−β(z + r)β−1v + vz

)
,

and

uzz = e−λ( z+r
b

)β
((
λ2β2b−2β(z + r)2β−2 − λβ(β − 1)b−β(z + r)β−2

)
v − 2λβb−β(z + r)β−1vz + vzz

)
.

Therefore, using the inequality (a− b+ c)2 ≥ −2ba− 2bc, we have

e2λ( z+r
b

)β |∆u|2

=
[(
λ2β2b−2β(z + r)2β−2 − λβ(β − 1)b−β(z + r)β−2

)
v − 2λβb−β(z + r)β−1vz + ∆v

]2

≥ − 4λ2β2b−2β(z + r)2β−3
(
λβb−β(z + r)β − (β − 1)

)
vzv − 4λβb−β(z + r)β−1vz∆v. (3.4)

Dividing both sides of (3.4) by 2λβb−β(z + r)β−1 and integrating the resulting equation, we have∫
Ω

e2λ( z+r
b

)β |∆u|2

2λβb−β(z + r)β−1
dx ≥ I1 + I2, (3.5)

where

I1 = −2λβ

∫
Ω
b−β(z + r)β−2

(
λβb−β(z + r)β − (β − 1)

)
vzv dx (3.6)
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and

I2 = −2

∫
Ω
vz∆v dx. (3.7)

Step 2. In this step, we estimate I2. Since u = 0 on ∂Ω, v = 0 on ∂Ω. Since u = uz = 0 on Γ+,
vz = 0 on Γ+. Hence, vz = 0 on ∂Ω \ Γ−. Using integration by parts, we have

I2 = −2

∫
Ω

div(vz∇v) dx + 2

∫
Ω
∇vz · ∇v dx = −2

∫
Γ+

|vz|2 dσ + 2

∫
Γ−
|vz|2 dσ +

∫
Ω

(|∇v|2)z dx

= 2

∫
Γ−
|vz|2 dσ +

∫
Γ+

|∇v|2 dσ −
∫

Γ−
|∇v|2 dσ.

Since vxi = 0 on Γ+ ∪ Γ−, i = 1, . . . , d − 1, |∇v| = |vz| on this set. Using the fact that vz = 0 on
∂Ω \ Γ− again, we have

I2 =

∫
Γ+

|vz|2 dσ +

∫
Γ−
|vz|2 dσ ≥ 0. (3.8)

Step 3. We estimate I1. It follows from (3.6) that

I1 = −λβ
∫

Ω
b−β(z + r)β−2

(
λβb−β(z + r)β − (β − 1)

)
(|v|2)z dx

= −λβ
∫

Ω

[
b−β(z + r)β−2

(
λβb−β(z + r)β − (β − 1)

)
|v|2
]
z
dx

+ λβ

∫
Ω

[
b−β(z + r)β−2

(
λβb−β(z + r)β − (β − 1)

)]
z
|v|2 dx

= λβ

∫
Ω

[
2λβ(β − 1)b−2β(z + r)2β−3 − (β − 1)(β − 2)b−β(z + r)β−3

]
|v|2 dx.

Now, for fixed β > 1, we can find λ0 ≥ 1, only depending on β, r and R, sufficiently large such
that for all λ > λ0,

I1 ≥ C1λ
2β2(β − 1)b−2β

∫
Ω

(z + r)2β |v|2dx. (3.9)

Step 3. Combining (3.5), (3.8) and (3.9), we have∫
Ω

e2λ( z+r
b

)β |∆u|2

2λβb−β(z + r)β−1
dx ≥ C1λ

2β2(β − 1)b−2β

∫
Ω

(z + r)2β |v|2dx. (3.10)

Recall that v = eλ( z+r
b

)βu. It follows from (3.10) that∫
Ω

e2λ( z+r
b

)β |∆u|2

2λβb−β(z + r)β−1
dx ≥ C1λ

2β2(β − 1)b−2β

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2dx.

or equivalently,∫
Ω

e2λ( z+r
b

)β |∆u|2

βb−β(z + r)β−1
dx ≥ C1λ

3β2(β − 1)b−2β

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2dx. (3.11)
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Step 4. We estimate the term

∫
Ω
e2λ( z+r

b
)βu∆u dx. Using integration by parts, since u = 0 on ∂Ω,

we have

−
∫

Ω
e2λ( z+r

b
)βu∆u dx = −

∫
Ω

div
[
e2λ( z+r

b
)βu∇u

]
dx +

∫
Ω
∇(e2λ( z+r

b
)βu) · ∇u dx

=

∫
Ω
e2λ( z+r

b
)β
[
2λβb−β(z + r)β−1u+ uz

]
uz dx +

d−1∑
i=1

∫
Ω
e2λ( z+r

b
)β |uxi |2 dx

= λβ

∫
Ω
e2λ( z+r

b
)βb−β(z + r)β−1(|u|2)z dx +

∫
Ω
e2λ( z+r

b
)β |∇u|2 dx

= λβ

∫
Ω

[
e2λ( z+r

b
)βb−β(z + r)β−1|u|2

]
z
dx− λβ

∫
Ω

[
e2λ( z+r

b
)βb−β(z + r)β−1

]
z
|u|2 dx

+

∫
Ω
e2λ( z+r

b
)βb−β |∇u|2 dx.

Due to the fact that u = 0 on ∂Ω, the first integral in the last row above vanishes. We have

−
∫

Ω
e2λ( z+r

b
)βu∆u dx = −λβ

∫
Ω
e2λ( z+r

b
)β
(
λβb−2β(z + r)2β−2 + (β − 1)b−β(z + r)−2+β

)
|u|2 dx

+

∫
Ω
e2λ( z+r

b
)βb−β |∇u|2 dx.

Hence, for λ > λ0,

−
∫

Ω
e2λ( z+r

b
)βu∆u dx ≥ −C2λ

2β2b−2β

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2 dx +

∫
Ω
e2λ( z+r

b
)β |∇u|2 dx. (3.12)

Step 5. We complete the proof in this step. Using the inequality x2 + y2 ≥ −2xy, we have

λ5/2βb−β
∫

Ω
(z + r)β−1e2λ( z+r

b
)β |u|2dx +

∫
Ω

e2λ( z+r
b

)β |∆u|2

4λ1/2βb−β(z + r)β−1
dx

≥ −λ
∫

Ω
e2λ( z+r

b
)βu∆u dx. (3.13)

Combining (3.12) and (3.13), we have

∫
Ω

e2λ( z+r
b

)β |∆u|2

4λ1/2βb−β(z + r)β−1
dx ≥ −λ5/2βb−β

∫
Ω

(z + r)β−1e2λ( z+r
b

)β |u|2dx

− C2λ
3β2b−2β

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2 dx + λ

∫
Ω
e2λ( z+r

b
)β |∇u|2 dx,

which implies

∫
Ω

e2λ( z+r
b

)β |∆u|2

4λ1/2βb−β(z + r)β−1
dx ≥ −C3λ

3β2b−2β

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2 dx

+ λ

∫
Ω
e2λ( z+r

b
)β |∇u|2 dx. (3.14)

9



Multiply C1(β−1)
2C3

to both sides of (3.14) where C1 is the constant in (3.11), we yield

C1(β − 1)

2C3

∫
Ω

e2λ( z+r
b

)β |∆u|2

4λ1/2βb−β(z + r)β−1
dx ≥ −C1λ

3β2(β − 1)b−2β

2

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2 dx

+
C1λ(β − 1)

2C3

∫
Ω
e2λ( z+r

b
)β |∇u|2 dx. (3.15)

Adding (3.11) and (3.15), we have

(
1 +

C1(β − 1)

2C3λ1/2

)∫
Ω

e2λ( z+r
b

)β |∆u|2

βb−β(z + r)β−1
dx ≥ C1λ

3β2(β − 1)b−2β

2

∫
Ω

(z + r)2βe2λ( z+r
b

)β |u|2 dx

+
C1λ(β − 1)

2C3

∫
Ω
e2λ( z+r

b
)β |∇u|2 dx. (3.16)

The desired Carleman estimate (3.2) follows from (3.16). �

Remark 3.1. In our previous publications, see e.g. [43, 36], the number β must be large. The reason
for (3.2) holds true when β > 1 is our trick of dividing both sides of (3.4) by 2λβb−β(z + r)β−1

so that the corresponding I2, defined in (3.7), is nonnegative. This trick was used in [36, Theorem
3.1]. However, since the Carleman weight in [36, Theorem 3.1] is different from the one in (3.2),
the parameter β in [36, Theorem 3.1] must be large. In the case when the principal differential
operator in (3.2) is replaced by the general elliptic operator, this trick is not applicable.

4 The convexification method to compute the viscosity solution
to Hamilton-Jacobi equations

In this section, we propose to use the convexification method to solve (1.1) together with the
boundary condition (1.2) supposing that Assumption 1.1 holds true. That means we know the
boundary value u = f on ∂Ω and the function uz|Γ+ can be computed, say uz = g on Γ+. Due to
Theorem 2.1, it is natural to try to approximate the solution u by a function uε0 that satisfies

−ε0∆uε0 + F (x, uε0 ,∇uε0) = 0 x ∈ Ω,
uε0 = f(x) x ∈ ∂Ω,
uε0z = g(x) x ∈ Γ+.

(4.1)

Remark 4.1. 1. In general, (4.1) is over-determined. It might have no solution; especially when
the boundary data contains noise. However, the convexification method can deliver a function that
“most fits” (4.1) and show that this function is an approximation of the true solution to (1.1)–(1.2)
when the given boundary data are noiseless. Again, due to Assumption 1.1, the Neumann condition
imposed in (4.1) makes sense.

2. On the other hand, (4.1) is not over-determined in the sense that{
−ε0∆uε0 + F (x, uε0 ,∇uε0) = 0 x ∈ Ω,

uε0 = f(x) x ∈ ∂Ω,
(4.2)

might not be uniquely solvable if we do not impose Assumption 2.1 or other sets of appropriate
conditions. For example, when F (x, uε0 ,∇uε0) = −uε0, f = 0, and 1

ε0
is an eigenvalue of −∆, (4.2)

has multiple solutions. Therefore, imposing the additional Neumann boundary condition on Γ+, in
the general case, is necessary.
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Let p > dd/2e+ 2 such that Hp(Ω) ↪→ C2(Ω). Define

H = {u ∈ Hp(Ω) : u|∂Ω = f and uz|Γ+ = g}.

Clearly, H is a closed subset of Hp(Ω). We will also need the following set of test functions

H0 = {u ∈ Hp(Ω) : u|∂Ω = 0 and uz|Γ+ = 0}.

Let M > 0 be chosen later, and set

B(M) = {u ∈ Hp(Ω) : ‖u‖Hp(Ω) < M}.

We assume that H ∩B(M) 6= ∅. For each λ > 1, β > 1 and η > 0, introduce the functional

Jλ,β,η(u) =

∫
Ω
e2λ( z+r

b
)β
∣∣− ε0∆u+ F (x, u,∇u)

∣∣2 dx + η‖u‖2Hp(Ω) u ∈ H ∩B(M) (4.3)

where ε0 is a fixed small positive number.

The convexification theorem is to prove that for each β > 1, there is a number λ0 > 1 such
that for all λ ≥ λ0 and for all η > 0, the function Jλ,β,η is strictly convex in H ∩ B(M). The word

“convexification” is suggested by the fact that the Carleman weight function e2λ( z+r
b

)β convexifies
this functional. The convexification theorem is stated below.

Theorem 4.1 (The convexification theorem). 1. For all λ, β > 1, and η > 0, for all u ∈ Hp(Ω),
h ∈ H0, we have

lim
H0∈h→0

|Jλ,β,η(u+ h)− Jλ,β,η(u)−DJλ,β,η(u)h|
‖h‖Hp(Ω)

= 0 (4.4)

where

DJλ,β,η(u)h = 2

∫
Ω
e2λ( z+r

b
)β
[
− ε0∆u+ F (x, u,∇u)

][
− ε0∆h+ ∂sF (x, u,∇u)h

+∇pF (x, u,∇u) · ∇h
]
dx + 2η〈u, h〉Hp(Ω). (4.5)

2. Let M be an arbitrarily large number. For each β > 1, λ > λ0 = λ0(ε0,M, b, d, r, F, β) > 1,
η > 0, u ∈ H ∩B(M) and v ∈ H ∩B(M), we have

Jλ,β,η(v)− Jλ,β,η(u)−DJλ,β,η(u)h ≥ C‖v − u‖2H1(Ω) + η‖v − u‖2Hp(Ω), (4.6)

and
〈DJλ,β,η(v)−DJλ,β,η(u), (v − u)〉Hp(Ω) ≥ C‖v − u‖2H1(Ω) + η‖v − u‖2Hp(Ω). (4.7)

Here, the constant C depends only on λ, β, R, r, b, d, M , F and ε0. As a result, the functional
Jλ,β,η has a unique minimizer in B(M).

The key point for us to successfully establish the inequalities (4.6) and (4.7) is the presence

of the Carleman weight function e2λ( z+r
b

)β and the use of the Carleman estimate (3.2). A direct
consequence of the inequalities (4.6) and (4.7) is the strict convexity of Jλ,β,η in H ∩ B(M). It
is worth mentioning that C in (4.6)–(4.7) depends on the viscosity coefficient ε0, and we need
λ > λ0 = λ0(ε0,M, b, d, r, F, β) > 1 so that Jλ,β,η is convex in H ∩ B(M). On the other hand,
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D2Jλ,β,η ≥ ηId in H ∩ B(M), which means that the uniform convexity of Jλ,β,η only depends
on η, not ε0. The proof of Theorem 4.1 is similar to that of the convexification theorem in [3],
which is originally designed to solve highly nonlinear and severely ill-posed inverse problems. Since
this is the first time the convexification method is employed in the area of numerical methods for
Hamilton-Jacobi equations, we present the proof here for the reader’s convenience.

Remark 4.2. For all u ∈ Hp(Ω), since DJλ,β,η(u) is a bounded linear map from H0 into R, by the
Riesz theorem there exists uniquely the function J ′λ,β,ν(u) ∈ H0 such that

〈J ′λ,β,ν(u), h〉Hp(Ω) = DJλ,β,η(u)h

for all h ∈ H0.

Proof of Theorem 4.1. Since F is in the class C2(Ω× R× Rd), for all u, h ∈ Hp(Ω) we can write

F (x, u+h,∇(u+h)) = F (x, u,∇u)+∂sF (x, u,∇u)h+∇pF (x, u,∇u)·∇h+O(|h|2)+O(|∇h|2). (4.8)

Here, O(s) is the quantity satisfying |O(s)| ≤ C|s| where C is a constant that might depend on an
upper bound of ‖u‖C1(Ω) and the function F . Using (4.3) and (4.8), we obtain

Jλ,β,η(u+ h)− Jλ,β,η(u)− 2η〈u, h〉Hp(Ω) − η‖h‖2Hp(Ω)

=

∫
Ω
e2λ( z+r

b
)β
(
| − ε0∆(u+ h) + F (x, u+ h,∇(u+ h))|2 − | − ε0∆u+ F (x, u,∇u)|2

)
dx

=

∫
Ω
e2λ( z+r

b
)β
(
− ε0∆h+ F (x, u+ h,∇(u+ h))− F (x, u,∇u)

)(
− ε0∆h− 2ε0∆u

+ F (x, u+ h,∇(u+ h)) + F (x, u,∇u)
)
dx

=

∫
Ω
e2λ( z+r

b
)β
[
− ε0∆h+ ∂sF (x, u,∇u)h+∇pF (x, u,∇u) · ∇h+O(|h|2) +O(|∇h|2)

]
[
2
(
− ε0∆u+ F (x, u,∇u)

)
− ε0∆h+ ∂sF (x, u,∇u)h+∇pF (x, u,∇u) · ∇h

+O(|h|2) +O(|∇h|2)
]
dx.

Hence,

Jλ,β,η(u+ h)− Jλ,β,η(u)− 2η〈u, h〉Hp(Ω) − η‖h‖2Hp(Ω) − 2

∫
Ω
e2λ( z+r

b
)β
[
− ε0∆u+ F (x, u,∇u)

]
[
− ε0∆h+ ∂sF (x, u,∇u)h+∇pF (x, u,∇u) · ∇h

]
dx

= 2

∫
Ω
e2λ( z+r

b
)β
[
ε20|∆h|2 +O(|h|2) +O(|∇h|2)

]
dx. (4.9)

Defining DJλ,β,η as in (4.5) and using (4.9), we have

lim
H03h→0

|Jλ,β,η(u+ h)− Jλ,β,η(u)−DJλ,β,η(u)h|
‖h‖Hp(Ω)

≤ lim
H03h→0

|Jλ,β,η(u+ h)− Jλ,β,η(u)−DJλ,β,η(u)h|
‖h‖H2(Ω)

= 0.
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We have proved part 1 of this theorem. We next prove part 2.

For any u and v in H ∩B(M), set h = v − u ∈ H0. It follows from (4.9) that

Jλ,β,η(v)− Jλ,β,η(u)−DJλ,β,η(u)(v − u) = Jλ,β,η(u+ h)− Jλ,β,η(u)−DJλ,β,η(u)h

≥
∫

Ω
e2λ( z+r

b
)β
[
ε20|∆h|2 −O(|h|2)−O(|∇h|2)

]
dx + η‖h‖2Hp(Ω). (4.10)

Note that h|∂Ω = 0 and hz|Γ+ = 0. Applying Theorem 3.1, for each β > 1, we can find λ0 depending
on R, M , F , β, b and d such that for all λ > λ0,∫

Ω
e2λ( z+r

b
)β |∆h|2 dx ≥ Cλ

∫
Ω
e2λ( z+r

b
)β (|∇h|2 + λ2|h|2) dx. (4.11)

Here, the constant C is allowed to depend on β. We now choose λ such that ε20λ is sufficiently large.
Combining (4.10) and (4.11), we have

Jλ,β,η(v)− Jλ,β,η(u)−DJλ,β,η(u)(v − u) ≥ C‖h‖2H1(Ω) + η‖h‖2Hp(Ω).

We have proved (4.6). Here, C depends on λ, β, ε0, R, M , b and d. Interchanging the roles of u
and v in (4.6) and adding the resulting estimate to (4.6), we obtain (4.7).

We next prove that if (4.7) holds true, Jλ,β,η has a unique minimizer. The existence of the

minimizer is obvious. It follows from the fact that H ∩B(M) is convex in Hp(Ω) and the compact
embedding of Hp(Ω) to H2(Ω). An alternative way to obtain the existence of the minimizer is to
argue similarly to the proofs of Theorem 2.1 in [3] or Theorem 4.1 in [32]. We now prove the
uniqueness. Let u1 and u2 be two local minimizers of Jλ,β,η on H ∩ B(M). It is clear that, see [3,
Lemma 2],

DJλ,β,η(u1)(u2 − u1) ≥ 0 and DJλ,β,η(u2)(u1 − u2) ≥ 0.

Thus,
(DJλ,β,η(u1)−DJλ,β,η(u2))(u1 − u2) ≤ 0 (4.12)

Combining (4.7) for u1 and u2 and (4.12), we have

C‖u1 − u2‖2H1(Ω) + η‖u1 − u2‖2Hp(Ω) ≤ 0.

The proof is complete. �

Theorem 4.2 (The convergence of the gradient descent method). Let λ, β and η as in part 2 of
Theorem 4.1 and let J ′λ,β,η be as in Remark 4.2. Let u(0) be any function in H ∩ B(M/3). For
k ∈ N, define

u(k) = u(k−1) − κJ ′λ,β,η(u(k−1)) (4.13)

for all κ ∈ (0, κ0) where κ0 ∈ (0, 1) is a number that depends only on λ, β, R, r, b, d, M and ε0.
Then, if the minimizer umin of Jλ,β,η is in H ∩B(M/3) then there is a number θ ∈ (0, 1) depending
only on κ, λ, β, R, r, b, d, M , F and ε0 such that for all k ≥ 1∥∥u(k) − umin

∥∥
Hp(Ω)

≤ θk/2
∥∥u(0) − umin

∥∥
Hp(Ω)

. (4.14)
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Theorem 4.2 and the estimate (4.14) guarantee that the minimizer of Jλ,β,η can be found by the
popular gradient descent method. The success is due to the hypothesis that the desired minimizer is
in the interior of B(M/3). We do not experience any difficulty due to not checking this condition in
the numerical study. However, to be more rigorous, in general, if this condition cannot be verified,
one can use the projected gradient method as in [3, 25] to find the minimizer. In this paper, we
choose the gradient descent method because the implementation of the projection in the projected
gradient method is more complicated while there are many ready-to-use packages; for e.g., the
optimization toolbox of Matlab, for the gradient descent method. In other words, Theorem 4.2
significantly reduces our efforts in implementation. Although the proof of Theorem 4.2 is similar
to the proofs of [31, Theorem 6] in 1D case and [37, Theorem 2.2] in higher dimensions, we briefly
present the proof of Theorem 4.2 here for the convenience of the reader.

Proof of Theorem 4.2. Since F is a function in the class C2(Ω × R × Rd), it is obvious that ∇xF ,
∂sF , ∇pF are all Lipschitz continuous in any bounded subdomain of Ω × R × Rd. As a result,

DJλ,β,η, see (4.5) for its definition, is Lipschitz continuous on H ∩B(M). Hence, there is a positive
number L such that

‖J ′λ,β,η(u1)− J ′λ,β,η(u2)‖Hp(Ω) ≤ L‖u1 − u2‖Hp(Ω) (4.15)

for all u1, u2 ∈ H ∩B(M). We claim that for any k ≥ 0,

‖u(k) − umin‖Hp(Ω) <
2M

3
. (4.16)

This is true when k = 0. Assume (4.16) is true for some k, we will prove that (4.16) holds true for
k+ 1. Due to (4.16), u(k) ∈ H ∩B(M). Since umin is in H ∩B(M/3), J ′λ,β,η(umin) = 0. Using (4.7)
and (4.15), we have∥∥u(k+1) − umin

∥∥2

Hp(Ω)
=
∥∥u(k) − umin − κ[J ′λ,β,η(u

(k))− J ′λ,β,η(umin)]
∥∥2

Hp(Ω)

=
∥∥u(k) − umin

∥∥2

Hp(Ω)
− 2κ

〈
J ′λ,β,η(u

(k))− J ′λ,β,η(umin), u(k) − umin

〉
Hp(Ω)

+ κ2
∥∥J ′λ,β,η(u(k))− J ′λ,β,η(umin)

∥∥2

Hp(Ω)

≤ (1− 2κη + κ2L2)
∥∥u(k) − umin

∥∥2

Hp(Ω)
.

Choosing κ ∈ (0, κ0) where κ0 = ηL−2, we have θ = 1− 2κη + κ2L2 ∈ (0, 1) and∥∥u(k+1) − umin

∥∥
Hp(Ω)

≤ θ1/2
∥∥u(k) − umin

∥∥
Hp(Ω)

<
∥∥u(k) − umin

∥∥
Hp(Ω)

<
2M

3
. (4.17)

We have proved (4.16). The estimate (4.14) follows from (4.17). �

Consider the case when the boundary data f = u|∂Ω contains noise with the noise level δ > 0.
Since the knowledge of g = uz|Γ+ can be computed from the knowledge of u on this set, see
Assumption 1.1 and Remark 1.1, the Neumann data uz|Γ+ also contains noise. We assume that the
noise level is still δ. Denote by f δ and gδ the noisy boundary data and denote the corresponding
noiseless data f∗ and g∗. Here, by saying that δ is the noise level, there exists an “error” function
E satisfying 

‖E‖Hp(Ω) ≤ δ,
E|∂Ω = f δ − f∗,
Ez|Γ+ = gδ − g∗.

The following theorem guarantees that the minimizer of Jλ,β,η subject to the boundary constraints
defined by the noisy data is an approximation of the true solution to (4.1).
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Theorem 4.3. Assume that the set

Hδ = {u ∈ Hp(Ω) : u|∂Ω = f δ and uz|Γ+ = gδ}

is nonempty and let uδmin be the minimizer of Jλ,β,η in Hδ. Assume further that Problem (4.1), in
which the Dirichlet and Neumann data f and g are replaced by f∗ and g∗, respectively, has the
unique solution uε0 ∈ B(M − δ). Then, for all λ and β such that (4.6) holds true, we have

‖uδmin − uε0‖2H1(Ω) ≤ C(η‖uε0‖2Hp(Ω) + δ2). (4.18)

Proof. Define u = uε0 + E . We have u ∈ Hδ ∩B(M). Since uδmin is the minimizer of Jλ,β,η in Hδ, by
[3, Lemma 2],

〈J ′λ,β,η(uδmin), uδmin − uε0 − E〉Hp(Ω) ≤ 0.

Applying (4.6) for u and umin gives

Jλ,β,η(u
ε0 + E) ≥ Jλ,β,η(uε0 + E)− Jλ,β,η(uδmin)− 〈J ′λ,β,η(uδmin), uε0 + E − uδmin〉Hp(Ω)

≥ C‖uε0 + E − uδmin‖2H1(Ω) + η‖uε0 + E − uδmin‖2Hp(Ω)

≥ C‖uε0 + E − uδmin‖2H1(Ω). (4.19)

Applying (4.4), since uε0 solves (4.1), we have

Jλ,β,η(u
ε0 + E) = Jλ,β,η(u

ε0) + J ′λ,β,η(u
ε0)(E) + Cδ2 = η‖uε0‖2Hp(Ω) + 2η〈uε0 , E〉Hp(Ω) + Cδ2

≤ η‖uε0‖2Hp(Ω) + η2‖uε0‖2Hp(Ω) + Cδ2 ≤ 2η‖uε0‖2Hp(Ω) + Cδ2. (4.20)

Using the inequality (a− b)2 ≥ 1
2a

2 − b2 and combining (4.19) and (4.20), we have

1

2
‖uε0 − uδmin‖2H1(Ω) − ‖E‖

2
H1(Ω) ≤ ‖u

ε0 + E − uδmin‖2H1(Ω) ≤ C(η‖uε0‖2Hp(Ω) + δ2)

The estimate (4.18) follows. �

Combining Theorem 4.2 and Theorem 4.3, we have for each k ≥ 1,

‖u(k) − uε0‖H1(Ω) ≤ C(
√
η‖uε0‖Hp(Ω) + δ) + θk/2‖u(0) − uδmin‖Hp(Ω)

for some constant C > 0 and θ ∈ (0, 1) where u(k) is the minimizing sequence defined in Theorem
4.2. This inequality shows the stability of our method with respect to noise. If θk and η are O(δ2),
then the convergence rate is Lipschitz.

Remark 4.3. In the case when the function F is such that the comparison principle for −ε0∆u+
F (x, u,∇u) = 0 holds true; for e.g., F is strictly increasing with respect to its second variable
(Assumption 2.1), one can prove the stability of u with respect to noise without imposing Assumption
1.1 by the fact that u− δ and u+ δ are a subsolution and supersolution of −ε0∆u+F (x, u,∇u) = 0,
respectively. The main reason for us to successfully establish the stability without assuming the
comparison principle is due to the presence of the Neumann data in Assumption 1.1.

In the next section, we present the numerical implementation and some interesting numerical
results.

15



5 Numerical study

We implement the convexification method based on the finite difference method. For the sim-
plicity, in this section, we only consider the case d = 2. On Ω = [−R,R]2, we arrange a uniform
grid of points

G =
{
xij = (xi, zj) : xi = −R+ (i− 1)δx, zj = −R+ (j − 1)δz), 1 ≤ i, j ≤ N

}
(5.1)

where δx = δz = h = 2R/(N − 1). In our computation, R = 1 and N = 50. The finite difference
version of the objective function Jλ,β,η(u) is given by

Jλ,β,η(u) = h2
N−1∑
i,j=2

e2λ
∣∣ zj+r)

b

∣∣β ∣∣∣− ε0∆hu(xi, zj) + F ((xi, zj), u(xi, zj), ∂
h
xu(xi, zj), ∂

h
z u(xi, zj))

∣∣∣2
+ ηh2

( N∑
i,j=1

|u(xi, zj)|2 +

N−1∑
i,j=2

(
|∂hxu(xi, zj)|2 + |∂hz u(xi, zj)|2 + |∆hu(xi, zj)|2

))
. (5.2)

where

∆hu(xi, zj) =
u(xi, zj−1) + u(xi, zj+1) + u(xi−1, zj) + u(xi+1, zj)− 4u(xi, zj)

h2

∂hxu(xi, zj) =
u(xi+1, zj)− u(xi−1, zj)

2h

∂hz u(xi, zj) =
u(xi, zj+1)− u(xi, zj−1)

2h
.

Remark 5.1. 1. In our computation R = 1, N = 50, ε0 = 10−3, λ = 2, β = 8, b = 10, r = 1.2 and
η = 10−4. Although in the theoretical part, the parameters λ and β should be large, these values are
already good for the numerical part. For the simplicity, we use this set of parameters for all tests
below.

2. In theory p > 3 when d = 2. However, in numerical study, we can reduce the norm in the
regularization term to p = 2 to simplify the implementation and to improve the speed of computation.
We do not experience any difficulty with this small change.

In our implementation, instead of writing the computational code for the gradient descent
method, we use the optimization toolbox of Matlab, in which the gradient descent method is coded.
More precisely, we use the command “fmincon” to minimize the functional Jλ,β,η subject to the
boundary constraint in (4.1). The command “fmincon” requires an initial solution, that is the
function u(0) in Theorem 4.2. The function u(0) is naturally assigned to be the zero function. This
function u(0) does not satisfy the Dirichlet boundary condition on ∂Ω and Neumann condition on
Γ+. However, the command “fmincon” corrects this error automatically.

We present here five (5) numerical tests in which the given boundary data are noisy with noise
level δ = 0%, 5%, and 10%, respectively. In each test, utrue and ucomp denote the true and computed
viscosity solutions, respectively. Given functions f, g, the noisy versions of f, g are given by

f δ = f(1 + δ · rand) and gδ = g(1 + δ · rand),

where rand is the function that generates uniformly distributed random numbers in [−1, 1]. The
relative computed error is defined as

err(δ) =
‖ucomp − utrue‖L∞(Ω)

‖utrue‖L∞(Ω)
for δ > 0.
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Test 1. In this test, we find the viscosity solution to (1.1)–(1.2) where

F (x, s,p) =
1

150
s+ |p|+ 1

150
(x2 + z2)− 2

√
x2 + z2 for all x ∈ Ω, s ∈ R,p ∈ R2 (5.3)

and the boundary data are given by

u(x) = f(x) = −(x2 + z2) for all x = (x, z) ∈ ∂Ω (5.4)

and
uz(x) = g(x) = −2z for all x = (x, z) ∈ Γ+. (5.5)

The true solution is utrue(x, z) = −(x2+z2), which is smooth in Ω. We are here in a standard setting,
and the convergence of uε, the solution to (2.1), to the solution utrue to (1.1)–(1.2) is guaranteed in
[15, 14, 40, 5, 4, 56].

We show in Figure 1 the graphs of this true solution and that of the computed ones from noiseless
and noisy boundary data. It is evident that we successfully obtained computed viscosity solutions
to (1.1)–(1.2). By adding high level noise into the boundary data, we have numerically shown that
the convexification is stable. It is evident from Table 1 that the relative computed error is about
the noise level, which clearly illustrates the Lipschitz stability in Theorem 4.3. In this test, the true
solution is smooth. The function F (x, s,p) is strictly increasing with respect to s.

Table 1: Test 1. The performance of the convexification method. The computational time is the
time for a Precisions Workstations T7810 with 24 cores to compute the solution ucomp. In this
table, the relative L∞(Ω) error is ‖ucomp − utrue‖L∞(Ω)/‖utrue‖L∞(Ω).

Noise level computational time number of iterations relative L∞(Ω) error

0% 23.47 minutes 279 0.24%
5% 24.40 minutes 292 4.51%
10% 27.35 minutes 329 9.95%

Test 2. We now solve the eikonal equation of which the function F in (1.1) is not in the class
C1. In this test, the function F is given by

F (x, s,p) = |p| −
√

2 for all x ∈ Ω, s ∈ R,p ∈ R2 (5.6)

and the boundary data are

u(x) = f(x) = −(|x|+ |z|) for all x = (x, z) ∈ ∂Ω (5.7)

and

uz(x) = g(x) =

{
1 z < 0,
−1 z > 0,

for all x = (x, z) ∈ Γ+. (5.8)

We claim that the true solution to (1.1)–(1.2) is utrue(x) = −(|x| + |z|) for all x = (x, z) ∈ Ω.
Intuitively, this claim holds as the graph of utrue only has corners from above and F is convex in
p. Let us provide a rigorous verification here. If x 6= 0 and z 6= 0, then utrue is differentiable at
x = (x, z), and

∇utrue(x) =

(
− x

|x|
,− z

|z|

)
⇒ |∇utrue(x)| =

√
2.
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(a) The true solution utrue =
−(x2 + z2).

(b) The solution ucomp, computed
from noiseless boundary data.

(c) The solution ucomp, computed
from 5% noisy boundary data.

(d) The solution ucomp, computed
from 10% noisy boundary data.

(e) The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 0%.

(f) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 5%.

(g) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 10%.

Figure 1: Test 1. The true and computed viscosity solutions with δ is 0%, 5%, and 10% noisy
boundary Dirichlet data on ∂Ω and Neumann data on Γ+.

If x = 0 or z = 0, then utrue is not differentiable at x = (x, z). We can only find smooth test
functions that touch utrue from above at x, and we cannot find smooth test functions that touch
utrue from below at x. Let φ be a smooth test function that touches utrue from above at x. Without
loss of generality, we only need to consider the case x = 0. If z 6= 0, then we have that

φx(x) ∈ [−1, 1], φz(x) = − z

|z|
.

If z = 0, then we have that
φx(x) ∈ [−1, 1], φz(x) ∈ [−1, 1].

In both cases,
|∇φ(x)| ≤

√
2.
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Thus, the subsolution test holds for utrue at x. We conclude that utrue is a viscosity solution to (1.1)–
(1.2). This true solution and its computed versions ucomp from noisy boundary data are displayed
in Figure 2. The convergence of uε, the solution to (2.1), to the solution utrue to (1.1)–(1.2) is
guaranteed in [20, 55] with convergence rate O(ε1/2).

(a) The true solution utrue =
−(|x|+ |z|).

(b) The solution ucomp, computed
from noiseless boundary data.

(c) The solution ucomp, computed
from 5% noisy boundary data.

(d) The solution ucomp, computed
from 10% noisy boundary data.

(e) The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 0%.

(f) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 5%.

(g) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 10%.

Figure 2: Test 2. The true and computed viscosity solutions with δ is 0%, 5%, and 10% noisy
boundary Dirichlet data on ∂Ω and Neumann data on Γ+.

This test is more challenging than Test 1. In this test, the functions F and f are both not
smooth. So, the smoothness condition for the theoretical part does not satisfy. However, the
convexification method still provides reliable solutions even when the given boundary is noisy with
the noise level δ = 10%. This shows the robustness of the convexification method. The relative
errors are acceptable, see Table 2.

Test 3. We next consider a more complicated Hamilton-Jacobi equation. Unlike the previous
two tests, the function F in this test is not convex and; more interestingly, not coercive and not
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Table 2: Test 2. The performance of the convexification method. The computational time is the
time for a Precisions Workstations T7810 with 24 cores to compute the solution ucomp. In this
table, the relative L∞(Ω) error is ‖ucomp − utrue‖L∞(Ω)/‖utrue‖L∞(Ω).

Noise level computational time number of iterations relative L∞(Ω) error

0% 48 minutes 581 3.75%
5% 89 minutes 1071 5.23%
10% 64 minutes 766 12.22 %

continuous. It is given by

F (x, s,p) = 20s+ |p1| − |p2|

−
(

20
(
− |x− 0.5|+ esin(π(x2+z2))

)
+G(x, z)−

∣∣∣2πz cos(π(x2 + z2))esin(π(x2+z2))
∣∣∣) (5.9)

for all x = (x, z) ∈ Ω, s ∈ R,p = (p1, p2) ∈ R2 where

G(x, z) =

{ ∣∣1 + 2πx cos(π(x2 + z2))esin(π(x2+z2))
∣∣ x < 0.5,∣∣− 1 + 2πx cos(π(x2 + z2))esin(π(x2+z2))
∣∣ x > 0.5.

Note that G and F are discontinuous at x = 0.5 in general. The boundary data are given by

u(x) = f(x) = −|x− 0.5|+ esin(π(x2+z2)) for all x = (x, z) ∈ ∂Ω (5.10)

and
uz(x) = g(x) = 2πz cos(π(x2 + z2))esin(π(x2+z2)) for all x = (x, z) ∈ Γ+. (5.11)

The function utrue(x, z) = −|x−0.5|+esin(π(x2+z2)) is the true viscosity solution for this test. Indeed,
if x 6= 0.5, then utrue is differentiable at x = (x, z), and

∇utrue(x) =

(
− x− 0.5

|x− 0.5|
+ 2πx cos(π(x2 + z2))esin(π(x2+z2)), 2πz cos(π(x2 + z2))esin(π(x2+z2))

)
,

which gives that F (x, utrue(x),∇utrue(x)) = 0. If x = 0.5, then utrue is not differentiable at x =
(x, z). We can only find smooth test functions that touch utrue from above at x, and we cannot
find smooth test functions that touch utrue from below at x. Let φ be a smooth test function that
touches utrue from above at x. Then,

φx(x) ∈ 2πx cos(π(x2 + z2))esin(π(x2+z2)) + [−1, 1], φz(x) = 2πz cos(π(x2 + z2))esin(π(x2+z2)),

which yields that F∗(x, utrue(x),∇φ(x)) ≤ 0. Here, F∗ is the lower semicontinuous envelope of F .
Therefore, the subsolution test holds for utrue at x. We imply that utrue is a viscosity solution to
(1.1)–(1.2).

The numerical results are given in Figure 3. As mentioned, this test is interesting since the
function F , see (5.9), is nonconvex, noncoercive, and discontinuous. Solving the Hamilton-Jacobi
equation with this Hamiltonian is challenging. Some existing methods might not be applicable.
In contrast, the numerical results in Figure 3 are out of expectation. The errors of computation
are small, see Table 3, although the solution has complicated structure. This kind of nonconvex
Hamiltonian occurs in the context of two-player zero-sum differential games (see [4, 56]).
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(a) The true solution utrue(x, z) =

−|x− 0.5|+ esin(π(x
2+z2)).

(b) The solution ucomp, computed
from noiseless boundary data.

(c) The solution ucomp, computed
from 5% noisy boundary data.

(d) The solution ucomp, computed
from 10% noisy boundary data.

(e) The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 0%.

(f) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 5%.

(g) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 10%.

Figure 3: Test 3. The true and computed viscosity solutions with δ is 0%, 5%, and 10% noisy
boundary Dirichlet data on ∂Ω and Neumann data on Γ+.

Table 3: Test 3. The performance of the convexification method. The computational time is the
time for a Precisions Workstations T7810 with 24 cores to compute the solution ucomp. In this
table, the relative L∞(Ω) error is ‖ucomp − utrue‖L∞(Ω)/‖utrue‖L∞(Ω).

Noise level computational time number of iterations relative L∞(Ω) error

0% 10.72 minutes 129 1.32%
5% 11.12 minutes 131 2.04%
10% 8.43 minutes 101 3.97%

Remark 5.2. In Tests 1, 2 and 3 above, we are in the context that the knowledge of uz on Γ+ can
be computed from the knowledge of u and the form of the Hamilton-Jacobi equation, see Assumption
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1.1 and Remark 1.1. However, if the given Hamilton-Jacobi equation is rather complicated as in
Tests 4 and 5 below, solving uz|Γ+ from u|Γ+ is impossible. In this case, we minimize Jλ,β,η on
the set {u ∈ Hp(Ω) : u(x) = f(x) for x ∈ ∂Ω}. The convexification method still gives us out of
expectation numerical results in these two tests. However, the proofs of the convexification theorem
and the convergence of the numerical scheme for the problem with only Dirichlet boundary condition
(1.1)–(1.2) are extremely challenging, and they are out of the scope of this paper.

Test 4. We next consider the G-equation, which arises from instantaneous flame position. We
solve (1.1)–(1.2) when

F (x, s,p) = s+ |p| − xp1 (5.12)

for x ∈ Ω, s ∈ R,p = (p1, p2) ∈ R2 and the boundary data is given by

f(x) = −|x| − 1 x = (x, z) ∈ ∂Ω. (5.13)

The function utrue(x, z) = −|x| − 1 is the true viscosity solution for this test. The verification of
this is similar to that of Tests 2 and 3, and is hence omitted here. The numerical results are given
in Figure 4. Relative errors are 0.91%, 4.97% and 9.99% when δ is 0%, 5% and 10% respectively
(see Table 4). The G-equation is quite popular in the combustion science literature. We refer the
readers to [12, 59, 41] for some recent important mathematical developments.

Table 4: Test 4. The performance of the convexification method. The computational time is the
time for a Precisions Workstations T7810 with 24 cores to compute the solution ucomp. The relative
L∞(Ω) error is ‖ucomp − utrue‖L∞(Ω)/‖utrue‖L∞(Ω).

Noise level computational time number of iterations relative L∞(Ω) error

0% 22.62 minutes 280 0.91%
5% 24.99 minutes 311 4.97%
10% 26.50 minutes 322 9.99%

Test 5. We finally consider a quite complicated form of the function F . For x = (x, z) ∈ Ω, let

G(x, z) =

{
1 + 2π cos(2π(x+ z)) x > 0,
−1 + 2π cos(2π(x+ z)) x < 0.

We solve (1.1)–(1.2) when

F (x, s,p) = 15s+ min {|p|, ||p| − 10|+ 6} −
[
15(−|x|+ sin(2π(x+ z)))

+ min
{
|
√
|G(x, z)|2 + 4π2 cos(2π(x+ z))|,

∣∣√|G(x, z)|2 + 4π2 cos(2π(x+ z))− 10
∣∣+ 6

}]
(5.14)

for x ∈ Ω, s ∈ R,p ∈ R2, and the Dirichlet boundary data is given by

f(x) = −|x|+ sin(2π(x+ z)) for all x = (x, z) ∈ ∂Ω. (5.15)

It it worth mentioning that F,G are not continuous in general at x = 0. The function utrue(x, z) =
−|x| + sin(2π(x + z)) is the true viscosity solution for this test. Its graph and the graphs of the
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(a) The true solution utrue = −|x|−
1.

(b) The solution ucomp, computed
from noiseless boundary data.

(c) The solution ucomp, computed
from 5% noisy boundary data.

(d) The solution ucomp, computed
from 10% noisy boundary data.

(e) The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 0%.

(f) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 5%.

(g) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 10%.

Figure 4: Test 4. The true and computed viscosity solutions with δ is 0%, 5% and 10% noisy
boundary Dirichlet data on ∂Ω.

computed solutions are displayed in Figure 5. Let us give a rigorous verification here. If x 6= 0,
then utrue is differentiable at (x, z), and

∇utrue(x, z) =

(
− x

|x|
+ 2π cos(2π(x+ z)), 2π cos(2π(x+ z))

)
,

which implies that F (x, u(x),∇utrue(x)) = 0. If x = 0, then utrue is not differentiable at x = (x, z).
We can only find smooth test functions that touch utrue from above at x, and we cannot find smooth
test functions that touch utrue from below at x. Let φ be a smooth test function that touches utrue

from above at x. Then,

φx(x) ∈ 2π cos(2πz) + [−1, 1], φz(x) = 2π cos(2πz),
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which yields that
|∇φ(x)|2 ≤ 1 + 4π + 4π2 ⇒ |∇φ(x)| ≤ 1 + 2π < 8.

Therefore,

F∗(x, utrue(x),∇φ(x)) = 10 sin(2πz) + |∇φ(x)| − 10 sin(2πz)−
√
|G|∗(0, z) + 4π2 cos(2πz)

= |∇φ(x)| −
√

1 + 2π| cos(2πz)|+ 4π2 ≤ 0.

Here, F∗ is the lower semicontinuous envelope of F , and |G|∗ is the upper semicontinuous envelope
of |G|. Thus, the subsolution test holds for utrue at x. We imply that utrue is a viscosity solution to
(1.1)–(1.2).

It is evidently clear that the convexification method delivers satisfactory numerical results. The
relative errors are provided in Table 5. This kind of Hamiltonian was considered in [48] in the
context of the periodic homogenization theory.

Table 5: Test 5. The performance of the convexification method. The computational time is the
time for a Precisions Workstations T7810 with 24 cores to compute the solution ucomp. In this
table, the relative L∞(Ω) error is ‖ucomp − utrue‖L∞(Ω)/‖utrue‖L∞(Ω).

Noise level computational time number of iterations relative L∞(Ω) error

0% 11.83 minutes 144 1.78%
5% 10.06 minutes 121 4.97%
10% 11.54 minutes 143 9.77%

Remark 5.3. It follows from tests 3 and 5 that the convexification method is effective in the
interesting case when the function F is nonconvex in p. The non-convexity is illustrated in Figure
6. This numerically confirms the strength of our method in solving Hamilton-Jacobi equations.
We refer the readers to [23, 39] for some other examples dealing with non-convex, discontinuous
Hamiltonians via the Lax-Friedrichs sweeping method.

Remark 5.4. The relative errors in computation are displayed in the last rows of Figures 1–5. It
is evident from those figures that the errors in computation occur at ∂Ω where the noise is added
and at the places where the true solution utrue is not differentiable. This again reflects the strength
of the convexification method.

It has been shown both analytically and numerically that the convexification method is robust
in solving a large class of Hamilton-Jacobi equations. The strengths of the convexification method
involves the facts

1. that it does not require any special structure of the Hamiltonian; especially, the convexity
condition of the Hamiltonian with respect to the third variable is relaxed;

2. that it yields the satisfactory numerical solutions even when the given boundary is noisy.

However, the convexification method has a drawback. It is time consuming in comparison to the
well-known methods for nonconvex Hamiltonians; for e.g., the Lax–Friedrichs schemes ([47, 1, 45])
and the Lax–Friedrichs sweeping algorithm ([23, 39]). In our tests, it takes from 10 minutes to 90
minutes, depending on the forms of the given Hamiltonians, for a Workstations T7810 with 24 cores
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(a) The true solution utrue = −|x|+
sin(2π(x+ z)).

(b) The solution ucomp, computed
from noiseless boundary data.

(c) The solution ucomp, computed
from 5% noisy boundary data.

(d) The solution ucomp, computed
from 10% noisy boundary data.

(e) The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 0%.

(f) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 5%.

(g) [The relative error
|ucomp−utrue|
‖utrue‖L∞ ,

δ = 10%.

Figure 5: Test 5. The true and computed viscosity solutions with δ is 0%, 5%, and 10% noisy
boundary Dirichlet data on ∂Ω. The relative errors with these noise levels are given in Table 5.

to compute the solutions (see Tables 1–5). The slow computational time is acceptable in the sense
that we consider the computational program as a “proof of concept” to numerically confirm the
analysis of the convexification method. The convexification method is the first generalization of the
numerical method based on Carleman estimates to solve Hamilton-Jacobi equations. We expect
to improve the computational time in the next generation. The next generation will be developed
based on the fixed point iterative scheme similar to the ones in [35, 36, 42] for quasi-linear elliptic
and hyperbolic equations. The rate of convergence in those papers is O(θn) as n → ∞ for some
θ ∈ (0, 1). Hence, the success in reducing computational time is very promising.
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(a) p 7→ |p1| − |p2|. (b) p 7→ min {|p|, ||p| − 10|+ 6}

Figure 6: The dependence of the function F (x, s,p) on the third variable p in Test 3 (a) and Test
5 (b). It is evident that in those tests, the function F is nonconvex in p.

6 Concluding remarks

In this paper, we introduce a new method to solve highly nonlinear Hamilton-Jacobi equations in
a rectangular domain. This method is called the convexification. The key idea of the convexification
is to involve a Carleman weight function into a cost functional defined directly from the equation
under consideration. Using a Carleman estimate, we established some important theoretical results.
The first theorem guarantees that this cost functional is strictly convex and has a unique solution.
Then, we proved in the second theorem that the gradient descent method with sufficiently small
step size delivers a sequence converging to the unique minimizer. Then, in the third theorem, we
prove that the minimizer above converges to the solution in the vanishing viscosity process, a good
approximation of the viscosity solution to the Hamilton-Jacobi equation, as the noise contained in
the boundary data tends to 0. The rate of the convergence is Lipschitz. All theoretical results
are valid in the framework that we know the value of the solution on the boundary of the domain
and its normal derivative in a part of this boundary. We have pointed out that this framework is
acceptable in some real-world applications. We have shown some interesting numerical tests in 2D.
These tests confirm the convergence of the convexification method even when the Hamiltonian is
not convex or discontinuous. Moreover, these numerical results are out of expectation even when
the solved equations are not in the framework above.

As of now, the convexification method is more time consuming in comparison to the well-known
methods as addressed by the end of Section 5. We expect to improve the computational time in
the next generation. Besides, we also intend to study Hamilton-Jacobi equations with other types
of boundary conditions in the near future.

Acknowledgement

The works of MVK and LHN were supported by US Army Research Laboratory and US Army
Research Office grant W911NF-19-1-0044. The work of HT is supported in part by NSF grant
DMS-1664424 and NSF CAREER grant DMS-1843320.

26



References

[1] R. Abgrall. Numerical discretization of the first-order Hamilton-Jacobi equation on triangular
meshes. Comm. Pure Appl. Math., 49(12):1339–1373, 1996.

[2] R. Abgrall. Numerical discretization of boundary conditions for first order Hamilton-Jacobi
equations. SIAM J. Numer. Anal., 41(6):2233–2261, 2003.

[3] A. B. Bakushinskii, M. V. Klibanov, and N. A. Koshev. Carleman weight functions for a
globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs.
Nonlinear Anal. Real World Appl., 34:201–224, 2017.

[4] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc.,
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